MEASUREMENT MANIPULATION OF THE MATRIX SENSING PROBLEM TO IMPROVE OPTIMIZATION LANDSCAPE

Anonymous authors

005 006

007

008 009 010

011

013

014

015

016

017

018

019

021

023

024

025

026

027

028

029

030 031 032

033

040 041

042

Paper under double-blind review

ABSTRACT

This work studies the matrix sensing (MS) problem through the lens of the Restricted Isometry Property (RIP). It has been shown in several recent papers that two different techniques of convex relaxations and local search methods for the MS problem both require the RIP constant to be less than 0.5 while most realworld problems have their RIPs close to 1. The existing literature guarantees a small RIP constant only for sensing operators having an i.i.d. Gaussian distribution, and it is well-known that the MS problem could have a complicated landscape when the RIP is greater than 0.5. In this work, we address this issue and improve the optimization landscape by developing two results. First, we show that any sensing operator with a model not too distant from i.i.d. Gaussian has a slightly higher RIP than i.i.d. Gaussian, and that its RIP constant can be reduced to match the RIP constant of an i.i.d. Gaussian via slightly increasing the number of measurements. Second, we show that if the sensing operator has an arbitrary distribution, it can be modified in such a way that the resulting operator will act as a perturbed Gaussian with a lower RIP constant. Our approach is a preconditioning technique that replaces each sensing matrix with a weighted sum of all sensing matrices. We numerically demonstrate that the RIP constants for different distributions can be reduced from almost 1 to less than 0.5 via the preconditioning of the sensing operator.

1 INTRODUCTION

In this paper, we focus on an important class of problems in non-convex optimization and machine learning, named matrix sensing. The goal of the matrix sensing problem is to recover a low-rank matrix from a set of limited linear measurements. To be more specific, given msensing matrices $A_1, \ldots, A_m \in \mathbb{R}^{n \times n}$, we define the linear sensing operator \mathcal{A} as $\mathcal{A}(M) = [\langle A_1, M \rangle, \ldots, \langle A_m, M \rangle]^T$ for all M. The matrix sensing problem is formulated as the following non-convex optimization problem:

$$\min_{M \in \mathbb{R}^{n \times n}} \frac{1}{2} \|\mathcal{A}(M) - b\|^2 \quad \text{subject to} \quad \operatorname{rank}(M) = r.$$
(1)

where $b = \mathcal{A}(M^*)$ is the observed vector, M^* is the unknown ground truth matrix, and r denotes the rank of M^* . Since the matrix sensing problem for an arbitrary solution M^* (being a rectangular matrix or a square sign indefinite matrix) can be converted to an expanded matrix sensing problem whose solution is a symmetric and positive semidefinite matrix (Zhang et al., 2021), we assume that M^* is positive semidefinite and symmetric without loss of generality.

The matrix sensing problem has a wide range of real-world applications in signal processing and
machine learning, such as the training of neural networks (Li et al., 2018), reconstruction of images
and videos (Fowler et al., 2012; Baraniuk et al., 2017), wireless sensor network (Razzaque et al.,
2013), and quantum computing (Shabani et al., 2011; Ayanzadeh et al., 2020). It has attracted
significant attention in recent years as it sheds light on a board range of non-convex optimization
problems, serving as a theoretical guarantee in deep learning theory (Li et al., 2018; Scarlett et al.,
2022). The complexity of the matrix sensing problem lies in the low-rank structure that creates

spurious solutions, which makes local search algorithms with a random initialization become stuck
 at a wrong second-order critical point rather than the ground truth (Chen et al., 2019).

To overcome the above-mentioned non-convexity, one line of research relaxes this problem into a convex semi-definite program (SDP) (Candès & Recht, 2012; Recht et al., 2010), by replacing the rank constraint with a nuclear norm constraint. However, solving the SDP relaxation requires a large amount of calculations. Another popular way to deal with the low-rank constraint is the Burer-Monteiro (BM) factorization (Burer & Monteiro, 2003), which explicitly factorizes the low-rank matrix M into the form $M = XX^{\top}$ where $X \in \mathbb{R}^{n \times r}$ (note that this factorization uses the fact that M^* is positive definite and symmetric). Hence, the matrix sensing problem can be formulated as

065

 $\min_{X \in \mathbb{R}^{n \times r}} \frac{1}{2} \|\mathcal{A}(XX^{\top}) - b\|^2$ (2)

066 With this natural reparametrization, the number of parameters reduces from $O(n^2)$ in M to O(nr)067 in X, where r is usually close to 1. Problem (2) is unconstrained, and therefore simple first-order 068 methods, such as Gradient Descent (GD), can be applied to solve the problem. However, the factor-069 ized problem (2) is highly non-convex and \mathcal{NP} -hard to solve. There have been extensive studies on the optimization landscape of the matrix sensing problem (Candes & Tao, 2010; Candès & Recht, 070 2012; Recht et al., 2010; Ge et al., 2017; Zhang et al., 2018), and it turns out that the success of both 071 SDP relaxation and local search methods relies on a condition named Restricted Isometry Property 072 (RIP), which is defined below. 073

Definition 1 (RIP (Candès & Recht, 2012)). Given a natural number s, the linear map $\mathcal{A} : \mathbb{R}^{n \times n} \mapsto \mathbb{R}^m$ is said to satisfy the Restricted Isometry Property (RIP) condition of rank s for a constant δ , denoted as $\delta_s \in [0, 1)$, if the inequality

$$(1 - \delta_s) \|M\|_F^2 \le \|\mathcal{A}(M)\|^2 \le (1 + \delta_s) \|M\|_F^2 \tag{3}$$

holds for all matrices $M \in \mathbb{R}^{n \times n}$ satisfying rank $(M) \leq s$.

080

074

075

076 077 078

Intuitively, the RIP is a condition guaranteeing that linear measurements approximately preserve the Euclidean geometry of low-rank matrices. Specifically, a sensing operator satisfies the RIP if it acts nearly as an isometry on the set of low-rank matrices, ensuring that the distances between these matrices are preserved after measurement. When $\delta_s = 0$, solving the matrix sensing problem is trivial, while δ_s close to 1 implies a complicated landscape for the matrix sensing problem where the number of local minima could be exponential (Yalçın et al., 2023). Note that the RIP constant is not unique. If δ_s is an RIP constant, every number greater than δ_s is also an RIP constant.

The RIP condition is crucial for the success of various recovery algorithms, as it underpins their 880 ability to reconstruct the original matrix accurately from compressed measurements. Started by 089 the convex relaxation approach, Recht et al. (2010) and Candès & Recht (2012) demonstrated that when the RIP constant satisfies the inequality $\delta_{5r} \leq 1/10$, the SDP relaxation is exact, allowing 091 for the exact recovery of the ground truth M^* . Later, Bhojanapalli et al. (2016) examined the 092 factorized problem (2) and showed that $\delta_{2r} < 1/5$ suffices to guarantee that all second-order critical 093 points for (2) correspond to the ground truth solution. Zhu et al. (2018) further established that 094 $\delta_{4r} \leq 1/5$ is sufficient for the global recovery of the ground truth via a local search method. The recent paper (Zhang et al., 2021) showed that $\delta_{2r} < 1/2$ is the tightest bound for guaranteeing such 095 global properties. 096

097 Through the lens of RIP, one can guarantee benign optimization landscape and convergence to global 098 optimality, solving the matrix sensing problem either using convex relaxations such as SDP or using 099 non-convex methods such as the BM factorization with a random initialization. Furthermore, when the RIP constant is small, local search has a linear convergence rate for the factorized problem (2) 100 (Zheng & Lafferty, 2015; Lee & Stöger, 2023). Moreover, strict-saddle property holds if $\delta_{2r} < 1/2$, 101 and this result was developed for general low-rank optimization problems beyond matrix sensing (Bi 102 et al., 2022). While the bound $\delta_{2r} < 1/2$ is sharp, it is not satisfied for most real-world problems 103 except in special cases such as a class of isometric distributions. 104

Definition 2 (Nearly isometrically distributed (Recht et al., 2010)). Let A be a random variable that takes values in linear maps from $\mathbb{R}^{n \times n}$ to \mathbb{R}^m . We say that A is nearly isometrically distributed if for all $X \in \mathbb{R}^{n \times n}$ it holds that

$$\mathbf{E}\left[\|\mathcal{A}(X)\|^2\right] = \|X\|_H^2$$

and for all $0 < \epsilon < 1$ we have

110 111

113 114 115

$$\mathbf{P}\left(\left|\|\mathcal{A}(X)\|^{2} - \|X\|_{F}^{2}\right| \ge \epsilon \|X\|_{F}^{2}\right) \le 2\exp\left(-\frac{m}{2}\left(\epsilon^{2}/2 - \epsilon^{3}/3\right)\right)$$

112 and for all t > 0 we have

$$\mathbf{P}\left(\sup_{X\neq 0}\frac{\|\mathcal{A}(X)\|}{\|X\|_F} \ge 1 + \sqrt{\frac{n^2}{m}} + t\right) \le \exp\left(-\gamma m t^2\right)$$

for some constant $\gamma > 0$.

Given $0 < \delta < 1$ and $1 \le r \le m$, it turns out that \mathcal{A} is a nearly isometric random variable, with high probability, i.e., $\delta_r(\mathcal{A}) \le \delta$ if $m = \Theta(rn/\delta^2)$ (Recht et al., 2010; Candès & Plan, 2011). Independent and identically distributed (i.i.d.) Gaussian entries with variance 1/m are nearly isometrically distributed, and the literature of matrix sensing has heavily relied on the i.i.d. and Gaussian assumptions to justify the use of RIP. However, in practice we often have no prior knowledge of the distribution of the sensing matrices, and in addition the independence assumption is hardly satisfied.

124 Motivated by this inconsistency and the importance of RIP, this paper offers theoretical insights 125 into deviations from nearly isometric distributions. We first study the case when the problem is not 126 Gaussian due to small perturbations and derive an upper bound on the change to the RIP constant in 127 terms of the distance of the distribution of the given operator from a Gaussian distribution. More-128 over, we study whether an operator with an arbitrary distribution can be modified so that it acts as a perturbed Gaussian for which the above result on its RIP constant can be applied. For the case 129 where the true distribution deviates significantly from normal distributions, we introduce a precon-130 ditioning algorithm that replaces each sensing matrix with a weighted sum of all sensing matrices. 131 We discuss how this technique makes the resulting operator behave similarly to perturbed Gaussian 132 distributions, leading to a reduction in the RIP constant and improving the optimization landscape. 133

The paper is organized as follows. In Section 2, we demonstrate the robustness of the RIP constant to small perturbations to the sensing operator. We show that nearly-isometric measurements under a modest perturbation continue to satisfy the RIP, thereby ensuring the reliable recovery of low-rank matrices. This finding is significant as it broadens the applicability of matrix sensing techniques to real-world scenarios by relaxing the restrictive Gaussian assumption.

139 Furthermore, we investigate the role of orthogonalization in enhancing the optimization landscape 140 of the matrix sensing problem. In Section 3, we show that the orthogonalization of the sensing matrices can improve the RIP constant, making the landscape more favorable for efficient recov-141 ery algorithms. To achieve this, we propose a novel preconditioning method that optimizes the 142 mixing of the measurements to reduce the RIP constant. We provide a theoretical analysis for the 143 proposed method, and empirically show that it is highly effective on various types of measurement 144 distributions, including Poisson, uniform, and correlated Gaussian distributions. In particular, we 145 demonstrate that the original RIP constants for these distributions could be close to 1 for which the 146 SDP relaxation and local search methods would fail to work, while the preconditioning technique 147 reduces the RIP to less than 0.5 so that both of these optimization methods can correctly solve the 148 modified problem. 149

By addressing the above two aspects, our work contributes to a deeper understanding of the matrix sensing problem with non-Gaussian models. We propose practical solutions to enhance recovery performance, paving the way for more robust and efficient applications in matrix sensing and beyond.

Definitions and Notations The symbol ||v|| denotes the Euclidean norm of a vector v. $||X||_F$ 154 denotes the Frobenius norm of a matrix X. $||X||_M = \max_{i,j} |X_{ij}|$ denotes the largest absolute 155 entry of a matrix X. $\|\mathcal{A}\|_M = \max_k \max_{i,j} |A_k^{ij}|$ denotes the largest absolute entry of a sensing 156 operator \mathcal{A} , where A_k^{ij} denotes the (i, j) entry of the matrix A_k . $\sigma_i(X)$ denotes the *i*-th largest 157 singular value of a matrix X. $\lambda_i(X)$ denotes the *i*-th largest eigenvalue of a symmetric matrix X. 158 $\langle A, B \rangle$ is defined as the inner product tr $(A^T B)$ for two matrices A and B of the same size, where tr 159 stands for trace. $\mathbf{E}(x)$ denotes the expectation of a random variable x. $\mathbf{P}(E)$ denotes the probability 160 of en event E. $f = \Theta(g)$ denotes that there exist constants $c_1, c_2 > 0$ such that $c_1 * g \le f \le c_2 * g$. 161 $f = \mathcal{O}(g)$ denotes that there exists a constant c > 0 such that $f \le c * g$. For a matrix X, $\operatorname{vec}(X)$ is the usual vectorization operation by stacking the columns of the matrix X into a vector and $mat(\cdot)$ is the inverse operator. $VStack(\cdot)$ denotes concatenating the rows of a matrix into a vector. [n] denotes the integer set $\{1, \ldots, n\}$. $\delta_s(\mathcal{A})$ denotes the smallest value for δ_s that satisfies the RIP condition of rank s for the sensing operator \mathcal{A} . The matrix orthogonality and the orthonormal basis are defined under the standard inner product $\langle \cdot, \cdot \rangle$.

2 PERTURBED ISOMETRICAL DISTRIBUTION

Given an arbitrary sensing operator \mathcal{A} , we first prove that if \mathcal{A} is perturbed via another operator that is bounded by ε , then its RIP constant will be increased by at most $\mathcal{O}(mn^2\varepsilon)$.

Theorem 1. Consider an arbitrary operator \mathcal{A} with the RIP constant $\delta_s \in [0, 1)$. Let ε be a nonnegative constant such that $\varepsilon < \frac{1-\delta_s}{2mn^2 ||\mathcal{A}||_{\infty}}$. For every bounded perturbation operator \mathcal{N} with $||\mathcal{N}||_{\infty} \leq \varepsilon$, the perturbed sensing operator $\mathcal{A} + \mathcal{N}$ satisfies the RIP condition of rank s with the constant $\delta_s + (4mn^2 ||\mathcal{A}||_{\infty}\varepsilon + mn^2\varepsilon^2(1-\delta))/(2+mn^2\varepsilon^2)$.

177 *Proof.* Let N_1, \ldots, N_m denote the components of \mathcal{N} , i.e., $\mathcal{N}(X) = [\langle N_1, X \rangle, \ldots, \langle N_m, X \rangle]$. For every matrix $X \in \mathbb{R}^{n \times n}$ satisfying rank $(X) \leq s$, it holds that

$$\|(\mathcal{A} + \mathcal{N})(X)\|^2 = \sum_{i=1}^m \langle A_i + N_i, X \rangle^2$$
$$= \sum_{i=1}^m \langle A_i, X \rangle^2 + \sum_{i=1}^m \langle N_i, X \rangle^2 + 2\sum_{i=1}^m \langle A_i, X \rangle \langle N_i, X \rangle$$

Since \mathcal{A} satisfies the RIP condition with the constant δ_s , we have

$$(1 - \delta_s) \|X\|_F^2 \leq \sum_{i=1}^m \langle A_i, X \rangle^2 \leq (1 + \delta_s) \|X\|_F^2$$

Due to the Cauchy-Schwarz inequality, one can write

$$0 \leq \sum_{i=1}^{m} \langle N_i, X \rangle^2 \leq \sum_{i=1}^{m} \|N_i\|_F^2 \|X\|_F^2 \leq mn^2 \varepsilon^2 \|X\|_F^2,$$

195 and

167 168

169 170

171

181

183

185

196 197

199

$$\left|\sum_{i=1}^{m} \langle A_i, X \rangle \langle N_i, X \rangle\right| = \left|\sum_{i=1}^{m} \langle A_i, N_i \rangle\right| \|X\|_F^2 \leqslant mn^2 \varepsilon \|\mathcal{A}\|_{\infty} \|X\|_F^2$$

Hence,

$$0 < (1 - \delta_s - 2mn^2 \|\mathcal{A}\|_{\infty} \varepsilon) \|X\|_F^2 \leq \|(\mathcal{A} + \mathcal{N})(X)\|^2 \leq (1 + \delta_s + mn^2 \varepsilon^2 + 2mn^2 \|\mathcal{A}\|_{\infty} \varepsilon) \|X\|_F^2$$

200 201 202

indicating that $\mathcal{A} + \mathcal{N}$ satisfies the RIP condition with the constant $\delta_s + mn^2 \varepsilon \cdot \frac{4\|\mathcal{A}\|_{\infty} + \varepsilon(1-\delta_s)}{2+mn^2\varepsilon^2}$. \Box

If \mathcal{N} is chosen as $-\mathcal{A}$, then the RIP condition is not satisfied. Similarly, if N_1, \ldots, N_m are chosen in a way that the (i, j) entries of all matrices $A_1 + N_1, \ldots, A_m + N_m$ are zero for some indices *i* and *j*, then the RIP condition again no loner holds. For these reasons, the existence of an upper bound on ε in Theorem 1 is necessary.

Remark 1. With series expansion at $\varepsilon = 0$, the RIP constant derived in Theorem 1 can be approximated by $\delta_s + mn^2 \left(2 \|\mathcal{A}\|_{\infty} \varepsilon + \frac{1}{2}(1-\delta_s)\varepsilon^2 - \|\mathcal{A}\|_{\infty}mn^2\varepsilon^3 + \mathcal{O}(\varepsilon^4) \right)$. On the other hand, since \mathcal{A} satisfies the RIP condition with the constant δ_s , the term $\|\mathcal{A}\|_{\infty}$ can be bounded by choosing a matrix X whose entry at the position of the largest element of \mathcal{A} is 1 and whose remaining entries are 0. Hence, $\|X\|_F^2 = 1$ and $\|\mathcal{A}\|_{\infty}^2 \leq \sum_{i=1}^m \langle A_i, X \rangle^2 \leq (1+\delta_s) \|X\|_F^2$, indicating that $\|\mathcal{A}\|_{\infty} \leq \sqrt{1+\delta_s}$. Thus, the RIP condition for $\mathcal{A} + \mathcal{N}$ can be upper bounded by $\delta_s + mn^2 \varepsilon [2(1+\delta_s)^{1/2} + \frac{1}{2}(1-\delta_s)\varepsilon]$ up to the first-order approximation.

214

Theorem 1 studies bounded perturbation operators \mathcal{N} in the worst case. We will improve the results by relaxing the boundedness of the perturbation.

8

216 **Corollary 1.** Consider an arbitrary operator \mathcal{A} with the RIP constant $\delta_s \in [0, 1)$. Consider also a perturbation operator \mathcal{N} such that $\|\mathcal{N}\|_{\infty}$ is sub-Gaussian with mean 0 and variance proxy σ^2/m . For every c > 0 and $\sigma < \frac{1-\delta_s}{2c\sqrt{mn^2}\|\mathcal{A}\|_{\infty}}$, with probability at least $1 - 2\exp(-c^2)$, the operator $\mathcal{A} + \mathcal{N}$ satisfies the RIP condition with the constant $\delta_s + c\sqrt{mn^2\sigma}[2(1+\delta_s)^{1/2} + \frac{c}{2\sqrt{m}}(1-\delta_s)\sigma]$. 217 218 219 220

Proof. Since $\|\mathcal{N}\|_{\infty}$ is sub-Gaussian bounded, we have $\mathbf{P}(\|\mathcal{N}\|_{\infty} \geq \varepsilon) \leq 2\exp\left(-\frac{m\varepsilon^2}{\sigma^2}\right)$. This 222 implies that $\mathbf{P}(\|\mathcal{N}\|_{\infty} \leq \varepsilon)$ with probability at least $1 - 2\exp(-m\varepsilon^2/\sigma^2)$. Combining Theorem 1 223 224 and $\varepsilon = c\sigma/\sqrt{m}$, it can be concluded that with probability at least $1 - 2\exp(-c^2)$, $\mathcal{A} + \mathcal{N}$ satisfies the RIP condition with the constant 226

$$\delta_s + c\sqrt{mn^2}\sigma[2(1+\delta_s)^{1/2} + \frac{c}{2\sqrt{m}}(1-\delta_s)\sigma].$$

This completes the proof.

221

225

227 228

229

243 244 245

247

251

253

254

255

256

230 Building on Corollary 1, we refine the RIP bound for a nearly isometrically distributed operator \mathcal{A} . 231 **Theorem 2.** Assume that A is nearly isometrically distributed and $\|\mathcal{N}\|_{\infty}$ is sub-Gaussian with 232 mean 0 and variance proxy σ^2/m . There exist positive constants c_1 and c_2 , independent of the parameters of \mathcal{N} (such as σ) such that for every c > 0 and $\sigma < \frac{1-\delta_s}{2c\sqrt{mn^2}\|\mathcal{A}\|_{\infty}}$, with probability 233 234 at least $1 - 2\exp(-c^2) - \exp(-c_1m)$, the operator $\mathcal{A} + \mathcal{N}$ satisfies the RIP condition with the constant $c_2\sqrt{ns\log n/m} + c\sqrt{mn^2\sigma}[2(1+\delta_s)^{1/2} + \frac{c}{2\sqrt{m}}(1-\delta_s)\sigma]$. 235 236

237 *Proof.* It has been proved in Recht et al. (2010) that if A is nearly isometrically distributed, then 238 there exist positive constants c_1 and c_2 with c_1 depending on the RIP constant of A such that, with 239 probability at least $1 - \exp(-c_1 m)$, we have $\delta_s(\mathcal{A}) \leq c_2 \sqrt{ns \log n/m}$. Now, it follows from 240 Corollary 1 that with probability at least $1 - 2\exp(-c^2) - \exp(-c_1 m)$, it holds that $\mathcal{A} + \mathcal{N}$ satisfies 241 the RIP condition with the constant 242

$$c_2\sqrt{ns\log n/m} + c\sqrt{mn^2}\sigma[2(1+\delta_s)^{1/2} + \frac{c}{2\sqrt{m}}(1-\delta_s)\sigma].$$

This completes the proof.

246 **Remark 2.** Due to Theorem 2, the RIP constant of the perturbed operator $\mathcal{A} + \mathcal{N}$ compared to the *RIP of A has increased from* $O(1/\sqrt{m})$ *to* $O(1/\sqrt{m}) + O(\sqrt{m}\sigma) + O(\sigma^2)$. *Thus, when the pertur-*248 bation σ is small, one can compensate for the influence of the perturbation on the RIP constant by 249 slightly increasing the number of measurements m, which will reduce the RIP constant of the per-250 turbed operator to the RIP constant of the unperturbed operator \mathcal{A} . This formula shows how many additional measurements are needed to nullify the effect of deviation from a Gaussian distribution. 252

To summarize the results of this section, Theorem 1 provides an RIP bound for a fixed sensing operator \mathcal{A} and a bounded perturbation \mathcal{N} , and Corollary 1 extends this result to a random perturbation \mathcal{N} . In Theorem 2, we further derive a high probability bound for any nearly isometric random distributed sensing operator \mathcal{A} , and prove that the impact of a small perturbation on RIP is small and that increasing the number of measurements m on a small scale can compensate for the increase in RIP.

261

3 PRECONDITIONING OF MATRIX SENSING

In the previous section, we proved that small deviations from nearly isometrically distributed sens-262 ing matrices will slightly increase the RIP constant. However, real-world sensing matrices often 263 have unknown probability distributions that cannot be approximated by Gaussian models, for which 264 several empirical results have shown that the RIP constant is often close to 1. To address this issue, 265 we consider a sensing operator A coming from an arbitrary probability distribution and develop a 266 preconditioning algorithm to improve its RIP constant and make it act as a perturbed Gaussian. 267

It has been proved in Ma et al. (2023; 2024) that the RIP constant can be reduced if the optimization 268 complexity of the matrix sensing problem is increased, e.g., via a tensor-based lifting technique. 269 However, this incurs a high computational cost and is not applicable to large-scale matrix sensing

problems. To avoid this computational complexity, we propose a simple and scalable linear preconditioning method, which replaces every sensing matrix with a linear combination of all the original sensing matrices. More precisely, consider a weight matrix $P \in \mathbb{R}^{m \times m}$ with its (i, j) entry denoted as P_{ij} . We construct a preconditioned operator $\tilde{\mathcal{A}}$ with the components $\tilde{A}_1, ..., \tilde{A}_m$ as follows:

$$\tilde{A}_i = \sum_{j=1}^m P_{ij} A_j, \quad \forall i \in \{1, ..., m\}$$

278 Therefore,

279

280 281

283

284

285

286 287

288 289

290

296 297

305 306

309

$$\langle \tilde{A}_i, X \rangle = \sum_{j=1}^m P_{ij} \langle A_j, X \rangle = \sum_{j=1}^m P_{ij} b_j, \quad \forall i \in \{1, \dots, m\}, \forall X$$

Hence, $\tilde{\mathcal{A}}(X) = Pb$. The preconditioning is independent of the optimization method (such as local search or convex relaxation) to be used to solve the matrix sensing problem, and the goal of preconditioning is to create a better structure for the sensing operator and thus a better RIP constant. In what follows, we will develop a simple method for designing P and study its impact on the RIP constant.

3.1 ORTHONORMAL BASES AS SENSING MATRICES

The following lemma for Haar distribution is the basis of our method.

Lemma 1 (Frankl & Maehara (1988)). Let $\{x_j\}_{j=1}^n \subseteq \mathbb{R}^d$, and let P be a $k \times d$ random matrix, consisting of the first k rows of a Haar-distributed random matrix in the orthogonal group $\mathbb{O}(d)$. Given $\epsilon > 0$ and $k = \frac{a \log(n)}{\epsilon^2}$, there are absolute constants c and C such that with probability at least $1 - Cn^{2-\frac{ac}{4}}$ the inequalities

$$(1 - \epsilon) \|x_i - x_j\|^2 \le \binom{d}{k} \|Px_i - Px_j\|^2 \le (1 + \epsilon) \|x_i - x_j\|^2$$

298 hold for all $i, j \in \{1, ..., n\}$.

The orthonormal vectors from the unitary matrix in QR decomposition of i.i.d. Gaussian matrices follow a Haar distribution (Mezzadri, 2007). Given that those orthonormal bases maintain the distances during projection, we are inspired to transform our original sensing operator \mathcal{A} into a preconditioned operator $\tilde{\mathcal{A}}$ with orthonormal bases as vectorized sensing matrices. To be more specific, we first write the sensing operator \mathcal{A} into the vectorized form

$$\mathbf{A} = [\operatorname{vec}(A_1), \operatorname{vec}(A_2), \dots, \operatorname{vec}(A_m)]^T \in \mathbb{R}^{m \times n^2}$$

Then, since the inner product of two matrices can be defined as a vector product, it holds that

$$\mathbf{A}\operatorname{vec}(X) = \mathcal{A}(X), \quad \forall X \in \mathbb{R}^{n \times n}$$

By pre-multiplying the above equation with a weight matrix $P \in \mathbb{R}^{m \times m}$, we ideally intend to make the rows of $P\mathbf{A}$ normalized and orthogonal to each other. Since the individual entries of a random orthogonal matrix are approximately Gaussian for large matrices (Meckes, 2019), as *m* increases, these preconditioned operators are likely to act as i.i.d. Gaussian.

Define the *s*-sparse set span_s(\mathcal{A}) as the set of all matrices *X* that can be written as $X = \sum_{i=1}^{m} \alpha_i A_i$ for some coefficients $\alpha_1, ..., \alpha_m$ such that at most *s* coefficients are nonzero. We say that $A_1, ..., A_m$ are orthonormal if $\langle A_i, A_j \rangle = 0, \forall i \neq j$ and $\langle A_i, A_i \rangle = 1$ otherwise.

Theorem 3. Assume that $A_1, ..., A_m$ are orthogonal. It holds that

$$\frac{|\mathcal{A}(X)||^2}{||X||_F^2} = 1, \quad \forall X \in \operatorname{span}_s(\mathcal{A})$$

320 321 322

319

Proof. We expand the orthonormal matrices $A_1, ..., A_m$ into a basis for $\mathbb{R}^{n \times n}$. More precisely, consider orthonormal bases $V_1, ..., V_{n^2} \in \mathbb{R}^{n \times n}$ such that $V_i = A_i$ for i = 1, ..., m. Given a

matrix $X \in \operatorname{span}_{s}(\mathcal{A})$, we can write it as $\sum_{i=1}^{m} \alpha_{i}A_{i}$ with at most s nonzero α_{i} 's. Without loss of generality, we assume that $||X||_{F}^{2} = \sum_{i=1}^{m} \alpha_{i}^{2} = 1$. Now, one can write:

$$\frac{\|\mathcal{A}(X)\|^2}{\|X\|_F^2} = \sum_{i=1}^m \sum_{j=1}^m \langle A_i, \alpha_j V_j \rangle^2 = \sum_{i=1}^m \alpha_i^2 = 1$$

This completes the proof.

327 328

337 338

339

340

341

342

369 370

371 372 373

The set span_s(\mathcal{A}) includes matrices that can be written as the sum of at most s matrices from the set { $A_1, ..., A_m$ }. As m increases, if this set continues to include orthonormal matrices, the set span_s(\mathcal{A}) grows until it completely covers the low-rank set { $X \mid \operatorname{rank}(X) \leq s$ }. Thus, it follows from Theorem 3 that as m grows, the RIP constant for orthonormal matrices approaches zero (note that RIP is about taking the minimum and maximum of the ratio $||\mathcal{A}(X)||^2/||X||_F$ over matrices of rank at most s). Hence, Theorem 3 justifies the conversion of arbitrary sensing matrices into orthogonal matrices.

3.2 PRECONDITIONING ALGORITHM

Based on the idea of using orthonormal bases as sensing matrices, we propose Algorithm 1, which applies the singular value decomposition (SVD) to extract unitary sensing matrices from the given sensing operator.

Remark 3. The singular value decomposition of \mathbf{A} written as $U[S, \mathbf{0}_{\mathbf{m}\times(\mathbf{n}^2-\mathbf{m})}]V^{\top}$ will obtain a unitary matrix V^{\top} whose rows are the eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$. The new sensing matrices \tilde{A}_i obtained by reshaping the rows of V^{\top} into matrices are perpendicular to each other. For $S = \operatorname{diag}([\sigma_1(\mathbf{A}), \dots, \sigma_m(\mathbf{A})]) \in \mathbb{R}^{m \times m}$, we could assume \mathbf{A} to be full rank in practice, and since $\sigma_m(\mathbf{A}) > 0$, S becomes invertible. Since the extraction step can be considered as a linear transformation, we can easily calculate the corresponding vector $b' = U^{\top}S^{-1}b$, and the weight matrix is $P = U^{\top}S^{-1}$.

In the following, we will derive an upper bound on the RIP constant of the preconditioned sensing operator. Furthermore, we will prove that the RIP constant of the preconditioned \tilde{A} is smaller that the RIP constant of the original sensing operator A with high probability.

Theorem 4. Consider an arbitrary operator A with the RIP constant $\delta_s \in [0, 1)$. Then, the conditioned operator $\tilde{\mathcal{A}}$ also satisfies the RIP condition with the constant $1 - \frac{1-\delta_s}{\sigma_1^2(\mathbf{A})}$.

367 Proof. Since \mathcal{A} satisfied the RIP condition, the following inequality holds for every matrix M such that rank $(M) \leq s$:

$$(1 - \delta_s) \|M\|_F^2 \leq \|\mathcal{A}(M)\|_2^2 = \|\mathbf{A}\operatorname{vec}(M)\|_2^2 \leq (1 + \delta_s) \|M\|_F^2.$$

As $\hat{\mathbf{A}} = P\mathbf{A}$, we introduce the operator norm of P and write

$$\sup_{M:\mathbf{A}\operatorname{vec}(M)\neq 0} \frac{\|P\mathbf{A}\operatorname{vec}(M)\|_{2}^{2}}{\|\mathbf{A}\operatorname{vec}(M)\|_{2}^{2}} = \lambda_{1}\left(P^{\top}P\right), \quad \inf_{M:\mathbf{A}\operatorname{vec}(M)\neq 0} \frac{\|P\mathbf{A}\operatorname{vec}(M)\|_{2}^{2}}{\|\mathbf{A}\operatorname{vec}(M)\|_{2}^{2}} = \lambda_{m}\left(P^{\top}P\right).$$

Now, we aim to bound $\|\tilde{\mathcal{A}}(M)\|_2^2$ by the eigenvalues of $P^{\top}P$. Since $P = U^{\top}S^{-1}$, U is a unitary matrix, and S is diagonal, we have $P^{\top}P = S^{-2}$, $\lambda_1(P^{\top}P) = \sigma_m^{-2}(\mathbf{A})$, and $\lambda_m(P^{\top}P) = \sigma_1^{-2}(\mathbf{A})$. Hence,

$$\sigma_1^{-2}(\mathbf{A}) \|\mathbf{A}\operatorname{vec}(M)\|_2^2 \le \|P\mathbf{A}\operatorname{vec}(M)\|_2^2 \le \sigma_m^{-2}(\mathbf{A}) \|\mathbf{A}\operatorname{vec}(M)\|_2^2.$$

378 As a result, we obtain the lower bound 379

$$P\mathbf{A} \operatorname{vec}(M) \|_{2}^{2} \ge \frac{1}{\sigma_{1}^{2}(\mathbf{A})} \|\mathbf{A} \operatorname{vec}(M)\|_{2}^{2} \ge \frac{1-\delta_{s}}{\sigma_{1}^{2}(\mathbf{A})} \|\operatorname{vec}(M)\|_{2}^{2}.$$

On the other hand, since V is a unitary matrix, one can write

$$\|P\mathbf{A}\operatorname{vec}(M)\|_{2}^{2} = \|S^{-1}U^{\top}\mathbf{A}\operatorname{vec}(M)\|_{2}^{2} = \|[\mathbf{I}_{\mathbf{m}}, \mathbf{0}_{\mathbf{m}\times(\mathbf{n^{2}}-\mathbf{m})}]V^{\top}\operatorname{vec}(M)\|_{2}^{2} \le \|\operatorname{vec}(M)\|_{2}^{2}$$

By combining the above two inequalities, we obtain the desired result for the RIP constant of $\hat{\mathcal{A}}$. **Remark 4.** $1 - \frac{1-\delta_s}{\sigma_1^2(\mathbf{A})}$ in Theorem 4 can be smaller or larger than δ_s , depending on whether $\delta_s + 1 > 0$ $\sigma_1^2(\mathbf{A}).$

380

382

384

386

387

394 395

398

399

400

401

402 403

404

405

406 407 408

409 410

42

427

Assumption 1. Assume that singular values of the matrix $\mathbf{A} \in \mathbb{R}^{m \times n^2}$ with $m < n^2$ satisfy

$$\Pr\left\{\sqrt{n^2/m}(1-\epsilon) - 1 \le \sigma_i(\mathbf{A}) \le 1 + \sqrt{n^2/m}(1+\epsilon), i \in [m]\right\} \ge 1 - 2\exp\left(-n^2\epsilon^2/2\right), \quad \forall \epsilon > 0$$

Assumption 2. Consider two constants ϵ and δ such that

$$0<\epsilon<1-\sqrt{\frac{m}{n^2}},\quad \frac{[1+\sqrt{\frac{m}{n^2}}(1+\epsilon)]^2-1}{2[1+\sqrt{\frac{m}{n^2}}(1+\epsilon)]^2-1}<\delta<\frac{1}{2}.$$

397 **Theorem 5.** Let \mathcal{A} be a nearly isometrically distributed operator. Under Assumption 1 and Assumption 2, there exist positive constants c_0 and c_1 depending only on δ_s such that, with probability at least $1 - \exp(-c_1m) - 2\exp(-n^2\epsilon^2/2)$, as long as $m \ge c_2 \sin \log(n)$, the original sensing operator satisfies $\delta_s(\mathcal{A}) \leq 2\delta$ and the conditioned sensing operator satisfies $\delta_s(\tilde{\mathcal{A}}) \leq \delta_s(\tilde{\mathcal{A}})$ $1 - (1 - \delta)/[1 + \sqrt{\frac{n^2}{m}}(1 + \epsilon)]^2.$

Proof. Inspired by the proof of Theorem 1 in Chen & Lin (2021), define the following events

 $E_1 \doteq \{\mathcal{A} \text{ satisfies the RIP of rank } s \text{ with the constant } 2\delta\},\$ $E_2 \doteq \left\{ \tilde{\mathcal{A}} \text{ satisfies the RIP of rank } s \text{ with the constant } 1 - (1 - \delta) / [1 + \sqrt{\frac{n^2}{m}} (1 + \epsilon)]^2 \right\},$ $F_1 \doteq \left\{ \mathcal{A} \text{ satisfies the RIP of rank } s \text{ with the constant } \delta \right\},$ $F_2 \doteq \left\{ \sqrt{\frac{n^2}{m}} (1-\epsilon) - 1 \le \sigma_i(\mathbf{A}) \le 1 + \sqrt{\frac{n^2}{m}} (1+\epsilon), i \in [m] \right\}.$

We will show that $\Pr(E_1E_2) \geq \Pr(F_1F_2)$. Consider the singular value decomposition of **A** as $\mathbf{A} = U[S, \mathbf{0}_{\mathbf{m}\times(\mathbf{n^2}-\mathbf{m})}]V^{\top}$, where $U \in \mathbb{R}^{m \times m}, S = \operatorname{diag}([\sigma_1(\mathbf{A}), \dots, \sigma_m(\mathbf{A})]) \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{m \times m}$. 411 412 $\mathbb{R}^{n^2 \times n^2}$. Under Assumption 2, we have $\sqrt{\frac{n^2}{m}}(1-\epsilon)-1 > 0$, and therefore S is nonsingular. Hence, the preconditioning matrix defined as $P = S^{-1}U^{\top}$ is valid. If $\mathbf{A} \in F_1F_2$, in light of Theorem 4, 413 414 415 F_1 implies that the conditioned operator $\tilde{\mathcal{A}}$ satisfies the RIP of rank s with the constant $1 - \frac{1-\delta}{\sigma_1^2(\mathbf{A})}$. 416 With F_2 implying an upper bound on $\sigma_1^2(\mathbf{A})$, obtain that $\tilde{\mathcal{A}}$ satisfies the RIP inequality (3) with the 417 418 constant $1 - (1 - \delta)/[1 + \sqrt{\frac{n^2}{m}}(1 + \epsilon)]^2$. We could also have $\mathbf{A} \in E_2$. Since $F_1 \subset E_1$, we have 419 $\Pr(E_1E_2) \ge \Pr(F_1F_2)$. With the union bound $\Pr(F_1F_2) \ge \Pr(F_1) + \Pr(F_2) - 1$, we estimate 420 the probabilities $Pr(F_1)$ and $Pr(F_2)$ using Theorem 4.2 in Recht et al. (2010) and Assumption 1 to 421 arrive at 422 $\Pr\left(E_1 E_2\right) \ge \Pr\left(F_1 F_2\right)$

423
424
425
$$\geq \Pr(F_1) + \Pr(F_2) - 1$$

 $\geq 1 - \exp(-c_1m) - 2\exp(-n^2\epsilon^2/2)$

This completes the proof. 426

To shed light on the two assumptions used in Theorem 5, note that Gaussian random matrices satisfy 428 Assumption 1 as an example. Regarding Assumption 2, when $\epsilon \to 0, \delta \to \frac{1}{2}$, and the lower bound 429 of δ is always smaller than $\frac{1}{2}$. As a result, such pair (ϵ, δ) satisfying Assumption 2 always exists. 430 We immediately obtain the following corollary due to the fact that Gaussian random matrices satisfy 431 the concentration inequality of the singular values naturally.

432 **Corollary 2.** Let A_1, \ldots, A_m be i.i.d. Gaussian random matrices of mean zero and variance $\frac{1}{m}$. 433 Under Assumption 2, there exist positive constants c_0 and c_1 such that, with probability at least 434 $1 - \exp(-c_1m) - 2\exp(-n^2\epsilon^2/2)$, as long as $m \ge c_0s(m+n^2\log(mn^2))$, , it holds that $\delta_s(\mathcal{A}) \le 2\delta$ and $\delta_s(\tilde{\mathcal{A}}) \le 1 - (1-\delta)/[1 + \sqrt{\frac{n^2}{m}}(1+\epsilon)]^2$.

Remark 5. As explained before, the RIP constant is not unique and if δ_s satisfies the inequality 3, 437 then any number between δ_s and 1 also satisfies the inequality. Based on this argument, it follows 438 from Corollary 2 is that the RIP constants of the original operator A and preconditioned operator 439 $\tilde{\mathcal{A}}$ are 2δ and $1-(1-\delta)/[1+\sqrt{\frac{n^2}{m}}(1+\epsilon)]^2$. The preconditioning improves the RIP if $2\delta > 1-(1-\delta)/[1+\sqrt{\frac{n^2}{m}}(1+\epsilon)]^2$. 440 441 δ / $[1+\sqrt{\frac{n^2}{m}}(1+\epsilon)]^2$, which holds true under Assumption 2 for our choice of the parameters. Hence, 442 the preconditioning algorithm can improve the RIP constant for nearly isometrically distributed 443 random matrices with high probability. Under Assumption 2, although 2δ can be close to 1, the 444 preconditioning technique has the ability to reduce it to less than 1/2. 445

3.3 SIMULATION EXPERIMENTS

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

482

Figure 2: Empirical RIP comparison before and after preconditioning; the horizontal axis shows that the sensing matrices are sampled from uniform distribution [0, 1], centered uniform distribution [-1, 1], standard normal distribution, multivariate correlated normal distribution with $\rho = 0.5$, and poisson distribution separately. The first row is for general sensing matrices, and the second row is for matrices with special structures.

In this subsection, we will demonstrate the performance of the preconditioning Algorithm 1 for s = 2r since δ_{2r} determines whether or not SDP relaxations or local search methods succeed to solve the matrix sensing problem. However, measuring the true RIP value δ_{2r} for any given sensing operator \mathcal{A} requires checking the inequalities (3) for all low-rank matrices X of rank at most 2r and determining the maximum and minimum possible values of $||\mathcal{A}(X)||_2^2/||X||_F^2$ over all rank-2r matrices. This is equivalent to solving a non-convex optimization problem, which is known to be \mathcal{NP} -hard. Hence, we will instead measure the empirical RIP constant in our experiments.

477 By randomly selecting 1000 Gaussian distributed matrices $M \in \mathbb{R}^{n \times 2r}$ (we simply choose r = 1478 in the following experiments), we generate 1000 rank-2r matrices $X = M^{\top}M \in \mathbb{R}^{n \times n}$ to be rank-479 2r matrices. Afterwards, we calculate $||\mathcal{A}(M)||_2^2/||X||_F^2$ for all those X matrices and compute the 480 smallest and the largest values, denoted as α and β correspondingly. Hence, we obtain the following 481 inequalities over the generated samples of rank-2r matrices:

$$\alpha \|X\|_F^2 \le \|\mathcal{A}(X)\|^2 \le \beta \|X\|_F^2.$$
(4)

Since rescaling (multiplying the sensing operator \mathcal{A} by a constant c) will not affect the landscape of the matrix sensing problem, we multiply all of the above inequalities by $\frac{2}{\alpha+\beta}$ and calculate the empirical RIP constant for $\frac{2}{\alpha+\beta}\mathcal{A}$, which is $\frac{\beta+\alpha}{\beta-\alpha}$. Given that the set of simulated X is a subset of all low-rank matrices, the simulated RIP is a lower bound for true RIP value. We can see in Figure 1 that for Gaussian distributed sensing matrices, the empirical RIP value decreases as the number of measurements m increases. The empirical RIP curve matches the $m^{-1/2}$ curve, which is the result of the true RIP bound in Recht et al. (2010). Hence, we could treat the empirical RIP value as an accurate measure of the true RIP constant.

We randomly generate m sensing matrices under different distributions, including nearly isometric distributions such as Gaussian and non-isometric distributions such as Poisson. Besides, we also generate A with special structures, including low-rank structures and sparse structures. We numerically calculate the empirical RIP value before and after the preconditioning step. We run experiments under different scenarios from n = 10 to n = 50, and run 100 trials for each scenario to obtain the average empirical RIP value.

497 The results are plotted in Figure 2. We can see from the figure that for uniform, correlated normal 498 and poisson distribution, the original sensing operator has a RIP constant close to 1, which means 499 that with the i.i.d. Gaussian assumption violated, these measuring operators are no longer nearly 500 isometric and thus cannot guarantee a benign optimization landscape for the matrix sensing prob-501 lem. However, after preconditioning, we observe a clear decrease in the corresponding empirical 502 RIP value. The preconditioned sensing matrices have the same level of RIP constant compared to 503 the standard normal distribution with the same m, n values. On the other hand, for centered uniform 504 and standard normal distribution, we can decrease the RIP constant by increasing m, and the preconditioning step can still slightly help to decrease the RIP value. This improvement becomes more 505 obvious for the cases with a large m/n^2 . 506

507 In addition to unstructured operators \mathcal{A} , we also study sensing matrices with special structures. For the low-rank structure, we generate $a_i \in \mathbb{R}^{n \times 1}$ and define $A_i = a_i a_i^\top \in \mathbb{R}^{n \times n}$. For the sparse 508 structure, we generate a binomial distributed mask with p = 0.3, and only 30% elements of A are 509 likely to be non-zero. The results are similar to the case of unstructured operators (see Figure 1), 510 and the preconditioning effectively decreases the empirical RIP value in both low-rank and sparse 511 cases. Even centered uniform and normal distribution will be affected by these special structures and 512 show high empirical RIP values. One can observe that our preconditioning algorithm has a universal 513 impressive performance in a wide range of situations. 514

515 Moreover, we can see that for the same level of (m, n), whatever the original distribution is, the empirical RIP value after preconditioning for different types of distributions are almost the same, 516 which means that in practice we may not need to make additional assumptions on the distribution 517 of sensing matrices; the landscape after preconditioning as well as the RIP constant will mainly 518 depend on the value of r, m, n. As is shown by simulation experiments, Algorithm 1 makes best 519 use of the current information provided by the original sensing operator and remains stable under 520 different scenarios. The computational cost is also not high, only requiring $\mathcal{O}(m^2n^2)$ for a singular 521 value decomposition of a matrix of dimension $m \times n^2$. 522

- 523
- 524

4 CONCLUSION

525 526 527

The results presented in this paper highlight several critical insights into the behavior of sensing 528 operators and their impact on the Restricted Isometry Property (RIP) constant. When dealing with a 529 nearly isometric operator perturbed by a sub-Gaussian term, the impact of deviation from the nearly 530 isometric case can be effectively mitigated by increasing the number of measurements. Specifically, 531 the RIP constant ensures that a benign optimization landscape can be preserved even in the pres-532 ence of perturbations to the sensing operator. Thus, even in the presence of perturbations, careful 533 adjustment of the number of measurements provides a practical approach to deal with non-Gaussian 534 distributions. Our findings also demonstrate both theoretically and empirically that the proposed preconditioning algorithm significantly improves the RIP constant for various distributions. A no-536 table observation is that, after preconditioning, the RIP constant is nearly independent of the orig-537 inal distribution. This finding simplifies practical implementations, as it eliminates the need for distribution-specific assumptions about the sensing matrices. Practitioners can rely on the precondi-538 tioned sensing matrices to provide consistent RIP performance, primarily governed by the values of r, m, and n.

540 REFERENCES 541

574

575

576

581

- Ramin Ayanzadeh, Milton Halem, and Tim Finin. An ensemble approach for compressive sensing 542 with quantum annealers. In IGARSS 2020 - 2020 IEEE International Geoscience and Remote 543 Sensing Symposium, pp. 3517–3520, 2020. 544
- Richard G Baraniuk, Thomas Goldstein, Aswin C Sankaranarayanan, Christoph Studer, Ashok Veer-546 araghavan, and Michael B Wakin. Compressive video sensing: Algorithms, architectures, and 547 applications. IEEE Signal Processing Magazine, 34(1):52–66, 2017.
- 548 Srinadh Bhojanapalli, Behnam Neyshabur, and Nathan Srebro. Global optimality of local search 549 for low rank matrix recovery. In Proceedings of the 30th International Conference on Neural 550 Information Processing Systems, pp. 3880–3888, 2016. 551
- 552 Yingjie Bi, Haixiang Zhang, and Javad Lavaei. Local and global linear convergence of general lowrank matrix recovery problems. Proceedings of the AAAI Conference on Artificial Intelligence, 553 36:10129-10137, 2022. 554
- Samuel Burer and Renato D.C. Monteiro. A nonlinear programming algorithm for solving semidef-556 inite programs via low-rank factorization. Mathematical Programming, 95(2):329-357, 2003.
- Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Com-558 mun. ACM, 55(6):111-119, 2012. 559
- Emmanuel J. Candes and Terence Tao. The power of convex relaxation: Near-optimal matrix com-561 pletion. *IEEE Transactions on Information Theory*, 56(5):2053–2080, 2010.
- Emmanuel J. Candès and Yaniv Plan. Tight oracle inequalities for low-rank matrix recovery from a 563 minimal number of noisy random measurements. IEEE Transactions on Information Theory, 57 564 (4):2342–2359, 2011. 565
- 566 Yingtong Chen and Shoujin Lin. Preconditioning with rip improvement for compressed sensing systems in total noise environment. Signal Processing, 179:107765, 2021. 567
- 568 Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random initialization: 569 Fast global convergence for nonconvex phase retrieval. *Mathematical Programming*, 176:5–37, 570 2019. 571
- James E. Fowler, Sungkwang Mun, and Eric W. Tramel. Block-based compressed sensing of images 572 and video. Found. Trends Signal Process., 4:297-416, 2012. 573
 - P Frankl and H Maehara. The johnson-lindenstrauss lemma and the sphericity of some graphs. Journal of Combinatorial Theory, Series B, 44(3):355–362, 1988.
- Rong Ge, Chi Jin, and Yi Zheng. No spurious local minima in nonconvex low rank problems: 577 A unified geometric analysis. In Proceedings of the 34th International Conference on Machine 578 Learning, volume 70, pp. 1233-1242. PMLR, 2017. 579
- 580 Kiryung Lee and Dominik Stöger. Randomly initialized alternating least squares: Fast convergence for matrix sensing. SIAM Journal on Mathematics of Data Science, 5(3):774-799, 2023.
- Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized 583 matrix sensing and neural networks with quadratic activations. In Proceedings of the 31st Con-584 ference On Learning Theory, volume 75, pp. 2–47. PMLR, 2018. 585
- 586 Ziye Ma, Javad Lavaei, and Somayeh Sojoudi. Algorithmic regularization in tensor optimization: 587 Towards a lifted approach in matrix sensing. In Thirty-seventh Conference on Neural Information Processing Systems, volume 36, 2023. 588
- 589 Ziye Ma, Ying Chen, Javad Lavaei, and Somayeh Sojoudi. Absence of spurious solutions far from 590 ground truth: A low-rank analysis with high-order losses. In International Conference on Artificial Intelligence and Statistics, volume 238, pp. 1603–1611. PMLR, 2024. 592
- Elizabeth S. Meckes. The Random Matrix Theory of the Classical Compact Groups. Cambridge University Press, 2019.

Francesco Mezzadri. How to generate random matrices from the classical compact groups. Notices of the American Mathematical Society, 54(5):592 – 604, 2007. M. A. Razzaque, Chris Bleakley, and Simon Dobson. Compression in wireless sensor networks: A survey and comparative evaluation. ACM Trans. Sen. Netw., 10(1), 2013. Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501, 2010. Jonathan Scarlett, Reinhard Heckel, Miguel R. D. Rodrigues, Paul Hand, and Yonina C. Eldar. Theoretical perspectives on deep learning methods in inverse problems. *IEEE Journal on Selected Areas in Information Theory*, 3(3):433–453, 2022. A Shabani, RL Kosut, M Mohseni, H Rabitz, MA Broome, MP Almeida, A Fedrizzi, and AG White. Efficient measurement of quantum dynamics via compressive sensing. Physical review letters, 106(10):100401, 2011. Baturalp Yalçın, Ziye Ma, Javad Lavaei, and Somayeh Sojoudi. Semidefinite programming ver-sus burer-monteiro factorization for matrix sensing. In Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023. Haixiang Zhang, Yingjie Bi, and Javad Lavaei. General low-rank matrix optimization: Geometric analysis and sharper bounds. In Advances in Neural Information Processing Systems, volume 34, pp. 27369-27380, 2021. Richard Zhang, Cédric Josz, Somayeh Sojoudi, and Javad Lavaei. How much restricted isometry is needed in nonconvex matrix recovery? Advances in Neural Information Processing Systems, 31, 2018. Oinging Zheng and John Lafferty. A convergent gradient descent algorithm for rank minimization and semidefinite programming from random linear measurements. Advances in Neural Informa-tion Processing Systems, 28, 2015. Zhihui Zhu, Qiuwei Li, Gongguo Tang, and Michael B. Wakin. Global optimality in low-rank matrix optimization. *IEEE Transactions on Signal Processing*, 66(13):3614–3628, 2018.