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Abstract

Training accurate tumor segmentation models only using data from the BraTS Sub-Saharan
Africa (SSA) Glioma dataset is difficult due to the low quantity and resolution of the images.
However, it is possible to improve model performance through the use of transfer learning
methods which leverage insights gained from larger datasets, such as the BraTS23 Adult
Glioma dataset. Here, we evaluate the performance of various transfer learning approaches
on the task of improving tumor segmentation Dice and Hausdorff Distance (95%) scores on
the BraTS SSA dataset. The transfer learning approaches assessed here include: Domain
Adversarial Neural Networks, Fine Tuning (with and without freezing layer weights), and
training with a combined dataset of low- and high-resolution images.

Keywords: Tumor segmentation, transfer learning, domain adaptation, low-resolution
tumor segmentation.

1. Introduction

The performance of deep learning models depends on the quality of training data used,
so models trained on insufficient or low-quality data will tend to perform poorly. This
tendency is exemplified in the variation in performance between models trained using the
BraTS23 Sub-Saharan Africa (SSA) dataset and the BraTS23 Adult Glioma dataset. When
evaluated on their respective datasets, models trained with the BraTS23 Adult Glioma
dataset significantly outperform their SSA counterparts. To understand this disparity, it is
important to consider the differences between the two datasets. Both datasets contain brain
MRI scans of adult glioma patients with radiologist annotations of tumorous subregions;
however, the BraTS23 Adult Glioma dataset consists of 1126 brain MRI scans, while the
BraTS SSA dataset consists of 95 scans. Notably, the datasets also differ in resolution,
as the MRI scanners used in the Brats23 Adult Glioma dataset are of 3T magnetic field
strength, while the scanners in the BraTS SSA dataset are of 1.5T magnetic field strength.
Furthermore, patients in the BraTS SSA dataset are typically scanned later in the disease
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progression at more advanced stages, and present the unique characteristics of gliomas in
SSA (e.g., suspected higher rates of gliomatosis cerebri)(Adewole et al., 2023).

Machine learning methods in the field of transfer learning provide a way to bridge the
gap in segmentation quality between models trained on the BraTS23 Adult Glioma and
SSA datasets by “transferring” insights gained from a larger domain (or dataset in this
instance) to a smaller one. To this end, we assess multiple transfer learning frameworks
including Domain Adversarial Neural Networks (DANN) (Ganin et al., 2016), fine tuning
models pre-trained on the BraTS Adult Glioma dataset to the BraTS SSA dataset, and
training with an augmented dataset consisting of samples from both domains.

2. Methods

2.1. Experiments

We evaluated the validation performance on the BraTS SSA dataset of the following 6 ap-
proaches, all based on the U-Net architecture described in (Ren et al., 2024):

Baseline
(BraTS Adult

Glioma)

Train the U-Net model on the complete BraTS23 Adult Glioma
dataset. This serves as a baseline to evaluate the efficacy of the

transfer learning approaches.

Combined
Dataset
Training

Train the U-Net model on a combined dataset consisting of both
the BraTS SSA data and BraTS23 Adult Glioma data.

Fine-Tuning Start with the trained baseline model, then fine-tune the entire
model (all layers) by continuing training on the BraTS SSA data.

Fine-Tuning
(Frozen
Decoder)

Similar to Fine-Tuning, but freeze the decoder layers during the
second stage of training.

DANN Train a combined BraTS23 Adult Glioma and SSA dataset with
DANN architecture to create a model that learns domain-invariant

features useful for segmentation across both datasets.

DANN without
gradient
reversal

To explore the effect of gradient reversal, train an identical model
to the DANN, but without the gradient reversal layer.

Table 1: Descriptions of transfer learning approaches considered.

2.2. Implementation and Training Schedule

The experiments were conducted in PyTorch using 2 NVIDIA A40 GPUs with 40 GB of
memory to train each model. During training, the Adam optimizer was used with a de-
caying learning rate starting at α0 = 6× 10−5, and subsequent learning rates calculated as

follows: αi = α0 ×
(
1− epochi

epochN

)0.75
, where αi is the learning rate at epoch i ∈ 1, . . . , N .

The model was trained using a batch size of 1 due to the large size of the training sam-
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ples. To evaluate the models’ generalizability, we performed 10-fold cross-validation for all
experiments (approximately an 85-10 subject training/validation split).

An optimized U-Net (Ren et al., 2024) was used as the backbone model in all approaches.
The model inputs for each subject are four different MRI contrasts, namely native (T1),
post-contrast T1-weighted (T1Gd), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR). The outputs of the model are 3 channel images containing segmen-
tation maps of each tumor sub-region (NCR, ED, ET). For the DANN approach, binary
cross entropy (BCE) was used at the classifier branch, and a weighted combination of Mean
Squared Error (MSE) and Cross Entropy (CE) was used for segmentation loss. The total
backpropagated loss is: L = Lseg + Lclass, where Lseg and Lclass are the segmentation and
classification losses, respectively, with a 1/50 scaling on the classification loss to ensure the
two losses are of similar magnitude.

3. Experiments

Method
Mean Dice Mean HD

NCR ED ET Average NCR ED ET Average

Baseline (BraTS23 Adult Glioma) 0.519 0.726 0.701 0.649 17.019 15.791 13.672 15.494
Fine-Tuning 0.829 0.896 0.879 0.867 3.851 3.454 4.257 3.854

Fine-Tuning (Frozen Decoder) 0.792 0.881 0.860 0.845 4.483 3.931 6.886 5.100
Combined Dataset Training 0.836 0.899 0.879 0.871 3.135 2.606 3.393 3.045

DANN 0.847 0.897 0.893 0.879 3.076 3.828 3.219 3.374
DANN without gradient reversal 0.842 0.902 0.892 0.878 4.951 2.345 4.421 3.906

Table 2: Mean Dice and HD-95 values of 10-fold cross-validation for the transfer learn-
ing approaches considered. The best scores for each category are bolded. NCR:
necrotic tumor core, ED: peritumoral edema, ET: enhacing tumor.

Table 2 shows the Dice coefficient and HD95 score results of three prediction labels
and their average from 10-fold cross-validation analysis. From Table 2 we see that all of
the transfer learning methods significantly outperform the baseline method with a 20%
of improvement in Dice. Additionally, it is observed that the DANN model outperforms
other domain adaptation methods in NCR and ET for both Dice and HD95 scores. To
establish statistical significance of these results, a paired sample t-test was performed on
the cross-validation results. The t-test revealed significance in the differences between the
DANN-based training approaches and the Combined Dataset training approach. Specifi-
cally, DANN demonstrates superior performance compared to the Combined Dataset Train-
ing in terms of average Dice (p=0.0506) and average HD-95 (p=0.0236), while the DANN
without gradient reversal approach shows improvement in Dice (p=0.0519).

4. Conclusion

Following an analysis of domain adaptation methods aimed at improving the quality of
medical image segmentation in low-resolution datasets, we have preliminary support en-
couraging the use of the DANN framework in future projects where domain adaptation is
required.
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