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ABSTRACT

Many biochemical applications such as molecular property prediction require
models to generalize beyond their training domains (environments). Moreover,
natural environments in these tasks are structured, defined by complex descriptors
such as molecular scaffolds or protein families. Therefore, most environments are
either never seen during training, or contain only a single training example. To
address these challenges, we propose a new regret minimization (RGM) algorithm
and its extension for structured environments. RGM builds from invariant risk
minimization (IRM) by recasting simultaneous optimality condition in terms of
predictive regret, finding a representation that enables the predictor to compete
against an oracle with hindsight access to held-out environments. The structured
extension adaptively highlights variation due to complex environments via spe-
cialized domain perturbations. We evaluate our method on multiple applications:
molecular property prediction, protein homology and stability prediction and show
that RGM significantly outperforms previous state-of-the-art baselines.

1 INTRODUCTION

In many biomedical applications, training data is necessarily limited or otherwise heterogeneous. It is
therefore important to ensure that model predictions derived from such data generalize substantially
beyond where the training samples lie. For instance, in molecule property prediction (Wu et al., 2018),
models are often evaluated under scaffold split, which introduces structural separation between the
chemical spaces of training and test compounds. In protein homology detection (Rao et al., 2019), the
split is driven by protein superfamily where entire evolutionary groups are held out from the training
set, forcing models to generalize across larger evolutionary gaps.

The key technical challenge is to be able to estimate models that can generalize beyond their training
data. The ability to generalize implies a notion of invariance to the differences between the available
training data and where predictions are sought. A recently proposed approach known as invariant risk
minimization (IRM) (Arjovsky et al., 2019) seeks to find predictors that are simultaneously optimal
across different such scenarios (called environments). Indeed, one can apply IRM with environments
corresponding to molecules sharing the same scaffold (Bemis & Murcko, 1996) or proteins from the
same family (El-Gebali et al., 2019) (see Figure 1). However, this is challenging since, for example,
scaffolds are structured objects and can often uniquely identify each example in the training set. It is
not helpful to create single-example environments as the model would see any variation from one
example to another as scaffold variation.

In this paper, we propose a regret minimization algorithm to handle both standard and structured
environments. The basic idea is to simulate unseen environments by using part of the training
set as held-out environments Ee. We quantify generalization in terms of regret — the difference
between the losses of two auxiliary predictors trained with and without examples in Ee. This imposes
a stronger constraint on φ and avoids some undesired representations admitted by IRM. For the
structured environments like molecular scaffolds, we simulate unseen environments by perturbing
the representation φ. The perturbation is defined as the gradient of an auxiliary scaffold classifier
with respect to φ. The difference between the original and perturbed representation highlights the
scaffold variation to the model. Its associated regret measures how well a predictor trained without
perturbation generalizes to the perturbed examples. The goal is to characterize the scaffold variation
without explicitly creating an environment for every possible scaffold.
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Figure 3: Illustration of the SCOP hierarchy modified from Hubbard et al. [39].

Sequence Length

Dataset Mean Std. Dev. Min Max

2.06 train 176 110 20 1,449
2.06 test 180 114 21 1,500
2.07 new test 190 149 25 1,664

Table 4: Sequence length statistics for the SCOPe datasets. We report the mean and standard deviation
along with minimum and maximum sequence lengths.

Embedding Model Accuracy r ⇢

Linear 0.85277 0.74419 0.60333
Fully connected (1-layer, 512 units) 0.91013 0.84193 0.67024
BiLSTM (1-layer) 0.92964 0.87239 0.67485
BiLSTM (3-layer) 0.93794 0.88048 0.67645

Table 5: Comparison of encoder architectures on the ASTRAL 2.06 test set. Encoders included LM
inputs and were trained using SSA without contact prediction.
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Figure 1: Left: Data generation process for molecule property prediction. Training and test envi-
ronments are generated by controlling the scaffold variable. Middle: Scaffold is a subgraph of a
molecular graph with its side chains removed. Right: In a toxicity prediction task (Wu et al., 2018),
there are 1600 scaffold environments with 75% of them having a single example.

Our methods are evaluated on real-world datasets such as molecule property prediction and protein
classification. We compare our model against multiple baselines including IRM, MLDG (Li et al.,
2018a) and CrossGrad (Shankar et al., 2018). On the QM9 dataset (Ramakrishnan et al., 2014), we
outperform the best baseline by a wide margin across multiple properties (41.7 v.s 52.3 average MAE)
under an extrapolation evaluation. On a protein stability dataset (Rocklin et al., 2017), we achieve
new state-of-the-art results compared to Rao et al. (2019) (0.79 v.s. 0.73 spearman’s ρ).

2 RELATED WORK

Generalization challenges in biomedical applications The challenges of generalization have been
extensively documented in this area. For instance, Yang et al. (2019); Rao et al. (2019); Hou et al.
(2018) have demonstrated that state-of-the-art models exhibit drop in performance when tested under
scaffold or protein family split. De facto, the scaffold split and its variants (Feinberg et al., 2018) are
used so commonly in cheminformatics as they emulate temporal evaluation adopted in pharmaceutical
industry. Therefore, the ability to generalize to new scaffold or protein family environments is the key
for practical usage of these models. Moreover, input objects in these domains are typically structured
(e.g., molecules are represented by graphs (Duvenaud et al., 2015; Dai et al., 2016; Gilmer et al.,
2017)). This characteristic introduces unique challenges with respect to the environment definition
for IRM style algorithms.

Invariance Prior work has sought generalization by enforcing an appropriate invariance constraint
over learned representations. For instance, domain adversarial network (DANN) (Ganin et al., 2016;
Zhao et al., 2018) enforces the latent representation Z = φ(X) to have the same distribution across
different environments E (i.e, Z ⊥ E). However, this forces predicted label distribution P (Y |Z) to
be the same across all the environments (Zhao et al., 2019). Long et al. (2018); Li et al. (2018c);
Combes et al. (2020) extends the invariance criterion by conditioning on the label in order to address
the label shift issue of DANN. Invariant risk minimization (IRM) (Arjovsky et al., 2019) seeks a
different notion of invariance. Instead of aligning distributions of Z, IRM requires that the predictor
f operating on Z = φ(X) is simultaneously optimal across different environments. The associated
independence is Y ⊥ E | Z. Various work (Krueger et al., 2020; Chang et al., 2020) has sought
to extend IRM. We focus on the structured setting, where most of the environments can uniquely
specify X in the training set. As a result, E would act similarly to X . In the extreme case, the IRM
principle reduces to Y ⊥ X | Z, which is not the desired invariance criterion. We propose to address
this issue by introducing domain perturbation to adaptively highlight the structured variation.

Domain generalization These methods seek to learn models that generalize to new domains (Muan-
det et al., 2013; Ghifary et al., 2015; Motiian et al., 2017; Li et al., 2017; 2018b). Domain general-
ization methods can be roughly divided into three categories: domain adversarial training (Ganin
et al., 2016; Tzeng et al., 2017; Long et al., 2018), meta-learning (Li et al., 2018a; Balaji et al., 2018;
Li et al., 2019a;b; Dou et al., 2019) and domain augmentation (Shankar et al., 2018; Volpi et al.,
2018). Our method resembles meta-learning based methods in that we create held-out environments
to simulate domain shift during training. However, our objective seeks to reduce the regret between
predictors trained with or without access to the held-out environments.

Existing domain generalization benchmarks assume that each domain contains sufficient amounts of
data. We focus on a different setting where most of the environments contain only few (or single)
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examples since they are defined by structured descriptors. This setting often arises in chemical
and biological applications (see Figure 1). Similar to data augmentation method in Shankar et al.
(2018), our structured RGM also creates perturbed examples based on domain-guided perturbations.
However, our method operates over learned representations since our inputs are discrete. Moreover,
the perturbed examples are only used to regularize the feature extractor φ via the regret term.

3 REGRET MINIMIZATION

To introduce our method, we start with a standard setting where the training set D is comprised of n
environments E = {E1, · · · , En} (Arjovsky et al., 2019). Each environment Ei consists of examples
(x, y) randomly drawn from some distributionPi. Assuming that new environments we may encounter
at test time exhibit similar variability as the training environments, our goal is to train a model that
generalizes to such new environments Etest. Suppose our model consists of two components f ◦ φ,
where the predictor f operates on the feature extractor φ. Let Le(f ◦ φ) =

∑
(x,y)∈Ee

`(y, f(φ(x)))

be its empirical loss in environment Ee and L(f ◦ φ) =
∑
e Le(f ◦ φ). IRM learns φ and f such

that f is simultaneously optimal in all training environments:

min
φ,f
L(f ◦ φ) s.t. ∀e : f ∈ arg min

h
Le(h ◦ φ) (1)

One possible way to solve this objective is through Lagrangian relaxation:

min
φ,f
L(f ◦ φ) +

∑
e

λe
(
Le(f ◦ φ)−min

h
Le(h ◦ φ)

)
(2)

The regularizer Le(f ◦ φ)−minh Le(h ◦ φ) measures the performance gap between f and the best
predictor ĥ ∈ Fe(φ) = arg minh Le(h ◦ φ) specific to environment Ee. Note that both f and ĥ are
trained and evaluated on examples from environment Ee. This motivates us to replace the regularizer
with a predictive regret. Specifically, for each environment Ee, we define the associated regretRe(φ)
as the difference between the losses of two auxiliary predictors trained with and without access to
examples (x, y) ∈ Ee:

Re(φ) = Le(f−e ◦ φ)−min
h∈F
Le(h ◦ φ) = Le(f−e ◦ φ)− Le(fe ◦ φ) (3)

where the two auxiliary predictors are obtained from (assuming F is bounded and closed):

fe ∈ Fe(φ) = arg min
h∈F

Le(h ◦ φ) f−e ∈ F−e(φ) = arg min
h∈F

∑
k 6=e

Lk(h ◦ φ) (4)

The oracle predictor fe is trained on environment Ee, while f−e uses the rest of the environments
E\{Ee} for training but is tested on Ee. Note thatRe(φ) does not depend on the predictor f we are
seeking to estimate; it is a function of the representation φ as well as the two auxiliary predictors f−e
and fe. For notational simplicity, we have omitted Re(φ)’s dependence on f−e and fe. Since both
predictors are evaluated on the same set of training examples in Ee, we immediately have
Proposition 1. The regretRe(φ) is always non-negative for any representation φ.

The proof is straightforward since fe is the minimizer of Le(f ′ ◦ φ) and both fe and f−e are drawn
from the same parametric family F . The overall regretR(φ) =

∑
eRe(φ) expresses our stated goal

of finding a representation φ that generalizes to each held-out environment. Our regret minimization
(RGM) objective regularizes the empirical loss with a regret term weighted by λ:

LRGM = L(f ◦ φ) + λ
∑

e
Re(φ) (5)

3.1 COMPARISON WITH IRM

Compared to IRM, the proposed RGM objective imposes a stronger constraint on φ since f−e is
not trained on Ee. To show this formally, let Fe(φ), F−e(φ) be the set of optimal predictors in Ee
and E\{Ee} respectively as defined in Eq.(4). SinceRe(φ) = 0⇔ f−e ∈ Fe(φ) and f−e is chosen
arbitrarily from F−e(φ), the constrained form of the RGM objective can be stated as

min
φ,f
L(f ◦ φ) s.t. ∀e : F−e(φ) ⊆ Fe(φ) (6)
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Figure 2: A counterexample illustrating that ΦIRM 6⊆ ΦRGM.
The environments are generated by different translations of
X1. For the identity mapping φ(X) = (X1, X2) and the true
hypothesis is I[X2 > 0]. There exists a predictor fIRM which
is simultaneously optimal in all environments. In contrast, φ
is not feasible under RGM because there is a linear classifier
h ∈ F−2(φ) that is optimal in environment E1 but performs
poorly in environment E2.

The analogous IRM constraints are f ∈ ∩eFe(φ) and ∩eFe(φ) 6= ∅. Suppose both IRM and RGM
constraints are feasible and let L∗IRM,L∗RGM be their optimal loss respectively. Consider the set of
optimal features under both objectives:

ΦIRM = {φ | min
f∈∩eFe(φ)

L(f ◦ φ) = L∗IRM, ∩eFe(φ) 6= ∅} (7)

ΦRGM = {φ | min
f∈F
L(f ◦ φ) = L∗RGM, ∀e : F−e(φ) ⊆ Fe(φ)} (8)

Proposition 2. Assuming two environments, if L∗RGM = L∗IRM, then ΦRGM ⊆ ΦIRM. The converse
ΦIRM ⊆ ΦRGM does not hold in general.

While limited to two environments, the proposition suggests that RGM imposes stronger constraints
on φ. Figure 2 shows a counterexample illustrating that ΦIRM 6⊆ ΦRGM. Suppose there are two
environments generated by translation of X1 and the true hypothesis is I[X2 > 0]. The identity
mapping φ(X) = (X1, X2) is not translation invariant, but φ ∈ ΦIRM because there exists a predictor
fIRM that is simultaneously optimal in all environments. On the other hand, φ is not feasible under
RGM because there is a linear classifier h ∈ F−2(φ) that is optimal in E1 but suboptimal in E2,
violating the RGM constraint F−2(φ) ⊆ F2(φ). Thus φ 6∈ ΦRGM.

To see why it would be helpful to add a stronger constraint on φ, consider the following data
generation process where the environment e can be inferred from input x alone:

p(x, y, e) = p(e)p(x|e)p(y|x, e); p(y|x, e) = p(y|x, e(x)) (9)

For molecules and proteins, this assumption is often valid because the environment labels (scaffolds,
protein families) typically depend on x only. We call φ label-preserving if it retains all the information
about the label: p(y|φ(x)) = p(y|x, e). Such representation may not generalize to new environments
given the dependence on e through φ. However, we can show that for any label-preserving φ, its
associated ERM optimal predictor also satisfies the IRM constraints:
Proposition 3. For any label-preserving φ with p(y|φ(x)) = p(y|x, e), its associated ERM optimal
predictor f∗ satisfies the IRM constraint. Moreover, if φ ∈ ΦIRM, f∗ ◦ φ is optimal under IRM.

While IRM constraints are vacuous for any label-preserving φ, this is not necessarily the case with
RGM constraints. Consider, for example, the counterexample in Figure 4. The identity mapping
φ(X) = (X1, X2) is label-preserving since it retains all the input information. However, φ is
infeasible under RGM.

3.2 STRUCTURED ENVIRONMENTS

Now let us consider a more challenging setting, where the environments {Ek} are structured (i.e.,
k is a structured object rather than an integer). Formally, the training set comes in the form D =
{(xi, yi, si)}, where si is the structured environment label of (xi, yi) ∈ Esi . For instance, in
molecule property prediction, si is defined as the Murcko scaffold (i.e., subgraph) of molecule xi.
It is hard to model scaffolds as standard environments because they are structured descriptors and
often uniquely identify each molecule in the training set (Figure 1). When an environment has only
one molecule, the model cannot decide which subgraph of that molecule is the right scaffold. Thus,
creating single-example environments is not helpful for domain generalization.

Alternatively, we can describe scaffold variation by perturbation in the representation φ. The idea is
to create a perturbed instance x̃i for each example (xi, yi, si) so that the difference between xi and x̃i
highlights how scaffold information has changed in the representation. Specifically, the perturbation
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Figure 3: a) Structured RGM: we introduce additional oracle predictors f̃e for the perturbed inputs;
b) In molecule tasks, the scaffold classifier g is trained by negative sampling.

Algorithm 1 Structured RGM: Forward Pass

1: for each environment Ee ∈ E do
2: Sample a minibatch Be from environment Ee
3: Compute scaffold classification loss Lg(g ◦ φ) over Be.
4: Construct perturbed examples B̃e from Be via gradient perturbation (see Eq.(10)).
5: Compute empirical loss L(f ◦ φ) on Be.
6: Compute auxiliary predictor loss L−e(f−e ◦ φ) on B−e.
7: Compute oracle predictor losses Le(fe ◦ φ) and Le(f̃e ◦ (φ+ δ)) on Be and B̃e.
8: Compute regret termsRe(φ),Re(φ+ δ) on Be and B̃e.
9: end for

δ(xi) is defined through a parametric scaffold classifier g built on top of the representation φ.1 The
associated scaffold classification loss is `(si, g(φ(xi))). Given that our inputs are discrete, we define
the perturbation δ as the gradient with respect to the continuous representation φ:

φ(x̃i) := φ(xi) + δ(xi) = φ(xi) + α∇z`(si, g(z))|z=φ(xi) (10)

where α is a step size parameter. The perturbation is specifically designed to contain less information
about the scaffold si, and we require that the model should not be affected by this variation in the
representation. Since these perturbations introduce additional simulated test scenarios that we wish
to generalize to, we propose to regularize our model also based on regret associated with perturbed
inputs. Similar to Eq.(3), the regret corresponding to perturbed inputs is defined asRe(φ+ δ):

Re(φ+ δ) = Le(f−e ◦ (φ+ δ))−minh Le(h ◦ (φ+ δ)) (11)

Le(h ◦ (φ+ δ)) =
∑

(xi,yi)∈Ee

`
(
yi, h(φ(xi) + δ(xi))

)
(12)

This introduces a new oracle predictor f̃e = arg minh Le(h ◦ (φ+ δ)) for each environment Ee (see
Figure 3a). Note that f−e is the same auxiliary predictor as before. It minimizes a separate objective
L−e(f−e ◦ φ), which does not include the perturbed examples.

The structured RGM (SRGM) objective LSRGM augments the basic RGM with additional regret
terms as well as the scaffold classification loss Lg(g ◦ φ):

LSRGM = L(f ◦ φ) + λgLg(g ◦ φ) + λ
∑

e

∑
ψ∈{0,δ}

Re(φ+ ψ) (13)

Lg(g ◦ φ) =
∑

(xi,yi,si)∈D
`
(
si, g(φ(xi))

)
(14)

The forward pass of SRGM is shown in Algorithm 1. Since s is a structured object with a large
number of possible values, we train the classifier g with negative sampling (Figure 3b). Note that
φ is also updated to partially optimize Lg. This is necessary to ensure that the scaffold classifier
operating on φ has enough information to introduce a reasonable gradient perturbation δ(x). This
trade-off keeps some scaffold information in φwhile ensuring, via the associated regret terms, that this
information is not strongly relied upon. The effect of this design choice is studied in our experiments.

1Our method is introduced using scaffolds as examples. It can be applied to other structured environments
like protein families by simply replacing the scaffold classifier with a protein family classifier.
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Figure 4: In the RGM forward pass, we sample a minibatch Be from each environment Ee and
compute regret Re(φ). In the backward pass, the gradient of Le(fe ◦ φ) goes through a gradient
reversal layer (Ganin et al., 2016) which negates the gradient during back-propagation.

3.3 OPTIMIZATION

The standard RGM objective in Eq.(5) can be viewed as finding a stationary point of a multi-
player game between f , φ as well as the auxiliary predictors {f−e} and {fe}. Our predictor f and
representation φ find their best response strategies by minimizing

min
f,φ

{
L(f ◦ φ) + λ

∑
e

(
Le(f−e ◦ φ)− Le(fe ◦ φ)

)}
(15)

while the auxiliary predictors minimize

min
f−e

L−e(f−e ◦ φ) and min
fe
Le(fe ◦ φ) ∀e (16)

This multi-player game can be optimized by stochastic gradient descent. Since fe and φ optimizes
Le(fe ◦ φ) in opposite directions, we introduce a gradient reversal layer (Ganin et al., 2016) between
φ and fe. This allows us to update all the players in a single forward-backward pass (see Figure 4).
In each step, we simultaneously update all the players with learning rate η:

f ← f − η∇fL(f ◦ φ) φ← φ− η∇φL(f ◦ φ)− ηλ
∑

e
∇φRe(φ)

f−e ← f−e − η∇L−e(f−e ◦ φ) fe ← fe − η∇Le(fe ◦ φ) ∀e

where L−e(f−e ◦ φ) =
∑
k 6=e Lk(f−e ◦ φ). In each step, we sample minibatches B1, · · · , Bn from

each environment E1, · · · , En. The loss L(f ◦φ) is computed over all the minibatches
⋃
k Bk, while

L−e(f−e ◦ φ) is computed over minibatches B−e =
⋃
k 6=eBk. The regret term Re(φ) is evaluated

based on examples in Be only.

For structured RGM, its optimization rule is analogous to RGM, with additional gradient updates
for the oracle predictors f̃e and scaffold classifier g (see Appendix A.4). While the perturbation δ
is defined on the basis of φ and g, we do not include the dependence during back-propagation as
incorporating this higher order gradient does not improve our empirical results.

4 EXPERIMENTS

Our methods (RGM and SRGM) are evaluated on real-world applications such as molecular property
prediction, protein homology and stability prediction. Our baselines include:

• Standard empirical risk minimization (ERM) trained on aggregated environments;
• Domain adversarial training methods including DANN (Ganin et al., 2016) and CDAN (Long et al.,

2018), which seek to learn domain-invariant features;
• IRM (Arjovsky et al., 2019) requiring the model to be simultaneously optimal in all environments;
• MLDG (Li et al., 2018a), a meta-learning method which simulates domain shift by dividing training

environments into meta-training and meta-testing;
• CrossGrad (Shankar et al., 2018) which augments the training set with domain-guided perturbations

of inputs. Since our inputs are discrete, we perform perturbation on the representation instead.
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Table 1: Mean absolute error (MAE) on the QM9 dataset. Models are evaluated under scaffold split.
Due to space limit, we only show standard deviation for the top three methods in subscripts.

Categorical methods Structured methods
Property ERM DANN CDAN IRM MLDG RGM CrossGrad SRGM
mu 0.736 0.709 0.748 1.059 0.745 0.682(.057) 0.745(.077) 0.720(.089)

alpha 3.455 3.525 3.668 3.711 3.261 2.600(.016) 3.563(1.44) 2.694(.018)

HOMO 0.011 0.011 0.012 0.011 0.010 0.011(.002) 0.012(.002) 0.011(.002)

LUMO 0.020 0.020 0.021 0.021 0.020 0.020(.002) 0.017(.002) 0.019(.002)

gap 0.021 0.020 0.021 0.022 0.021 0.020(.002) 0.019(.002) 0.019(.001)

R2 119.5 117.1 120.4 174.2 110.8 113.9(6.10) 112.2(12.3) 100.5(7.53)

ZPVE 0.008 0.008 0.009 0.009 0.009 0.008(.002) 0.008(.001) 0.007(.001)

Cv 1.917 1.960 2.093 2.344 2.029 2.268(.417) 1.702(.330) 2.133(.423)

U0 17.50 18.50 18.25 16.21 16.24 14.93(2.96) 20.11(5.08) 13.97(1.32)

U 20.11 20.51 20.41 16.72 17.65 14.39(2.57) 14.52(1.31) 12.67(0.82)

H 17.40 17.34 18.11 16.53 14.77 13.97(1.01) 18.55(3.59) 12.80(1.21)

G 17.67 18.63 19.09 17.68 16.14 13.53(1.27) 17.95(5.12) 13.15(1.18)
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Figure 5: Examples of scaffolds in the QM9 dataset (highlighted in grey). We split the data based on
scaffold complexity. Thus, the test scaffolds are structurally distinct from scaffolds in the training set.
As shown in the right figure, the molecular weight distribution of training, validation and test sets are
similar. This shows that scaffold complexity split is more realistic than molecular weight split.

These methods fall into two categories. SRGM and CrossGrad are structured methods as they can
leverage the structural information of the environment (e.g., scaffold). RGM and other methods are
categorical methods since they do not utilize the structure and simply treat each environment as a set.

4.1 MOLECULAR PROPERTY PREDICTION

Data The training data consists of {(xi, yi, si)}, where xi is a molecular graph, yi is its property
and si is its scaffold. We adopt four datasets from the MoleculeNet benchmark (Wu et al., 2018):

• QM9 is a regression dataset of 134K organic molecules with up to 9 heavy atoms. Each molecule
is labeled with 12 quantum mechanical properties.

• HIV is a classification dataset of 42K molecules. Each molecule is associated with a binary label
indicating whether it is an HIV inhibitor.

• Tox21 is a classification dataset of 8.8K molecules. Each compound has 12 binary labels for
toxicity measurements.

• The blood-brain barrier penetration (BBBP) dataset contains 2K molecules. Each molecule is
labeled with a binary permeability label.

Data split To test whether a model generalizes to new domains, it is important to create a test set
that is distributionally distinct from the training set. Scaffold split (Wu et al., 2018) is a common
framework for this purpose. Molecules are clustered based on its Bemis-Murcko scaffold (Bemis &
Murcko, 1996) and a random subset of scaffolds are selected into a test set. However, this approach
degenerates to random split when most scaffold clusters contain only one molecule (see Figure 1).
To address this issue, Feinberg et al. (2019) proposed molecular weight split, where test molecules

7
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Table 2: Left: Results on molecule and protein datasets. CrossGrad and SRGM use the structure of
environments (scaffolds or protein superfamily) while others do not. Right: Ablation study of SRGM.
Detach=Xmeans we do not update φ to optimize the scaffold (or protein superfamily) classification
loss Lg. AccS stands for the scaffold/protein superfamily classification accuracy. Property is the
property prediction performance (AUROC for molecules, top-1 accuracy for protein).

HIV Tox21 BBBP Protein
ERM 0.715(.032) 0.641(.004) 0.854(.024) 20.9%
DANN 0.727(.029) 0.639(.006) 0.857(.016) 22.3%
CDAN 0.735(.013) 0.639(.008) 0.853(.022) 21.9%
IRM 0.747(.007) 0.632(.011) 0.862(.030) 21.0%
MLDG 0.724(.036) 0.637(.007) 0.849(.016) 22.0%
RGM 0.751(.029) 0.637(.010) 0.858(.021) 23.4%
CrossGrad 0.746(.015) 0.644(.005) 0.884(.030) 20.9%
SRGM 0.751(.014) 0.649(.009) 0.891(.025) 23.8%

detach AccS property

HIV X 88.1% 0.736
× 99.4% 0.751

Tox21 X 92.2% 0.640
× 97.1% 0.649

BBBP X 73.7% 0.871
× 94.0% 0.891

Protein X 29.3% 21.9%
× 33.5% 23.8%

are much bigger than molecules in the training set. While this creates strong structural distinction
between the training and test sets, it is not as realistic as the scaffold split.

Given these observations, we propose a variant of scaffold split called scaffold complexity split. We
define the complexity of a scaffold as the number of cycles in the scaffold graph. Specifically, we put
a scaffold in the test set if its scaffold complexity is greater than τ and the training set if it is less
than τ . We set τ = 2 for QM9 and τ = 4 for other datasets. As shown in Figure 5, this forces the
test scaffolds to be structurally different from the training scaffolds. It is also more realistic than the
molecular weight split since the molecular weight distribution of training and test sets are similar.

Model The molecule encoder φ is a graph convolutional network (Yang et al., 2019) which translates
a molecular graph into a continuous vector. The predictor f is a two-layer MLP that takes φ(x) as
input and predicts the label. The scaffold classifier g is also a two-layer MLP trained by negative
sampling since scaffold is a combinatorial object with a large number of possible values. Specifically,
for a given molecule xi with scaffold si, we randomly sample K other molecules and take their
associated scaffolds {sk} as negative classes. Details of model architecture and hyper-parameters are
discussed in the appendix.

Results Following Wu et al. (2018), we report mean absolute error (MAE) for QM9 and AUROC
for other datasets. All the results are averaged across five independent runs. Our results on the
QM9 dataset are shown in Table 1. RGM outperforms other categorical methods and demonstrates
clear improvement on six properties (mu, alpha, U0, U, H, G). SRGM outperforms all baselines on
seven properties, with a significant error reduction on R2, U0, U, H and G (3-10%). Compared to
RGM, SRGM performs better on all properties except mu and alpha. On the three classification
datasets, SRGM also achieves state-of-the-art compared to all the baselines (see Table 2). These
results confirm the advantage of exploiting the structure of environments.

4.2 PROTEIN HOMOLOGY PREDICTION

Data The protein homology dataset (Fox et al., 2013; Rao et al., 2019) consists of tuples {(xi, yi, si)},
where xi is a protein represented as sequence of amino acids, yi its fold label and si its superfamily
label. The task is to predict the fold label yi. There are 1195 fold classes and 1823 protein
superfamilies in total. Around 1200 superfamilies have less than 10 instances in the training set.

Data split Provided by Rao et al. (2019), the dataset consists of 12K instances for training, 736
for validation and 718 for testing. The dataset is split based on protein superfamilies. As a result,
proteins in the test set are structurally distinct from the training set, requiring models to generalize
across large evolutionary gaps.

Model Our protein encoder φ is a pre-trained BERT model (Rao et al., 2019). To generate a
sequence-length invariant protein embedding, we simply take the mean of all the vectors output by
BERT. The predictor f is a linear function that takes φ(x) as input and predicts its fold class. The
superfamily classifier g is a two-layer MLP. The hyperparameters are listed in the appendix.
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Table 3: Comparison between SRGM with different perturbations on the QM9 dataset. “Scaffold”
means perturbation via the gradient of the scaffold classifier. “Random” means random perturbation.

SRGM mu alpha homo lumo gap R2 zpve Cv U0 U H G

Scaffold 0.72 2.69 0.011 0.019 0.019 100.5 0.007 2.13 13.97 12.67 12.80 13.15
Random 0.77 2.90 0.010 0.017 0.020 115.9 0.008 2.46 18.57 13.80 16.75 18.55

Table 4: SRGM performance on the QM9 dataset with different number of graph convolutional layers
in φ. Adding more layers increases model complexity.

φ mu alpha homo lumo gap R2 zpve Cv U0 U H G

2 layer 0.69 3.06 0.010 0.014 0.018 106.1 0.014 3.33 18.72 17.72 17.43 16.67
3 layer 0.72 2.69 0.011 0.019 0.019 100.5 0.007 2.13 13.97 12.67 12.80 13.15
4 layer 0.83 3.15 0.014 0.016 0.019 111.3 0.012 2.02 21.54 30.23 17.89 21.45

Results Following Rao et al. (2019), we report the top-1 accuracy for homology prediction. Our
ERM baseline matches their transformer model performance. As shown in Table 2, both RGM
and SRGM outperforms all the baselines (23.8% v.s. 22.3%). The difference between RGM and
SRGM is relatively small due to inaccurate superfamily classifier. The top-1 and top-10 superfamily
classification accuracy is around 33.5% and 51.0%. Nevertheless, SRGM can still give performance
improvement because the gradient perturbation is computed based on the ground truth superfamily
label during training. This teacher forcing step helps SRGM to be robust to superfamily variability
despite the inaccurate superfamily classifier.

4.3 ABLATION STUDY OF SRGM

Updating φ for Lg In section 3.2, we mentioned that the feature extractor φ is updated to optimize
the scaffold (or superfamily) classification loss Lg. To study the effect of this design choice, we
evaluate a variant of SRGM called SRGM-detach, where φ is not updated to optimize the scaffold
classification loss. As shown in Table 2 (right), the performance of SRGM-detach is worse than
SRGM across the four datasets. This is because the scaffold classifier performs better in SRGM and
the gradient δ(x) reflects the change of scaffold information more accurately.

Random perturbation In Table 3, we report the performance of SRGM under random perturbation
on the QM9 dataset. Random perturbation performs significantly worse for most of the properties.
This shows the importance of the scaffold classifier in SRGM.

Model complexity To study how the model complexity of φ affects the performance of SRGM, we
train SRGM under different number of graph convolutional layers on the QM9 dataset. As shown in
Table 4, SRGM performs the best when there are three graph convolutional layers, which is adopted
in all experiments. In short, SRGM underfits the data when the model is too simple (layer=2) and
overfits when the model is too complex (layer=4).

5 CONCLUSION

In this paper, we propose regret minimization for generalization across structured biomedical domains
such as molecular scaffolds or protein families. We seek to find a representation that enables the
predictor to compete against an oracle with hindsight access to unseen domains. Our method
significantly outperforms all baselines on real-world biomedical tasks.

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

9



Under review as a conference paper at ICLR 2021

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain gener-
alization using meta-regularization. In Advances in Neural Information Processing Systems, pp.
998–1008, 2018.

Guy W Bemis and Mark A Murcko. The properties of known drugs. 1. molecular frameworks.
Journal of medicinal chemistry, 39(15):2887–2893, 1996.

Shiyu Chang, Yang Zhang, Mo Yu, and Tommi S Jaakkola. Invariant rationalization. arXiv preprint
arXiv:2003.09772, 2020.

Guangyong Chen, Pengfei Chen, Chang-Yu Hsieh, Chee-Kong Lee, Benben Liao, Renjie Liao,
Weiwen Liu, Jiezhong Qiu, Qiming Sun, Jie Tang, et al. Alchemy: A quantum chemistry dataset
for benchmarking ai models. arXiv preprint arXiv:1906.09427, 2019.

Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and Geoff Gordon. Domain adaptation with
conditional distribution matching and generalized label shift. arXiv preprint arXiv:2003.04475,
2020.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for structured
data. In International Conference on Machine Learning, pp. 2702–2711, 2016.

Qi Dou, Daniel Coelho de Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization
via model-agnostic learning of semantic features. In Advances in Neural Information Processing
Systems, pp. 6447–6458, 2019.

David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán
Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular
fingerprints. In Advances in neural information processing systems, pp. 2224–2232, 2015.

Sara El-Gebali, Jaina Mistry, Alex Bateman, Sean R Eddy, Aurélien Luciani, Simon C Potter, Matloob
Qureshi, Lorna J Richardson, Gustavo A Salazar, Alfredo Smart, Erik L L Sonnhammer, Layla
Hirsh, Lisanna Paladin, Damiano Piovesan, Silvio C E Tosatto, and Robert D Finn. The Pfam
protein families database in 2019. Nucleic Acids Research, 47(D1):D427–D432, 2019. ISSN 0305-
1048. doi: 10.1093/nar/gky995. URL https://academic.oup.com/nar/article/47/
D1/D427/5144153.

Evan N Feinberg, Debnil Sur, Zhenqin Wu, Brooke E Husic, Huanghao Mai, Yang Li, Saisai Sun,
Jianyi Yang, Bharath Ramsundar, and Vijay S Pande. Potentialnet for molecular property prediction.
ACS central science, 4(11):1520–1530, 2018.

Evan N Feinberg, Robert Sheridan, Elizabeth Joshi, Vijay S Pande, and Alan C Cheng. Step
change improvement in admet prediction with potentialnet deep featurization. arXiv preprint
arXiv:1903.11789, 2019.

Naomi K Fox, Steven E Brenner, and John-Marc Chandonia. Scope: Structural classification of
proteins—extended, integrating scop and astral data and classification of new structures. Nucleic
acids research, 42(D1):D304–D309, 2013.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
The Journal of Machine Learning Research, 17(1):2096–2030, 2016.

Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, and David Balduzzi. Domain generalization
for object recognition with multi-task autoencoders. In Proceedings of the IEEE international
conference on computer vision, pp. 2551–2559, 2015.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. arXiv preprint arXiv:1704.01212, 2017.

Jie Hou, Badri Adhikari, and Jianlin Cheng. Deepsf: deep convolutional neural network for mapping
protein sequences to folds. Bioinformatics, 34(8):1295–1303, 2018.

10

https://academic.oup.com/nar/article/47/D1/D427/5144153
https://academic.oup.com/nar/article/47/D1/D427/5144153


Under review as a conference paper at ICLR 2021

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Remi Le Priol,
and Aaron Courville. Out-of-distribution generalization via risk extrapolation (rex). arXiv preprint
arXiv:2003.00688, 2020.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Learning to generalize: Meta-
learning for domain generalization. In Thirty-Second AAAI Conference on Artificial Intelligence,
2018a.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M Hospedales. Episodic
training for domain generalization. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 1446–1455, 2019a.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adver-
sarial feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5400–5409, 2018b.

Ya Li, Xinmei Tian, Mingming Gong, Yajing Liu, Tongliang Liu, Kun Zhang, and Dacheng Tao.
Deep domain generalization via conditional invariant adversarial networks. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 624–639, 2018c.

Yiying Li, Yongxin Yang, Wei Zhou, and Timothy M Hospedales. Feature-critic networks for
heterogeneous domain generalization. arXiv preprint arXiv:1901.11448, 2019b.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. In Advances in Neural Information Processing Systems, pp. 1640–1650, 2018.

Saeid Motiian, Marco Piccirilli, Donald A Adjeroh, and Gianfranco Doretto. Unified deep supervised
domain adaptation and generalization. In Proceedings of the IEEE International Conference on
Computer Vision, pp. 5715–5725, 2017.

Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via invariant
feature representation. In International Conference on Machine Learning, pp. 10–18, 2013.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
chemistry structures and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

Roshan Rao, Nicholas Bhattacharya, Neil Thomas, Yan Duan, Xi Chen, John Canny, Pieter Abbeel,
and Yun S Song. Evaluating protein transfer learning with tape. In Advances in Neural Information
Processing Systems, 2019.

Gabriel J Rocklin, Tamuka M Chidyausiku, Inna Goreshnik, Alex Ford, Scott Houliston, Alexander
Lemak, Lauren Carter, Rashmi Ravichandran, Vikram K Mulligan, Aaron Chevalier, et al. Global
analysis of protein folding using massively parallel design, synthesis, and testing. Science, 357
(6347):168–175, 2017.

Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and
Sunita Sarawagi. Generalizing across domains via cross-gradient training. arXiv preprint
arXiv:1804.10745, 2018.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain
adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
7167–7176, 2017.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. In Advances in
Neural Information Processing Systems, pp. 5334–5344, 2018.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine learning.
Chemical science, 9(2):513–530, 2018.

11



Under review as a conference paper at ICLR 2021

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel Guzman-
Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, et al. Analyzing learned molecular
representations for property prediction. Journal of chemical information and modeling, 59(8):
3370–3388, 2019.

Han Zhao, Shanghang Zhang, Guanhang Wu, José MF Moura, Joao P Costeira, and Geoffrey J
Gordon. Adversarial multiple source domain adaptation. In Advances in neural information
processing systems, pp. 8559–8570, 2018.

Han Zhao, Remi Tachet des Combes, Kun Zhang, and Geoffrey J Gordon. On learning invariant
representation for domain adaptation. arXiv preprint arXiv:1901.09453, 2019.

12



Under review as a conference paper at ICLR 2021

A TECHNICAL DETAILS

A.1 PROOF OF PROPOSITION 1

Note that Le(f ◦ φ) is defined on a set of fixed examples in Ee. Since fe ∈ arg minf ′∈F Le(f ′ ◦ φ)
and fe, f−e are in the same parametric family F , we haveRe(φ) = Le(f−e ◦ φ)− Le(fe ◦ φ) ≥ 0.

A.2 PROOF OF PROPOSITION 2

Proof. Consider any representation φ∗ ∈ ΦRGM. When there are only two environments {E1, E2},
we have F−2(φ∗) = F1(φ∗) and F−1(φ∗) = F2(φ∗) by definition. Thus the RGM constraint implies

F2(φ∗) = F−1(φ∗) ⊆ F1(φ∗) F1(φ∗) = F−2(φ∗) ⊆ F2(φ∗)

Therefore F1(φ∗) = F2(φ∗). Since the loss function is non-negative and F is bounded and closed,
F1(φ∗) 6= ∅. Thus, ∩eFe(φ∗) = F1(φ∗) 6= ∅. Now consider any f ∈ ∩eFe(φ∗). By definition,

∀e : Le(f ◦ φ∗) ≤ min
h∈F
Le(h ◦ φ∗)

By summing the above inequality over all environments, we have∑
e

Le(f ◦ φ∗) ≤
∑
e

min
h∈F
Le(h ◦ φ∗) ≤ min

h∈F

∑
e

Le(h ◦ φ∗)

Since
∑
e Le(f ◦ φ∗) = L(f ◦ φ∗), the above inequality implies

L(f ◦ φ∗) ≤ min
h∈F
L(h ◦ φ∗) = L∗RGM = L∗IRM

Thus, f ◦ φ∗ is an optimal solution under IRM and φ∗ ∈ ΦIRM.

A.3 PROOF OF PROPOSITION 3

Proof. Let us recall our assumption of the data generation process:

p(x, y, e) = p(e)p(x|e)p(y|x, e); p(y|x, e) = p(y|x, e(x))

Under this assumption, we can rephrase the IRM objective as

min
f,φ

EeEx|eEy|x,e`(y, f(φ(x))) (17)

s.t. Ex|eEy|x,e`(y, f(φ(x))) ≤ min
fe

Ex|eEy|x,e`(y, fe(φ(x))) ∀e (18)

Given any label-preserving representation φ(x), its ERM optimal predictor is

f∗(φ(x)) = arg min
f

Ey|φ(x)`(y, f(φ(x))) (19)

To see that f∗ is ERM optimal, consider

min
f

EeEx|eEy|x,e`(y, f(φ(x))) ≥ EeEx|e min
f

Ey|x,e`(y, f(φ(x))) (20)

= EeEx|e min
f

Ey|φ(x)`(y, f(φ(x))) (21)

= EeEx|eEy|φ(x)`(y, f∗(φ(x))) (22)

where Eq.(21) holds because φ(x) is label-preserving. Note that f∗ satisfies the IRM constraint
because it is simultaneously optimal across all environments:

∀e : min
fe

Ex|eEy|x,e`(y, fe(φ(x))) ≥ Ex|e min
fe

Ey|x,e`(y, fe(φ(x))) (23)

= Ex|e min
f

Ey|φ(x)`(y, f(φ(x))) (24)

= Ex|eEy|φ(x)`(y, f∗(φ(x))) (25)

Moreover, if φ ∈ ΦIRM is an optimal representation, f∗ ◦ φ is an optimal solution of IRM.
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Table 5: Dataset statistics

QM9 HIV Tox21 BBBP Homology
Training 67K 27K 7.6K 1275 12.3K
Validation 36K 7.7K 776 519 736
Testing 30K 6.3K 483 248 718

A.4 STRUCTURED RGM UPDATE RULE

Since f̃e and φ optimizes L(f̃e ◦ φ, Ẽe) in different directions, we also introduce a gradient reversal
layer between φ and f̃e. The SRGM update rule is the following:

φ← φ− η∇φL(f ◦ φ)− ηλg∇φLg(g ◦ φ)− ηλ
∑

e

∑
ψ∈{0,δ}

∇φRe(φ+ ψ)

f ← f − η∇fL(f ◦ φ) g ← g − η∇gLg(g ◦ φ)

fe ← fe − η∇Le(fe ◦ φ) f̃e ← f̃e − η∇L(f̃e ◦ (φ+ δ)) ∀e
f−e ← f−e − η∇L−e(f−e ◦ φ) ∀e

B EXPERIMENTAL DETAILS

B.1 MOLECULAR PROPERTY PREDICTION

Data The four property prediction datasets are provided in the supplementary material, along with
the training/validation/test splits. The size of each training environment, validation and test set are
listed in Table 5. The QM9, HIV, Tox21 and BBBP dataset are downloaded from Wu et al. (2018).

Model Hyperparameters For the feature extractor φ, we adopt the GCN implementation from Yang
et al. (2019). We use their default hyperparameters across all the datasets and baselines. Specifically,
the GCN contains three convolution layers with hidden dimension 300. The predictor f is a two-layer
MLP with hidden dimenion 300 and ReLU activation. The model is trained with Adam optimizer for
30 epochs with batch size 50 and learning rate η linearly annealed from 10−3 to 10−4. For RGM, we
explore λ ∈ {0.01, 0.1} for each dataset. For SRGM, we explore λg ∈ {0.1, 1} for the classification
datasets while λg ∈ {0.01, 0.1} for the QM9 dataset as λg = 1 causes gradient explosion.

Scaffold Classification The scaffold classifier is trained by negative sampling since scaffolds are
structured objects. Specifically, for each molecule xi in a minibatch B, the negative samples are the
scaffolds {sk} of other molecules in the minibatch. The probability that xi is mapped to its correct
scaffold si is then defined as

p(si | xi, B) =
exp{g(φ(xi))

>g(φ(si))}∑
k∈B exp{g(φ(xi))>g(φ(sk))}

(26)

The scaffold classification loss is −
∑
i log p(si | xi, B) for a minibatch B. We choose the classifier

g to be a two-layer MLP with hidden dimension 300 and ReLU activation.

B.2 PROTEIN MODELING

Data The homology and stability dataset are downloaded from Rao et al. (2019). The size of each
training environment, validation and test set are listed in Table 5.

Model hyperparameters For both tasks, our protein encoder is a pre-trained BERT (Rao et al.,
2019). The predictor is a linear layer and the superfamily/topology classifier is a two-layer MLP
whose hidden layer dimension is 768. The model is fine-tuned with an Adam optimizer with learning
rate 10−4 and linear warm up schedule. The batch size is 16 and 20 for the homology and stability
task. For RGM and SRGM, we explore λ ∈ {0.01, 0.1} and λg ∈ {0.1, 1} respectively.
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Table 6: Mean absolute error (MAE) on the QM9 dataset under molecular size split. Models are
trained on molecules with no more than 7 atoms and tested on molecules with 9 atoms. Due to space
limit, we only show standard deviation for the top three methods in subscripts.

Categorical methods Structured methods
Property ERM DANN CDAN IRM MLDG RGM CrossGrad SRGM
mu 0.658 0.655 0.655 0.690 0.654 0.656(.004) 0.664(.001) 0.666(.005)

alpha 13.08 13.17 13.19 13.16 14.13 12.99(.028) 12.79(.379) 11.54(.777)

HOMO 0.008 0.008 0.008 0.009 0.008 0.008(.000) 0.008(.000) 0.009(.000)

LUMO 0.011 0.011 0.011 0.011 0.011 0.010(.000) 0.011(.000) 0.013(.000)

gap 0.014 0.013 0.014 0.015 0.014 0.012(.001) 0.014(.001) 0.016(.001)

R2 352.8 355.7 357.3 368.6 381.2 328.4(11.2) 351.7(11.0) 279.9(29.6)

ZPVE 0.025 0.024 0.025 0.025 0.026 0.022(.000) 0.024(.001) 0.019(.001)

Cv 5.336 5.351 5.369 5.327 5.756 4.860(.228) 5.235(.176) 3.909(.420)

U0 67.18 67.57 67.34 67.67 71.83 60.25(2.62) 63.82(1.82) 51.32(4.51)

U 66.67 67.00 67.24 68.55 71.60 58.74(2.51) 64.30(1.47) 51.54(5.09)

H 67.00 67.39 67.27 68.23 71.47 59.72(2.23) 64.39(2.19) 50.17(2.56)

G 65.92 65.95 66.02 68.16 70.70 59.40(2.12) 64.63(1.12) 51.23(6.13)

Table 7: SRGM performance under different molecular size split.

Train mu alpha homo lumo gap R2 zpve Cv U0 U H G

6 atoms 0.92 21.5 0.010 0.016 0.018 521.6 0.035 7.73 100.1 99.4 102.0 100.1
7 atoms 0.67 11.5 0.009 0.013 0.016 279.9 0.019 3.91 51.3 51.5 50.17 51.23
8 atoms 0.69 4.00 0.007 0.009 0.011 119.0 0.009 1.59 20.2 20.1 19.7 20.5

B.3 ADDITIONAL EXPERIMENTS

For the quantum chemistry dataset (QM9), prior work (Chen et al., 2019) has proposed to measure
domain generalization via molecular size split. To show that our method also works well under this
evaluation setup, we split the dataset based on the number of heavy atoms. The training set contains
molecules with no more than 7 heavy atoms. The validation and test set consist of molecules with 8
and 9 heavy atoms respectively. This setup is much harder than random split as it requires models to
extrapolate to new chemical space.

Figure 6: QM9 ablation study

Our results on the QM9 dataset are shown in Table 6. Among the
categorical methods, RGM outperforms all the baselines (except
for property mu), with significant improvement on six properties
(R2, Cv, U0, U, H, G) with 7-10% relative error reduction. SRGM
outperforms all the baselines on eight properties (out of 12). While
CrossGrad utilizes scaffold information, its performance is worse
than RGM in general. Compared to RGM, SRGM shows significant
error reduction (10-20%) on seven properties (alpha, R2, Cv, U0, U,
H, G). This validates the advantage of exploiting structures of the
environments (scaffolds).

We further conduct additional experiments to study the performance
of RGM/SRGM with respect to the severity of domain shift. Fixing
the test set to molecules with 9 atoms, we construct three progres-
sively harder training sets: molecules with no more than 8, 7 and
6 atoms. We report the MAE ratio (averaged over 12 properties)
between SRGM/RGM/CrossGrad and ERM. As shown in Figure 6, SRGM consistently outperforms
CrossGrad and RGM across different setups.
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