
NESTFUL: A Benchmark for Evaluating LLMs
on Nested Sequences of API Calls

Anonymous ACL submission

Abstract

The resurgence of autonomous agents built us-001
ing large language models (LLMs) to solve002
complex real-world tasks has brought increased003
focus on LLMs’ fundamental ability of tool or004
function calling. At the core of these agents,005
an LLM must plan, execute, and respond using006
external tools, APIs, and custom functions. Re-007
search on tool calling has gathered momentum,008
but evaluation benchmarks and datasets repre-009
senting the complexity of the tasks have lagged010
behind. In this work, we focus on one such011
complexity, nested sequencing, with the goal of012
extending existing benchmarks and evaluation.013
Specifically, we present NESTFUL1, a bench-014
mark to evaluate LLMs on nested sequences015
of API calls, i.e., sequences where the output016
of one API call is passed as input to a subse-017
quent call. NESTFUL contains 1800+ nested018
sequences where all the function calls are ex-019
ecutable. Experimental results on a variety of020
models show that the best-performing model021
(GPT-4o) achieves a full sequence match ac-022
curacy of 28% and a win-rate of 60%, neces-023
sitating a large scope for improvement in the024
nested sequencing aspect of function calling.025
Our analysis of these results provides possible026
future research directions for the community,027
in addition to a benchmark to track progress.028

1 Introduction029

Autonomous agents, built with Large language030

models (LLMs), are gaining popularity in solving031

complex, real-world problems (Yao et al., 2023;032

Deng et al., 2024). LLMs handle a user’s request by033

understanding their intents, planning the required034

tasks to address it, executing those tasks step by035

step, and providing a response. For most real-world036

problems (Jimenez et al.; Roy et al., 2024; Thakur037

et al., 2023), LLMs must interact with external en-038

vironments through tool, function, and API calls039

1We will release the dataset and evaluation scripts once the
paper is published.

(Application Programming Interface), which pri- 040

marily leverages LLMs’ tool calling abilities2. 041

The significant reliance on LLMs’ function call- 042

ing abilities led recent research to continuously 043

improve this dimension of LLMs. On one hand, 044

approaches to improve function calling have ex- 045

ploded (Abdelaziz et al., 2024; Liu et al., 2024; 046

Srinivasan et al., 2023); on the other hand, bench- 047

marks and evaluations are lagging behind. For in- 048

stance, BFCL v1 and v2 focused on evaluating sin- 049

gle, multiple, and parallel function calling tasks for 050

both non-executable and executable versions (Yan 051

et al., 2024). Works such as API-Blend (Basu 052

et al., 2024) complemented prior work by intro- 053

ducing granular task evaluation such as slot-filling, 054

API-detection, and sequencing. BFCL v3 has pro- 055

gressed further into agentic use cases with multi- 056

step and multi-turn function calling evaluation. 057

However, benchmarks for fundamental but com- 058

plex tasks such as the sequencing of functions have 059

not been well explored yet, which forms the basis 060

of this work. Existing evaluation benchmarks pose 061

sequencing as the prediction of single or multiple 062

isolated API calls, where the output of any partic- 063

ular API call within that sequence is considered 064

irrelevant. In contrast, for many real-world tasks, a 065

sequence of API calls is nested, i.e., the output of 066

some API calls is used in the arguments of subse- 067

quent API calls. Figure 1 shows one such example 068

of a nested sequence of APIs. 069

In this paper, we present NESTFUL, a bench- 070

mark specifically designed to evaluate models on 071

nested API calls with over 1800 nested sequences. 072

It consists of: (1) user queries, (2) a catalog of 073

APIs and their specifications, (3) the sequence of 074

API calls and the corresponding parameters, and 075

(4) the expected output response. The datasets 076

are based on the MathQA (Amini et al., 2019) 077

2API, function calling and tool-use are used interchange-
ably throughout the paper

1

NESTFul Evaluation Framework

Query

Prompting

LLM
Inference

Function
Execution

The area of a rhombus is equal to the area of a rectangle whose length is 20cm and the
breadth is 10cm. If one of the diagonals is 32cm what is the length of other diagonal?

SYSTEM: You are a helpful assistant with access to the following
function calls. ...
<|function_call_library|>{TOOL_LIBRARY}
Here are some examples:{ICL_EXAMPLES}
USER: {QUERY}
ASSISTANT:

Direct Prompting ReAct Prompting

F1 Intent F1 Slot Partial Match
Accuracy

Full Match
Accuracy Win Rate

Answer the following questions as best you can. You have access to
the following tools:
{TOOL_LIBRARY}
.... Remember to ALWAYS use the following format:
Question: {QUERY}
Thought: ...
Action: ...
Observation: ...

Predicted Function Sequence

[{"name": "rectangle_area", "label": "$var_1", "arguments": {"arg_0": 20, "arg_1": 10}},
 {"name": "multiply", "label": "$var_2", "arguments": {"arg_0": "$var_1.result$", "arg_1": 2}},
 {"name": "divide", "label": "$var_3", "arguments": {"arg_0": "$var_2.result$", "arg_1": 32}}]

Gold Function Sequence

[{"name": "rectangle_area", ... },
 {"name": "multiply", ... },
 {"name": "divide", ...]

Gold Answer
12.5

{ "name": "rectangle_area",
 "description": "Calculate the area of
a rectangle ...",
 "parameters": {
 "arg_0": {
 "description": "...",
 "type": "int or float"},
 ...
 },
 "output_parameter": {
 "result": {
 "description": "...",
 "type": "int or float"
 }
 }
},
{ "name": "multiply",
 "description": "Multiplies two
numbers"

Tool Library

Evaluation

Step 1: var_1 = rectangle_area(arg_0 = 20, arg_1 = 10) = {result: 200 }

Step 2: var_2 = multiply(arg_0 = 200 , arg_1 = 2) = {result: 400 }
$var_1.result$

$var_2.result$
var_3 = divide(arg_0 = 400 , arg_1 = 32) = {result: 12.5 }Step 3:

Figure 1: End-to-End Evaluation Pipeline: NESTFUL provides a test set of input queries and its corresponding
list of nested function calls. It also provides executable implementations for each tool in the library and allows
for evaluating models in direct prompting or REACT styles. Given a query, the pipeline infers the input LLM to
generate the required sequence of function calls, execute those functions (taking into account nested variables) and
compare the final answer with the gold one.

and StarCoder2-Instruct (Wei et al., 2024) datasets078

which are commonly used in the literature but are079

missing the executable component. Figure 1 shows080

the end-to-end evaluation pipeline of NESTFUL.081

We evaluated the dataset on 19 state-of-the-art082

models from the literature and exposed the gaps of083

these models in handling complex function calling084

sequences. GPT-4o acheived the best performance,085

but did not exceed 28% full sequence match nor086

60% on win rate metrics. Models struggled as087

the nesting got deeper and the data dependencies088

increased. To further advance research in this area,089

we will publicly release the NESTFUL dataset with090

executable Python implementation for each tool091

and the evaluation code for all models.092

2 Related Work093

The best way to enable API function calling in094

LLMs remains an active area of research. Meth-095

ods that utilize large, general-purpose proprietary096

models (e.g., Gemini (Team et al., 2023) or GPT097

(Achiam et al., 2023)) typically make use of care-098

fully constructed prompts and in-context learn-099

ing examples, e.g., (Song et al., 2023). Smaller,100

more specialized models often start from a strong-101

performing code model (e.g., DeepSeek-Coder102

(Guo et al., 2024), CodeLlama (Roziere et al., 103

2023), or Granite Code (Mishra et al., 2024)) 104

and fine-tune primarily on highly curated datasets 105

(Srinivasan et al., 2023; Ji et al., 2024; Abdelaziz 106

et al., 2024) that have been extended with synthetic 107

data (Zhang et al., 2024a). 108

Most of these existing works initially focused 109

on basic function calling abilities that did not in- 110

volve much complexity. Recent advances in en- 111

abling LLMs to handle complex multi-API interac- 112

tions have introduced structured methods like Re- 113

verse Chain (Zhang et al., 2024c). This approach 114

employs backward reasoning to optimize multi- 115

step API planning, allowing LLMs to effectively 116

manage nested workflows by aligning intermediate 117

steps with the final goal. Such methods highlight 118

LLMs’ potential to perform efficient, target-driven 119

planning in resource-constrained environments. 120

To evaluate and enhance these aforementioned 121

approaches, numerous works released training and 122

benchmarking data in service of API function call- 123

ing, such as ToolLLM (Qin et al., 2023); APIBench 124

(Patil et al., 2023); APIGen (Liu et al., 2024); 125

or API-BLEND (Basu et al., 2024). While these 126

benchmarks focus on simpler or isolated API calls, 127

NesTools (Han et al., 2024) and our work tar- 128

2

get more complex, real-world tasks involving in-129

terdependent, nested tool use. Unlike the fully130

synthetic NesTools, NESTFUL is built from es-131

tablished datasets and has longer average call se-132

quences (4.36 vs. 3.04). Other benchmarks like133

SealTool (Wu et al., 2024) and BFCL-v3 (Yan et al.,134

2024) include some nesting but are smaller and not135

specifically designed for it.136

ToolBench (Xu et al., 2023) includes 205 nested137

samples from the Webshop and TableTop datasets,138

compared to over 1800 in NestFul. Moreover, Tool-139

Bench supports only 34 APIs, whereas NestFul fea-140

tures more than 900 unique functions. Shortcuts-141

Bench (Shen et al., 2024) has multi-step tool calls142

but is tailored specifically to Apple Shortcuts fea-143

ture, with evaluation data generated in a proprietary144

format that is difficult to interpret and does not145

follow a standard JSON structure. Finally, Agent-146

Board is a broad evaluation framework for general-147

purpose agents for multi-step planning tasks with148

fine-grained metrics and visual tools, while NEST-149

FUL focuses specifically on tool-augmented LLMs150

with detailed offline metrics like F1 score and ac-151

curacy alongside win rate.152

3 NESTFUL Dataset Curation153

NESTFUL comprises of more than 1,800 instances154

designed for benchmarking tool calling in LLMs155

on nested sequencing. Each instance consists of156

(1) a user query, (2) a list of all available tools for157

the model to choose from, (3) the gold sequence158

of tools and their arguments needed to answer the159

user query, and (4) the final answer that should be160

obtained once the tools are executed. The dataset161

also contains corresponding Python code for every162

API in the library and a mechanism to run the input163

query via any LLM, execute the tools predicted by164

the LLM, and provide the final answer.165

3.1 Nested Function Calling Data Schema166

NESTFUL’s data schema, demonstrated in Figure167

2, showcases the template used for representing the168

Input, Tool Library, Output, and Python Code. An169

important aspect of nested function calling is to170

enable a mechanism for tool reference; i.e. a sub-171

sequent tool call using that reference to access the172

output of the previous tool execution. To do so, we173

assign a unique variable name to each tool which174

distinctly identifies each tool, even when two iden-175

tical tools with different arguments appear in the176

same sequence (parallel API calls). For example,177

Output JSON
[
 {
 "name": < Function_Name_1 >,
 "arguments": {
 <arg_1>: <value from user query>,
 <arg_2>: <value from user query>,
 ...
 },
 "label": <variable_name_1>
 },
 {
 "name": < Function_Name_2 >,
 "arguments": {
 <arg_1>: <value from user query>,
 <arg_2>: ${variable_name_1}.{parameter}$,
 <arg_3>: <value from user query>,
 ...
 },
 "label": <variable_name_2>
 }
 ...
]

Input
<User Query in Natural Language>

Tool Library
[
 {
 "name": <Function Name>,
 "description": <API Description>
 "parameters": {
 <arg_1>: {

 "description": <Arg. Desc.>,
 "type": <Arg. Type>
 },
 <arg_2>: {

 "description": <Arg. Desc.>,
 "type": <Arg. Type>
 },
 ... <more function parameters>
 },
 "output_parameters": {
 <out_param_1>: {

 "description": <Param. Desc.>,
 "type": <Param. Type>
 },
 <out_param_1>: {

 "description": <Param. Desc.>,
 "type": <Param. Type>
 },
 ... <more output parameters>
 },
 },
 ... <more tools>
]

Python Implementation ##

def function_name(*args, **kwargs):
 """
 <function description>
 """
 # Core logic
 result = None # Calculate result

 # Return result
 return result

Figure 2: NESTFUL Data Schema for Input, Tool Li-
brary, Output, and Python implementation. In Output
JSON, the arg_2 of Function_Name_2 showcases how
the variable assignments are used to create a nested se-
quence of function calls.

{
"name": "surface_sphere",
"description": "Calculate the surface area of a sphere",
"parameters": {
"arg_0": {
"description": "Radius of the sphere",
"type": "float"

}
},
"output_parameters": {
"result": {
"description": "Surface area of the sphere",
"type": "float"

}
}

}

Figure 3: Sample specification for tools from MathQA

in Figure 1, “rectangle_area” tool was assigned 178

“label”: “$var_1”. This allows the next tool “mul- 179

tiply” to use the output of “rectangle_area” as an 180

argument: “arg_0”: “$var_1.result$”. 181

3.2 NESTFUL Data Domains 182

NESTFUL is composed of data from two domains; 183

1) mathematical reasoning data and 2) generic tools 184

from the coding domain. We describe below the 185

process followed to create each data category. 186

3.2.1 Mathematical Reasoning Data 187

For the first part of NESTFUL, we relied on 188

datasets that test the model for nested func- 189

tion calling in the math domain. We build on 190

MathQA (Amini et al., 2019); a benchmark de- 191

signed to evaluate AI models’ ability to solve math- 192

3

Problem:
An artist wishes to paint a circular region on a square poster that is 3.4 feet on a side. if the area of the circular
region is to be 1/2 the area of the poster, what must be the radius of the circular region in feet?

Operation Stack:
square_area(3.4) → divide(#0, 2) → divide(#1, const_pi) → sqrt(#2)

Tool Call format:
[{"name": "square_area", "arguments": {"arg_0": 3.4}, "label": "var_0"},
{"name": "divide", "arguments": {"arg_0": "$var_0.result$", arg_1: 2} "label": "var_1"},
{"name": "divide", "arguments": {"arg_0": "$var_1.result$", "arg_1": "pi"}, "label": "var_2"},
{"name": "sqrt", "arguments": {"arg_0": "$var_2.result$"}, "label": "var_3"}]

Final Answer:
1.3564

Figure 4: Sample problem from the MathQA dataset. The Operation Stack provides an ordered sequence of nested
tool calls which we transform into a Tool Call format for the NESTFUL dataset.

ematical word problems. It consists of questions193

that test numerical reasoning and problem-solving194

skills, requiring models to both understand the text195

of a word problem and perform mathematical oper-196

ations to arrive at the correct solution.197

Tool specifications Since MathQA provides only198

the tool names, we manually created specifications199

for all the tools in the dataset. This covers 40 tools200

in total; e.g. divide, remainder, volume_cylinder,201

permutation, etc. For each tool, we define the name,202

tool description, and detailed outline of the tool in-203

put and output parameters including the parameter204

data type and description as shown in Figure 3.205

Tool calling input-output pairs To build the test206

data, we used the test set of MathQA where the207

“problem” definition is the query and parsed the208

“annotated formula” into a nested sequence of tool209

calls. An example is shown in Figure 4.210

Executable Code and Filtering For each tool,211

we also generated its corresponding implementa-212

tion in Python. This allows us to execute the nested213

call sequence and match the execution result with214

the gold answer. It also ensures the correctness of215

the set of corresponding tools and the code execu-216

tion too. We then filtered out any samples where217

we could not reproduce the gold answer from exe-218

cuting the nested tool calls. This process resulted219

in 1,415 test samples spanning 40 tools with an220

average 5.1 tool calls per sample.221

3.2.2 Coding Data222

We also curated test examples based on generic223

Python functions from the StarCoder2-Instruct224

dataset (Wei et al., 2024). This dataset has a total of225

50K Python functions and covers a wide range of226

tools that can be used. We started by collecting tool227

instructions and their Python implementations, fol-228

lowed by using Mixtral-8x22B to infer parameter 229

type hints. Any functions that were syntactically 230

incorrect or non-executable were filtered out. Next, 231

a synthetic data generation pipeline was used to 232

create instruction–nested call pairs using the valid 233

seed tools and examples. This pipeline included a 234

validator to ensure all parameters and tool names 235

were accurate and complete. Finally, execution- 236

based filtering was applied to verify that the gener- 237

ated samples produce the correct final output. We 238

elaborate on each step in the following sections. 239

Tool specifications We leveraged StarCoder2- 240

Instruct’s Python implementations and docstrings 241

to create API specifications, see Figure 5 for an 242

example. For each Python function, (1) we used 243

Mixtral 8x22B3 to generate the possible Python 244

types of the input and output arguments, and (2) 245

we validated and executed the function code itself 246

to ensure it does not produce any errors. After both 247

steps, we generated a corresponding JSON spec- 248

ification for each function documenting its input- 249

output arguments. Figure 5 shows an example. 250

Tool calling input-output pairs To create input- 251

output pairs, we leveraged DiGiT4 synthetic data 252

generation framework. DiGiT allows for defining 253

various synthetic data generation pipelines given 254

seed examples of input/output pairs. In particular, 255

we used 10 seed examples and used Mixtral-8x22B 256

as the teacher model. We also implemented a func- 257

tion calling validator that applies various heuristics 258

to check the quality of the synthetic data, ensuring 259

function calls adhere to the given specifications. In 260

particular, we have validations to ensure the tools 261

and parameters used are not hallucinated, required 262

3https://huggingface.co/mistralai/
Mixtral-8x22B-Instruct-v0.1

4https://github.com/foundation-model-stack/
fms-dgt

4

https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1
https://github.com/foundation-model-stack/fms-dgt
https://github.com/foundation-model-stack/fms-dgt

def angle_rotation(arr, k):
"""Rotates the elements in the array by `k` positions

in the right direction.
Args:

arr: The array of numbers.
k: The number of positions to rotate the elements

in the array.
Returns:

The array after rotating the elements by `k`
positions in the right direction.

"""
if len(arr) < k:

k = k % len(arr)
return arr[len(arr)-k:] + arr[:len(arr)-k]

Python Implementation

{
"name": "angle_rotation",
"description": "Rotates the elements in the array by `k`…",
"parameters": {

"properties": {
"arr": {

"description": "The array of numbers.",
"items": {

"type": "integer"
},
"type": "array"

},
"k": {

"description": "The number of positions to rotate …",
"type": "integer"

}
},
"required": [

"arr",
"k"

],
"type": "object"

},
"output_parameters": {

"properties": {
"output_0": {

"description": "The array after rotating …",
"type": "array"

}
}

}
}

Tool Specification

Figure 5: [top] An example function (angle_rotation)
from StarCoder2-Instruct dataset with its docstring doc-
umentation. [bottom] Tool specification for “angle_rota-
tion” after inferring the different data types and creating
its input/output parameters.

parameters are specified, and there is at least one263

nested tool call in the output sequence.264

Filtering We further filtered the generated input-265

output pairs by executing their gold nested API266

sequence to ensure they execute and attach the re-267

sult as the gold answer. For a function that has268

a randomness element (e.g., generating a random269

list), we set a fixed seed for all our experiments270

and re-execute all those cases to ensure that we271

are getting the same response all the time. From272

this category of data, we generated 446 test exam-273

ples covering more than 881 distinct tools with an274

average tool sequence length of 2.1.275

3.3 Dataset Quality276

Our benchmark builds on MathQA and StarCoder2-277

Instruct. MathQA is a well known mathematical278

reasoning dataset that was manually validated by279

humans, providing the input, correct sequence of280

math operations, and final answer. After converting 281

it into a nested tool sequence, we further validate it 282

by executing the sequence to ensure it produces the 283

original gold answer. However, since the coding 284

dataset is synthetically generated, we also imple- 285

mented multiple automatic validation at various 286

stages. This includes checking that the nested tool 287

sequences align with tool specifications (input/out- 288

put) and that they execute correctly to produce the 289

expected final output. 290

4 Evaluation 291

4.1 Baselines 292

We extensively evaluated NESTFUL on 19 propri- 293

etary and open-source models, ranging in size from 294

1B to 685B parameters. This selection includes 295

top tool-calling LLMs featured on the Berkeley 296

Function-Calling Leaderboard (BFCL) (Yan et al., 297

2024), as well as state-of-the-art models known 298

for strong function-calling capabilities. Among 299

the tool-calling models, we include the xLAM 300

(Zhang et al., 2024b; Liu et al., 2024), Hammer 301

(Lin et al., 2024), ToolAce (Liu et al.) model fami- 302

lies, and Granite-20B-FunctionCalling (Abdelaziz 303

et al., 2024). We also evaluate a range of foundation 304

models, including multiple sizes of LLAMA 3.1 305

(Dubey et al., 2024), Mixtral5, and DeepSeek-V3 306

(Guo et al., 2024), and the state-of-the-art propri- 307

etary model GPT-4o (Hurst et al., 2024). To ex- 308

plore how an agentic LLM performs on NESTFUL, 309

we also include AgentLM-13B (Zeng et al., 2023), 310

which has been instruction-tuned using interaction 311

trajectories from diverse agentic tasks. 312

4.2 Experimental Settings 313

The experiments are carried out with temperature 314

0.0 in one-shot and three-shot settings, i.e., the 315

prompt contains one or three in-context learning 316

(ICL) examples, respectively. To the best of our 317

knowledge, all 18 open models were not trained 318

with the label assignment syntax in the output API 319

sequence, so it was crucial to have ICL examples 320

to get the best results. For each model, we used its 321

specified prompt along with the special tags. Con- 322

text length limitations prevented the inclusion of 323

the entire API library in the prompt. Instead, we 324

pre-processed the data to create a shorter API list 325

for each sample. This list ensured the inclusion 326

of the gold APIs, the APIs used in the in-context 327

learning (ICL) examples, and some random APIs, 328

5https://huggingface.co/mistralai/

5

https://huggingface.co/mistralai/

One-shot ICL Three-shots ICLModel #Parameters F1 Func. F1 Param. Part. Acc. Full Acc. Win Rate F1 Func. F1 Param. Part. Acc. Full Acc. Win Rate

xLAM-1b-fc-r 1B 0.19 0.08 0.09 0.00 0.01 0.22 0.09 0.09 0.03 0.02
xLAM-2-1b-fc-r 1B 0.41 0.13 0.13 0.00 0.00 0.43 0.12 0.13 0.00 0.00
xLAM-7b-fc-r 7B 0.49 0.17 0.15 0.00 0.03 0.55 0.23 0.23 0.15 0.14
xLAM-2-8b-fc-r 8B 0.48 0.15 0.14 0.00 0.01 0.47 0.17 0.15 0.04 0.04
Hammer2.0-7b 7B 0.56 0.24 0.21 0.07 0.16 0.61 0.30 0.29 0.22 0.25
Hammer2.1-7b 7B 0.10 0.05 0.05 0.01 0.01 0.16 0.10 0.11 0.08 0.08
Llama-3-1-8B-Instruct 8B 0.64 0.19 0.17 0.06 0.06 0.63 0.22 0.22 0.16 0.11
ToolACE-8B 8B 0.43 0.13 0.13 0.00 0.00 0.50 0.15 0.13 0.00 0.00
ToolACE-2-Llama-3.1-8B 8B 0.28 0.10 0.13 0.00 0.00 0.29 0.10 0.13 0.00 0.00
Granite-20B-FunctionCalling 20B 0.64 0.20 0.17 0.02 0.05 0.61 0.25 0.26 0.21 0.20
Mixtral-8x7B-Instruct-v0.1 46.7B 0.22 0.07 0.05 0.00 0.01 0.32 0.13 0.14 0.09 0.09
xLAM-8x7b-fc-r 46.7B 0.40 0.15 0.16 0.01 0.01 0.43 0.16 0.17 0.02 0.03
Llama-3-1-70B-Instruct 70B 0.41 0.19 0.15 0.04 0.09 0.33 0.17 0.15 0.07 0.11
Mixtral-8x22B-Instruct-v0.1 141B 0.49 0.21 0.17 0.06 0.07 0.65 0.29 0.28 0.21 0.23
xLAM-8x22b-fc-r 141B 0.53 0.21 0.22 0.12 0.03 0.50 0.23 0.25 0.17 0.06
Llama-3-1-405B-Instruct-fp8 405B 0.41 0.14 0.08 0.03 0.10 0.41 0.18 0.13 0.07 0.14
DeepSeek-V3 685B 0.69 0.36 0.27 0.09 0.43 0.69 0.42 0.37 0.29 0.60
GPT-4o (2024-08-06) UNK 0.73 0.41 0.38 0.28 0.59 0.74 0.41 0.38 0.28 0.60

Table 1: Evaluation results on NESTFUL on state-of-the-art LLMs with Direct Prompting technique. Models
are sorted by their size. Experiments are done in one-shot and three-shot ICL settings. The best performance is
highlighted in bold; the second best is underlined. Partial Sequence Accuracy (Part. Acc.) denotes the percentage
of calling the correct API sequence (API names and arguments), whereas Full Sequence Accuracy (Full Acc.)
counts the percentage of times where the model gets the entire sequence of APIs correctly. Both scores range from
0 to 1. We also report Win Rate, which measures whether all the predicted APIs by the model are executable and
lead to an exact match with the gold answer.

keeping the total prompt length under 4K tokens.329

Output API calls were extracted from the model’s330

response as a list of JSON objects, taking into ac-331

count the specific prompt format and output struc-332

ture for each model. Finally, we evaluated a zero-333

shot ReAct (Yao et al., 2022) agent with the best 4334

open models based on the win-rate and AgentLM-335

13B, limiting max steps to 10.336

4.3 Metrics337

For a detailed evaluation, we use the following met-338

rics: 1) F1 score for function and parameter names339

generation (Abdelaziz et al., 2024), 2) Partial and340

Full Match Accuracy, and 3) Win Rate.341

LLM model response is a sequence of API calls,342

with each call consisting of an API name and343

its argument-value pairs. We use the Partial Se-344

quence Matching metric to determine how many345

predicted APIs (with their argument-value pairs)346

in a sequence match with the gold API sequence.347

In contrast, the Full Sequence Matching metric348

evaluates whether the model predicts the exact full349

sequence of APIs, including both the API names350

and their argument-value pairs, when compared to351

the gold API sequence. In both cases, we calcu-352

late the scores for each sample and then compute353

the statistical mean across the entire dataset as the354

final score. We also use is the Win Rate, which355

measures if all the predicted APIs by the model are356

valid and when executed lead to the gold answer.357

Unlike the F1 and Accuracy measures, which as-358

sess the alignment of predictions with the gold API 359

sequence, the Win Rate focuses on the final gold 360

answer. A win is recorded if the predicted answer 361

matches the gold answer. 362

4.4 Results 363

Table 1 presents a comparison of different base- 364

lines on the NESTFUL dataset with one-shot and 365

three-shot ICL example settings. The low num- 366

bers of the best function calling models depict the 367

complexity and toughness of the nested sequenc- 368

ing problem. GPT-4o and DeepSeek-V3 achieve 369

the highest win-rate of 60%, which is significantly 370

below the acceptable numbers for real-world ap- 371

plications in general. This clearly depicts the sig- 372

nificant scope for improvements for the models 373

in various aspects of function calling, including 374

nested sequencing. We inspected the models’ out- 375

puts and identified several common issues across 376

them. These models struggle with tasks such as as- 377

signing variables, utilizing output parameter details 378

from the API specifications, and correctly passing 379

variable names and corresponding output parame- 380

ters to subsequent APIs, even with ICL examples6. 381

As anticipated, in most of our experiments in 382

Table 1, the models are doing better across all the 383

metrics when they are provided with three ICL 384

6Note: While we acknowledge that these models were
not trained using the robust data schema outlined in Section
3.1, the challenges associated with nested sequencing persist
regardless of the schema used and remain an area where LLMs
need improvement.

6

Model Direct Prompting
(One-shot ICL)

ReAct Agent
(Zero-shot)

Hammer2.0-7b 0.16 0.07
AgentLM-13B 0.00 0.00
Mixtral-8x22B-Instruct-v0.1 0.07 0.30
DeepSeek-V3 0.43 0.46

Table 2: Evaluation results (Win Rate) on NESTFUL
comparing the performance of a ReAct Agent (zero-
shot) to the Direct Prompting with a one-shot ICL exam-
ple. For each model, the best performance is highlighted
in bold for comparison.

examples in the prompt instead of one example.385

Across all models, Partial Sequence Match scores386

are consistently higher than Full Sequence Match387

scores, which is expected, as the latter is a stricter388

metric than the former. In many cases, the Win Rate389

is higher than the Full Accuracy because models390

may follow alternative reasoning paths/trajectories391

to arrive at the correct final answer. While such de-392

viations can penalize full or partial accuracy scores,393

they are still credited under the win rate for suc-394

cessfully reaching the gold answer. Hammer2.0-395

7b, despite being a smaller model, outperforms396

several larger tool-augmented LLMs. DeepSeek-397

V3 emerges as the strongest open-source model,398

closely matching GPT-4o’s performance in the399

three-shot ICL setting, although it trails slightly400

in the one-shot setup. These results highlight that401

model size or architectural complexity is not the402

primary determinant of performance; rather, the403

ability to effectively follow instructions and lever-404

age in-context examples plays a more critical role.405

This is evident as some large models like xLAM-406

8x22b-fc-r and Llama-3-1-405B-Instruct-fp8 un-407

derperform, while smaller models like Hammer2.0-408

7b achieve exceptional results.409

ReAct-based Evaluation: The previous results410

showed how poorly direct prompting of LLMs per-411

formed on NESTFUL. The literature has shown412

that agentic approaches have resulted in better per-413

formance on complex tasks. While many agentic414

architectures exist, we selected ReAct due to its415

popularity and its ability to reason over the output416

of the tool that is added to the prompt at each turn.417

Table 2 summarizes the results of the ReAct418

agent (Yao et al., 2023) in compared to one-shot419

ICL direct prompting. Note that there was no ICL420

example provided in the ReAct case as the expected421

output does not need to follow the label assignment422

syntax. We only report Win Rate), which check if423

the trajectory of output tools lead to the gold an- 424

swer, due to the single-step planning and execution 425

approach of REACT as opposed to planning the 426

entire API sequence at once in direct prompting. 427

For larger models like Mixtral-8x22B-Instruct- 428

v0.1 and DeepSeek-V3, the ReAct approach outper- 429

forms direct prompting, though there is still room 430

for improvement. Notably, Mixtral-8x22B-Instruct- 431

v0.1 shows the highest win-rate gain of 30% with 432

ReAct. Hammer2.0-7B performs better with di- 433

rect prompting compared to the ReAct approach, 434

Although AgentLM-13B is specifically trained for 435

agentic tasks, it does not demonstrate strong perfor- 436

mance on NESTFUL, indicating that agent-specific 437

training or architectures do not always guarantee 438

improved results in this setting. Output analysis re- 439

veals that the top-performing models exhibited bet- 440

ter alignment with the ReAct format and occasion- 441

ally relied on their parametric knowledge to repli- 442

cate API functionalities. As a result, they achieved 443

correct final outcomes, reflected in higher win-rate 444

despite inconsistencies in intermediate steps. 445

4.5 Dataset Analysis 446

To analyze the results, we model the samples in 447

the NESTFUL as a Directed Acyclic Graph (DAG) 448

where nodes are individual function calls and the 449

edges are data dependencies between two nodes. 450

Data Nesting Depth Analysis In Figure 6a, we 451

present the win rate for top-performing models 452

against varying levels of maximum depth in the 453

DAG structure, which corresponds to the longest 454

nested data dependency flow in a sample. We ob- 455

serve that all models perform well for samples with 456

maximum single nesting depth. However, the per- 457

formance drops sharply with depths of two or more 458

suggesting that long nested sequences present diffi- 459

cult scenarios for current models. 460

Total Data Dependency Analysis In Figure 6b, 461

we present the win rate compared to the total num- 462

ber of data dependencies within a sample (a repre- 463

sentation of the complexity of the sequence). The 464

trends here are similar to the ones we observed in 465

the Nesting Depth Analysis section. Models per- 466

form well for singular nested data dependency in 467

the sample, achieving around 75% win-rate, but 468

the performance drops sharply with two or more 469

nested data dependencies. 470

Nesting Patterns Analysis We identify common 471

nesting patterns and analyze model performances 472

7

1 2 3 4 5 >5
Maximum Data Nesting Depth

0

10

20

30

40

50

60

70

80
W

in
 R

at
e

(%
)

GPT-4o
DeepSeek-v3
Mixtral-8x22B-Instruct-v0.1
Hammer2.0-7B

(a) Data Nesting Depth Analysis

1 2 3 4 5 >5
Total Data Dependencies

0

10

20

30

40

50

60

70

80

W
in

 R
at

e
(%

)

GPT-4o
DeepSeek-v3
Mixtral-8x22B-Instruct-v0.1
Hammer2.0-7B

(b) Total Data Dependencies Analysis

A B A B C {A, B} C {A, B} C D
Nesting Patterns

0

20

40

60

80

100

W
in

 R
at

e
(%

)

75
.1

6

63
.5

7

62
.1

6

62
.5

68
.8

3

64
.6

8

51
.3

5

63
.7

5

37
.1

8

14
.1

3

16
.2

2

18
.7

5

42
.2

1

20
.0

7

34
.2

3

16
.2

5

GPT-4o
DeepSeek-V3
Mixtral-8x22B-Instruct-v0.1
Hammer2.0-7b

(c) Nesting Pattern Analysis

Figure 6: Top 4 models’ performances (on the three-shot setting) with a varying number of (a) longest data
dependencies, (b) the total number of data dependencies, and (c) common data nesting patterns in NESTFUL.
We observe that models perform well for the simple data samples, however, the performance drops sharply with
complicated structural patterns in the data.

for individual nesting patterns. Results are shown473

in Figure 6c. We observe that for a simple pattern474

such as A → B, where the output of A is used as475

input by B, all models perform fairly well. However,476

for complex patterns such as {A, B} → C, where477

the outputs of both A and B are used as input by C,478

model performance decreases significantly. This479

suggests that models currently struggle with more480

complex patterns present in NESTFUL.481

5 Challenges482

Results show that NESTFUL posed a challenge for483

state-of-the-art LLMs for several reasons.484

Data-type Adherence for the Input/Output Pa-485

rameters In the API specification, we define the486

data type for all parameters. The ‘type’ field speci-487

fies the data type, such as string, number, list, etc.488

Since APIs follow a strict structure for both input489

and output, it is crucial for the model to adhere to490

these specified formats. If the model fails to follow491

this, especially in cases involving nested functions492

where the output of one API is used as the input493

for another, the process will fail if the output type494

doesn’t match the expected input type.495

Variable Assignments As discussed in Section496

3.1, we add variable assignments for each API in497

the output to manage parallel function calls, which498

is very common in real-life applications. Below is499

an example of parallel nested function calls:500

{"input": "What is the difference between the
squares of 4 and 3?"

"output": [
{"name": "square", "arguments": {arg_0: 4},

"label": "$var_1"},
{"name": "square", "arguments": {arg_0: 3},

"label": "$var_2"},

{"name": "subtraction", "arguments": {arg_0:
$var_1.result$, arg_1: $var_2.result$},

"label": "var_3"},
]}

The example highlights the complexity of distin- 501

guishing repeated functions with different outputs, 502

which models struggle with due to a lack of schema 503

training—a challenge also supported by our quali- 504

tative analysis in Section 4.4. 505

Implicit API calling Implicit function calling 506

occurs when a model must identify and invoke the 507

appropriate APIs to solve a user query, even though 508

the query doesn’t explicitly mention them. This re- 509

quires understanding the problem, selecting the 510

correct functions, and filling in parameters using 511

query details or previous outputs—adding signifi- 512

cant complexity to the task. Figure 1 demonstrates 513

an example of implicit function calling, where the 514

user query presents an arithmetic problem without 515

explicitly stating the APIs involved. 516

6 Conclusion 517

In this work, we introduced NESTFUL, a new 518

benchmark for evaluating the LLMs on nested se- 519

quences of API function calling. Existing LLMs 520

perform poorly on this dataset as compared to their 521

performance on existing benchmarks. We also stud- 522

ied their performance and identified their several 523

modes of failure. In addition, we outlined the many 524

challenges this dataset poses to LLM function call- 525

ing approaches. By making this dataset available 526

publicly under a permissive open-source license, 527

we aim to push tool calling capabilities in new di- 528

rections and unlock solutions to more realistic and 529

challenging tasks. 530

8

Limitations531

A limitation of our benchmark, NESTFUL, is that532

it does not deal with environment interactions for533

an AI agent or execute any real-world APIs. In534

future work, it will be interesting to explore this535

setting of an embodied agent, where the API calls536

effect changes in the grounded environment and537

also expand the NESTFUL dataset with real-world538

API calls (e.g. RapidAPI).539

Ethics Statement540

Our dataset does not pose any ethical concerns for541

the community. All of the functions we consider542

are either related to the Math domain or generic543

functions that do not deal with personally identi-544

fiable information or functions that could be used545

maliciously. Furthermore, the user queries do not546

contain any hate, profanity or toxic content.547

References548

Ibrahim Abdelaziz, Kinjal Basu, Mayank Agarwal,549
Sadhana Kumaravel, Matthew Stallone, Rameswar550
Panda, Yara Rizk, GP Bhargav, Maxwell Crouse,551
Chulaka Gunasekara, et al. 2024. Granite-function552
calling model: Introducing function calling abili-553
ties via multi-task learning of granular tasks. arXiv554
preprint arXiv:2407.00121.555

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama556
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,557
Diogo Almeida, Janko Altenschmidt, Sam Altman,558
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.559
arXiv preprint arXiv:2303.08774.560

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-561
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.562
2019. Mathqa: Towards interpretable math word563
problem solving with operation-based formalisms.564
Preprint, arXiv:1905.13319.565

Kinjal Basu, Ibrahim Abdelaziz, Subhajit Chaudhury,566
Soham Dan, Maxwell Crouse, Asim Munawar, Sad-567
hana Kumaravel, Vinod Muthusamy, Pavan Kapa-568
nipathi, and Luis A. Lastras. 2024. Api-blend: A569
comprehensive corpora for training and benchmark-570
ing api llms. Preprint, arXiv:2402.15491.571

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam572
Stevens, Boshi Wang, Huan Sun, and Yu Su. 2024.573
Mind2web: Towards a generalist agent for the web.574
Advances in Neural Information Processing Systems,575
36.576

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,577
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,578
Akhil Mathur, Alan Schelten, Amy Yang, Angela579
Fan, et al. 2024. The llama 3 herd of models. arXiv580
preprint arXiv:2407.21783.581

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, 582
Kai Dong, Wentao Zhang, Guanting Chen, Xiao 583
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder: 584
When the large language model meets programming– 585
the rise of code intelligence. arXiv preprint 586
arXiv:2401.14196. 587

Han Han, Tong Zhu, Xiang Zhang, Mengsong Wu, 588
Hao Xiong, and Wenliang Chen. 2024. Nestools: A 589
dataset for evaluating nested tool learning abilities of 590
large language models. Preprint, arXiv:2410.11805. 591

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 592
Perelman, Aditya Ramesh, Aidan Clark, AJ Os- 593
trow, Akila Welihinda, Alan Hayes, Alec Radford, 594
et al. 2024. Gpt-4o system card. arXiv preprint 595
arXiv:2410.21276. 596

Charlie Cheng-Jie Ji, Huanzhi Mao, Fanjia Yan, 597
Shishir G. Patil, Tianjun Zhang, Ion Stoica, and 598
Joseph E. Gonzalez. 2024. Gorilla openfunctions 599
v2. 600

Carlos E Jimenez, John Yang, Alexander Wettig, 601
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R 602
Narasimhan. Swe-bench: Can language models re- 603
solve real-world github issues? In The Twelfth Inter- 604
national Conference on Learning Representations. 605

Qiqiang Lin, Muning Wen, Qiuying Peng, Guanyu 606
Nie, Junwei Liao, Jun Wang, Xiaoyun Mo, Jiamu 607
Zhou, Cheng Cheng, Yin Zhao, et al. 2024. Ham- 608
mer: Robust function-calling for on-device lan- 609
guage models via function masking. arXiv preprint 610
arXiv:2410.04587. 611

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, 612
Shuai Yu, Dexun Li, Shuai Wang, Weinan Gan, 613
Zhengying Liu, Yuanqing Yu, et al. Toolace: Win- 614
ning the points of llm function calling. 2024. URL 615
https://arxiv. org/abs/2409.00920. 616

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, 617
Tian Lan, Shirley Kokane, Juntao Tan, Weiran Yao, 618
Zhiwei Liu, Yihao Feng, et al. 2024. Apigen: 619
Automated pipeline for generating verifiable and 620
diverse function-calling datasets. arXiv preprint 621
arXiv:2406.18518. 622

Mayank Mishra, Matt Stallone, Gaoyuan Zhang, Yikang 623
Shen, Aditya Prasad, Adriana Meza Soria, Michele 624
Merler, Parameswaran Selvam, Saptha Surendran, 625
Shivdeep Singh, et al. 2024. Granite code models: 626
A family of open foundation models for code intelli- 627
gence. arXiv preprint arXiv:2405.04324. 628

Shishir G Patil, Tianjun Zhang, Xin Wang, and 629
Joseph E Gonzalez. 2023. Gorilla: Large language 630
model connected with massive apis. arXiv preprint 631
arXiv:2305.15334. 632

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 633
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 634
Bill Qian, et al. 2023. Toolllm: Facilitating large 635
language models to master 16000+ real-world apis. 636
arXiv preprint arXiv:2307.16789. 637

9

https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2402.15491
https://arxiv.org/abs/2410.11805
https://arxiv.org/abs/2410.11805
https://arxiv.org/abs/2410.11805
https://arxiv.org/abs/2410.11805
https://arxiv.org/abs/2410.11805

Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan638
Bansal, Pedro Las-Casas, Rodrigo Fonseca, and Sara-639
van Rajmohan. 2024. Exploring llm-based agents for640
root cause analysis. In Companion Proceedings of641
the 32nd ACM International Conference on the Foun-642
dations of Software Engineering, pages 208–219.643

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten644
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,645
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.646
Code llama: Open foundation models for code. arXiv647
preprint arXiv:2308.12950.648

Haiyang Shen, Yue Li, Desong Meng, Dongqi Cai,649
Sheng Qi, Li Zhang, Mengwei Xu, and Yun Ma.650
2024. Shortcutsbench: a large-scale real-world651
benchmark for api-based agents. arXiv preprint652
arXiv:2407.00132.653

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,654
Han Qian, Mingbo Song, Hailiang Huang, Cheng655
Li, Ke Wang, Rong Yao, et al. 2023. Restgpt: Con-656
necting large language models with real-world restful657
apis. arXiv preprint arXiv:2306.06624.658

Venkat Krishna Srinivasan, Zhen Dong, Banghua Zhu,659
Brian Yu, Damon Mosk-Aoyama, Kurt Keutzer,660
Jiantao Jiao, and Jian Zhang. 2023. Nexusraven:661
a commercially-permissive language model for func-662
tion calling. In NeurIPS 2023 Foundation Models for663
Decision Making Workshop.664

Gemini Team, Rohan Anil, Sebastian Borgeaud,665
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,666
Radu Soricut, Johan Schalkwyk, Andrew M Dai,667
Anja Hauth, et al. 2023. Gemini: a family of668
highly capable multimodal models. arXiv preprint669
arXiv:2312.11805.670

Amitayush Thakur, Yeming Wen, and Swarat Chaud-671
huri. 2023. A language-agent approach to formal672
theorem-proving. In The 3rd Workshop on Mathe-673
matical Reasoning and AI at NeurIPS’23.674

Yuxiang Wei, Federico Cassano, Jiawei Liu, Yifeng675
Ding, Naman Jain, Zachary Mueller, Harm de Vries,676
Leandro von Werra, Arjun Guha, and Lingming677
Zhang. 2024. Selfcodealign: Self-alignment for code678
generation. arXiv preprint arXiv:2410.24198.679

Mengsong Wu, Tong Zhu, Han Han, Chuanyuan Tan,680
Xiang Zhang, and Wenliang Chen. 2024. Seal-tools:681
Self-instruct tool learning dataset for agent tuning682
and detailed benchmark. In CCF International Con-683
ference on Natural Language Processing and Chi-684
nese Computing, pages 372–384. Springer.685

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu,686
Zhengyu Chen, and Jian Zhang. 2023. On the tool687
manipulation capability of open-source large lan-688
guage models. arXiv preprint arXiv:2305.16504.689

Fanjia Yan, Huanzhi Mao, Charlie Cheng-Jie Ji,690
Tianjun Zhang, Shishir G. Patil, Ion Stoica, and691
Joseph E. Gonzalez. 2024. Berkeley function calling692
leaderboard. https://gorilla.cs.berkeley.693

edu/blogs/8_berkeley_function_calling_ 694
leaderboard.html. 695

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 696
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 697
React: Synergizing reasoning and acting in language 698
models. arXiv preprint arXiv:2210.03629. 699

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 700
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023. 701
React: Synergizing reasoning and acting in language 702
models. In The Eleventh International Conference 703
on Learning Representations. 704

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao 705
Liu, Yuxiao Dong, and Jie Tang. 2023. Agenttuning: 706
Enabling generalized agent abilities for llms. arXiv 707
preprint arXiv:2310.12823. 708

Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, 709
Weiran Yao, Juntao Tan, Thai Hoang, Liangwei Yang, 710
Yihao Feng, Zuxin Liu, et al. 2024a. Agentohana: 711
Design unified data and training pipeline for effective 712
agent learning. arXiv preprint arXiv:2402.15506. 713

Jianguo Zhang, Tian Lan, Ming Zhu, Zuxin Liu, Thai 714
Hoang, Shirley Kokane, Weiran Yao, Juntao Tan, 715
Akshara Prabhakar, Haolin Chen, et al. 2024b. xlam: 716
A family of large action models to empower ai agent 717
systems. arXiv preprint arXiv:2409.03215. 718

Yinger Zhang, Hui Cai, Xeirui Song, Yicheng Chen, 719
Rui Sun, and Jing Zheng. 2024c. Reverse chain: A 720
generic-rule for llms to master multi-api planning. 721
Preprint, arXiv:2310.04474. 722

10

https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/2310.04474
https://arxiv.org/abs/2310.04474
https://arxiv.org/abs/2310.04474

	Introduction
	Related Work
	NESTful Dataset Curation
	Nested Function Calling Data Schema
	NESTful Data Domains
	Mathematical Reasoning Data
	Coding Data

	Dataset Quality

	Evaluation
	Baselines
	Experimental Settings
	Metrics
	Results
	Dataset Analysis

	Challenges
	Conclusion

