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Abstract

Understanding the thermodynamics of solid state, crystalline materials is important
for applications ranging from catalysis to electronics. Traditional sampling methods
in the discrete spaces represented by periodic lattices are generally Markov-chain
Monte Carlo-based, with limitations in speed and scalability. Autoregressive
methods, used in text and image generation, have been adapted for sampling lattice
thermodynamics. However, these methods rely on a fixed generation order and
do not possess fast arbitrary marginal likelihood evaluation capabilities, making
scaling lattice sizes challenging. Here, we develop and combine marginalization
models with any-order inference and show the resulting models enable larger lattice
generation in two ways: scaling training to larger lattice sizes and allowing for in-
/out-painting from models trained on smaller lattices. We demonstrate our method
using the Ising model and CuAu alloy.

1 Introduction

Understanding the equilibrium distribution of states is the first step towards generating realistic
materials under experimental conditions. Materials exist at finite temperatures; thus it is not a
single structure that defines a static material property. For example, molecules have a distribution of
conformations, each with distinct properties (Noé et al., 2019) while catalyst surfaces evolve as a
function of reactants, temperature (71"), and external chemical potentials (u) (Seh et al., 2017; Bruix
et al., 2019). In the continuum space, for example, machine-learning-based optimal control methods
have been used for enhanced sampling of molecular potential energy surfaces (Hua et al., 2024; Yuan
etal., 2024).

In this work, we focus on periodic lattice systems that can be modeled using discrete states. Previously,
Wu et al. (2019); Nicoli et al. (2020); Damewood et al. (2022) adapted autoregressive methods
(ARMs) used in image and text generation to learn lattice thermodynamics. However, these ARMs
are hampered in flexibility due to: (1) their fixed generation order and (2) requiring expensive
evaluation of conditional probabilities over the entire sequence length, L, during training. Due
to the former, arbitrary in-/out-painting tasks for conditional generation are out of scope for these
fixed-order (FO) ARMs. Due to the latter, the computational graph of automatic differentiation scales
as O(L?), limiting training samples to a modest lattice size, thereby hampering the accuracy of
thermodynamic observables.

We develop any-order (AO) ARMs that improve on FO-ARMs of previous works and marginalization
models (MAMs) that scale training to larger lattice systems capable of sampling across 1" and p
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(motivations described in Appendix A). We test our method on up to 20 x 20 Ising lattices and
4 x 4 x 8 CuAu alloys, benchmarking on variational free energies, free energy estimations, and phase
diagrams.

2 Methods
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Figure 1: Autoregressive models investigated in this work.

Autoregressive models ARM:s factor high-dimensional discrete distributions p(x; T, (41, fi2, ..., fin )
at the specified temperature and chemical potentials (henceforth denoted as p(x)) into a sequence of
conditional distributions: log py(x) = 25:1 log pg(xe|x<r), where p, can be parameterized using a
neural network and xy = {1, ..., z¢y—1}. In our case, examples are generated starting from the first
lattice site, 1, given by pg (1) until the last site given by pg(x |21, ..., £—1), requiring L passes
in total.

To model the Boltzmann distribution of our lattice system in the semigrand-canonical ensemble, we
minimize the Kullback-Leibler (KL) divergence (Damewood et al., 2022; Liu et al., 2024):

)

) is the Boltzmann weight, F(x) is the energy of
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the lattice, K is the total number of atom/spin types, N;(x) is the number of sites with identity i, kg
is the Boltzmann constant, T’ is the temperature, and Z the ensemble partition function. Equation 1
can be optimized with the REINFORCE algorithm (Williams, 1992) with samples drawn according
to py (Details in Appendix D).

where the score f(x) = exp (—

Any-order generation and in-/out-painting ARMs developed thus far assume a fixed ordering of
lattice sites (FO-ARMs, Fig. 1(a)), but we train AO models to predict conditionals pg (2, (¢)[Xs(<r))
over an arbitrary ordering, o. We train by uniformly sampling an ordering for each sample and
following the prescribed order to predict py at each step. With an AO model, we can arbitrarily fill
empty lattice sites, which we show in our in-/out-painting procedure for a 2D lattice (Fig. 2, see
Appendix B for additional use cases).
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Figure 2: In-/out-painting procedure using any-order models.

Any-order marginalization models Liu et al. (2024) proposed AO-MAM:s that are compatible
with the energy-based training metric used in materials science settings (Equation 1). For a subset of
indices, S C {1, ..., L} and its complement S’, the marginal is defined as: p(xs) = szl p(xs,Xs/).



We can train a neural network to fit py(x) to the target Boltzmann distribution p(x) = f(x)/Z and
learn arbitrary marginals pg(xs) in the process. As such, py can be used to approximate p, in
Equation 1, enabling fast O(1) likelihood evaluation. Additionally, an AO-ARM is trained alongside
a marginal network (Fig. 1(c)), enabling efficient generation of training samples (in principle, in
O(1), instead of O(L) for ARMs) through AO block-wise Gibbs sampling of persistent Markov
chains. The self-consistency between the marginal and conditional networks can be enforced with an

. 2
additional term [,gf'j‘zf(x, o,l) = [log (pg(x,,(d))pd)(x,,(g)|xa(<5))) — log pe (xg(g))] , giving rise

to the objective:

min Dic (po (x) || p(x)) + AELE B L3 (x, 0, 0) )
where o, £ are uniformly sampled from all possible elements.

Architecture We attempted standard multilayer perceptron (MLP) architectures for both the con-
ditional net (py) to predict an L x K matrix and the MLP marginal net (py) that outputs a single
scalar. Details in Appendices F & J. T" and p are treated as scalar inputs. The number of parameters
in MLP models scales as O(L - K), limiting its efficiency for higher-dimensional systems compared
to Transformers that utilize a shared weight matrix.

Therefore, we developed a Transformer architecture to improve parameter efficiency and scale training
to larger lattice sizes. T and p are expanded to the same embedding dimension as x to increase model
expressiveness. We additionally propose periodic sinusoidal functions across each dimension to
account for lattice periodicity (details in Appendix E) on the basis of Rotary Positional Embeddings
(RoPE) (Su et al., 2023), which already accounts for translational invariance in 2D for the Ising model
and 3D for CuAu.

3 Experiments

3.1 Ising model

We describe Ising models with the score function f(x) = exp (§(x"Jx + px)/(kgT)), where
x € {—1,1}F represents the spin state, J is a product of interaction strength ¢ and the adjacency
matrix, and p the field strength. Below the critical temperature for a particular lattice size, spins align
with the magnetic field but become disordered above it. As smaller lattice sizes suffer from finite-size
effects, there is a need to model larger lattices to get more accurate thermodynamic observables.

We trained various ARM and MAM models on different lattice sizes across p € [—0.4,40.4] and
kgT € [1.5,3.5] with ¢ = 1. Training details are provided in Appendix F. A results summary
is presented in Table 1, where the average variational free energy normalized by temperature,
<k§—‘§,> = (log p(x) — log f(x)) (the minimization objective in practice, details in Appendix C), was
evaluated over 5 evenly-spaced values over each of p and T for a total of 25 unique conditions.
The best result has the lowest (log p(x) — log f(x)). See Table A1 for a breakdown of log scores
((log f(x))) and log-likelihoods ({log p(x))).

Table 1: Ising model generation results. The best result for each lattice size is bolded. FO models
cannot perform arbitrary in-/out-painting tasks. 20 x 20 Ising ARM models exceed GPU capacity.
(-) is equivalent to Ey p,x)[*]-

5x5 10x10 20 x 20

Model Trained Trained 10 x 10 In-/out-painted Trained
ARM (log p(x) — log f(x)) (})

FO-MLP -26.26  -104.69 - -

AO-MLP -26.27  -104.77 -415.13 -
MaM (logp(x) — log f(x)) (1)

AO-MLP -26.22 -98.90 -401.31 Mode collapse

AO-Transformer  -26.25  -104.66 -415.13 -414.34




5 x 5 and 10 x 10 Ising models For both lattice sizes, AO-ARM MLP models train as well as
FO-ARM MLP with the same architecture, while enabling in-/out-painting. AO-MAM MLP models
do well for 5 x 5 lattices but struggle at the 10 x 10 size. Additional results for the 10 x 10 Ising
models are presented in Fig. 3. In Fig. 3(a), the log f(x) distribution of samples across the same set
of pand T used for evaluating (log p(x) — log f(x)) are plotted. The distribution of AO-MAM MLP
samples deviate significantly from those of ARMs while the distribution of AO-MAM Transformer is
much closer. Visually, in Fig. 3(c), AO-MAM 10 x 10 samples exhibit much finer grains compared
with the larger clusters of AO-ARM and AO-MAM Transformer samples. In Fig. 3(b), we plot the
free energy per site (method in Appendix G) as a function of kg7 at various p for the models studied
and compare with the exact values at ;x = 0 (Beale, 1996) and the reference values obtained from
the Wang-Landau method (Wang and Landau, 2001). We exclude AO-MAM MLP from comparison
due to the poor results. See Appendix H for details on the reference values. Other than the excluded
AO-MAM MLP model, all free energies obtained from the models differ slightly from the exact
values at ¢+ = 0.0 and the Wang-Landau energies at other y, especially at higher 7. The AO-MAM
Transformer model deviates only marginally more from reference values than ARM models.
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Figure 3: 10 x 10 Ising results. (a) Score distribution, (b) free energies, and (c) generated samples.

In-/out-painting and 20 x 20 Ising model Using the 10 x 10 AO models, we performed in-/out-
painting (details in Appendix I) to obtain 20 x 20 Ising lattices. We also successfully trained a 20 x 20
model using MAM Transformer but the MAM MLP model suffered from mode collapse. 20 x 20
ARM models exceeded the allowed hardware memory, highlighting their limitations in scaling.
10 x 10 ARM MLP in-/out-painted and MAM in-/out-painted Transformer models perform equally
well. The 20 x 20 MAM Transformer peforms almost as well as these two models. Additional results
for the 20 x 20 Ising models are presented in Fig. Al. Qualitatively, 10 x 10 MAM MLP in-/out-
painted samples (Fig. A1(a)) are similarly inferior to those of 10 x 10 ARM MLP in-/out-painted and
10 x 10 MAM Transformer in-/out-painted samples due to small cluster sizes at higher temperatures.
For the 20 x 20 MAM Transformer model, the samples at higher temperatures are much closer to
those of the 10 x 10 ARM in-/out-painted and 10 x 10 MAM in-/out-painted Transformer models,
but seems to have issues at low temperatures and intermediate fields. Fig. A1(b) shows the log f(x)
distribution of the samples. The lower score peaks (high T') for the 20 x 20 MAM Transformer are
closer to those of 10 x 10 ARM MLP in-/out-painted and MAM in-/out-painted Transformer while
the 10 x 10 MAM in-/out-painted MLP model is closer for the higher score (low T") peaks.

Future work could involve new architectures or training strategies to improve the performance of
20 x 20 and larger MAM models.

3.2 CuAu

CuAu alloy generation is harder than Ising lattice generation due to the multiple low-temperature
phases at different compositions. At higher temperatures, the alloy becomes disordered. Similar
to the Ising model, the thermodynamics depends on the lattice size, hence a need to sample larger
lattices to obtain more realistic phase diagrams.

The energy model is parametrized by a cluster expansion as in Damewood et al. (2022). We trained
MAM models for the 2 x 2 X 4 case and show an in-/out-painting application to 4 x 4 x 8, details
in Appendices J & L. In Table 2, (log p(x) — log f(x)) was evaluated over 8 uniformly-distributed
u € [—0.12,40.12] and 4 uniformly-distributed 7' € [200 K, 1200 K] for a total of 32 unique
conditions. See Table A2 for a breakdown of (log f(x)) and (log p(x)).

For the 2 x 2 x 4 models, we again demonstrate that the AO-ARM MLP model performs as well
as the FO-ARM model, with the benefit of AO generation. In terms of (log p(x) — log f(x)), the
Transformer model performs better than the AO-MAM MLP model, and is close to the AO-ARM



MLP performance. For the 4 x 4 x 8 samples generated using in-/out-painting, AO-MAM MLP
seems to perform the best but the (log p(x) — log f(x)) across all models are not ~ 8 times the
respective values of 2 x 2 x 4 lattices. We attribute the discrepancy to the limitations of a small
starting lattice size such that when in-painting the edges of the 4 x 4 cross section, we cannot include
the periodic image atoms in our marginal computation.

Table 2: CuAu model generation results with the best for each lattice size bolded.

2x2x4 4x4x8
Model Trained 2 X 2 x 4 Inpainted
ARM (log p(x) — log f(x)) (1)
FO-MLP -32.92 -
AO-MLP -32.92 -215.29
MaM (log p(x) — log f(x)) ()
AO-MLP -31.87 -223.16
AO-Transformer -32.84 -217.06

Fig. 4 shows the phase diagrams for the 2 X 2 x 4 CuAu models (with the exception of FO-ARM
MLP), each of which plots the observed samples by the sampling temperature and the sample Au
concentration. Each phase diagram was generated with 2048 samples uniformly spread across
32 evenly-spaced bins in each of ;€ [—0.12,40.12] and T € [200 K, 1200 K]. The reference
two-phase equilibria line was obtained from metadynamics, which shows the separation between
low-temperature ordered phases and high-temperature disordered solid solution. See Appendix K
for information on the metadynamics procedure and Fig. A2 for the metadynamics phase diagram.
The AO-MAM Transformer and AO-ARM MLP models perform much better than the AO-MAM
MLP model in showing phase transition between the low and high temperatures, but some samples
do appear beneath the metadynamics equilibria line. We note the metadynamics “ground-truth”
equilibria line is for the 2 x 2 x 4 supercell, and is notably different from that of the original 4 x 4 x 8
supercell in Damewood et al. (2022), which was a better fit to the phase diagram of the ARM MLP
model in that work.

Further studies may include training both ARM and MAM models at the 4 x 4 X 8 size to have a
more conclusive comparison with metadynamics sampling and in-/out-painting to or training MAM
on even larger lattices.
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Figure 4: Temperature-concentration phase diagrams for 2 x 2 x 4 CuAu with two-phase equilibria
lines obtained from metadynamics.
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A Motivations for scaling lattice autoregressive models

In materials science, some phenomena are only observed in a sufficiently large supercell. For example
in surface reconstruction, the Au(111) herringbone reconstruction requiring a periodic length of ~ 30
nm (Li and Ding, 2022; Owen et al., 2024) and Si(111) 7x7 surface reconstructions (Shen et al., 2023;
Du et al., 2023). As such, scaling the training lattice size of autoregressive models is important to
uncover these phenomena and sample the correct thermodynamics.

In cases where scaling training to these large sizes is impractical, we can train the model on smaller
lattice sizes with the goal of observing the same large-scale thermodynamics by in-/out-painting
using the trained model. This is akin to training a machine learning force field, where the training
data consists of smaller lattice sizes amenable to first-principles calculations but the trained force
field is applied to larger supercells during production runs (Owen et al., 2024).

B Additional use cases for in-/out-painting

Additionally, in-/out-painting can be used for conditional generation and constrained design, which is
important for materials science applications such as in designing catalysts (Chun et al., 2024), battery
interfaces (Xiao et al., 2020), semiconductor heterojunctions (Low et al., 2017), or understanding
surface reconstructions (Du et al., 2023) given specific thermodynamic conditions. Specifically, we
want to predict arbitrary unknown lattice sites which can only be done with an any-order model,
e.g., generating the remainder of a catalyst given the support and parts of the active site or surface
reconstructions given partially occluded experimental observations. This cannot be done with a
fixed-order autoregressive generation method.

C Variational free energy

The KL divergence can be expanded as such (Wu et al., 2019; Nicoli et al., 2020; Damewood et al.,

2022):
D (ps(x)[[p(x)) = Dkw (W(X) ’f(ZX)>

= Exrep, (x) [l0g Py (x) — log f(x) +log Z]

K
1
= T et | BO0 = > wiNi(x) + ks T log py(x) + ksT'log Z
i=1
_R-F
kg1 —

where the variational free energy I, = Exp, (x) {E(x) - Zfil i N; (x) + kT log p¢(x)} is an
upper bound to the true free energy of the system F' = —kgT log(Z). Thus in practice, we minimized

]f:—‘} = Exnp,(x) [log py(x) —log f(x)] = Dxi (ps(x)||f(x)) as our learning objective.

D Training by REINFORCE

We drew a batch of samples, x, using an autoregressive model (ARM or MAM) and estimated the
gradient of the KL divergence with REINFORCE (Williams, 1992; Wu et al., 2019):

Vi Dy (%(X) ‘ %

) = V4 Dki (pg(x) || f(x)) (from Appendix C)

= Exmpy(x) [V log py(x) (log pg(x) — log f(x))]
N
~ % >~ Vs logpa(x?) (logps(x) — log f(x))

i=1



E Periodic sinusoidal positional embedding vectors

We set values for w;, the frequency of each dimension in the RoPE embedding vector, subject to
periodicity constraints across each system dimension:

sin(w;z) = sin(w;(x + L))Vz, L € RT
cos(w;x) = cos(w;(z + L))Vz, L € R
2nm

Lwi:2n7r,n€Z:>wi:T

where x is the position in each dimension.

F Ising model training details

All MLP models used 4 hidden layers with width 512. MAM models are trained with an additional
marginal network with the same hidden sizes and consistency loss parameter A = 100. 5 x 5 Ising
models used 5 Gibbs sampling steps while 10 x 10 and 20 x 20 models used 10 Gibbs sampling
steps during training. The 5 x 5 Transformer model had 3 Transformer blocks with width 256 for
both the embedding dimension and hidden layer, while the larger lattice size models had 512 for the
corresponding dimensions. A for Transformers was set to 10.

During training, a batch of 1250 samples were sampled at each iteration across a set of 5 temperatures
and 5 fields, for a total of 25 unique conditions. The conditions were uniformly distributed across
w € [—0.4,40.4] and kgT € [1.5,3.5] at the start and the change in Ay, AkgT per epoch were
sampled according to Ap ~ N(0,0.05%), AkgT ~ N(0,0.22). One epoch elapsed after 100,000
training samples were sampled. All models were trained for 500 epochs.

G Ising model free energy estimation with importance sampling

While the variational free energy Iy, (Appendix C) can be used as the free energy estimate, it can

be biased (Nicoli et al., 2020). The partition function, A , and hence the lattice free energy can be
estimated using an asymptotically-unbiased method (Nicoli et al., 2020) as follows:

where we obtained N = 10, 000 samples at each set of u and kg1 and A= kgT In ZN. A is then
normalized by the number of sites to obtain the free energy per site.

H Ising model ground truth free energies

The exact values for the free energies at © = 0 and kgT € {1.5,2.0,2.5,3.0,3.5} were obtained
from a series expansion (Beale, 1996; Damewood et al., 2022).

The Wang-Landau algorithm (Wang and Landau, 2001) is a Markov-chain Monte Carlo (MCMC)
method used to obtain density-of-state estimates, S(x), for each state, x. After which, the lattice
partition function, Z = )", S(x) - f(x), was constructed and used to estimate the free energy
per site at each temperature and p. The results using the Wang-Landau method were obtained from
Damewood et al. (2022), where the algorithm was run for 10*! steps at each p € {0.0,+0.2, +0.4}
and then each set of results was individually applied to kg7 € {1.5,2.0,2.5,3.0,3.5}.



I 20 x 20 Ising model in-/out-painting

A batch of 1250 20 x 20 empty Ising lattices were initialized at 5 temperatures and 5 fields uniformly
distributed across 1 € [—0.4,40.4] and kgT € [1.5,3.5], for a total of 25 unique conditions.
Following the procedure in Fig. 2, a 10 x 10 section was sampled using the AO models. Afterwards,
out-painting steps were performed in the first dimension with a stride of 3 until the frame matched
the periodic image sites. Then the frame was reset to the original 10 x 10 section and shifted in
the second dimension also with a stride of 3. The process was repeated until we performed the last
in-painting step to obtain fully filled 20 x 20 lattices.

The conditional probabilities for each site was similarly estimated in 10 x 10 sections in a random
order conditional on any existing log-likelihoods for individual sites. The log p(x) for each lattice
was then obtained as a sum over individual log-likelihoods.

J CuAu training details

All MLP models used 4 hidden layers with width 512. MAM models were trained with an additional
marginal network with the same hidden sizes and consistency loss parameter A\ = 100. 4 Gibbs
sampling steps were used to train the 2 x 2 X 4 CuAu model. The Transformer model had 3
Transformer blocks with width 512 for both the embedding dimension and hidden layer. A for
Transformers was set to 10.

During training, a batch of 2048 samples were sampled at each iteration across a set of 4 temperatures
and 4 chemical potentials, for a total of 16 unique conditions. The conditions were uniformly
distributed across p € [—0.12,+0.12] and 7' € [200 K, 1200 K] at the start and the change in
Ap, AT per epoch were sampled according to Au ~ N(0,0.022), AT ~ N(0,50?). One epoch
elapsed after 100,000 training samples were sampled. All models were trained for 400 epochs

K 2x2x4 CuAu phase diagram metadynamics

Metadynamics was performed following the procedure of Damewood et al. (2022) using CLEASE
(Chang et al., 2019). The collective variable for the metadynamics runs is the concentration of Au,
with 17 bins, one for each possible concentration of Au. Each new sample was proposed using
semi-grand canonical Monte Carlo and accepted according to the Metropolis-Hastings algorithm.
Metadynamics was run at 32 temperatures uniformly spread across T' € [200 K, 1200 K]. At each
temperature, each metadynamics step consists of running the sampling for a maximum of 20,000
sweeps until the convergence criterion was met: when the most infrequent bin was visited at least
80% of the average. The artificial potential (V') is initially modified by 10,000 kg7 when the sampler
visits a bin, and is halved at each metadynamics step until 0.0001 to ensure convergence of the free
energy curve.

Following the metadynamics runs, the points on the convex hull of V' across all bins at each tem-
perature were taken to construct the reference phase diagram in Fig. A2. The two-phase equilibria
boundary was then extracted from the metadynamics phase diagram by linearly connecting the
sampled points with the lowest temperature at each Au concentration.

L 4 x4 x 8 CuAu in-/out-painting

A batch of 2048 4 x 4 x 8 empty CuAu lattices were initialized at 4 temperatures and 4 fields
uniformly distributed across 1 € [—0.12,40.12] and T' € [200 K, 1200 K], for a total of 16 unique
conditions. Following the procedure in Fig. 2, a 2 x 2 x 4 section was sampled using the AO models.
Similar to Appendix I, in-/out-painting steps were performed in each of the 3 dimensions with a
single stride per step until the lattices were fully filled.

The conditional probabilities for each site was similarly estimated in 2 x 2 x 4 sections in a random
order conditional on any existing log-likelihoods for individual sites. The log p(x) for each lattice
was then obtained as a sum over individual log-likelihoods.
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M Additional tables

Table A1: Ising model generation results in terms of —(log f(x)) and (log p(x))

5x5 10 x 10 20 x 20
Model Trained Trained 10 x 10 In-/out-painted Trained
ARM —(log f(x)) / (log p(x))
FO-MLP -19.22/-7.04 -77.70/-27.01 - -
AO-MLP -19.29/-6.98 -76.91/-27.93 -302.99/-112.14 -
MAM —(log f(x)) / (log p(x))
AO-MLP -19.55/-6.69 -58.54/-40.44 -278.71/-122.60 Mode collapse
AO-Transformer -19.14/-7.19 -75.26/-29.41 -305.16/-109.97 -267.14/-147.20

Table A2: CuAu model generation results in terms of —(log f(x)) and (log p(x))

2x2x4 4x4x8
Model Trained 2 X 2 x 4 Inpainted
ARM —(log f(x)) / (log p(x))
FO-MLP -29.16/-3.76 -
AO-MLP -29.06/ -3.86 -188.35/-26.94
MAM —(log f(x)) / (log p(x))
AO-MLP -27.00/ -4.86 -189.17/-33.99

AO-Transformer -28.77/-4.08 -189.02 /-28.04

N Additional figures
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Figure Al: 20 x 20 Ising results. (a) Generated samples and (b) score distribution. IP denotes
in-/out-painted.
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Figure A2: Metadynamics reference temperature-concentration phase diagram for 2 x 2 x 4 CuAu.
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