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ABSTRACT

Normalizing Flows (NFs) are powerful and efficient models for density estima-
tion. When modeling densities on manifolds, NFs can be generalized to injective
flows but the Jacobian determinant becomes computationally prohibitive. Current
approaches either consider bounds on the log-likelihood or rely on some approx-
imations of the Jacobian determinant. In contrast, we propose injective flows for
star-like manifolds and show that for such manifolds we can compute the Jacobian
determinant exactly and efficiently. This aspect is particularly relevant for varia-
tional inference settings, where no samples are available and only some unnormal-
ized target is known. Among many, we showcase the relevance of modeling densi-
ties on star-like manifolds in two settings. Firstly, we introduce a novel Objective
Bayesian approach for penalized likelihood models by interpreting level-sets of
the penalty as star-like manifolds. Secondly, we consider probabilistic mixing
models and introduce a general method for variational inference by defining the
posterior of mixture weights on the probability simplex.

1 INTRODUCTION

Normalizing Flows (NFs) are flexible and efficient models that allow us to accurately estimate arbi-
trary probability distributions. The key idea is to transform a simple base distribution into a com-
plicated one through a series of bijections. However, in many applications we know that the target
density lies on a certain lower-dimensional manifold. A common approach is to have the base distri-
bution defined on the lower-dimensional space and use an injective transformation to embed it into
higher dimensions. Unfortunately, the computation of the transformed density involves an expensive
Jacobian determinant term, which makes the model computationally prohibitive. Currently, exact
and efficient Jacobian determinant is possible only for trivial manifolds like spheres and tori (Gemici
et al., 2016; Rezende et al., 2020) or for very restrictive transformations (Ross and Cresswell, 2021).
In practice, most work renounce exact density estimation and approximate the Jacobian determinant
term (Kumar et al., 2020; Kothari et al., 2021; Sorrenson et al., 2024), often with high variance
estimators. Exact density estimation might not be critical when training with maximum likelihood,
but is crucial in many applications like variational inference, where samples are not available.

In this paper, we introduce injective flows for star-like manifolds and show that we can exactly and
efficiently compute the associated Jacobian determinant term, with the same computational cost as
NFs. We consider star-like manifolds with intrinsic dimensionality d−1 and embedded in Rd, which
is a general class of manifolds that are particularly relevant in many statistical applications. Note that
learning distributions, including the uniform distribution, on arbitrary manifolds is non-trivial and
often requires complicated sampling schemes (Pennec, 2006; Diaconis et al., 2012). Distributions
on the hypersphere are crucial in directional statistics, astrophysics, medicine, biology, meteorology
and many other fields (Chikuse, 2012). Particularly relevant for geoscience applications is the fact
that the Earth is an oblate spheroid, which is a star-like manifold. The probabilistic simplex, another
star-like manifold, is very useful to model vectors that represent true probabilities by construction.
Possible applications include probabilistic mixing models and other variations like Bayesian tracer
mixing models, which are common in ecology, geoscience, zoology and many others (Phillips,
2012; Stock et al., 2018), and probabilistic treatment of archetype models (Seth and Eugster, 2016;
Keller et al., 2021). In some Bayesian settings, level sets of posteriors with one-parameter priors
(e.g. sparsity parameter) define star-like manifolds. As we will argue, defining the posterior on such
manifolds allows for an objective Bayesian treatment of the problem.
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We showcase the generality of our approach with two very distinct applications in Bayesian mod-
eling. First, we introduce a novel Objective Bayesian approach to penalized likelihood methods.
In this case the star-like manifold defines a level-set of the penalty constraint. Second, we consider
probabilistic mixing models and introduce a general framework for variational inference on the mix-
ing weights. We constrain the posterior on the simplex, such that mixing weights always sum to one,
and showcase an application in portfolio analysis.

We summarize the contributions of the present work as follows:

• We propose injective flows for star-like manifolds.
• In contrast to most existing work on injective flows, we show that we can exactly and

efficiently compute the associated Jacobian determinant.
• We showcase the relevance and broad applicability of the proposed method in a novel

Objective Bayesian approach and for posterior inference in probabilistic mixing models.

2 BACKGROUND

Density and Jacobian determinant for bijective functions Let x be a d-dimensional random
variable with unknown distribution px(x) and let z be a d-dimensional random variable with known
base distribution pz(z). The key idea of NFs is to model the unknown distribution px(x) through
a transformation T : Rd 7→ Rd such that x = T (z). If T is a diffeomorphism, i.e. differentiable
bijection with differentiable inverse T −1, the change of variable formula (Rudin, 1987) allows us to
express px(x) solely in terms of the base distribution pz(z) and T : px(x) = pz(z) |det JT (z)|−1,
where JT is the Jacobian of the transformation T . The hypothesis can be relaxed to T being a
diffeomorphism a. e. (Munkres and Spivak, 1965), i.e. except on zero-measure sets. Therefore, the
trade-off consists of implementing bijections with tractable det JT which are still flexible enough
to approximate any well-behaved distribution. One key idea is to exploit the property that, given a
set of bijections {T (i)}ki=1, their composition T = T (k) ◦ · · · ◦ T (1) is still a bijection. Since for
bijections the Jacobian is a square matrix, the determinant of a composition of bijections factorizes
as the product of the determinants of the individual bijections. Overall, NFs are built as

px(x) = pz(z) |det JT (z)|−1 with det JT (z) =

k∏
i=1

det JT (i)(ui−1) (1)

where ui−1 = T (i−1)(ui−2) and u0 = z. In general, computing the det JT has a cost of O(d3)
because it requires some form of matrix decomposition (typically LU or QR). Instead, what most
implementation exploit is the property in Eq. (1): we can efficiently model a bijection T by stack-
ing simpler bijective layers T (i) with tractable (analytical) Jacobian determinant. Typically, each
det JT (i) is made tractable by designing bijections T (i) with triangular Jacobian by construction,
such that its determinant is given by the diagonal entries, which has a O(d) complexity.

Density and Jacobian determinant for injective functions NFs are limited by the use of bijec-
tions, which prevents modeling densities on lower dimensional manifolds. In such cases the target
distribution lives on a m-dimensional manifoldM embedded in a d-dimensional Euclidean space
M ⊂ Rd, where m < d. In order to constrain px(x) to live on the manifoldM, we need an injec-
tive transformation that inflates the dimensionality T m→d : Rm 7→ Rd. The transformed probability
distribution px(x) can still be computed by accounting for the volume change (Ben-Israel, 1999):

px(x) = pz(z) |vol JT m→d
(z)|−1 with vol JT m→d

=

√
det

((
JT m→d

)T
JT m→d

)
, (2)

where JT m→d(z) ∈ Rd×m is a rectangular matrix. Note that if m = d, JT is a square matrix so

vol JT =
√
det JT

T JT =
√
det JT

T det JT = det JT and Eq. (2) reduces to Eq. (1). Crucially,
since JT m→d

is now rectangular, the Jacobian determinant cannot be decomposed as the product of
stacked transformations anymore, which is the crucial property that makes bijective flows tractable
(see Eq. (1)). Instead, we need to explicitly compute the Jacobian determinant, which is O(m3) in
general. This makes injective flows computationally prohibitive for high dimensional manifolds.
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Even if we were to stack bijective layers after the injective transformation, we would still be unable
to write the overall Jacobian determinants as the product of individual bijections and would remain
O(m3). To see this, consider the transformation T = T d ◦ T m→d ◦ T m, where T m : Rm 7→ Rm

and T d : Rd 7→ Rd are arbitrary bijections. Then, det JT factorizes:

det JT = det JT m

√
det

((
JT d

JT m→d

)T
JT d

JT m→d

)
. (3)

We refer to Appendix A.2 for a full derivation. Note that we can factorize only det JT m (the bi-
jection that precedes the inflating step), while the Jacobian determinant of the bijections T d after
the inflating step cannot be disentangled. Naturally, the same would hold true if the bijections T d

were replaced by arbitrary injective transformations. In both cases we would need to compute the
Jacobian product JT d

JT m→d
and its determinant, which has cubic complexity.

3 INJECTIVE FLOWS FOR STAR-LIKE MANIFOLDS

We now present the proposed injective flow to model densities on arbitrary star-like manifolds. In
particular, in Section 3.1 we introduce the definition of star-like manifolds and show that they can
always be parametrized with generalized spherical coordinates. Then, in Section 3.2 we define
injective flows on star-like manifolds and show that the Jacobian determinant can be computed
exactly and efficiently. Lastly, in Section 3.3 we discuss the limitations of the proposed approach.

3.1 STAR-LIKE MANIFOLDS

Definition 1. We call a domain a star domain S if there exists one point s0 ∈ S such that, given any
other point s ∈ S in the domain, the line segment connecting s0 to s lies entirely in S. Furthermore,
we define star-like manifoldMS as the manifold defined by the boundary of a star domain. In this
work we consider d− 1 dimensional star-like manifolds embedded in Rd.

Figure 1: 1D star-like
manifold parametrized
in spherical coordinates.

In other words, a star-like manifold is such there exists a point from
which the entire manifold can be “viewed”. Intuitively, this suggests
that we can always parametrize it with generalized spherical coordinates,
which consist of d− 1 angles θ ∈ Ud−1

θ := [0, π]d−2 × [0, 2π] and one
radius r ∈ R>0. Let MS be a d − 1 dimensional star-like manifold
embedded in Rd. Then, we need d − 1 variables to identify any point
x ∈ MS . In particular, we can parametrize x = [θ, r(θ)]T with d − 1

spherical angles θ ∈ Ud−1
θ and a suitable radius function r(θ). If we

choose s0 as the origin of the spherical coordinate system, we can define
the radius as the line segment connecting x and s0. Crucially, by def-
inition of star-like manifolds, the segment intersects the manifold only
once, so the radius is uniquely defined. See Figure 1 for a graphical rep-
resentation. Star-like manifolds are the most general class of manifolds
that always allow such parametrization.

3.2 PROPOSED INJECTIVE FLOWS FOR STAR-LIKE MANIFOLDS

We now show how to define injective flows on star-like manifolds such that the Jacobian determinant,
and hence the log density, can be evaluated exactly and efficiently. Relevantly, the modeled distribu-
tion is expressed in Cartesian coordinates, which is crucial for most applications. In order to do so
we compose three transformations T := Ts→c ◦ T r ◦ T θ (see Figure 2): (i) an arbitrary diffeomor-
phism that maps to d− 1 spherical angles T θ, (ii) the injective transformation T r that parametrizes
the radius r(θ) as a function of the angles and (iii) the coordinate transformation Ts→c from spheri-
cal to Cartesian coordinates. Note that the change of coordinates Ts→c is a diffeomorphism almost
everywhere, i.e. except on a zero-measure set. Therefore, the change of variable formula holds and
the probability resulting from the transformation is still exact. We refer to Appendix A.1 and A.4
for the explicit expression of Ts→c and a discussion of its special structure, respectively. This way
the resulting densities will be defined by construction on the manifold parametrized by T r, while the
density will be conveniently expressed in Cartesian coordinates. In other words, the push-forward
samples are points in the ambient space.
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Figure 2: Architecture of the proposed injective flows for star-like manifolds, see Theorem 1.

Naively computing the Jacobian determinant as in Eq. (3) requires cubic complexity. Instead, in
Theorem 1 we show for star-like manifolds how to compute it analytically and efficiently in O(d2).
We provide a proof sketch of the theorem below and the full proof in the Appendix A.4.
Theorem 1. Let T := Ts→c ◦ T r ◦ T θ as in Figure 2, where T θ : z ∈ Rd−1 7→ θ ∈ Ud−1

θ

is any diffeomorphism to d-spherical angles, T r : θ ∈ Ud−1
θ 7→ [θ, r(θ)] ∈ Ud−1

θ × R>0 with
r(·) : θ ∈ Ud−1

θ 7→ r ∈ R>0 being differentiable, and Ts→c : [θ, r(θ)]
T ∈ Ud−1

θ ×R>0 7→ x ∈ Rd

the d-spherical to Cartesian transformation (see Definition 2 in Appendix A.1).

Then, the Jacobian determinant of the full transformation T is equal to

det
(
JT

)
= det

(
JT θ

)
det

(
JTs→c

)
∥
(
JT
Ts→c

)−1
y∥2 , (4)

where y :=
[
−∇θr(θ), 1

]T
. Relevantly, det JT can be computed exactly and efficiently in O(d2).

Proof sketch. (i) Injectivity It is easy to see that T := Ts→c ◦ T r ◦ T θ is injective because T θ is
bijective, T r is injective and Ts→c is also bijective. The injectivity of T r can be easily seen by
noting that θ ̸= θ′ =⇒ [θ, r(θ)] ̸= [θ′, r(θ′)], independently of r(·).

(ii) Analytical Jacobian determinant Since JT ∈ Rd×d−1 is not square, we cannot use the usual
property of bijections in Eq. (1). Instead, we use the result for injective functions in Eq. (3):

det
(
JT

)
= det

(
JT θ

) det
(
JTs→c ◦ T r

)
= det

(
JT θ

)√
det

((
JTs→c

JT r

)T (
JTs→c

JT r

))
.

where JT r ∈ Rd×d−1 and JTs→c ∈ Rd×d. Note that, as we show in Appendix A.4 Remark 1, we
can factor out only the Jacobian determinant of T θ, i.e. the bijection that precedes the dimensional
inflation step with T r. The term det JT θ

is the standard Jacobian determinant for bijective layers
and can be computed efficiently. We are then left to compute det

(
JTs→c ◦ T r

)
. To do so we consider

the matrix J̃T r
:= [JT r

0d×1] ∈ Rd×d and substitute the determinant with the pseudo-determinant:

det
(
JTs→c ◦ T r

)
=

√
det

(
JT
T r

J∗JT r

)
=

√
det+

(
J̃T
T r

J∗J̃T r

)
,

where J∗ := JT
Ts→c

JTs→c
∈ Rd×d. With det+ we denote the pseudo-determinant, which is defined

as the product of all non-zero eigenvalues. The rest of the proof is based on the key observation that
J̃T r

has rank d − 1 or, equivalently, that its null space is one-dimensional. As a result, we can use
Lemma 2 (see Appendix A.4) and re-write the pseudo-determinant as trace of the adjugate matrix :

det+
(
J̃T
T r

J∗J̃T r

)
= Tr

(
adj

(
J̃T
T r

J∗J̃T r

))
= det

(
J∗) Tr

(
adj

(
J̃T r

)(
J∗)−1

adj
(
J̃T
T r

))
.

where adj(·) is defined as the transpose of the cofactor matrix. If A is invertible (as for J∗ =

JT
Ts→c

JTs→c
), adj(A) = det(A)A−1. Since J̃T

T r
has rank d−1, Lemma 1 holds (see Appendix A.4):

adj(J̃T r
) =

det+(J̃T r
)

yTx
xyT ,
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where x = [0, 1]T and y :=
[
−∇θr(θ), 1

]T
. Finally, by substitution we get:

det+
(
J̃T
T r

J∗J̃T r

)
= det

(
J∗)det+(J̃T r

)2

(yTx)2
Tr

(
xyT

(
J∗)−1

yxT
)
= det

(
JTs→c

)2∥(JT
Ts→c

)−1
y∥22

(iii) Complexity We can now analyze the time complexity required to evaluate Eq. (4). The term
det JT θ

is the standard Jacobian determinant for bijective layers, which can be computed in O(d).
The Jacobian determinant for spherical to Cartesian coordinates det Js→c is known in closed
form (Muleshkov and Nguyen, 2016) and can be evaluated in O(d). Therefore, we only need to show
that also w =

(
JT
Ts→c

)−1
y can be computed efficiently. Solving the full linear system would require

a complexity of O(d3). However, JT
Ts→c

is almost-triangular (see Appendix A.4, Eq. (22)) and we
can make it triangular with one step of Gaussian elimination, which requires O(d2). The resulting
triangular system can be solved in O(d2). Finally, note that we can compute JTs→c very efficiently
and analytically (see Appendix A.4, Eq. (24)), without requiring autograd computations. ■

3.3 FURTHER DETAILS AND LIMITATIONS

Variational inference vs maximum likelihood In this paper we focus on variational inference
settings (without observations), and not on the maximum likelihood setting (with observations),
which is the main focus of most injective flows. Our motivation is two-fold. First, our method is
designed for star-like manifolds (with codimension 1), which are more useful in variational inference
settings. In maximum likelihood applications, the underlying manifolds are often assumed to much
lower dimensional. Second, while in maximum likelihood settings the approximate Jacobian work
well in practice, in variational inference settings the exact Jacobian determinant is crucial to learn
the correct target distribution. We show this empirically, already in very simple cases.

Implementation details The proposed approach is straightforward to implement and only requires
to adapt the function r(θ) to the star-like manifold under study. This means that we should have
access to the parametrization r(θ), which is often trivial (see e.g. Appendix A.4 Eq. (25) and
Eq. (26)). Our method is also versatile as the transformation Tz can be implemented with any
bijective layers of choice. Lastly, we easily avoid numerical instabilities arising from singular points
in Ts→c by offsetting the critical angles with a small epsilon.

Limitations The main limitation of the proposed method is that it cannot be easily generalized to
manifolds with intrinsic dimensionality lower than d − 1. In particular, the proof of Theorem (1)
relies on the fact that the zero-padded Jacobian matrix has rank d − 1. Secondly, the expressivity
of the proposed method also depends on the flexibility of the bijective layers. Despite state-of-the-
art bijective layers being extremely expressive (Perugachi-Diaz et al., 2021), Liao and He (2021)
showed that the number of modes that can be modeled remains limited.

4 RELATED WORK

Normalizing Flows Normalizing Flows (NFs) consist of a simple base distribution that is trans-
formed into a more complicated one through bijective transformations. One can show that such a
construction allows us to approximate any well-behaved distribution (Papamakarios et al., 2021). In
practice, the bijective transformations are implemented with neural networks that show a trade-off
between expressiveness and computational complexity. However, recently developed bijective lay-
ers provide very efficient transformations that satisfy the universality property (Huang et al., 2018;
Durkan et al., 2019; Jaini et al., 2019). For a comprehensive review of different bijective layers and
for a discussion about applications we refer to Papamakarios et al. (2021) and Kobyzev et al. (2021).

Variational Inference with NFs NFs are popular in two distinct applications: (i) as generative
models trained on data or (ii) as powerful density estimators in variational inference settings. In
the first case, we are given some samples and NFs are trained by maximum likelihood (forward KL
divergence) to approximate the data generating distribution and to later generate new samples (Dinh
et al., 2017; Papamakarios et al., 2017). In the variational inference setting, no samples are available
and the target distribution is typically known only up to a normalization constant. NFs are thus
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trained by reverse KL divergence and, once trained, they allow for both sampling and evaluation of
the (approximate) target distribution (Rezende and Mohamed, 2015; Kingma et al., 2016). There is
good evidence that a more faithful posterior approximation leads to an improved performance for
variational inference tasks (Rezende and Mohamed, 2015), which is one reason that makes normal-
izing flows attractive. This setting is the focus of our work and is particularly relevant for Bayesian
inference (Louizos and Welling, 2017), where the goal is to learn and sample from the posterior
distribution given the (unnormalized) product of the prior and likelihood. In such settings NFs have
also proven to be an attractive alternative to MCMC samplers (Negri et al., 2023).

Injective flows on manifolds The computational challenge of injective flows is the evaluation of
the Jacobian determinant in Eq. (2). In the literature, exact and efficient computation of the Jacobian
determinant has been shown only for trivial manifolds like spheres and tori (Gemici et al., 2016;
Rezende et al., 2020) or for very restrictive transformations (Ross and Cresswell, 2021). In partic-
ular, the latter focuses only on maps for which J TJ ∝ I, making the determinant trivial. These
are however the only cases where the modeled density can be computed exactly and efficiently dur-
ing training. This has a significant impact on variational inference settings where the quality of the
approximation influences the exploration of the distribution domain. It is, in contrast, less relevant
in data driven settings trained by maximum likelihood. Some early work ignored the determinant
term altogether (Brehmer and Cranmer, 2020), which was shown to have detrimental effects al-
ready in simple low-dimensional settings (Caterini et al., 2021). Current work is focused instead
on finding some tractable approximation to the Jacobian determinant. The most common one is to
employ the Hutchinson’s trace estimator (Mathieu and Nickel, 2020; Caterini et al., 2021; Flouris
and Konukoglu, 2023), which is characterized by high variance and is biased if used to estimate
the log-determinant of the Jacobian (Kumar et al., 2020). State-of-the-art works employ surrogate
log-likelihood losses and still approximate the Jacobian determinant (Sorrenson et al., 2024).

In contrast, we are the first to propose exact and computationally efficient injective flows for a wide
class of manifolds, namely star-like manifolds.

5 APPLICATIONS

In this section we showcase some interesting applications of the proposed injective flows. In par-
ticular, we overcome some limitations of current work with exact density estimation, which are
applicable only to trivial manifolds or for very restrictive transformations. In Section 5.1 we show
empirically that the proposed approach provides a significant speedup compared to the explicit com-
putation of the Jacobian determinant. We also show that in variational inference the exact Jacobian
determinant is crucial for training while the approximation commonly employed in injective flows
results in poor reconstruction. In Section 5.2 we illustrate how the proposed approach learns distri-
butions on simple 3D manifolds. In Section 5.3 we use injective flows to define a novel Objective
Bayes approach to penalized likelihood problems. Lastly, in Section 5.4 we introduce a general
framework for variational inference in probabilistic mixing models.

5.1 EFFECTIVENESS AND EFFICIENCY OF THE PROPOSED METHOD

We showed that for star-like manifolds we can efficiently compute the Jacobian determinant in
Eq. (2) and we argued that exact evaluation is crucial for variational inference. We now verify both
statements empirically. Firstly, we compare the runtime associated with computing the Jacobian
determinant via the explicit formula in Eq. (2) with our approach in Eq. (4). In particular, we use
a very simple manifold, the hypersphere in d dimensions, and measure runtime over 20 repetitions
of Jacobian determinant computation. The results in Figure 3a show that our method provides a
significant speedup compared to the explicit computation of the Jacobian. By fitting a linear function
to the log-runtime and log-dimension we get that the explicit computation is approximately cubic,
O(d2.96), while our proposed approach is approximately quadratic, O(d1.81). Secondly, we show
that training with the exact Jacobian determinant is crucial for variational inference. To do so we first
train the proposed injective flow with the exact (and efficient) Jacobian in Eq. (4). Then, we train
a second identical flow where the gradient of the Jacobian is approximated with the Hutchinson
trace estimator with different number of Gaussian samples n = 1, 10, 50, 100. This approach is
common in most injective flow papers (Caterini et al., 2021; Flouris and Konukoglu, 2023). We use
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Figure 3: (a) Runtime comparison of Jacobian determinant computation with proposed approach
in Eq (4) and with the brute-force computation Eq. (2). (b) MSE of learned log-density for an
injective flow trained to learn a uniform distribution on a lp-(pseudo) norm ball with p = 0.5. We
compare the same model trained with our exact Jacobian and with the Hutchinson trace estimator
with n = 1, 10, 50, 100 number of Gaussian samples. Note that the number of samples is upper
bounded by the dimensionality of the problem and that at evaluation the exact Jacobian is used.

the implementation of state-of-the-art work (Sorrenson et al., 2024). The task is to learn the uniform
distribution on a lp-(pseudo) norm ball with p = 0.5. In Figure 3 we compare the ground truth (log-
) density with that obtained with the two models. Note that at test time the model trained with the
approximate Jacobian is evaluated with the exact Jacobian. In the Appendix in Figure 10 we measure
the similarity between samples of the two models and samples from the true distribution. In all cases
the proposed model achieves significantly better results both in terms of density reconstruction and
samples quality. Even at the cost of increased runtime (shown in Figure 10), increasing the number
of samples the approximate method fails to achieve similar performance to ours.

5.2 ILLUSTRATIVE DISTRIBUTIONS IN 3D

We first illustrate the proposed model on a simple 3D setting. In particular, we train the injective
flow in a variational inference setting where the target distribution is known only up to a constant and
no samples are given. Note that this is much more challenging than the usual maximum likelihood
settings where flows are trained on data. In particular, it is not trivial to learn densities with many
modes. To showcase the effectiveness of the proposed method we show the modeled density for
increasingly difficult targets: (i) von Mises-Fisher distribution (κ = 5), (ii) mixture of 50 von
Mises-Fisher distributions arranged on a spiral (κ = 50) and (iii) sinusoidal density (log ρ(θ, ϕ) =
sin(4θ) sin(4ϕ)), where κ is the concentration parameter and θ and ϕ are the polar and azimuthal
angles, respectively. The sinusoidal density (iii) is defined on a deformed sphere. In Figure 4 we
show that the modeled densities perfectly match the ground truth in all cases. Furthermore, we
compare the modeled density with the ground truth over 10’000 samples and obtained an accurate
reconstruction: MSE = 0.013 (a), 0.011 (b). As the normalized density on the deformed sphere is
not given, we only provide a qualitative visualization, which shows an accurate reconstruction.
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reverse KL divergence (no samples). Only the (unnormalized) target is given: (a) von Mises-Fisher
(κ = 5), (b) mixture of 50 von Mises-Fisher (κ = 50) and (c) sinusoidal density on deformed sphere
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5.3 OBJECTIVE BAYESIAN APPROACH TO PENALIZED LIKELIHOOD

Objective and subjective Bayes Bayesian inference is a powerful statistical method that requires
a likelihood term, which explains the observed data, and a prior, which quantifies our initial belief.
However, in many cases we might not have enough problem-specific knowledge to specify an in-
formative subjective prior. This has led to the development of objective priors, which are designed
to be minimally informative. Some objective priors include Jeffreys rule (Jeffreys, 1961), reference
priors (Bernardo, 1979), and maximum entropy priors (Jaynes, 2003). Given the vast literature on
objective priors (Berger, 2006), in this work we do not intend to discuss whether objective priors are
preferable or not. Instead, we provide a new framework to define objective priors in settings where
only subjective ones have been explored so far. Specifically, we consider Bayesian penalized likeli-
hood problems and show that level sets of the penalty define star-like manifolds. Then, we implicitly
define the objective prior as the uniform distribution on such manifolds. This choice aligns with the
literature on objective priors for distributions on surfaces since a uniform distribution assigns equal
mass to equal volume (Kass, 1989; Kass and Wasserman, 1996).

Objective Bayes for penalized likelihood models Let y ∼Xβ+ϵ with ϵ ∼ N (0, σ2In), where
X ∈ Rn×d is the data matrix, y ∈ Rn the targets and β ∈ Rd the regression coefficients. We
then optimize the mean-squared error ∥y − Xβ∥22 subject to the (pseudo-) norm penalties ∥β∥pp
with p > 0, which encourages sparsity for p ≤ 1. Note that for p = 1 we recover the LASSO
penalty (Tibshirani, 1996) and for p = 2 the Ridge penalty. Tibshirani (1996) noted that we can
interpret such penalized likelihood in a Bayesian way with a Gaussian likelihood and a suitable
prior. Park and Casella (2008) showed that with an independent Laplace prior the Maximum a
Posteriori (MAP) of the posterior coincides with the frequentist solution. The above reasoning can
be extended to any lp (pseudo-) norm ∥ · ∥p by using a generalized Gaussian prior on β:

argmin
β∈Rd

1
2σ2 ∥y −Xβ∥22 + λ∥β∥pp = argmax

β∈Rd

N (Xβ, σ2In)︸ ︷︷ ︸
p(y|X,β)

∏
i exp{−λ|βi|p)︸ ︷︷ ︸

p(β|λ)

= β∗ . (5)

regression coefficients

5

0

5

10

square laplace laplace root laplace

Figure 5: 95% posterior C.I. for 3 sub-
jective priors with the same MAP. The
choice of prior affects the posterior.

However, the generalized Gaussian is not the only prior
for which Eq. (5) holds. Any monotonic transforma-
tion h of p(β|λ)) results in the same MAP solution β∗

(see Figure 8 in the Appendix). Therefore, the choice
of h(p(β|λ)), and hence of the prior, is subjective and,
crucially, it influences the posterior. We show this empir-
ically on toy data with the Laplace prior and two mono-
tonic transformations: the square (“square laplace”) and
square root (“root laplace”). In Figure 5 we can clearly
see that the posterior is influenced by the choice of the
subjective prior, which is undesirable in the absence of
specific assumptions. In contrast, we circumvent the
choice of a subjective prior and propose a general frame-
work for objective priors in penalized likelihood methods.

Objective Bayesian penalized likelihood with injective flows With subjective priors the penalty
∥β∥pp in Eq. (5) is enforced as a soft constraint controlled by λ such that ∥β∥p ≤ k(λ), for some
k(λ). Our idea is to enforce the norm penalty as a hard constraint by defining the posterior on the
manifold ∥β∥p = k by construction. This way we do not require to explicitly specify a subjective
prior and we are implicitly assuming a uniform prior on the manifold ∥β∥p = k. In summary:

Objective Bayes

p(y|X,β) = N (Xβ, σ2In)
posterior on manifold: ∥β∥p = k

←→
Subjective Bayes

p(y|X,β) = N (Xβ, σ2In)
prior: p(β|λ) ∝

∏
i exp{−λ|βi|p)

The equality ∥β∥p = k induces a star-like manifold which we can parametrize with a suitable radius
function; see Appendix A.5 Eq. (25) for the explicit parametrization. Therefore, with our framework
we can define the (approximate) posterior qθ(β) to be constrained on ∥β∥p = k by construction.
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square laplace laplace root laplaceobjective

0

25

Figure 6: Above: with the objective prior posterior
samples lie on the manifold. Below: the norm of
posterior samples depends on the subjective prior.

We now illustrate the differences between the
subjective and objective approaches with syn-
thetic data. We use a NF to approximate the
posteriorN (Xβσ2In)p(β|λ) with the “square
laplace” subjective prior p(β|λ). We choose λ
such that the MAP has a specific norm ∥β∗∥1 =
k. Furthermore, we use an injective flow de-
fined on ∥β∥1 = k to approximate the target
N (Xβ, σ2In) (implicitly uniform prior). In
both cases training is performed by minimizing
the reverse KL divergence (see Appendix A.6,
Eq.(27)). Figure 6 shows a crucial difference:
samples from the objective posterior lie exactly
on the manifold while the subjective posterior is
scattered. The bottom panel of Figure 6 shows
the distribution of the sample norms varying
significantly with the choice of the subjective
prior, which agrees with Figure 5. We include
more implementation details in Appendix A.6. Lastly, note that we do not claim that the proposed
prior is better in general, but rather preferable in cases where a less informative prior is desired.

5.4 VARIATIONAL INFERENCE FOR PROBABILISTIC MIXING MODELS

Probabilistic mixing models Mixing models are used to study the relative contribution of sources
to an observed mixture and are particularly relevant in ecology, geoscience, meteorology and many
other fields (Phillips, 2012; Stock et al., 2018; Jiskra et al., 2021). Formally, the aim is to reconstruct
the mixture π of sources from which the observations D were generated, with π being defined
on the probabilistic simplex Cd := {π ∈ Rd : πi ≥ 0 ,

∑k
i=1 πi = 1}. In the most general

Bayesian formulation, we require a prior p(π) and some likelihood p(D|π) and the challenge is then
to define the posterior p(π|D) ∝ p(D|π)p(π) on the probabilistic simplex Cd. Most approaches
rely on the Dirichlet distribution, which is defined on Cd by construction: Dir(π) ∝

∏
i π

αi−1
i with

αi > 0. Since the posterior can be obtained in closed form only with a multinomial likelihood,
most approaches rely on sophisticated MCMC samplers (Stock et al., 2018). As a more flexible
alternative to MCMC methods, we present a general variational inference framework where p(π|D)
is always defined on Cd, leaving complete freedom in the choice of prior and likelihood.

Injective flows vs MCMC in Bayesian mixing models It is easy to see that the probabilistic sim-
plex Cd is a star-like manifold, see Appendix A.5 Eq. (26) for the explicit parametrization. There-
fore, with the our framework we can define an injective flow qθ(π) on Cd by construction and train
it to approximate the posterior p(π|D) ∝ p(D|π)p(π). In the simplest case when no prior is spec-
ified, we are implicitly assuming a uniform distribution on the simplex, i.e. a Dirichlet prior with
αi = 1 ∀i. In the more general case, we can always plug in any combination of likelihood p(D|π)
and prior p(π), and the (approximate) posterior qθ(π) will always be defined on Cd by design. In
contrast, with MCMC methods it is not trivial to guarantee posterior samples to be on Cd, already
for very simple likelihoods (Altmann et al., 2014; Baker et al., 2018). We compare our method
with an MCMC sampler in the conjugate case (Dirichlet prior and multinomial likelihood) such that
we can compare with the true posterior, which is available in closed form. We report the results in
Appendix A.6 in Figure 11, together with a description of the MCMC sampler. Results show that (i)
the proposed injective flow correctly estimates the posterior distribution across all tested dimensions
and (ii) it outperforms the MCMC sampler already in low dimensions. Interestingly, this experiment
shows that our approach is able to learn very sparse solutions with many modes.

Application: Bayesian portfolio optimization We select a minimal Bayesian mixing model that
already shows the advantages of our proposed method in terms of flexibly choosing likelihood and
prior. One such setting is index replication in the context of portfolio optimization (Markowitz
and Todd, 2000). A portfolio is defined as a set of n stocks which are held proportionally to the
mixture components π ∈ Rn

>0, such that
∑

i πi = 1. Let R ∈ RT×n be the returns over the
time-steps t = {1, . . . , T} of the n stocks. We are interested in optimizing the portfolio weights

9
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Figure 7: Trained injective flow on the simplex with target p(π|D) ∝ p(D|π) (“uniform” prior,
implicitly) and p(π|D) ∝ p(D|π)Dir(π) (“Dirichlet” prior). Above: we compare the distribution
of non-zero entries in posterior samples for 4 fixed likelihood values (so at fixed reconstruction).
Below: we compare sparsity patterns of samples π with uniform (blue) and Dirichlet (orange) prior.

π such that we replicate the reference index returns ρ ∈ RT , while also incorporating investors
personal preferences. For instance, a sparse portfolio allows to reduce transaction costs arising from
trading (Sokolov and Polson, 2019). We formulate the problem in Bayesian fashion by specifying a
Gaussian likelihood p(ρ|R,π) = N (Rπ, σ2In) and some sparsity-inducing prior p(π).

With the proposed framework we can approximate the posterior p(π|R,ρ) ∝ p(ρ|R,π)p(π) with
an injective flow qθ(π) defined on Cn by design. The flow qθ(π) is trained by minimizing the
reverse KL divergence with the unnormalized target p(ρ|R,π)p(π). For the sake of illustration, we
select a portfolio with 10 stocks over a period of 200 time steps from the dataset in Tu and Li (2024).
We define qθ(π) on the manifold and consider two priors: the uniform prior on the simplex and the
Dirichlet distribution. In Figure 7 we show the distribution of non-zero entries of the posterior
samples for the uniform and Dirichlet distribution. In particular, we consider the distribution and
the sparsity patterns at 4 fixed values of the likelihood (one per plot). Despite the likelihood being
the same, the Dirichlet prior leads to a sparser solution with fewer non-zero entries. This is also
noticeable in the sparsity patterns of the posterior samples in the bottom panel. In Appendix A.6 in
Figure 12 we also show the cumulative return and how it is affected by sparsity. Overall, we showed
how easily we can specify any likelihood and priors while constraining the posterior on the simplex.

6 CONCLUSIONS

Previous work on injective flows on manifolds relies on approximations or lower bounds to circum-
vent the computation of the Jacobian determinant term. In this work we showed how to exactly and
efficiently compute the Jacobian determinant term for the general class of star-like manifolds. We
validate empirically the claimed computational advantage and we show that exact Jacobian com-
putation is crucial for variational inference, already in very simple settings. We then showed that
the proposed flow allows for interesting applications that were not possible before. First, with the
proposed framework we introduced a novel Objective Bayes approach to penalized likelihood meth-
ods. The idea is to circumvent the choice of a subjective prior by constraining the posterior on
the manifold defined by level-sets of the prior. Second, we introduced a general variational infer-
ence framework for modeling the posterior in probabilistic mixing models. Overall, the proposed
framework allows us to efficiently model distributions on arbitrary star-like manifolds and to flexibly
specify any choice of prior and likelihood.
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and José Miguel Hernández-Lobato. normflows: A pytorch package for normalizing flows. Jour-
nal of Open Source Software, 2023.

Brian C. Stock, Andrew L. Jackson, Eric J. Ward, Andrew C. Parnell, Donald L. Phillips, and
Brice X. Semmens. Analyzing mixing systems using a new generation of bayesian tracer mixing
models. PeerJ, 6, 2018.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological), 58:267–288, 1996.

Xueyong Tu and Bin Li. Robust portfolio selection with smart return prediction. Economic Mod-
elling, 135(C), 2024.

13



Published as a conference paper at ICLR 2025

A APPENDIX

The Appendix is organized in six parts. In Subsection A.1 we define the generalized spherical
coordinate system and define the transformation from spherical to Cartesian coordinates. In Sub-
section A.2 and A.3 we provide some auxiliary theorems and Lemmas that are used in the main
proof. In Subsection A.4 we provide the full proof of Theorem 1. In Subsection A.5 we provide
some details about the implementation of the proposed injective flows and we make some further
comments about the associated computational cost. Finally, in Subsection A.6 we include further
plots and implementation details about the experiments.

A.1 GENERALIZED SPHERICAL COORDINATES

Definition 2. We define the d-spherical coordinate system as a generalization of the spherical
coordinate system for d-dimensional Euclidean spaces. Such coordinate system is defined with
d − 1 angles θ1, . . . , θd−1 and one radius r ∈ R>0, where θi ∈ [0, π] for i < d − 1 and
θd−1 ∈ [0, 2π]. We further define a transformation Ts→c : xs 7→ xc that maps spherical coor-
dinates xs = [θ1, . . . , θd−1, r]

T to Cartesian coordinates xc = [x1, . . . , xd]
T as

x1 = r cos θ1
x2 = r sin θ1 cos θ2

...
xd−1 = r sin θ1 sin θ2 · · · sin θd−2 cos θd−1

xd = r sin θ1 sin θ2 · · · sin θd−2 sin θd−1

(6)

We denote with Ud−1
θ × R>0 the domain of definition for d-spherical coordinate system, where

Ud−1
θ := [0, π]d−2 × [0, 2π].

A.2 JACOBIAN DETERMINANT FOR ARBITRARY INJECTIVE FLOWS

Remark 1. Let T m : Rm 7→ Rm and T d : Rd 7→ Rd be arbitrary bijective transformation
and let T m→d : Rm → Rd be an injective transformation with m < d. The transformation
T = T d ◦ T m→d ◦ T m is also injective and its Jacobian determinant factorizes as

det JT = det JT m

√
det

((
JT d

JT m→d

)T
JT d

JT m→d

)
. (7)

Proof. The injectivity of T is trivial since it is by definition a composition of injective functions.
Since T is injective, its Jacobian matrix JT ∈ Rd×m is not squared and we cannot use the usual
property of bijections in Eq.(1). Instead, we use the definition of Jacobian determinant for injective
functions in Eq. (2):

det JT =

√
det

(
JT
T JT

)
=

√
det

((
JT d

JT m→d
JT m

)T (
JT d

JT m→d
JT d

))
, (8)

where Jm ∈ Rm×m, JT m→d
∈ Rd×m and JT d

∈ Rd×d. We now show that we can factor out
the Jacobian determinant of T m, i.e. the bijection that precedes the dimensional inflation step with
T m→d. To do so we use the property that for square matrices A,B det(AB) = detAdetB and
that detA = detAT :

det JT =

√
det

(
JT
T m

JT
T m→d

JT
T d

JT d
JT m→d

JT m

)
=

√
det JT

T m
det

(
JT
T m

JT
T m→d

JT
T d

JT d
JT m→d

)
det JT m

= det JT m

√
det

((
JT d

JT m→d

)T (
JT d

JT m→d

))
= det JT m det JT d ◦ T m→d

.

(9)

■
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A.3 AUXILIARY THEOREMS: ADJUGATE MATRIX AND PSEUDO-DETERMINANT

Theorem 2. (Castillo and Zaballa, 2022) Let A ∈ Rd×d and let λ ∈ R be an eigenvalue of A. Let
v, w ∈ Rd be a right and a left eigenvector, respectively, of A for λ. Then

wT v adj(λId −A) = p′A(λ)vw
T . (10)

where p′A(λ) is the derivative of the characteristic polynomial pA(λ) = det(λId −A).

Lemma 1. Consider the special case where A ∈ Rd×d and rankA = d− 1 or, in other words, the
nullspace of A is one dimensional. Then

adj(A) =
det+(A)

wT v
vwT , (11)

where det+ is the pseudo-determinant.

Proof. Since rankA = d − 1, then there exists one zero eigenvalue. For λ = 0 Theorem 2
reduces to wT v adj(−A) = p′A(0)vw

T . We can now use the following property of the adju-
gate matrix: adj(cA) = cd adj(A) for any scalar c. As a particular case, for c = −1 we have
adj(−A) = (−)d adj(A). Therefore, we obtain that wT v adj(A) = (−)dp′A(0)vwT . Now, the
pseudo-determinant is equal to the smallest non-zero coefficient of the characteristic polynomial
p(λ) = det(λId−A)(Knill, 2014). If we expand the definition we obtain p(λ) = (−)dp(A−λI) =
p0λ

d + (−)p1λd−1 + (−)kpkλd−k + (−)dpd (see Proposition 2, 8. in Knill (2014)). Since
A has rank d − 1, pd = 0 and the smallest non-zero coefficient is pd−1. Finally, note that
p′A(0) = (−)dpd−1 = (−)d det+(A). ■

Lemma 2. Consider the special case where A ∈ Rd×d and rankA = d− 1. Then,

Tr(adj(A)) = det+(A) . (12)

Proof. We take the trace of the left and right-hand side of Eq. (11). We get Tr(adj(A)) =
det+(A)
wT v

Tr(vwT ) = det+(A)
wT v

Tr(wT v) = det+(A). In the first equality we used the linearity of
the trace and factored out the constants det+(A) and wT v. Lastly, we used the cyclic property of
the trace Tr(wT v) = Tr(vwT ). ■

A.4 PROOF OF THEOREM 1

Theorem 1. Let T := Ts→c ◦ T r ◦ T θ as in Figure 2, where T θ : z ∈ Rd−1 7→ θ ∈ Ud−1
θ

is any diffeomorphism to d-spherical angles, T r : θ ∈ Ud−1
θ 7→ [θ, r(θ)] ∈ Ud−1

θ × R>0 with
r(·) : θ ∈ Ud−1

θ 7→ r ∈ R>0 being differentiable, and Ts→c : [θ, r(θ)]
T ∈ Ud−1

θ ×R>0 7→ x ∈ Rd

the d-spherical to Cartesian transformation (see Definition 2 in Appendix A.1).

Then, the Jacobian determinant of the full transformation T is equal to

det
(
JT

)
= det

(
JT θ

)
det

(
JTs→c

)
∥
(
JT
Ts→c

)−1
y∥2 , (4)

where y :=
[
−∇θr(θ), 1

]T
. Relevantly, det JT can be computed exactly and efficiently in O(d2).

Proof. We start the proof by noting that the transformation T := Ts→c ◦ T r ◦ T θ is injective because
T θ and Ts→c are bijective and T r is injective. The injectivity of T r can be easily seen by noting that
θ ̸= θ′ =⇒ [θ, r(θ)] ̸= [θ′, r(θ′)], independently of r(·). Since the Jacobian matrix JT ∈ Rd×d−1

is not squared, we cannot use the usual property of bijections in Eq. (1). Instead, we use the definition
of Jacobian determinant for injective functions in Eq. (2):

det JT =

√
det

(
JT
T JT

)
=

√
det

((
JTs→c

JT r
JT θ

)T (
JTs→c

JT r
JT θ

))
, (13)
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where JT r
∈ Rd×d−1 and JTs→c

∈ Rd×d. According to Remark 1 we can factor out the Jacobian
determinant of T θ, i.e. the bijection that precedes the dimensional inflation step with T r:

det JT = det JT θ
det JTs→c ◦ T r

= det JT θ

√
det

((
JTs→c

JT r

)T (
JTs→c

JT r

))
. (14)

The term det JT θ
is the standard Jacobian determinant for bijective layers and can be computed

efficiently. We are then left to compute det JTs→c ◦ T r
. We now consider the matrix J̃T r

:=
[JT r

0d×1] ∈ Rd×d and substitute the determinant with the pseudo-determinant:

det JTs→c ◦ T r
=

√
det

(
JT
T r

J∗JT r

)
=

√
det+

(
J̃T
T r

J∗J̃T r

)
, (15)

where J∗ := JT
Ts→c

JTs→c ∈ Rd×d. With det+ we denote the pseudo-determinant, which is defined
as the product of all non-zero eigenvalues. The second equality follows from the fact that JT

T r
J∗JT r

and J̃T
T r

J∗J̃T r have the same spectrum up to zero eigenvalues, so the determinant of the former
coincides with the pseudo-determinant of the latter (by definition). To see that they share the same
spectrum up to one zero eigenvalue, consider the explicit structure of the matrix product:

J̃T
T r

J∗J̃T r
=

[
JT
T r

J∗JT r
0d−1×1

01×d−1 0

]
. (16)

The rest of the proof is based on the key observation that J̃T r has rank d − 1 or, equivalently,
that its null space is one-dimensional. As a consequence, we can use Lemma 2 and re-write the
pseudo-determinant in terms of the trace of the adjugate matrix:

det+
(
J̃T
T r

J∗J̃T r

)
= Tr

(
adj

(
J̃T
T r

J∗J̃T r

))
= Tr

(
adj

(
J̃T
T r

)
adj

(
J∗) adj (J̃T r

))
= det

(
J∗) Tr

(
adj

(
J̃T r

)(
J∗)−1

adj
(
J̃T
T r

))
.

(17)

In the second equality we used the property that adj(AB) = adj(B) adj(A) for any A,B ∈ Rd×d,
which easily generalizes to adj(ABC) = adj(C) adj(B) adj(A). Lastly, if A is invertible,
adj(A) = det(A)A−1. In this case J∗ = JT

Ts→c
JTs→c has full rank and is thus invertible. Since the

trace is a linear operator we can take out det(J∗), which is a constant.

Since J̃T r has rank d − 1, its nullspace is one dimensional and we can pick x ∈ Rd | J̃T rx = 0 to
span the entire nullspace. The same holds for J̃T r , or equivalently for the left nullspace of JT r , and
we can pick y ∈ Rd | J̃T

T r
y = 0. We can easily compute x and y by looking at the structure of J̃T r

:

J̃T r
=


1 0 · · · 0 0
0 1 0
...

. . .
...

0 1 0
∂r
∂θ1

∂r
∂θ2

· · · ∂r
∂θd−1

0

 x :=


0
0
...
0
1

 y :=


− ∂r

∂θ1

− ∂r
∂θ2
· · ·

− ∂r
∂θd−1

1

 . (18)

We now make use of Lemma 1 for J̃T r
, which gives us

adj(J̃T r
) =

det+(J̃T r )

yTx
xyT . (19)

We can now substitute Eq. (19) in Eq. (17):

det+
(
J̃T
T r

J∗J̃T r

)
= det

(
J∗)det+(J̃T r )

2

(yTx)2
Tr

(
xyT

(
J∗)−1

yxT
)

= det
(
JT
Ts→c

JTs→c

)det+(J̃T r
)2xTx

(yTx)2
Tr

(
yT

(
J∗)−1

y
)

= det
(
JTs→c

)2∥(JT
Ts→c

)−1
y∥22 .

(20)
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In the first equality we used the fact that adj(AT ) = adj(A)T and we factored out det+(J̃T r
)2

and (yTx)2, which are constants. In the second equality we used the cyclic property of the trace
and factored out xTx. Lastly, we substituted the numerical values det+(J̃T r

) = 1, ytx = 1 and
xTx = 1.

We can now analyze the time complexity required to evaluate Eq. (4). The Jacobian determinant for
spherical to Cartesian coordinates is known (Muleshkov and Nguyen, 2016)

det Js→c = (−)d−1rd−1
d−2∏
k=1

sind−k−1 θk (21)

and can be computed efficiently in O(d) time. Therefore, we only need to show that also w =(
JT
Ts→c

)−1
y can be computed efficiently. Solving the full linear system would require a complexity

of O(d3). However, we can exploit the almost-triangular structure of

JT
Ts→c

=



∂x1

∂θ1
∂x2

∂θ1
· · · ∂xd−1

∂θ1
∂xd

∂θ1

0 ∂x2

∂θ2
· · · ∂xd−1

∂θ2
∂xd

∂θ2
...

. . .
...

0 0 ∂xd−1

∂θd−1

∂xd

∂θd−1

∂x1

∂r
∂x2

∂r · · · ∂xd−1

∂r
∂xd

∂r

 (22)

to solve the linear system in O(d2). One possibility is to perform one step of Gaussian elimination,
which requires O(d2), and make the linear system triangular. The resulting triangular system can be
solved in O(d2). Note that we can compute JTs→c

very efficiently and analytically (see Eq. (24)),
without requiring autograd computations. Overall, the determinant of the full transformation T can
be obtained as

det JT = det JT θ
det

(
JTs→c

)2∥(JT
Ts→c

)−1
y∥2F (23)

and can be computed efficiently in O(d2). ■

A.5 IMPLEMENTATION DETAILS

Implementation of injective flows for star-like manifolds We provide some details about the
implementation of the proposed injective flows and particularly for star-like manifolds in Cartesian
coordinates as in Figure 2. We implement the layers in three steps:

• bijective layers T z and T θ. The first bijection T z : z 7→ z′ consists of arbitrary (condi-
tional) bijective layers conditioned on the parameter λ. The conditioning is realized with
an expressive Residual network. Then, T θ : z′ 7→ θ maps the transformed z′ into spheri-
cal angles θ ∈ Ud−1

θ . This last transformation is also a bijection that can be implemented
with an element-wise non-linear activation like Sigmoid (hence diagonal Jacobian). Oth-
erwise, one could use a base distribution which is already defined on the d − 1 spherical
angles and use a bijective transformation that transforms θ within their domain Ud−1

θ as
T circ : θ ∈ Ud−1

θ 7→ θ′ ∈ Ud−1
θ . In short, any bijective layers followed by a element-wise

non linear function that maps to spherical angles could be used. We use the circular spline
layers proposed by Rezende et al. (2020) because they allow to nicely integrate the bound-
ary conditions arising from the use of spherical coordinates. These layers are based on the
neural spline layers proposed in Durkan et al. (2019), which consist of a combination of
K segments where each segment is a simple rational-quadratic function. The flexibility of
the layers increase with K. This way the transformation can be designed such that it is
monotonically increasing (hence invertible) and such that it fulfills given boundary condi-
tions. The main difference with Durkan et al. (2019) is that circular splines require periodic
boundary conditions in order to enforce continuity of the density at the boundary. This way
we can define bijections from [0, 2π] to itself. As a consequence, circular splines require
the base distribution to be defined on Ud−1

θ . In practice, we use the distribution of spher-
ical angles, which results in uniform points on the d − 1 dimensional sphere, and can be
implemented efficiently. We use the implementation of circular layers provided in Stimper
et al. (2023). Such construction scales well with the dimensions.
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• injective layer T r. The injective step T r : θ 7→ [θ, r(θ)]T only consists in padding
the spherical angles with some specified radius function r(θ). The specific expression for
the radius function depends on the manifold considered and is detailed in Eq. (25) and
Eq. (26) for the lp (pseudo-) norm ball and for the probabilistic simplex Cd, respectively. In
variational inference settings T r is not a learnable transformation. In maximum likelihood
settings trained on samples, if we assume the samples were generated from a d−1 star-like
manifold, r(θ) can be implemented with a neural network and made learnable. This would
allow to learn the manifold and would provide with a very practical global parametrization.

• bijective layer Ts→c: the bijective layer Ts→c : [θ, r(θ)] 7→ x simply implements the
spherical to Cartesian transformation in Eq. (6), which is a bijection and can be imple-
mented efficiently. Ts→c is not a trainable transformation.

For the implementation we rely on the (conditional) normalizing flow library FlowConductor1,
which was introduced in Negri et al. (2023) and Arend Torres et al. (2024).

Efficient implementation of the Jacobian of spherical to Cartesian transformation In order to
compute the determinant in Eq. (4) we need to compute the Jacobian determinant of the transforma-
tion from spherical to Cartesian coordinates JT

Ts→c
. By looking at the definition of the coordinate

transformation in Eq. (6), we can easily derive the following expression:

JT
Ts→c

=


−rs1 rc1c2 · · · rc1s2 . . . sd−2cd−1 rc1s2 . . . sd−2sd−1

0 −rs1s2 · · · rs1c2 . . . sd−2cd−1 rs1c2 . . . sd−2sd−1

0 0
. . .

...
...

0 0 . . . −rs1s2 · · · sd−2sd−1 s1s2 . . . sd−2cd−1

c1 s1c2 · · · s1s2 . . . sd−2cd−1 s1s2 . . . sd−2sd−1

 (24)

where we used the shorthand si = sin θi and ci = cos θi. This allows to compute JT
Ts→c

extremely
efficiently without requiring to use autograd computations and results in a significant speed up.

Parametrization of lp (pseudo-) norm balls Here we show how to parametrize the lp (pseudo-)
norm balls in spherical coordinates. Let the lp (pseudo-) norm of x ∈ Rd be defined as ∥x∥p =

(|x1|p + . . .+ |xd|p)1/p with p > 0. We consider now the manifold defined by ∥x∥p = t for some
k ∈ R>0. If we write x in spherical coordinates according to Eq. (6), we can take the radius r
outside of the norm and express it as a function of the d− 1 spherical angles as:

r(θ1, . . . , θd−1) =
t(

| cos θ1|p +
d−1∑
i=2

∣∣∣∣ cos θi i−1∏
k=1

sin θk

∣∣∣∣p + ∣∣∣∣ d−1∏
k=1

sin θk

∣∣∣∣p)1/p
. (25)

We can use this expression to parametrize the lp norm balls with the proposed injective flows. Sim-
ilarly, we can also parametrize the probabilistic simplex Cd. To see this consider the l1 norm ball
∥x∥1 = |x1| + . . . + |xd|. If we restrict the domain to the positive quadrant x ∈ Rd

≥0 and set the
norm to 1, the resulting manifold is defined as ∥x∥1 = x1 + . . . + xd = 1 and coincides with Cd.
The radius is then parametrized by

r(θ1, . . . , θd−1) =
1

cos θ1 +
d−1∑
i=2

cos θi
i−1∏
k=1

sin θk +
d−1∏
k=1

sin θk

with θi ∈ [0, π/2] ∀i , (26)

where the constraint on the angles enforces x ∈ Rd
≥0. Note that it is straightforward to analytically

derive the expression for the partial derivatives ∂r
∂θi

in Eq. (26). This makes the computation of y in
Eq.(4) more efficient than computing the gradients with autograd and results in a speed up.

1https://github.com/FabricioArendTorres/FlowConductor
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Figure 8: MAP solution for Laplace prior, root laplace and square laplace, which are all monotonic
transformation of the Laplace distribution. The MAP solution paths coincide.

A.6 APPLICATIONS: FURTHER DETAILS

A.6.1 ARCHITECTURE

We use two different architectures. One is for standard NFs that we use for the subjective penal-
ized likelihood regression problem. The other architecture is the injective flow that is used for the
objective Bayes version of the regression problem and the portfolio diversification application.

Standard NF It consists of a normal distribution as base distribution. Then we use 5 blocks of
permutation transformation, a sum of Sigmoids layer (Negri et al., 2023) and an activation norm.
The sum of Sigmoid layer consists each of 30 individual Sigmoid functions in three blocks.

Injective flows The base distribution is either the probabilistic simplex or the complete ∥β∥1 = 1
depending on the application. We follow this with again 5 layers of the circular bijective layers
(Rezende et al., 2020), each consisting of three blocks with 8 bins. At the end these values are
mapped to Cartesian coordinates with the proposed dimensionality inflation step.

A.6.2 TRAINING

Both the standard NFs and the injective flows are trained by minimizing the reverse KL divergence
with respect to the (unnormalized) target density p(x):

qθ∗(x) = argmin
θ∈Θ

KL
(
qθ(x)||p(x)

)
= argmin

θ∈Θ
Ex∼qθ

[
log

qθ(x)

p(x)

]
. (27)

We optimize the reverse KL divergence using Adam (Kingma and Ba, 2017) as optimizer with de-
fault parameters. Notably, all trained flows converged in a matter of minutes on a standard consumer-
grade GPU (RTX2080Ti in our specific case).

A.6.3 PENALIZED LIKELIHOOD REGRESSION

In the next paragraph we provide further details on the experiment introduced in Section 5.3, which
involves the penalized likelihood model defined in Eq. (5).

Synthetic dataset creation The synthetic regression dataset is created by sampling X∗ from a 5
dimensional Wishart distribution W5(7, I). The response variable y is then created by X∗β∗ + ϵ
where β∗ is standard normal distributed and ϵ is normal distributed with zero mean and a standard
deviation of 4.0.

Subjective Bayes The subjective Bayes relies on a prior p(β|λ). The Laplace prior is given by

plap(β|λ) ∝
∏

i exp{−λ|βi|p}. (28)

The two other test priors are psq(β|λ) ∝ plap(β|λ)2 and prt(β|λ) ∝ plap(β|λ)1/2. Any monotonic
transformation may change the λ-axis but leave the MAP solution path unchanged. This can be
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Figure 9: Solution paths for subjective prior as a function of λ, and objective priors, as a function of
the norm ∥β∥1. Below we report the solution paths in the MAP limit.

seen in Figure 8 where we show the MAP solution path for different subjective priors. For this
visualization we reparametrize the axis such that the λ-axis is transformed into a ∥β∥1-axis. This
makes clear that the solution paths are equivalent.

Objective Bayes The objective Bayes approach circumvents the definition of p(β|λ). The flow
is directly defined on the manifolds coinciding with the contour lines of p(β|λ). As such, samples
from the posterior all share a chosen norm value ∥β∥1 = k. Figure 9 highlights the different
parametrizations of the subjective and objective approach.

A.7 APPROXIMATE VS EXACT JACOBIAN: SAMPLE QUALITY AND RUNTIME

A.7.1 BAYESIAN MIXING MODEL

Comparison with MCMC sampler We compare the proposed injective flows with an ad-hoc
MCMC sampler in the conjugate case (Dirichlet prior and multinomial likelihood). In this setting
we know the posterior analytically and we can compare it to both the MCMC sampler and the
proposed injective flow. In this experiment the injective flow is trained to minimize the reverse KL
divergence with the unnormalized target posterior (prior times likelihood). We compare the methods
for increasing dimensionality (d = 15, 30, 50) and in Figure 11 we show 95% credibility intervals
of the posterior. Results show that (i) the proposed injective flow correctly estimates the posterior
distribution for all dimensions and (ii) it outperforms the MCMC sampler already in low dimensions
(d = 30, 50). Interestingly, this experiment also shows that our approach is able to learn very sparse
solutions characterized by multiple modes.

Details about the MCMC sampler In Bayesian mixing models the posterior lives on the simplex,
which is known to be challenging for MCMC samplers (Altmann et al., 2014; Baker et al., 2018)
because of the constraint that the sampled vector must be positive and sum up to one. Designing
proposals close to the boundary is particularly difficult (Baker et al., 2018). For sparse distributions,
where mass is concentrated at the boundaries, this is especially noticeable and explains why the
MCMC sampler struggles in high dimensions for sparse solutions. What makes a fair comparison
difficult is that various existing samplers (Altmann et al., 2014; Baker et al., 2018) are suited for

20



Published as a conference paper at ICLR 2025

3 10 50 100

dimension

10 4

10 3

10 2

10 1

e
n
e
rg

y

ours (exact )

approx. (n=1)

approx. (n=10)

approx. (n=50)

approx. (n=100)

3 10 50 100

dimension

10 6

10 5

10 4

10 3

10 2

10 1

100

si
n
kh

o
rn

ours (exact )

approx. (n=1)

approx. (n=10)

approx. (n=50)

approx. (n=100)

0 20 40 60 80 100

dimension

103

ru
n
ti

m
e
 (

s)
ours (exact )

approx. (n=1)

approx. (n=10)

approx. (n=50)

approx. (n=100)

dimension

Figure 10: Additional comparison between two identical models trained with the exact Jacobian,
as we propose, according to Eq. (4) and with the Hutchinson trace estimator, commonly used in
injective papers. The experimental setup is described in Section 5.1. We compare samples of the
two models with samples from the true distribution as a function of the dimension and of the number
of samples used in the Hutchinson trace estimator (n = 1, 10, 50, 100). Note that the number of
samples is upper bounded by the dimensionality of the problem. We quantify the similarity of the
samples with the samples from the true distribution with (a) the Energy distance MMD (“energy”)
and (b) the Sinkhorn divergence (“sinkhorn”). The Energy distance MMD is computed using the
kernel −∥x − y∥2. The Sinkhorn divergence interpolates between Wasserstein (blur=0) and kernel
(blur=∞) distances and we used the default value blur=0.05. Below (c) we show the runtime of our
exact model compared to the approximate one as a function of increasing number of samples.

specific families of target distributions. For ideal performance we would need to change the entire
sampler depending on the target, while we can use our flow without any fine-tuning.

We compare to a Metropolis Hastings sampler that can handle mixtures of Gaussians targets well
in a non-sparse setting. It uses proposals that are by construction on the manifold by sampling
from a down-scaled Dirichlet distribution centered on the current state. Despite trying different
proposals we did not observe any relevant improvement. As shown, this sampler however struggles
when significant sparseness is present. Our sampler uses 1000 chains each with 100’000 samples.
In contrast, the proposed injective flow did not require any fine-tuning and learnt sparse solutions.
For a fair comparison, we set the runtime of the flow to match that of the MCMC samplers and
used roughly similar memory footprint (±20%). Lastly, we checked that running the sampler for a
significantly longer time (5×) did not achieve the performance of the flow.

Portfolio optimization In portfolio optimization the cumulative return is often of interest. Fig-
ure 12 shows the effect of the different priors on the cumulative return. The sparser priors lead to
a slightly wider distribution of the return. In this example, this leads to the target index being a
closely matched by some of the posterior samples, where the samples of the uniform prior seem
to be further away from the target index in some parts of the time interval. The bottom row of the
Figure 12 further shows the sampled sparsity patterns. These show that the sparse priors can lead to
significantly different mixtures with similar data fitting quality.
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Figure 11: 95% posterior credibility intervals for a Bayesian model with multinomial likelihood and
Dirichlet prior. We compare the posterior obtained with samples from an ad-hoc MCMC sampler
(“mcmc”), samples from the approximate posterior modeled by the proposed injective flow (“flow”)
and with the analytical posterior (“gt”). We evaluate the samplers for increasing dimensionality of
the problem d = 15, 30, 50.
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Figure 12: Cumulative return as a function of time. We plot 95% posterior C.I. with the uniform
prior, Dirichlet prior and lp-norm prior. We also plot the 5 samples that are the closest to the ground
truth cumulative return. In the bottom panel we visualize the weight samples as a heatmap to high-
light sparsity patterns.
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