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ABSTRACT

This work studies the matrix sensing (MS) problem through the lens of the Re-
stricted Isometry Property (RIP). It has been shown in several recent papers that
two different techniques of convex relaxations and local search methods for the
MS problem both require the RIP constant to be less than 0.5 while most real-
world problems have their RIPs close to 1. The existing literature guarantees a
small RIP constant only for sensing operators having an i.i.d. Gaussian distribu-
tion, and it is well-known that the MS problem could have a complicated land-
scape when the RIP is greater than 0.5. In this work, we address this issue and
improve the optimization landscape by developing two results. First, we show
that any sensing operator with a model not too distant from i.i.d. Gaussian has a
slightly higher RIP than i.i.d. Gaussian, and that its RIP constant can be reduced
to match the RIP constant of an i.i.d. Gaussian via slightly increasing the number
of measurements. Second, we show that if the sensing operator has an arbitrary
distribution, it can be modified in such a way that the resulting operator will act
as a perturbed Gaussian with a lower RIP constant. Our approach is a precon-
ditioning technique that replaces each sensing matrix with a weighted sum of all
sensing matrices. We numerically demonstrate that the RIP constants for different
distributions can be reduced from almost 1 to less than 0.5 via the preconditioning
of the sensing operator.

1 INTRODUCTION

In this paper, we focus on an important class of problems in non-convex optimization and ma-
chine learning, named matrix sensing. The goal of the matrix sensing problem is to recover
a low-rank matrix from a set of limited linear measurements. To be more specific, given m
sensing matrices A1, . . . , Am ∈ Rn×n, we define the linear sensing operator A as A(M) =
[⟨A1,M⟩, . . . , ⟨Am,M⟩]T for all M . The matrix sensing problem is formulated as the following
non-convex optimization problem:

min
M∈Rn×n

1

2
∥A(M)− b∥2 subject to rank(M) = r. (1)

where b = A(M∗) is the observed vector, M∗ is the unknown ground truth matrix, and r denotes
the rank of M∗. Since the matrix sensing problem for an arbitrary solution M∗ (being a rectangular
matrix or a square sign indefinite matrix) can be converted to an expanded matrix sensing problem
whose solution is a symmetric and positive semidefinite matrix (Zhang et al., 2021), we assume that
M∗ is positive semidefinite and symmetric without loss of generality.

The matrix sensing problem has a wide range of real-world applications in signal processing and
machine learning, such as the training of neural networks (Li et al., 2018), reconstruction of images
and videos (Fowler et al., 2012; Baraniuk et al., 2017), wireless sensor network (Razzaque et al.,
2013), and quantum computing (Shabani et al., 2011; Ayanzadeh et al., 2020). It has attracted
significant attention in recent years as it sheds light on a board range of non-convex optimization
problems, serving as a theoretical guarantee in deep learning theory (Li et al., 2018; Scarlett et al.,
2022). The complexity of the matrix sensing problem lies in the low-rank structure that creates
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spurious solutions, which makes local search algorithms with a random initialization become stuck
at a wrong second-order critical point rather than the ground truth (Chen et al., 2019).

To overcome the above-mentioned non-convexity, one line of research relaxes this problem into a
convex semi-definite program (SDP) (Candès & Recht, 2012; Recht et al., 2010), by replacing the
rank constraint with a nuclear norm constraint. However, solving the SDP relaxation requires a
large amount of calculations. Another popular way to deal with the low-rank constraint is the Burer-
Monteiro (BM) factorization (Burer & Monteiro, 2003), which explicitly factorizes the low-rank
matrix M into the form M = XX⊤ where X ∈ Rn×r (note that this factorization uses the fact that
M∗ is positive definite and symmetric). Hence, the matrix sensing problem can be formulated as

min
X∈Rn×r

1

2
∥A(XX⊤)− b∥2 (2)

With this natural reparametrization, the number of parameters reduces from O(n2) in M to O(nr)
in X , where r is usually close to 1. Problem (2) is unconstrained, and therefore simple first-order
methods, such as Gradient Descent (GD), can be applied to solve the problem. However, the factor-
ized problem (2) is highly non-convex andNP-hard to solve. There have been extensive studies on
the optimization landscape of the matrix sensing problem (Candes & Tao, 2010; Candès & Recht,
2012; Recht et al., 2010; Ge et al., 2017; Zhang et al., 2018), and it turns out that the success of both
SDP relaxation and local search methods relies on a condition named Restricted Isometry Property
(RIP), which is defined below.

Definition 1 (RIP (Candès & Recht, 2012)). Given a natural number s, the linear mapA : Rn×n 7→
Rm is said to satisfy the Restricted Isometry Property (RIP) condition of rank s for a constant δ,
denoted as δs ∈ [0, 1), if the inequality

(1− δs) ∥M∥2F ≤ ∥A(M)∥2 ≤ (1 + δs) ∥M∥2F (3)

holds for all matrices M ∈ Rn×n satisfying rank(M) ≤ s.

Intuitively, the RIP is a condition guaranteeing that linear measurements approximately preserve
the Euclidean geometry of low-rank matrices. Specifically, a sensing operator satisfies the RIP if
it acts nearly as an isometry on the set of low-rank matrices, ensuring that the distances between
these matrices are preserved after measurement. When δs = 0, solving the matrix sensing problem
is trivial, while δs close to 1 implies a complicated landscape for the matrix sensing problem where
the number of local minima could be exponential (Yalçın et al., 2023). Note that the RIP constant is
not unique. If δs is an RIP constant, every number greater than δs is also an RIP constant.

The RIP condition is crucial for the success of various recovery algorithms, as it underpins their
ability to reconstruct the original matrix accurately from compressed measurements. Started by
the convex relaxation approach, Recht et al. (2010) and Candès & Recht (2012) demonstrated that
when the RIP constant satisfies the inequality δ5r ≤ 1/10, the SDP relaxation is exact, allowing
for the exact recovery of the ground truth M∗. Later, Bhojanapalli et al. (2016) examined the
factorized problem (2) and showed that δ2r ≤ 1/5 suffices to guarantee that all second-order critical
points for (2) correspond to the ground truth solution. Zhu et al. (2018) further established that
δ4r ≤ 1/5 is sufficient for the global recovery of the ground truth via a local search method. The
recent paper (Zhang et al., 2021) showed that δ2r < 1/2 is the tightest bound for guaranteeing such
global properties.

Through the lens of RIP, one can guarantee benign optimization landscape and convergence to global
optimality, solving the matrix sensing problem either using convex relaxations such as SDP or using
non-convex methods such as the BM factorization with a random initialization. Furthermore, when
the RIP constant is small, local search has a linear convergence rate for the factorized problem (2)
(Zheng & Lafferty, 2015; Lee & Stöger, 2023). Moreover, strict-saddle property holds if δ2r < 1/2 ,
and this result was developed for general low-rank optimization problems beyond matrix sensing (Bi
et al., 2022). While the bound δ2r < 1/2 is sharp , it is not satisfied for most real-world problems
except in special cases such as a class of isometric distributions.

Definition 2 (Nearly isometrically distributed (Recht et al., 2010)). LetA be a random variable that
takes values in linear maps from Rn×n to Rm. We say that A is nearly isometrically distributed if
for all X ∈ Rn×n it holds that

E
[
∥A(X)∥2

]
= ∥X∥2F

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

and for all 0 < ϵ < 1 we have

P
(∣∣∥A(X)∥2 − ∥X∥2F

∣∣ ≥ ϵ∥X∥2F
)
≤ 2 exp

(
−m

2

(
ϵ2/2− ϵ3/3

))
and for all t > 0 we have

P

(
sup
X ̸=0

∥A(X)∥
∥X∥F

≥ 1 +

√
n2

m
+ t

)
≤ exp

(
−γmt2

)
for some constant γ > 0.

Given 0 < δ < 1 and 1 ≤ r ≤ m, it turns out thatA is a nearly isometric random variable, with high
probability, i.e., δr(A) ≤ δ if m = Θ(rn/δ2) (Recht et al., 2010; Candès & Plan, 2011). Indepen-
dent and identically distributed (i.i.d.) Gaussian entries with variance 1/m are nearly isometrically
distributed, and the literature of matrix sensing has heavily relied on the i.i.d. and Gaussian as-
sumptions to justify the use of RIP. However, in practice we often have no prior knowledge of the
distribution of the sensing matrices, and in addition the independence assumption is hardly satisfied.

Motivated by this inconsistency and the importance of RIP, this paper offers theoretical insights
into deviations from nearly isometric distributions. We first study the case when the problem is not
Gaussian due to small perturbations and derive an upper bound on the change to the RIP constant in
terms of the distance of the distribution of the given operator from a Gaussian distribution. More-
over, we study whether an operator with an arbitrary distribution can be modified so that it acts as
a perturbed Gaussian for which the above result on its RIP constant can be applied. For the case
where the true distribution deviates significantly from normal distributions, we introduce a precon-
ditioning algorithm that replaces each sensing matrix with a weighted sum of all sensing matrices.
We discuss how this technique makes the resulting operator behave similarly to perturbed Gaussian
distributions, leading to a reduction in the RIP constant and improving the optimization landscape.

The paper is organized as follows. In Section 2, we demonstrate the robustness of the RIP constant
to small perturbations to the sensing operator. We show that nearly-isometric measurements under a
modest perturbation continue to satisfy the RIP, thereby ensuring the reliable recovery of low-rank
matrices. This finding is significant as it broadens the applicability of matrix sensing techniques to
real-world scenarios by relaxing the restrictive Gaussian assumption.

Furthermore, we investigate the role of orthogonalization in enhancing the optimization landscape
of the matrix sensing problem. In Section 3, we show that the orthogonalization of the sensing
matrices can improve the RIP constant, making the landscape more favorable for efficient recov-
ery algorithms. To achieve this, we propose a novel preconditioning method that optimizes the
mixing of the measurements to reduce the RIP constant. We provide a theoretical analysis for the
proposed method, and empirically show that it is highly effective on various types of measurement
distributions, including Poisson, uniform, and correlated Gaussian distributions. In particular, we
demonstrate that the original RIP constants for these distributions could be close to 1 for which the
SDP relaxation and local search methods would fail to work, while the preconditioning technique
reduces the RIP to less than 0.5 so that both of these optimization methods can correctly solve the
modified problem.

By addressing the above two aspects, our work contributes to a deeper understanding of the matrix
sensing problem with non-Gaussian models. We propose practical solutions to enhance recovery
performance, paving the way for more robust and efficient applications in matrix sensing and be-
yond.

Definitions and Notations The symbol ∥v∥ denotes the Euclidean norm of a vector v. ∥X∥F
denotes the Frobenius norm of a matrix X . ∥X∥M = maxi,j |Xij | denotes the largest absolute
entry of a matrix X . ∥A∥M = maxk maxi,j |Ak

ij | denotes the largest absolute entry of a sensing
operator A, where Aij

k denotes the (i, j) entry of the matrix Ak. σi(X) denotes the i-th largest
singular value of a matrix X . λi(X) denotes the i-th largest eigenvalue of a symmetric matrix X .
⟨A,B⟩ is defined as the inner product tr

(
ATB

)
for two matrices A and B of the same size, where tr

stands for trace. E(x) denotes the expectation of a random variable x. P(E) denotes the probability
of en event E. f = Θ(g) denotes that there exist constants c1, c2 > 0 such that c1 ∗ g ≤ f ≤ c2 ∗ g.
f = O(g) denotes that there exists a constant c > 0 such that f ≤ c ∗ g. For a matrix X, vec(X) is

3
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the usual vectorization operation by stacking the columns of the matrix X into a vector and mat(·) is
the inverse operator. VStack(·) denotes concatenating the rows of a matrix into a vector. [n] denotes
the integer set {1, . . . , n}. δs(A) denotes the smallest value for δs that satisfies the RIP condition of
rank s for the sensing operator A. The matrix orthogonality and the orthonormal basis are defined
under the standard inner product ⟨·, ·⟩.

2 PERTURBED ISOMETRICAL DISTRIBUTION

Given an arbitrary sensing operator A, we first prove that if A is perturbed via another operator that
is bounded by ε, then its RIP constant will be increased by at most O(mn2ε).

Theorem 1. Consider an arbitrary operator A with the RIP constant δs ∈ [0, 1). Let ε be a
nonnegative constant such that ε < 1−δs

2mn2∥A∥∞
. For every bounded perturbation operator N with

∥N∥∞ ≤ ε, the perturbed sensing operator A + N satisfies the RIP condition of rank s with the
constant δs + (4mn2∥A∥∞ε+mn2ε2(1− δ))/(2 +mn2ε2).

Proof. Let N1, . . . , Nm denote the components of N , i.e., N (X) = [⟨N1, X⟩, . . . , ⟨Nm, X⟩]. For
every matrix X ∈ Rn×n satisfying rank(X) ⩽ s, it holds that

∥(A+N )(X)∥2 =

m∑
i=1

⟨Ai +Ni, X⟩2

=

m∑
i=1

⟨Ai, X⟩2 +
m∑
i=1

⟨Ni, X⟩2 + 2

m∑
i=1

⟨Ai, X⟩ ⟨Ni, X⟩

Since A satisfies the RIP condition with the constant δs, we have

(1− δs) ∥X∥2F ⩽
m∑
i=1

⟨Ai, X⟩2 ⩽ (1 + δs) ∥X∥2F

Due to the Cauchy-Schwarz inequality, one can write

0 ⩽
m∑
i=1

⟨Ni, X⟩2 ⩽
m∑
i=1

∥Ni∥2F ∥X∥
2
F ⩽ mn2ε2∥X∥2F ,

and ∣∣∣∣∣
m∑
i=1

⟨Ai, X⟩ ⟨Ni, X⟩

∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

⟨Ai, Ni⟩

∣∣∣∣∣ ∥X∥2F ⩽ mn2ε∥A∥∞∥X∥2F

Hence,

0 <
(
1− δs − 2mn2∥A∥∞ε

)
∥X∥2F ⩽ ∥(A+N )(X)∥2 ⩽

(
1 + δs +mn2ε2 + 2mn2∥A∥∞ε

)
∥X∥2F

indicating thatA+N satisfies the RIP condition with the constant δs+mn2ε · 4∥A∥∞+ε(1−δs)
2+mn2ε2 .

If N is chosen as −A, then the RIP condition is not satisfied. Similarly, if N1, . . . , Nm are chosen
in a way that the (i, j) entries of all matrices A1 + N1, . . . , Am + Nm are zero for some indices
i and j, then the RIP condition again no loner holds. For these reasons, the existence of an upper
bound on ε in Theorem 1 is necessary.

Remark 1. With series expansion at ε = 0, the RIP constant derived in Theorem 1 can be ap-
proximated by δs + mn2

(
2∥A∥∞ε+ 1

2 (1− δs)ε
2 − ∥A∥∞mn2ε3 +O(ε4)

)
. On the other hand,

since A satisfies the RIP condition with the constant δs, the term ∥A∥∞ can be bounded by choos-
ing a matrix X whose entry at the position of the largest element of A is 1 and whose remain-
ing entries are 0. Hence, ∥X∥2F = 1 and ∥A∥2∞ ≤

∑m
i=1 ⟨Ai, X⟩2 ⩽ (1 + δs) ∥X∥2F , indi-

cating that ∥A∥∞ ≤
√
1 + δs. Thus, the RIP condition for A + N can be upper bounded by

δs +mn2ε[2(1 + δs)
1/2 + 1

2 (1− δs)ε] up to the first-order approximation.

Theorem 1 studies bounded perturbation operatorsN in the worst case. We will improve the results
by relaxing the boundedness of the perturbation.
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Corollary 1. Consider an arbitrary operator A with the RIP constant δs ∈ [0, 1). Consider also a
perturbation operator N such that ∥N∥∞ is sub-Gaussian with mean 0 and variance proxy σ2/m.
For every c > 0 and σ < 1−δs

2c
√
mn2∥A∥∞

, with probability at least 1 − 2 exp(−c2), the operator

A+N satisfies the RIP condition with the constant δs + c
√
mn2σ[2(1+ δs)

1/2 + c
2
√
m
(1− δs)σ].

Proof. Since ∥N∥∞ is sub-Gaussian bounded, we have P(∥N∥∞ ≥ ε) ≤ 2 exp
(
−mε2

σ2

)
. This

implies that P(∥N∥∞ ≤ ε) with probability at least 1− 2 exp
(
−mε2/σ2

)
. Combining Theorem 1

and ε = cσ/
√
m, it can be concluded that with probability at least 1− 2 exp(−c2), A+N satisfies

the RIP condition with the constant

δs + c
√
mn2σ[2(1 + δs)

1/2 +
c

2
√
m
(1− δs)σ].

This completes the proof.

Building on Corollary 1, we refine the RIP bound for a nearly isometrically distributed operator A.

Theorem 2. Assume that A is nearly isometrically distributed and ∥N∥∞ is sub-Gaussian with
mean 0 and variance proxy σ2/m. There exist positive constants c1 and c2, independent of the
parameters of N (such as σ) such that for every c > 0 and σ < 1−δs

2c
√
mn2∥A∥∞

, with probability
at least 1 − 2 exp(−c2) − exp (−c1m), the operator A + N satisfies the RIP condition with the
constant c2

√
ns log n/m+ c

√
mn2σ[2(1 + δs)

1/2 + c
2
√
m
(1− δs)σ].

Proof. It has been proved in Recht et al. (2010) that if A is nearly isometrically distributed, then
there exist positive constants c1 and c2 with c1 depending on the RIP constant of A such that, with
probability at least 1 − exp (−c1m), we have δs(A) ≤ c2

√
ns log n/m. Now, it follows from

Corollary 1 that with probability at least 1−2 exp(−c2)−exp (−c1m), it holds thatA+N satisfies
the RIP condition with the constant

c2
√
ns log n/m+ c

√
mn2σ[2(1 + δs)

1/2 +
c

2
√
m
(1− δs)σ].

This completes the proof.

Remark 2. Due to Theorem 2, the RIP constant of the perturbed operator A+N compared to the
RIP ofA has increased fromO(1/

√
m) toO(1/

√
m)+O(

√
mσ)+O(σ2). Thus, when the pertur-

bation σ is small, one can compensate for the influence of the perturbation on the RIP constant by
slightly increasing the number of measurements m, which will reduce the RIP constant of the per-
turbed operator to the RIP constant of the unperturbed operator A. This formula shows how many
additional measurements are needed to nullify the effect of deviation from a Gaussian distribution.

To summarize the results of this section, Theorem 1 provides an RIP bound for a fixed sensing oper-
ator A and a bounded perturbation N , and Corollary 1 extends this result to a random perturbation
N . In Theorem 2, we further derive a high probability bound for any nearly isometric random dis-
tributed sensing operator A, and prove that the impact of a small perturbation on RIP is small and
that increasing the number of measurements m on a small scale can compensate for the increase in
RIP.

3 PRECONDITIONING OF MATRIX SENSING

In the previous section, we proved that small deviations from nearly isometrically distributed sens-
ing matrices will slightly increase the RIP constant. However, real-world sensing matrices often
have unknown probability distributions that cannot be approximated by Gaussian models, for which
several empirical results have shown that the RIP constant is often close to 1. To address this issue,
we consider a sensing operator A coming from an arbitrary probability distribution and develop a
preconditioning algorithm to improve its RIP constant and make it act as a perturbed Gaussian.

It has been proved in Ma et al. (2023; 2024) that the RIP constant can be reduced if the optimization
complexity of the matrix sensing problem is increased, e.g., via a tensor-based lifting technique.
However, this incurs a high computational cost and is not applicable to large-scale matrix sensing

5
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problems. To avoid this computational complexity, we propose a simple and scalable linear precon-
ditioning method, which replaces every sensing matrix with a linear combination of all the original
sensing matrices. More precisely, consider a weight matrix P ∈ Rm×m with its (i, j) entry denoted
as Pij . We construct a preconditioned operator Ã with the components Ã1, ..., Ãm as follows:

Ãi =

m∑
j=1

PijAj , ∀i ∈ {1, ...,m}

Therefore,

⟨Ãi, X⟩ =
m∑
j=1

Pij⟨Aj , X⟩ =
m∑
j=1

Pijbj , ∀i ∈ {1, . . . ,m},∀X

Hence, Ã(X) = Pb. The preconditioning is independent of the optimization method (such as
local search or convex relaxation) to be used to solve the matrix sensing problem, and the goal of
preconditioning is to create a better structure for the sensing operator and thus a better RIP constant.
In what follows, we will develop a simple method for designing P and study its impact on the RIP
constant.

3.1 ORTHONORMAL BASES AS SENSING MATRICES

The following lemma for Haar distribution is the basis of our method.

Lemma 1 (Frankl & Maehara (1988)). Let {xj}nj=1 ⊆ Rd, and let P be a k × d random matrix,
consisting of the first k rows of a Haar-distributed random matrix in the orthogonal group O(d).
Given ϵ > 0 and k = a log(n)

ϵ2 , there are absolute constants c and C such that with probability at
least 1− Cn2− ac

4 the inequalities

(1− ϵ) ∥xi − xj∥2 ≤
(
d

k

)
∥Pxi − Pxj∥2 ≤ (1 + ϵ) ∥xi − xj∥2

hold for all i, j ∈ {1, . . . , n}.

The orthonormal vectors from the unitary matrix in QR decomposition of i.i.d. Gaussian matri-
ces follow a Haar distribution (Mezzadri, 2007). Given that those orthonormal bases maintain the
distances during projection, we are inspired to transform our original sensing operator A into a pre-
conditioned operator Ã with orthonormal bases as vectorized sensing matrices. To be more specific,
we first write the sensing operator A into the vectorized form

A = [vec(A1), vec(A2), . . . , vec(Am)]T ∈ Rm×n2

.

Then, since the inner product of two matrices can be defined as a vector product, it holds that

A vec(X) = A(X), ∀X ∈ Rn×n.

By pre-multiplying the above equation with a weight matrix P ∈ Rm×m, we ideally intend to make
the rows of PA normalized and orthogonal to each other. Since the individual entries of a random
orthogonal matrix are approximately Gaussian for large matrices (Meckes, 2019), as m increases,
these preconditioned operators are likely to act as i.i.d. Gaussian.

Define the s-sparse set spans(A) as the set of all matrices X that can be written as X =
∑m

i=1 αiAi

for some coefficients α1, ..., αm such that at most s coefficients are nonzero. We say that A1, ..., Am

are orthonormal if ⟨Ai, Aj⟩ = 0,∀i ̸= j and ⟨Ai, Ai⟩ = 1 otherwise.

Theorem 3. Assume that A1, ..., Am are orthogonal. It holds that

||A(X)||2

||X||2F
= 1, ∀X ∈ spans(A)

Proof. We expand the orthonormal matrices A1, ..., Am into a basis for Rn×n. More precisely,
consider orthonormal bases V1, . . . , Vn2 ∈ Rn×n such that Vi = Ai for i = 1, . . . ,m. Given a

6
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matrix X ∈ spans(A), we can write it as
∑m

i=1 αiAi with at most s nonzero αi’s. Without loss of
generality, we assume that ∥X∥2F =

∑m
i=1 α

2
i = 1. Now, one can write:

∥A(X)∥2

∥X∥2F
=

m∑
i=1

m∑
j=1

⟨Ai, αjVj⟩2 =

m∑
i=1

α2
i = 1.

This completes the proof.
The set spans(A) includes matrices that can be written as the sum of at most s matrices from the
set {A1, ..., Am}. As m increases, if this set continues to include orthonormal matrices, the set
spans(A) grows until it completely covers the low-rank set {X | rank(X) ≤ s}. Thus, it follows
from Theorem 3 that as m grows, the RIP constant for orthonormal matrices approaches zero (note
that RIP is about taking the minimum and maximum of the ratio ∥A(X)∥2/∥X∥F over matrices
of rank at most s). Hence, Theorem 3 justifies the conversion of arbitrary sensing matrices into
orthogonal matrices.

3.2 PRECONDITIONING ALGORITHM

Based on the idea of using orthonormal bases as sensing matrices, we propose Algorithm 1, which
applies the singular value decomposition (SVD) to extract unitary sensing matrices from the given
sensing operator.

Algorithm 1 Preconditioned Matrix Sensing

1: for iteration = 1, 2, . . . ,m do
2: ai ← vec(Ai)
3: end for
4: U, S, V ⊤ ← SVD(VStack(a1, a2, . . . , am))
5: for iteration = 1, 2, . . . ,m do
6: Ãi ← mat(V ⊤

i )
7: end for
8: Return Ã = [Ã1, Ã2, . . . , Ãm]

Figure 1: Empirical RIP curve

Remark 3. The singular value decomposition of A written as U [S,0m×(n2−m)]V
⊤ will ob-

tain a unitary matrix V ⊤ whose rows are the eigenvectors of A⊤A. The new sensing matrices
Ãi obtained by reshaping the rows of V ⊤ into matrices are perpendicular to each other. For
S = diag([σ1(A), . . . , σm(A)]) ∈ Rm×m, we could assume A to be full rank in practice, and
since σm(A) > 0, S becomes invertible. Since the extraction step can be considered as a linear
transformation, we can easily calculate the corresponding vector b′ = U⊤S−1b, and the weight
matrix is P = U⊤S−1.

In the following, we will derive an upper bound on the RIP constant of the preconditioned sensing
operator. Furthermore, we will prove that the RIP constant of the preconditioned Ã is smaller that
the RIP constant of the original sensing operator A with high probability.
Theorem 4. Consider an arbitrary operator A with the RIP constant δs ∈ [0, 1). Then, the condi-
tioned operator Ã also satisfies the RIP condition with the constant 1− 1−δs

σ2
1(A)

.

Proof. Since A satisfied the RIP condition, the following inequality holds for every matrix M such
that rank(M) ≤ s:

(1− δs) ∥M∥2F ⩽ ∥A(M)∥22 = ∥A vec (M)∥22 ⩽ (1 + δs) ∥M∥2F .
As Ã = PA, we introduce the operator norm of P and write

sup
M :A vec (M )̸=0

∥PA vec (M)∥22
∥A vec (M)∥22

= λ1

(
P⊤P

)
, inf

M :A vec (M )̸=0

∥PA vec (M)∥22
∥A vec (M)∥22

= λm

(
P⊤P

)
.

Now, we aim to bound ∥Ã(M)∥22 by the eigenvalues of P⊤P . Since P = U⊤S−1, U is a unitary
matrix, and S is diagonal, we have P⊤P = S−2, λ1

(
P⊤P

)
= σ−2

m (A), and λm

(
P⊤P

)
=

σ−2
1 (A). Hence,

σ−2
1 (A)∥A vec (M)∥22 ≤ ∥PA vec (M)∥22 ≤ σ−2

m (A)∥A vec (M)∥22.

7
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As a result, we obtain the lower bound

∥PA vec (M)∥22 ≥
1

σ2
1(A)

∥A vec (M)∥22 ≥
1− δs
σ2
1(A)

∥ vec (M)∥22.

On the other hand, since V is a unitary matrix, one can write

∥PA vec (M)∥22 = ∥S−1U⊤A vec (M)∥22 = ∥[Im,0m×(n2−m)]V
⊤ vec (M)∥22 ≤ ∥ vec (M)∥22

By combining the above two inequalities, we obtain the desired result for the RIP constant of Ã.

Remark 4. 1− 1−δs
σ2
1(A)

in Theorem 4 can be smaller or larger than δs, depending on whether δs+1 >

σ2
1(A).

Assumption 1. Assume that singular values of the matrix A ∈ Rm×n2

with m < n2 satisfy

Pr
{√

n2/m(1− ϵ)− 1 ≤ σi(A) ≤ 1 +
√
n2/m(1 + ϵ), i ∈ [m]

}
≥ 1−2 exp

(
−n2ϵ2/2

)
, ∀ϵ > 0.

Assumption 2. Consider two constants ϵ and δ such that

0 < ϵ < 1−
√

m

n2
,

[1 +
√

m
n2 (1 + ϵ)]2 − 1

2[1 +
√

m
n2 (1 + ϵ)]2 − 1

< δ <
1

2
.

Theorem 5. Let A be a nearly isometrically distributed operator. Under Assumption 1 and As-
sumption 2, there exist positive constants c0 and c1 depending only on δs such that, with prob-
ability at least 1 − exp (−c1m) − 2 exp (−n2ϵ2/2), as long as m ≥ c2sn log(n), the original
sensing operator satisfies δs(A) ≤ 2δ and the conditioned sensing operator satisfies δs(Ã) ≤
1− (1− δ)/[1 +

√
n2

m (1 + ϵ)]2.

Proof. Inspired by the proof of Theorem 1 in Chen & Lin (2021), define the following events

E1
.
= {A satisfies the RIP of rank s with the constant 2δ},

E2
.
=

{
Ã satisfies the RIP of rank s with the constant 1− (1− δ)/[1 +

√
n2

m (1 + ϵ)]2
}
,

F1
.
= {A satisfies the RIP of rank s with the constant δ},

F2
.
=

{√
n2

m (1− ϵ)− 1 ≤ σi(A) ≤ 1 +
√

n2

m (1 + ϵ), i ∈ [m]

}
.

We will show that Pr (E1E2) ≥ Pr (F1F2). Consider the singular value decomposition of A as
A = U [S,0m×(n2−m)]V

⊤, where U ∈ Rm×m, S = diag([σ1(A), . . . , σm(A)]) ∈ Rm×m, V ∈

Rn2×n2

. Under Assumption 2, we have
√

n2

m (1−ϵ)−1 > 0, and therefore S is nonsingular. Hence,

the preconditioning matrix defined as P = S−1U⊤ is valid. If A ∈ F1F2, in light of Theorem 4,
F1 implies that the conditioned operator Ã satisfies the RIP of rank s with the constant 1 − 1−δ

σ2
1(A)

.

With F2 implying an upper bound on σ2
1(A), obtain that Ã satisfies the RIP inequality (3) with the

constant 1 − (1 − δ)/[1 +
√

n2

m (1 + ϵ)]2. We could also have A ∈ E2. Since F1 ⊂ E1, we have
Pr (E1E2) ≥ Pr (F1F2). With the union bound Pr (F1F2) ≥ Pr (F1) + Pr (F2) − 1, we estimate
the probabilities Pr (F1) and Pr (F2) using Theorem 4.2 in Recht et al. (2010) and Assumption 1 to
arrive at

Pr (E1E2) ≥ Pr (F1F2)

≥ Pr (F1) + Pr (F2)− 1

≥ 1− exp (−c1m)− 2 exp (−n2ϵ2/2)

This completes the proof.

To shed light on the two assumptions used in Theorem 5, note that Gaussian random matrices satisfy
Assumption 1 as an example. Regarding Assumption 2, when ϵ → 0, δ → 1

2 , and the lower bound
of δ is always smaller than 1

2 . As a result, such pair (ϵ, δ) satisfying Assumption 2 always exists.
We immediately obtain the following corollary due to the fact that Gaussian random matrices satisfy
the concentration inequality of the singular values naturally.

8
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Corollary 2. Let A1, . . . , Am be i.i.d. Gaussian random matrices of mean zero and variance 1
m .

Under Assumption 2, there exist positive constants c0 and c1 such that, with probability at least
1−exp (−c1m)−2 exp (−n2ϵ2/2), as long as m ≥ c0s(m+n2 log(mn2)), , it holds that δs(A) ≤
2δ and δs(Ã) ≤ 1− (1− δ)/[1 +

√
n2

m (1 + ϵ)]2.

Remark 5. As explained before, the RIP constant is not unique and if δs satisfies the inequality 3,
then any number between δs and 1 also satisfies the inequality. Based on this argument, it follows
from Corollary 2 is that the RIP constants of the original operator A and preconditioned operator

Ã are 2δ and 1−(1−δ)/[1+
√

n2

m (1+ϵ)]2. The preconditioning improves the RIP if 2δ > 1−(1−

δ)/[1+
√

n2

m (1+ϵ)]2, which holds true under Assumption 2 for our choice of the parameters. Hence,
the preconditioning algorithm can improve the RIP constant for nearly isometrically distributed
random matrices with high probability. Under Assumption 2, although 2δ can be close to 1, the
preconditioning technique has the ability to reduce it to less than 1/2.

3.3 SIMULATION EXPERIMENTS

Figure 2: Empirical RIP comparison before and after preconditioning; the horizontal axis shows
that the sensing matrices are sampled from uniform distribution [0, 1], centered uniform distribution
[−1, 1], standard normal distribution, multivariate correlated normal distribution with ρ = 0.5, and
poisson distribution separately. The first row is for general sensing matrices, and the second row is
for matrices with special structures.

In this subsection, we will demonstrate the performance of the preconditioning Algorithm 1 for
s = 2r since δ2r determines whether or not SDP relaxations or local search methods succeed to
solve the matrix sensing problem. However, measuring the true RIP value δ2r for any given sensing
operator A requires checking the inequalities (3) for all low-rank matrices X of rank at most 2r
and determining the maximum and minimum possible values of ∥A(X)∥22/∥X∥2F over all rank-2r
matrices. This is equivalent to solving a non-convex optimization problem, which is known to be
NP−hard. Hence, we will instead measure the empirical RIP constant in our experiments.

By randomly selecting 1000 Gaussian distributed matrices M ∈ Rn×2r (we simply choose r = 1
in the following experiments), we generate 1000 rank-2r matrices X = M⊤M ∈ Rn×n to be rank-
2r matrices. Afterwards, we calculate ∥A(M)∥22/∥X∥2F for all those X matrices and compute the
smallest and the largest values, denoted as α and β correspondingly. Hence, we obtain the following
inequalities over the generated samples of rank-2r matrices:

α∥X∥2F ≤ ∥A(X)∥2 ≤ β∥X∥2F . (4)

Since rescaling (multiplying the sensing operator A by a constant c) will not affect the landscape
of the matrix sensing problem, we multiply all of the above inequalities by 2

α+β and calculate the

empirical RIP constant for 2
α+βA, which is β+α

β−α . Given that the set of simulated X is a subset of all

9
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low-rank matrices, the simulated RIP is a lower bound for true RIP value. We can see in Figure 1
that for Gaussian distributed sensing matrices, the empirical RIP value decreases as the number of
measurements m increases. The empirical RIP curve matches the m−1/2 curve, which is the result
of the true RIP bound in Recht et al. (2010). Hence, we could treat the empirical RIP value as an
accurate measure of the true RIP constant.

We randomly generate m sensing matrices under different distributions, including nearly isomet-
ric distributions such as Gaussian and non-isometric distributions such as Poisson. Besides, we
also generate A with special structures, including low-rank structures and sparse structures. We
numerically calculate the empirical RIP value before and after the preconditioning step. We run
experiments under different scenarios from n = 10 to n = 50, and run 100 trials for each scenario
to obtain the average empirical RIP value.

The results are plotted in Figure 2. We can see from the figure that for uniform, correlated normal
and poisson distribution, the original sensing operator has a RIP constant close to 1, which means
that with the i.i.d. Gaussian assumption violated, these measuring operators are no longer nearly
isometric and thus cannot guarantee a benign optimization landscape for the matrix sensing prob-
lem. However, after preconditioning, we observe a clear decrease in the corresponding empirical
RIP value. The preconditioned sensing matrices have the same level of RIP constant compared to
the standard normal distribution with the same m,n values. On the other hand, for centered uniform
and standard normal distribution, we can decrease the RIP constant by increasing m, and the pre-
conditioning step can still slightly help to decrease the RIP value. This improvement becomes more
obvious for the cases with a large m/n2.

In addition to unstructured operators A, we also study sensing matrices with special structures. For
the low-rank structure, we generate ai ∈ Rn×1 and define Ai = aia

⊤
i ∈ Rn×n. For the sparse

structure, we generate a binomial distributed mask with p = 0.3, and only 30% elements of A are
likely to be non-zero. The results are similar to the case of unstructured operators (see Figure 1),
and the preconditioning effectively decreases the empirical RIP value in both low-rank and sparse
cases. Even centered uniform and normal distribution will be affected by these special structures and
show high empirical RIP values. One can observe that our preconditioning algorithm has a universal
impressive performance in a wide range of situations.

Moreover, we can see that for the same level of (m,n), whatever the original distribution is, the
empirical RIP value after preconditioning for different types of distributions are almost the same,
which means that in practice we may not need to make additional assumptions on the distribution
of sensing matrices; the landscape after preconditioning as well as the RIP constant will mainly
depend on the value of r,m, n. As is shown by simulation experiments, Algorithm 1 makes best
use of the current information provided by the original sensing operator and remains stable under
different scenarios. The computational cost is also not high, only requiring O(m2n2) for a singular
value decomposition of a matrix of dimension m× n2.

4 CONCLUSION

The results presented in this paper highlight several critical insights into the behavior of sensing
operators and their impact on the Restricted Isometry Property (RIP) constant. When dealing with a
nearly isometric operator perturbed by a sub-Gaussian term, the impact of deviation from the nearly
isometric case can be effectively mitigated by increasing the number of measurements. Specifically,
the RIP constant ensures that a benign optimization landscape can be preserved even in the pres-
ence of perturbations to the sensing operator. Thus, even in the presence of perturbations, careful
adjustment of the number of measurements provides a practical approach to deal with non-Gaussian
distributions. Our findings also demonstrate both theoretically and empirically that the proposed
preconditioning algorithm significantly improves the RIP constant for various distributions. A no-
table observation is that, after preconditioning, the RIP constant is nearly independent of the orig-
inal distribution. This finding simplifies practical implementations, as it eliminates the need for
distribution-specific assumptions about the sensing matrices. Practitioners can rely on the precondi-
tioned sensing matrices to provide consistent RIP performance, primarily governed by the values of
r, m, and n.
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