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Abstract

The ability of large language models (LLMs) to follow natu-
ral language instructions with human-level fluency suggests
many opportunities in healthcare to reduce administrative
burden and improve quality of care. However, evaluating
LLMs on realistic text generation tasks for healthcare remains
challenging. Existing question answering datasets for elec-
tronic health record (EHR) data fail to capture the complex-
ity of information needs and documentation burdens experi-
enced by clinicians. To address these challenges, we intro-
duce MEDALIGN, a benchmark dataset of 983 natural lan-
guage instructions for EHR data. MEDALIGN is curated by
15 clinicians (7 specialities), includes clinician-written ref-
erence responses for 303 instructions, and provides 276 lon-
gitudinal EHRs for grounding instruction-response pairs. We
used MEDALIGN to evaluate 6 general domain LLMs, hav-
ing clinicians rank the accuracy and quality of each LLM re-
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sponse. We found high error rates, ranging from 35% (GPT-
4) to 68% (MPT-7B-Instruct), and 8.3% drop in accuracy
moving from 32k to 2k context lengths for GPT-4. Finally,
we report correlations between clinician rankings and auto-
mated natural language generation metrics as a way to rank
LLMs without human review. MEDALIGN is provided under
a research data use agreement to enable LLM evaluations on
tasks aligned with clinician needs and preferences.

Introduction

Large language models (LLMs) have revolutionized nat-
ural language processing in tasks such as reading com-
prehension, reasoning, and language generation (Zhao
et al. 2023), prompting researchers to explore applica-
tions in healthcare (Thirunavukarasu et al. 2023). Recent
LLMs like MedPalm (Singhal et al. 2023) and GPT-4
(Nori et al. 2023) have demonstrated expert-level perfor-
mance on medical question-answering benchmarks includ-
ing MedQA (Jin et al. 2021), MMLU (Hendrycks et al.
2020), and the USMLE (Kung et al. 2023). However, these
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Evaluating LLMs with MedAlign

Figure 1: In MEDALIGN, patient EHRs are transformed into XML markup and paired with clinician-generated instructions
using a retrieval-based (BM25) scoring metric. The resulting set of instruction + EHR pairs is then reviewed by clinicians to
write gold responses, which are used to evaluate EHR instruction following in large language models

benchmarks employ multiple-choice, exam-style evalua-
tions where question stems summarize key information and
a single answer choice is best. It is not known if performance
on these tasks will translate when a model is deployed in the
complex clinical environments.

To be useful, LLMs need to perform well on the spe-
cific information-related tasks that clinicians currently com-
plete themselves while caring for patients. These tasks are
a significant burden on clinicians, who spend 45% of their
day interacting with computers instead of patients (Toscano
et al. 2020) and 10 hours a week generating documenta-
tion (Gaffney et al. 2022), in part contributing to profes-
sional burnout (Muhiyaddin et al. 2021). Examples of these
tasks include summarizing a patient’s asthma treatment his-
tory from different specialists the patient has visited, gen-
erating a differential diagnosis based on partially resulted
laboratory data, or searching through the clinical notes for
mentions of a patient’s family support system in order to
create the best plan for the patient’s hospital discharge (see
Table 2). Such tasks could be passed as instructions to an
LLM in the form of questions or imperatives (e.g., “Write
a discharge summary”) grounded in a patient’s Electronic
Health Record (EHR, an electronic representation of a pa-
tient’s medical history). However, despite the excitement
about LLMs to transform the practice of medicine, evalu-
ations to date have not authentically represented the variety
of tasks and idiosyncrasies of EHR data that clinicians face
in the real world.

Given the recent emergence of instruction-following ca-
pabilities in LLMs (Wei et al. 2022a), there is potential
for LLMs to ameliorate such administrative burden. Hand-
curated exemplars of instructions and responses have been
critical to improve performance of models (Chung et al.
2022), especially on clinical reasoning and knowledge re-
call tasks in the healthcare domain (Singhal et al. 2023).
Thus, a high quality dataset of instruction-EHR-response tu-
ples that represents the breadth of clinical tasks is essential
not only as a shared benchmark, but potentially to acceler-
ate the training of specialized LLMs for healthcare (Shah,
Entwistle, and Pfeffer 2023).
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However, building such a dataset requires an extraordi-
nary effort from a multidisciplinary collaboration. In partic-
ular, generating an instruction-following benchmark dataset
with representative EHR-based tasks and expert responses is
challenging due to the substantial cost and logistical com-
plexity of clinician review. There is a need for an EHR
dataset that (1) contains a diverse set of questions and in-
structions generated by practicing clinicians; (2) pairs these
queries with EHRs from both inpatient and ambulatory
care settings; (3) leverages both structured and unstructured
data from the longitudinal EHR; and (4) is available to the
broader academic community.

In light of these challenges and opportunities, we present
three contributions:

1. MEDALIGN Dataset: We introduce a benchmark dataset
called MEDALIGN consisting of 983 questions and in-
structions submitted by 15 practicing clinicians spanning
7 medical specialties. For 303 of these instructions, we
provide a clinician-written reference answer and paired
EHR for grounding prompts. Each clinician evaluated
and ranked outputs from 6 different LLMs on these
303 instructions and wrote “gold standard” answers. To
our knowledge, MEDALIGN is the first dataset of EHR-
based instruction-answer pairs (including question and
imperative instructions) written by clinicians, with clini-
cian evaluations of LLM-generated outputs. Table 1 sum-
marizes MEDALIGN and its distinction from existing
datasets for clinical information needs.

. Automated Instruction-EHR Matching: We demon-
strate the feasibility of a simple retrieval-based approach
to pair an instruction with a relevant patient EHR. By
isolating the process of instruction solicitation, we were
able to scale and diversify the set of clinicians who sub-
mitted instructions. Furthermore, we show that our pro-
cess for matching instructions to relevant EHRs produces
arelevant pairing 74% of the time — at least twice as fre-
quently as randomly pairing instructions to EHRs.

. Automated Evaluation of LLM Responses: We ana-
lyze the correlation between clinician rankings and au-
tomated natural language generation (NLG) metrics as a
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Dataset Questions Documents Patients Specialties Labeler Source
(Raghavan et al. 2018) 5696 71 71 - Medical Students Clinical Note
(Pampari et al. 2018) 73111 303 303 - Programmatic Discharge Summary
(Fan 2019) 245 138 - 1 Author Discharge Summary
(Yue et al. 2021) 1287 36 - - Medical Experts Clinical Note
(Soni et al. 2022) 3074 1009 100 1 Clinicians Radiology Note
MEDALIGN (Ours) 983 37264 276 7 Clinicians EHR

Table 1: Comparison of our work to existing EHR QA datasets.

way to scalably reproduce such analyses, reducing future
needs for clinicians to label and rank LLM responses.

Background and Related Work

The volume of patient care data is growing exponentially,
with a compound annual growth rate approaching 36% (Cul-
bertson 2021). Utilizing LLMs to more efficiently interact
with patient data holds great potential to help clinicians man-
age increasingly complicated information needs and circum-
vent low-usability EHR interfaces (Melnick et al. 2020).
However, evaluation of LLMs to improve meaningful out-
comes like clinician burnout or patient health has been inad-
equately studied, mainly due to benchmark datasets which
do not represent true clinician needs (Henry et al. 2020),
narrowly focus on a specific medical specialty or subset of
EHR data (Lehman et al. 2022), and/or are overly simplis-
tic due to templated question construction (Pampari et al.
2018; Yue, Gutierrez, and Sun 2020). These works highlight
the challenges in collecting high-quality clinician-generated
questions and answers; we consider each in turn.

Questions and instructions in an EHR-based benchmark
dataset should be paired with relevant patient EHRs. In or-
der to ensure relevancy, prior works have provided clini-
cians with specific patient EHRs and asked them to gener-
ate questions based on those patients’ data (Lehman et al.
2022). Unfortunately, requiring EHRs as context for ques-
tion generation limits scalability, as medical institutions re-
strict access to patient data to preserve patient privacy. Pam-
pari et al (2018) attempted to overcome these scalability is-
sues by generating questions via a template-based approach,
but this led to issues with question quality and diversity
(Yue, Gutierrez, and Sun 2020). Our method of soliciting
clinician-generated instructions without a specific patient’s
EHR as context overcomes these scaling issues, albeit at the
cost of potentially less relevant instruction-to-EHR pairings
(we discuss our approach to addressing this problem in the
Dataset Curation section).

Beyond generating questions, generating expert answers
at scale is also prohibitively difficult. Reviewing an EHR to
answer patient-specific queries can take 30+ minutes for a
single patient (Siems et al. 2020). This excludes any time
required to generate a response to the query. Prior works
have attempted to overcome the bottleneck of generating
responses by extracting answers verbatim from individual
clinical notes or discharge summaries (Soni et al. 2022;
Oliveira et al. 2021; Fan 2019). However, many clinical
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tasks require synthesizing information from both structured
data and multiple free-text documents to arrive at an ade-
quate response, an aspect not explored in existing EHR QA
datasets. In such cases, answers extracted from a single note
in the patient’s record may not be an adequate; free-text text
generation is required. While there is at least one example
of an EHR-based question answering dataset in the literature
that includes both structured and unstructured data (Ragha-
van et al. 2018), it neither contains free-text responses nor is
publicly available. Finally, all of the aforementioned datasets
focus on simple question answering (i.e., providing concise,
factoid-style answers) rather than general instruction follow-
ing, which often requires executing a series of complex di-
rectives and commands to accomplish tasks. To the best of
our knowledge, there does not exist any EHR-based bench-
mark dataset that incorporates instruction following.

The significant costs of clinician review present barriers
not only for de novo dataset generation, but also for reliable
evaluation of new methods on existing datasets. Automated
metrics for evaluating Natural Language Generation (NLG)
systems have shown moderate to high correlation with hu-
man judgments on tasks like machine translation (Freitag
et al. 2022), but it is unclear whether these findings ex-
tend to other domains and tasks. While there is precedent
(Lehman et al. 2022) for applying automated metrics like
BLEU (Papineni et al. 2002), ROUGE-L (Lin 2004), ME-
TEOR (Banerjee and Lavie 2005), and BERTScore (Zhang
et al. 2020) to NLG tasks in the clinical domain, there is
comparatively very little work assessing correspondence be-
tween these metrics and human judgment on clinical NLG
tasks. Thus not only do we have a poor understanding of how
LLMs perform on EHR-based instruction-following tasks,
but also we do not know whether it is possible to reliably
automate such evaluations. Automation could substantially
reduce the “barrier to entry” for research teams with limited
resources.

Dataset Curation Process

Electronic Health Records (EHRs) EHR systems are
software for managing patient medical record data. From
a clinician’s view, a patient EHR is accessed via a graphi-
cal user interface that provides access to data elements as-
sociated with medical care, e.g., medication lists, treatment
plans. These data are stored as a collection of timestamped
structured (tabular) and unstructured (text) events, which
when ordered by time form a patient’s longitudinal EHR
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timeline. Our EHR data is represented using the OMOP
CDM, a standardized schema for exchanging medical data,
translated into a single, XML markup document per record
(example provided in Appendix) to enable simple data ex-
ploration via an XML viewer. Figure 1 outlines the workflow
for building MEDALIGN including: (1) pairing clinician-
generated instructions with patient EHR markup, and (2)
evaluating language model responses against gold responses
written by clinicians.

Collection Protocol Reviewing patient medical data re-
quires adhering to strict security protocols to protect pa-
tient privacy and prevent protected health information (PHI)
leaks. This motivated our 3-stage curation process: (1) on-
line instruction collection from clinicians; (2) instruction-
EHR matching; and (3) response generation. Note we delib-
erately decouple instruction collection from response gener-
ation. This enables sampling a larger set of instructions from
a more diverse set of clinician specialities while minimizing
exposure to patient data. However, this approach requires
defining a matching function to pair instructions with rele-
vant patient EHRs, a process which may generate errors due
to irrelevant instruction-EHR pairings. We discuss the per-
formance of a retrieval-based matching system below.

Stage 1: Collecting Instructions Clinicians were re-
cruited in our academic medical center via email. Through
the use of an online form, clinicians were asked to submit
instructions as posed to a hypothetical Al assistant designed
to facilitate EHR-based tasks. Participants were instructed
to envision a clinical vignette typical of their daily practice
and to formulate an instruction that the Al could perform to
make their work easier, faster, and less stressful. For each
instruction, participants were asked to provide metadata to
assist in matching the instruction to a patient, including per-
tinent clinical characteristics and the clinical context where
the instruction could be used, e.g., using contrast in a CT
scan. See the Appendix for all collected fields.

Stage 2: Instruction-EHR matching All submitted in-
structions include metadata information (by request) on their
clinical context and target patient population. We used in-
structions tagged “applicable to patients generally” to max-
imize their relevance in EHR matching. We evaluated two
methods for matching instructions with EHRs: (1) a sim-
ple baseline based on uniform random sampling; and (2) a
retrieval-based method using BM250kapi (Trotman, Puu-
rula, and Burgess 2014).

For the retrieval approach, we concatenated every instruc-
tion with its corresponding patient characteristics and clini-
cal context to construct a search query. We used this query
to retrieve the 5 most relevant EHRs within a randomly
selected subsample of patients (77200) from our hospital
database. This same subsample was used to match patients
for our baseline uniform random sample. After matching,
the authors conducted a manual review to assess binary rel-
evance of all generated instruction-EHR pairs.

Stage 3: Instruction Response Generation For this
stage, clinicians were tasked with reviewing the instruction
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Category Example Instruction Gold All
Retrieve &  Summarize the most recent 223 667
Summarize  annual physical with the PCP
Care Summarize the asthma care 22 136
Planning plan for this patient including
relevant diagnostic testing,
exacerbation history, and
treatments
Calculation Identify the risk of stroke in 13 70
& Scoring  the next 7 days for this TIA
patient
Diagnosis Based on the information I've 4 33
Support included under HPI, what is a
reasonable differential
diagnosis?
Translation I have a patient that speaks 0 2
only French. Please translate
these FDG-PET exam
preparation instructions for
her
Other What patients on my service 41 75
should be prioritized for
discharge today?
Total 303 983

Table 2: MEDALIGN categories and example instructions.

and associated EHR data, then writing a response to that in-
struction. Whenever feasible, instructions were assigned to
clinicians within the same specialty as the original submitter
but not the original submitter themselves. In cases where this
was not possible, the instruction was randomly assigned to a
clinician, in any specialty, that did not submit the instruction.
Clinicians were asked whether the instruction could be fea-
sibly applied to the patient in the EHR (e.g., not asking about
smoking history in an infant) and if the EHR contained all
necessary information to answer the instruction. They then
manually generated an expert response to the instruction.
This response was intended to be brief and clinically rele-
vant, drawing on any information available in the supplied
EHR record, as well as any appropriate external references.
The most recent timestamp in the EHR was designated as
the “time anchor”, meaning the response was written as if
the instruction had been posed at that point in time.

Dataset Description

Instructions Collected A total of 15 clinicians submitted
instructions during the data collection process. These medi-
cal practitioners represented 7 distinct specialties, which in-
cluded Internal Medicine (492 instructions submitted), Neu-
rology (320), Radiology (402), Cardiology (71), Oncology
(14), Surgery (12), and Primary Care (3). Clinicians pro-
vided a varying number of instructions ranging from 1 to 278
with a mean of 87 instructions per clinician (see Appendix).
From the 1314 instructions collected, 455 were marked as
applicable to patients generally and 859 were relevant only
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Model Context Correctt WR 1T Rank|
GPT-4 (MR) 32768"  65.0% 0.658 2.80
GPT4 32768 60.1% 0.676 2.75
GPT-4 2048* 51.8% 0.598 3.11
Vicufia-13B 2048 35.0% 0.401 3.92
Vicufia-7B 2048 33.3% 0.398 3.93
MPT-7B 2048 31.7% 0.269 4.49

Table 3: Human evaluation of LLM responses. Context: The
model’s context length, using its native tokenizer. Correct:
The percentage of model responses deemed correct by clini-
cians. WR: Average win-rate marginalizing over model pair-
ings. Rank: Empirical mean of human-assigned rankings.
fWith multi-step refinement the effective context length is
infinite, as the model observes the entire EHR albeit in small
chunks at a time. *For GPT-4 (2k) we used the GPT-4 32k
models from OpenAl but restricted its context length using
the Vicufia-native tokenizer for direct comparison.

to patients with specific clinical characteristics. We removed
near-identical instructions (defined by a ROUGE-L similar-
ity above 0.7), yielding 983 instructions of which 407 were
marked as applicable to patients generally.

Instruction-EHR Matches Based on evaluation by the
authors, for 240 (59%) of the instructions applicable to “pa-
tients in general” the first record retrieved by BM25 was rel-
evant. For 303 instructions (74%), at least one of the top
5 EHRs returned by BM25 was relevant. In contrast, only
38% of EHRs retrieved via uniform random sampling were
deemed relevant.

Instruction Taxonomy To better understand higher-level
themes within the instructions submitted, a practicing clini-
cian developed a taxonomy of instructions. This taxonomy,
described in detail in the Appendix, includes 6 categories
spanning 20 subcategories. We summarize the distribution
of instruction categories across the set of all instructions sub-
mitted and those that received responses from a clinician in
Table 2. We include further analysis in the Appendix.

Benchmarking LLLM Performance

LLM Selection We evaluated six distinct LLMs, chosen
to capture both state-of-the-art, closed-source LLM capabil-
ities available to consumers via an API as well as smaller,
open-source and user-modifiable LLMs with more lenient
commercial licensing (e.g., MosaicML’s MPT-7B model).
Additionally, we designed our experiments to directly eval-
uate the impact of model parameters and context length.
For a state-of-the-art LLM, we selected GPT-4 (through
Microsoft’s Azure OpenAl HIPAA compliant gpt-4-32k-
0301 API) due to its state-of-the-art performance on various
medical tasks, its long 32k context length, and its availabil-
ity to researchers and clinics. However, despite this context
length, it proved insufficient for accommodating full EHRs
(more than 80% of EHRs in MEDALIGN contain more than
32k tokens, see Appendix). To address this limitation, we
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GPT-4 (32k + MR) 0.48
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0.6

GPT-4 (2k)

Vicufia-13B (2k)

Model A: Winner

Vicufia-7B (2k) 0.50 0.64

MPT-7B-Instruct (2k) 0.37 0.36

Prop. Model A Wins for All Non-tied A vs. B Battles (Human Ranks)

Figure 2: Head-to-head comparison of model performance
based on human ranks. The number in row ¢, column j in-
dicates the proportion of instructions for which the response
generated by the model in row 7 was strictly preferred over
the model in row j. Compare to Figure 3 constructs the same
matrix but using rankings derived from COMET, an auto-
mated metric, rather than clinician-generated rankings.

explored a multi-step refinement (MR) approach to maxi-
mize effective context length. In this approach, the EHR is
divided into “chunks” designed to be as big as possible (30k
tokens, without concern for maintaining valid XML struc-
ture) while still fitting within the model’s context length. A
response to the instruction is generated using the chronolog-
ically first/earliest EHR “chunk” as context, then the second
“chunk” is given to the model and the model is instructed to
update its response if appropriate or maintain the same re-
sponse otherwise, and so on, until the entire EHR has been
fed through the model. We acknowledge the potential ef-
fectiveness of other methods, such as Retrieval Augmented
Generation (RAG), in answering questions regarding long
documents. However, our primary interest was in measuring
LLM’s ability to discern and utilize clinically relevant mate-
rial when answering questions about the EHR. While meth-
ods such as RAG would likely be performant in this area,
they would not have enabled us to assess the LLM’s ability
to sift through irrelevant material by nature of its design.

For smaller, open-source models we evaluated Vicuiia-7B
and Vicufia-13B (Chiang et al. 2023) as well as MPT-7B-
Instruct (MosaicML 2023). These models are widely avail-
able and user-modifiable with favorable licensing agree-
ments, but they have considerably smaller context lengths
(2048 tokens) compared to GPT-4. To enable more direct
comparisons, we assessed GPT-4 under a restricted context
length designed to exactly match the context length of the
Vicuifia model.
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Figure 3: Head-to-head evaluation of model performance us-
ing COMET Ranks (compare to Figure 2). Model win rates
using COMET follow a similar pattern as to model win rates
using human rankings.

Generating LLM Responses to EHR-based Questions
and Instructions Using a standard prompt template (see
Appendix), each model was tasked to fulfill the given in-
struction grounded on its corresponding EHR pair. Due to
current models’ context length restrictions, EHRs needed to
be truncated. This truncation process involved taking each
model’s maximum context length (in number of tokens un-
der that model’s specific tokenizer), reserving 256 tokens
for generation, and subtracting any tokens used for the cor-
responding structured prompt and instruction. This trunca-
tion was performed by counting tokens from the end of the
record, ensuring that as much recent information as possible
was retained.

Clinician Evaluation of LLM Responses Nine clinicians
were asked to evaluate and rank the responses generated
by 6 separate LLMs. Clinicians did not evaluate their own
responses or responses to instructions that they submitted.
When feasible, clinicians evaluated responses to instructions
that were written by a clinician in their same specialty. The
instructions and EHRs reviewed by the clinicians were ex-
actly the same in structure and content as those provided
to the LLMs. Clinicians recorded a binary evaluation of
whether the response was correct or incorrect, with “incor-
rect” defined as meeting at least one of the following criteria:

1. Response is not clinically appropriate based on the avail-

able EHR information;

. Response includes errors that, if corrected, would change
the clinical interpretation;

. Response does not address the instruction.

Responses not marked as “incorrect” were deemed to be
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“correct”. Clinicians then ranked the quality of the LLM re-
sponses based on which provided the most clinically rel-
evant and appropriate response. Ties were permitted. The
clinicians were blinded to which LLM generated each out-
put, and the order of LLM output was reshuffled for each
instruction. Each clinician reviewed 49 instruction-patient
pairs on average, yielding 303 pairs reviewed overall with
50 instruction-EHR pairs being reviewed by three clinicians.

Overall, we found that more than half of the responses
generated by the GPT-4 variants we tested were deemed
correct by clinicians (65% for GPT-4 (32k + MR), 60.1%
for GPT-4 (32k), 51.8% for GPT-4 (2k)). By contrast, only
about one in three responses generated by the Vicufia and
MPT-7B models were considered correct (35% for Vicuia-
13B, 33.3% for Vicuiia-7B, 31.7% for MPT-7B-Instruct; see
Table 3). In head-to-head comparisons, GPT-4 without con-
text length restriction was preferred over the Vicuia-13B
model in 72% of instances, and preferred over MPT-7B-
Instruct 81% of the time (see Figure 2). The GPT-4 model
with 32k context length and no multi-step refinement had
the highest overall average win-rate against all other models
(0.676).

Automated Evaluation of LLM Responses

With the aim to to find an automated proxy for clinician-in-
the-loop evaluation, we analyzed the correlation between a
suite of automated metrics and human preference rankings
using the Kendall’s Rank Correlation. We also calculated
the inter-rater correlation between human rankers, yielding
a mean Kendall’s Tau coefficient of 0.44. The average cor-
relations between metrics and human rankings is shown in
Table 4. As noted by previous studies (Nimah et al. 2023),
the majority of these metrics have shown moderate correla-
tion with human preference and are widely reported in NLG
tasks.

We evaluated each model output using both source-
free (SF) and source-augmented (SA) automated metrics.
Source-free metrics compare a model’s output to a gold stan-
dard reference answer (in our case generated by a clini-
cian) without the use of any additional context or sources
(i.e., without any information from the EHR). We selected
BERTScore (Zhang et al. 2020), METEOR (Banerjee and
Lavie 2005), chrF++ (Popovi¢ 2017), GoogleBLEU (Wu
et al. 2016), and ROUGE-L (Lin 2004) due to their avail-
ability and wide use. Source-augmented metrics consider
source (e.g., the EHR) in addition to a gold reference and
model output. The SA metrics we considered (and the LMs
they use) include UniEval (TS5 -large) (Zhong et al. 2022)
and COMET (XLM-RoBERTa) (Rei et al. 2020). As these
models have limited context length we used the BM250kapi
algorithm to retrieve relevant snippets from within the pa-
tient’s EHR using the instruction as a search query.

Overall, COMET (Rei et al. 2020) exhibited the strongest
correlation with clinician preference rankings, approach-
ing the level of human inter-reviewer reliability (0.37 vs.
0.44). As seen in Figures 2 and 3, the overall trends
of head-to-head comparisons were preserved when us-
ing COMET as the source of model output rankings vs.
clinician-generated rankings. Specifically, the GPT-4 were
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Automated Metric Source Avg. 95% CI1
Augmented Corr.
COMET v 0.37 0.33-0.41
BERTScore 0.34  0.30-0.38
METEOR 0.32  0.28-0.36
chrF++ 0.29 0.25-0.33
GoogleBLEU 0.29 0.25-0.33
ROUGE-L 0.27 0.23-0.31
BLEURT 0.25 0.21-0.30
LENS 0.18 0.14-0.22
UniEval Relevance v 0.27 0.23-0.32
UniEval Fluency v 0.11  0.06-0.15
UniEval Coherence v 0.09 0.04-0.13
UniEval Consistency v 0.09 0.04-0.13
UniEval Overall v 0.20 0.15-0.24
Inter-Rater Reliability 0.44 0.34-0.53

Table 4: Correlation (mean Kendall’s Tau) between auto-
mated metrics’ ranking and human ranking of LLM outputs.
Mean Kendall’s Tau between human reviewers was 0.43.

consistently preferred over the Vicufia and MPT-7B mod-
els by both COMET and clinicians, and the Vicufia models
were consistently preferred over the MPT-7B model. Within
the GPT-4 variants and between the two Vicufia models
considered, win-rate preferences were not necessarily pre-
served, suggesting utility of COMET as a reasonable but
perhaps coarse measure of model performance in this set-
ting. The next most correlated metric with human rankings
after COMET was BERTScore, a source-free metric, with
an average correlation coefficient of 0.34.

Using our best performing automated metrics, COMET
and BERTScore, we evaluated four recently released
instruction-tuned medical LLMs (all based on Llama-2
(Touvron et al. 2023)): AlpaCare (Zhang et al. 2023), Clin-
icalCamel (Toma et al. 2023) and Med42 (Christophe et al.
2023). Figure 4 shows that current medical instruction tun-
ing largely causes worse performance in MEDALIGN vs. the
base Llama-2 model.

Discussion and Conclusion

Readily available datasets and benchmarks for easy-to-
evaluate tasks like closed-form question answering have
helped to measure the remarkable progress of LLMs, even
in medical domains (Kung et al. 2023). However, logisti-
cal difficulties and significant labeling costs have hindered
progress towards establishing a shared dataset and bench-
mark for tasks amenable to LLMs and which truly represent
clinician needs. We share such a benchmark dataset with
the research community, which takes a novel approach to-
wards instruction gathering by modularizing and isolating
the process of solicitation and EHR pairing. To the best of
our knowledge, our dataset is the first to evaluate LLM per-
formance on clinician-generated questions and instructions
using comprehensive, longitudinal EHRs. This affords sev-
eral new insights.
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Base vs. Base + Medical Instruction Tuning

Llama2 7B -j—{
AlpaCare 7B -j—{

Llama2 13B

AlpaCare 13B

Llama2 70B

ClinicalCamel -j—{

052 054 056 0.58 0.60 0.65
COMET

0.70 0.75 0.80

BERTScore

Figure 4: Automated evaluation of medical instruction-tuned
LLMs vs. general instruction-tuned counterparts using the
best-performing metrics (COMET and BERTScore).

The Importance of Context Length. While GPT-4 with
a restricted context length of 2048 tokens achieved a cor-
rectness rate of 51.8%, the exact same GPT-4 model given
32000 tokens of context from the EHR achieved a cor-
rectness rate of 60.1%. Thus the additional context length
yielded an additional 8.3% in the proportion of correct
responses. Given the sheer quantity of tokens and con-
cepts contained within comprehensive EHRs, including in
MEDALIGN (see Appendix), it is perhaps not surprising that
instruction following performance was poor with a limited
context length. Indeed, not a single EHR in MEDALIGN
can fit entirely within the Vicufia or MPT-7B’s 2048 con-
text length, and only 19.6% of these records can entirely fit
within the 32k context length afforded by GPT-4. This high-
lights the importance of context length in applying LLMs to
EHR-based tasks and motivates efforts to increase context
lengths via e.g., methods that do so implicitly via position
interpolation (Chen et al. 2023) or approaches that explicitly
improve the training efficiency of mathematical operations
(Dao et al. 2022).

Misalignment with Current Benchmarks Medical in-
struction tuning in academic models currently favors shorter
contexts, optimizing for tasks like MedQA and MMLU.
MedQA, consisting of USMLE-style questions covering di-
agnosis support and care planning, is a popular choice for
assessing the medical skills of an LLM. However, USMLE-
style questions only comprise 17% of clinician-submitted
instructions in MEDALIGN while 68% involve retrieving
and summarizing data from the EHR. Our results high-
light that current medical instruction tuning degrades per-
formance in longer context tasks, with base Llama-2 mod-
els outperforming medical instruction-tuned LLMs in most
cases. Given the importance of long contexts and summa-
rization skills in addressing clinician information needs, our
work underscores the need to evaluate instruction tuning
tasks beyond MedQA and similar narrow benchmarks.
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Limitations. Our approach of first soliciting instructions
and then pairing these instructions to EHRs can increase the
scale and diversity of instructions collected, but at a cost.
Despite yielding almost twice as many relevant pairings as
simply randomly selecting an EHR for each instruction, our
BM25 approach did not yield a relevant match for approx-
imately 30% of instructions. In other words, while an in-
struction submitted by a clinician was of course relevant to
the hypothetical patient they had in mind at the time of sub-
mission, it frequently ended up not being relevant to an ac-
tual patient EHR. There are potential ways to improve this
matching process e.g., by using vector databases powered
by BERT-style models which could better capture semantic
alignment between queries and EHRs relative to BM25 (Wei
et al. 2022b). Additionally, while we solicited instructions
from a large number of clinicians at our academic medical
center with diverse specialties and backgrounds, the clini-
cians who submitted data to MEDALIGN represent only a
small fraction of the overall clinician workforce.

Conclusion. This work establishes, for the first time, the
performance of some of the most capable LLMs available
— GPT-4, LLaMA, and MPT-7B-Instruct — on EHR-based
instruction-following tasks. We find that approximately one-
third of the best-performing LLM’s responses are incorrect.
The benchmark dataset we share, MEDALIGN enables re-
searchers to measure what matters and focus on tasks that
are clinically relevant with significant potential positive im-
pact. In addition, our findings establishing significant cor-
relation between human preference and existing automated
metrics provide a path for researchers to make technical
progress without requiring the organizational infrastructure
for clinical labeling. Finally, our novel approach towards so-
liciting clinician instructions paves the way for even larger-
scale data collection efforts, both for training and evaluation
purposes.

Ethics Statement

Security and Compliance. A university institutional re-
view board granted approval for this study (reference num-
ber 57916). All authors handling data individually com-
pleted institutional HIPAA and data privacy training prior to
engagement with the data. All models exposed to data were
deployed within HIPA A-compliant compute infrastructure.

Privacy and Data Deidentification All data were de-
identified using a “hiding in plain sight” protocol wherein
protected health information (PHI) is replaced by coherent
synthetic alternatives (Carrell et al. 2013), e.g., tagging all
person names and replacing them with a randomly generated
name. For the research release of the MEDALIGN dataset, all
documents will undergo human review to minimize risk of
inadvertently exposing PHI. The dataset will be hosted in an
university-approved, secure data portal and will require user
credentialing to access, i.e., completing CITI ethnics train-
ing and agreeing to the terms of our data use agreement.

Patient Consent Every patient at our medical center has
provided their signature on a privacy notice, which explains
that their medical records could be utilized for research. This
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data, once de-identified, is accessible to researchers under a
comprehensive IRB protocol of the university.

Societal impact. LLMs could streamline clinician work-
flows within the EHR by replacing clunky point-and-click
interfaces with natural language interactions, improving
clinician efficiency. Muhiyaddin et al. (2021) found EHR-
related documentation tasks to be a leading cause of physi-
cian burnout, resulting in low-quality care, costly turnover,
and a decline in patient safety. By easing documentation bur-
den, LLMs could thus increase care quality, decrease clini-
cian turnover, and improve patient safety. MEDALIGN pro-
vides a way to assess whether LLMs are safe and ready for
the deployments necessary to realize these potential benefits.
Introducing LLMs into the clinic also poses potential
risks. Even the best-performing model of those we assessed
(GPT-4) produced incorrect responses for more than 33%
of the clinician-generated instructions. These errors could
decrease patient safety by leading to poor clinical deci-
sion making. More insidiously, a recent study by Omiye
et al. (2023) noted that commercial LLMs propagate harm-
ful race-based stereotypes in medicine. We analyzed LLM
performance differences across race in MEDALIGN (see Ap-
pendix) and found minimal disparities, but more work is
needed. Additionally, we did not examine specific failure
modes like hallucination and leave this for future work.
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