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Abstract

Recent developments in DNN-based image watermarking techniques have achieved
impressive results in protecting digital content. However, most existing methods are
constrained to low-resolution images as they need to encode the entire image, lead-
ing to prohibitive memory and computational costs when applied to high-resolution
images. Moreover, they lack robustness to distortions prevalent in large-image
transmission, such as extreme scaling and random cropping. To address these
issues, we propose a novel watermarking method based on implicit neural rep-
resentations (INRs). Leveraging the properties of INRs, our method employs
resolution-independent coordinate sampling mechanism to generate watermarks
pixel-wise, achieving ultra-high resolution watermark generation with fixed and
limited memory and computational resources. This design ensures strong robust-
ness in watermark extraction, even under extreme cropping and scaling distortions.
Additionally, we introduce a hierarchical multi-scale coordinate embedding and a
low-rank watermark injection strategy to ensure high-quality watermark generation
and robust decoding. Experimental results show that our method significantly out-
performs existing schemes in terms of both robustness and computational efficiency
while preserving high image quality. Our approach achieves an accuracy greater
than 98% in watermark extraction with only 0.4% of the image area in 2K images.
These results highlight the effectiveness of our method, making it a promising
solution for large-scale and high-resolution image watermarking applications.

1 Introduction

With the rapid progress of the digital age, images have become a fundamental medium of information
exchange, reaching unprecedented scales in dissemination and application across various fields.
Concurrently, image watermarking techniques have emerged as pivotal tools for copyright protection,
data security, and integrity verification. However, with the increasing demand for processing large-
scale and high-resolution images, DNN-based watermarking approaches face significant challenges
in adapting to the requirements of large-scale image watermarking.

Typical deep learning-based image watermarking methods are generally designed for low-resolution
images, requiring full-image processing (Zhu et al.,|2018}; [Tancik et al., 2020a; |Fang et al., 2022).
As aresult, these methods face significant limitations when applied to ultra-high resolution (UHR)
images. First, processing the entire UHR image incurs high computational costs, resulting in long
processing times and potential memory overflow, which impacts efficiency and feasibility. Second,
in the decoding phase, UHR images are more vulnerable to scaling and cropping distortions during
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transmission. Existing watermarking methods, optimized for low-resolution content, struggle to
preserve watermark integrity under these severe transformations.

As shown in Figure[T] (a), existing methods for
embedding information in high-resolution im-
ages typically use a block-based approach (Guo ‘?]- - é«c:‘)pp‘a.&‘
et al. [2023)), where the image is divided into oy y’ = g]j @
non-overlapping blocks, and the same water- - o '?'
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distortions. An alternative approach embeds the
watermark on low-resolution images and then
interpolates the residuals to higher resolutions
for embedding (Bui et al., [2023). While this
reduces the computational burden, it also makes
the watermark more vulnerable to local cropping
attacks, compromising its robustness.

Figure 1: Different high resolution watermark em-
bedding schemes. Where the color blocks on the
image represent the watermark embedding area
and the red boxes represent the area where the im-
age is cropped for decoding the watermark.

To address the challenges of watermarking large-scale images, we propose an innovative solution
based on Implicit Neural Representations (INRs). As illustrated in Figure|l|(b), our method maps
continuous pixel coordinates directly to the corresponding RGB values of the watermark. This
eliminates the constraint of fixed image resolutions, enabling watermark embedding in UHR images
while ensuring robustness against extreme cropping and scaling distortions. The main contributions
of this paper can be summarized as follows:

* We propose an innovative INR-based framework for ultra-high resolution watermarking, of-
fering a groundbreaking solution to the challenges of watermarking high-resolution images.

* We introduce a hierarchical multi-Scale coordinates embedding mechanism for accurate
watermark generation across scales. In addition, we introduce a low-rank injection scheme
for efficient integration of watermarks.

» Extensive experiments on widely representative datasets demonstrate the exceptional per-
formance and significant advantages of our proposed method in handling high-resolution
images and accommodating diverse resolution scenarios. In addition, our method exhibits
excellent resistance to extreme cropping and scaling that often occurs in high-resolution
images.

2 Related Work

DNN-based Image Watermarking. Recent advances in deep learning have significantly impacted
digital image watermarking. HiDDeN (Zhu et al.| [2018)) introduced an end-to-end DNN-based
watermarking framework, resembling an autoencoder, setting the stage for future models. StegaStamp
(Tancik et al.|[2020a) improves print-shooting robustness by simulating the printing and photographing
process. RIHOOP (Jia et al., 2020) further refines this by introducing a differentiable distortion model
that preserves the integrity of the watermark under camera imaging conditions. Subsequent works
(Jia et al.,[2021; [Fang et al., 2023; |L1 et al., |2024; |Sun et al., 2024) focus on increasing robustness
against various distortions. However, all of these methods are limited to fixed low-resolution images
(typically less than 512). As the resolution of images increases, these methods encounter substantial
challenges, including a significant rise in computational complexity and memory usage, which not
only slow down processing times but also make their practical application with high-resolution images
increasingly difficult.

High-Resolution Image Watermarking. Several approaches have been proposed to address the
challenges of watermark embedding in high-resolution images. DWSF (Guo et al., 2023) uses a
block-based strategy, selecting fixed-size watermark blocks for embedding, but it struggles with
block localization and scaling resistance. TrustMark (Bui et al.|[2023)), on the other hand, generates
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Figure 2: Architecture of the proposed model. (a) shows the process of embedding coordinates and
messages, and (b) shows the process of rendering into watermarks via INR. (c) shows the process of
low-rank watermark injection. (d) shows the decoding process of our method.

watermark residues on low-resolution images and then uses linear interpolation to scale them to
high-resolution images. However, this approach is vulnerable to local cropping attacks. Wang et al.
(Wang et al.||2024) use Implicit Neural Representations to fit the host image and then fine-tune the
INR to embed watermark information at various resolutions. However, this method has significant
drawbacks, as it requires the training of separate networks for each individual image. This process
not only increases the computational load but also makes it highly time-consuming, particularly
when dealing with large datasets, limiting its practicality for real-time applications. Although the
above methods attempt to embed watermarks in large-sized images, none of them effectively balance
high-rato cropping, scaling resilience, and real-time performance, which are key challenges in large
image watermarking.

Implicit Neural Representations. Implicit Neural Representations (INRs) use deep neural networks
to model continuous mappings between inputs and outputs, rather than relying on predefined rules.
INRs have been widely applied in 3D reconstruction (Mildenhall et al.| 2021} |Gafni et al.| [2021; Hu1
et al.; [2024)), super-resolution (Chen et al,[2021; |Yang et al., 2021} |Chen et al.,|2022), and image
generation (Skorokhodov et al., 2021} Shaham et al., 2021; |Anokhin et al., [2021). In the image
domain, an INR takes spatial coordinates as input and outputs RGB values, representing the image
as a continuous signal. CNN-based watermarking methods struggle with large images due to high
memory and computation costs. In contrast, INRs model continuous signals efficiently, offering
a scalable solution. We propose using INRs to parameterize the watermark signal by coordinates,
enabling continuous watermark generation at arbitrary positions and resolutions, overcoming the
limitations of CNN-based methods for efficient embedding.

3 Methodology

Our approach is based on Implicit Neural Representations (INRs), the key idea of our method is to
parametrize a template watermark using coordinates, with INRs serving as the rendering function
for the watermark signal. A comprehensive architecture is presented in Figure [2] illustrating the key
components of our framework. The approach is built upon three core modules as shown in the Figure:
(a) a resolution-independent sampling strategy combined with hierarchical multi-scale coordinate
embedding, ensuring consistency and robustness of watermark across varying image resolutions with
a fixed and limited computational cost; (b) low-rank watermark injection based on Implicit Neural
Representations, which reduces computational cost while achieving robust watermark embedding
and (d) noise enhancement and decoding of the watermarked image.



3.1 Sampling and Embedding

Resolution-Independent Coordinates Sampling. For an image of size (H, W), we normalize the
pixel coordinates (z, y) to the range [—1, 1] as follows:

2x 2y
(z,y) = <H—1,W—1) 1)

The normalized coordinate matrix obtained is denoted as v in Figure 2| (a). To sample submatrices
of arbitrary size from v, we use a fixed r x r coordinate grid C, where r is typically set to 128.
The coordinates of the sampled submatrix are determined by the upper-left corner (xo, yo), and C is
defined as:

C={(ziyj) |lzi=x0+1 A, y; =yo+J - At} )

where ¢, 7 € [0,7 — 1] and A is a randomly selected interval. The value of A; controls the resolution
of C, allowing flexible extraction of regions at different scales while maintaining a fixed grid.

Hierarchical Multi-Scale Coordinates Embedding. Many prior works (Miiller et al.l 2022} |Girish
et al.,|2023)) have shown that using only coordinates as input leads to longer training times, loss of
high-frequency details, and poor scalability for high-resolution signals. This is a challenge, as we
aim to decode the watermark at arbitrary resolutions while maintaining robustness to cropping and
scaling. Therefore, modeling multi-scale features of the watermark is crucial.

To address this issue, we propose the use of a set of feature grids with varying resolutions L = {L;}"™
to represent the embedded features of the watermark template, where n (default 4) denotes the number

of feature grids. Each grid L; € RI*27*x2 ¢ 4 Jearnable parameterized matrix, with d (default
32) representing the dimension of the features. The coordinates of the feature vectors in each grid
are normalized to the range [—1, 1]. Given an input coordinate (z,y), we identify the four nearest
corner features in the matrix L;, with the bottom-left and top-right corner features having coordinates
(z},,y},) and (z},,y;,), respectively. By applying bilinear interpolation, we can obtain the feature
representation corresponding to any input coordinate in matrix L;(x, y):

Li(xt,yi)) Li(l’él’ yir)]
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frequency details, we apply Fourier feature mapping F to process the raw coordinates (Tancik et al.
2020b), obtaining the coordinate encoding z,. Therefore, for any given coordinate (z,y), we can

obtain its corresponding feature representation z, € R%:
ze = D(Li(z,y) © La(,y) -+ La(z,y) © 2p) 4)

where "©" denotes concatenation along the feature dimension and T'(x) is a linear layer used to
project the features into the d.-dimensional space (default 256).

where k = Additionally, to further enhance the ability of INR to represent high-

Message Embedding. We use a four-layer MLP with fully connected layer, BatchNorm, and ReLU
activation function as the Message Encoder M. For a t-length binary message m = {0,1}!, we
obtain the corresponding message feature z,, = M(m) € R%. d,, defaults to 128.

3.2 Low-rank Watermark Injection based on Implicit Neural Representations

INR Rendering. As shown in Figure 2| (b), given a positional feature embedding z. and a watermark
feature z,,, we use an INR to generate the watermark signal for the corresponding pixel location. This
process is repeated for all pixel positions, and the results are reshaped to form the final watermark
signal W. Then we randomly sample an r X r image block I and obtain the watermarked image as
I' = I +~W, where v (default 0.02) controls embedding strength. A smaller ~y helps distribute the
watermark evenly, enhancing visual quality and robustness.

Low-rank Watermark Injection. A simple INR-based approach is to concatenate two features
and process them through an MLP to predict RGB values. However, prior research (Zadeh et al.|
2017} |Liu et al.,|2018)) has demonstrated that such direct concatenation leads to inadequate feature



interaction between modalities. Following TFN (Zadeh et al., 2017), we compute the Cartesian
product of z. and z,, to facilitate richer cross-modal feature interactions. This can be formulated as:

2= M -Vec(af") + bias 5)
Where o = [z, 1] € R, 8 = [z, 1] € R™ and Vec(x) the vectorization operator. The matrix

M e R*(nxm) jg 4 learnable parameter, and z is the final output feature. h is the dimension of the
output feature, default is 256.

However watermark injection occurs independently at each pixel location in our method. This results
in significant computational and memory overhead. To mitigate this, we reformulate it (ignoring bias)
as:

z=M Vec(Iaf") = M(8 & I)Vec(a) = M(B® Ia (6)
We expand M and 8 ® I into a block matrix form as follows:
Bl N
z=[My My --- M,)] ﬁ?I a=> BiMa ©)
gut) 7

Where M; € R"*™ can be viewed as a slice of a third-order tensor P € R™*"X" and Z;il B M;
can be interpreted as a weighted sum of the slices of P. Thus, our goal is to reduce the parameter
count of the learnable tensor P.

Using Canonical Polyadic Decomposition (CPD) for low-rank approximation, we introduce three
small learnable matrices © € R"*%, ¢y € R"*4 and w € R"*?, where d is the rank (defaults 32).

Thus, any element in P can be expressed as p; ;i = Zle UV Wy Then for any element of the
output feature z it can be expressed as:

n m n m d
Zj:E E Bipijkakzg E ﬂig UipVjr Wy Otk

k=1 1i=1 k=1 1=1 r=1
(®)
n m d
= E Bilir Vjr Wi Oty
k=1 1i=1r=1

After simplification, we obtain: z = v ((w " *a)o(u' *3)). Where "+" denotes matrix multiplication

and "o" denotes element-wise multiplication. To preserve the rich semantic information contained in
the features o, we employ skip-connection to mitigate potential information loss caused by low-rank
decomposition. Additionally, we stack 4 identical modules to ensure the robust injection of the
watermark information. Figure [2](c) illustrates our INR Block. It can be expressed as:

a; = Relu(W(v;_q * (w; | *ci_1) o (u] | *B)))) + a1 9)

Where (%) denotes 1D batch normalization. A final FC layer maps features to RGB values, and
after reshaping, the watermark W € R3*"*" is obtained.

3.3 Noise Layer and Message Decoder

Figure 2] (d) illustrates the decoding process of our model. To enhance generalization, we introduce
a composite noise layer to simulate real-world distortions. The Message Decoder then extracts the
watermark from the distorted image.

Noise Layer. The noise layer consists of Rotation, Cropping, Translation, Scaling, Shearing, Dropout,
Cropout, Color changes, JPEG compression, Gaussian filtering, and Gaussian noise. During training,

a random noise type is applied to the watermarked image I’, producing I.

Message Decoder. Our Message Decoder incorporates the SE Block (Hu et al.l 2018)) inspired by
MBRS (Jia et al.,2021). It processes the input through four stacked blocks of identical structure.
Each block consists of a ConvBNReL U layer with a kernel size of 3, followed by an SE Block and
another convolutional layer. Finally, downsampling is performed using a convolutional layer with a
kernel size of 4 and a stride of 2. The extracted features are pooled along the channel dimension, and
a fully connected layer predicts the watermark information 77.



3.4 Loss Function

Our loss function comprises two components: the first aims to preserve the visual quality of the

watermarked image 1 ', while the second seeks to minimize the discrepancy between the extracted
watermark i and the embedded watermark m. Both components are formulated using the mean
squared error (MSE) loss. The total loss is given by:

EZ’“HI*IAHJ’\Q I — 1], (10)

where A; and \q are hyperparameters that balance the trade-off between visual quality preservation
and watermark extraction accuracy. By default, both are set to 1.

4 Experiments

In this section, we conduct extensive experiments to evaluate the effectiveness of our proposed
INR-based watermarking method. First, we describe the experimental setup. Then, we compare our
method with previous SOTA models under low resolution. Subsequently, we evaluate our method
across various resolutions against other large-image watermarking approaches, demonstrating its
superior performance. Finally, ablation studies assess the contribution of proposed components.

4.1 Experimental Setting

Implementation Details. Our model is trained on the high-resolution DIV2K (Agustsson and
Timoftel [2017) image dataset. For each training iteration, we randomly select an image from the
dataset and apply a random scaling operation, where the scaling factor is chosen from the range
[0.06, 1]. Following the scaling, we randomly crop a 128 x 128 image patch from the scaled image,
which serves as the input I to the model. For the watermark information m, we randomly generate a
binary bit stream of length 30 in each iteration. For the sampling coordinates C, we perform random
sampling from a normalized coordinate grid v, using a fixed 128 x 128 grid size. We randomly
generate training samples, with a training set size of 50, 000 samples. The model is trained using the
AdamW (Loshchilov and Hutter, |2017) optimizer with a learning rate of 4 x 10~%. The batch size is
set to 32, and the training is conducted for 2000 epochs across two NVIDIA RTX 3090 24G GPUs.

Metrics. We evaluate our method using three metrics: Peak Signal-to-Noise Ratio(PSNR) for
visual quality, Structural Similarity Index(SSIM) for structural similarity and Average Bit Accuracy
(ACC) for average decoding accuracy. PSNR and SSIM assess image quality, while ACC measures
watermark extraction robustness.

Baseline. We use HiDDeN (Zhu et al., 2018)), StegaStamp (Tancik et al.,2020a), MBRS (Jia et al.,
2021), DWSF (Guo et al., [2023)), TrustMark (Bui et al.|[2023) and RAIMark (Wang et al., 2024)
as baselines. The first three methods are limited to low-resolution images, while others can work at
different resolutions. To ensure a fair comparison, we re-train these models (excluding TrustMark,
which does not provide a training script) with our proposed noise layer, as the strength of the noise
layer significantly impacts their performance. Initially, we train our model on 128 x 128 images
and compare them with the low-resolution baselines to demonstrate the effectiveness of our method.
Subsequently, we relax the resolution constraint, allowing models to be trained on images with
different sizes, and compare them with corresponding large-image watermarking models to validate
the superiority of our approach.

4.2 Visual Quality

Table [1] presents the visual quality across different methods. Our method does not achieve the highest
PSNR and SSIM values, but it consistently maintains a PSNR above 35. This result is expected, as
our approach employs a template-based watermark, which does not leverage the content of the cover
image for embedding. As a result, while the visual quality is slightly lower compared to methods that
embed watermarks based on the cover image content, our method still achieves a PSNR above 35,
ensuring it meets practical requirements for everyday use.

In addition, as shown in Figure[3] we also present the visualization results of our method at different
resolutions. We observe that watermarks generated from different embedded messages exhibit
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Figure 3: Visualization results at different resolutions. For each group, the first row presents cover
images at different resolutions, starting from 2K size and progressively reduced by 75%. The second

row displays the corresponding watermarked images, while the third row shows the embedded
watermarks.

High Resolution Low Resolution

Proposed DWSF TrustMark RAIM HiDDeN StegaStamp MBRS

PSNR 37.27 33.18 40.76 40.52 32.67 35.25 40.73
SSIM 09611  0.9269 0.9900 0.9898  0.8591 0.8864 0.9866

Table 1: Average visual quality of the different methods. For High Resolution methods, we measured
at 2K size (except for DWSF). For Low Resolution methods, we measured at 128 x 128 size. For
DWSEF, it essentially embeds the watermark into many 128 x 128 blocks, so we measured the visual
quality of the block.

highly similar overall structural patterns, with variations primarily reflected in color and fine details.
Moreover, the watermark consistently maintains a similar striped pattern and distribution across
various resolutions, indicating its structural consistency across different scales. This ensures that the
watermark information can be successfully decoded from cropped patches at different resolutions.

4.3 Comparison with Previous Methods

We compare our method with previous SOTA models at a fixed resolution of 128 x 128 to evaluate
its effectiveness. For a comprehensive evaluation, we test the decoding accuracy of our trained model
using a variety of distortions: Identity, Gaussian Noise(std = 0.01), Gaussian Filter (¢ = 2), JPEG
Compression (¢ = 50), Dropout (p = 0.5), Rotation (deg = 10), Translation (dis = 0.1) and Color
Transform(f = 0.1). To ensure a fair comparison, we fix the PSNR at 35 for all watermarked images
following the approach in the MBRS [2021) method.

Table 2] presents the experimental results. Notably, despite employing INRs rather than traditional
CNNss for information embedding, our proposed method achieves the best decoding accuracy under
most distortion conditions. Specifically, the proposed method maintains extremely high accuracy
under conditions such as Gaussian noise, Gaussian filtering, rotation, translation, and color perturba-
tion. Even under more severe transformations like JPEG compression and dropout operations, the
method demonstrates strong robustness, achieving accuracy rates of 93.36% and 95.13%, respectively.



. Gaussian Noise ~ Gaussian Filter JPEG Compression Dropout ~ Rotation  Translation Color
Method Identity

(std = 0.01) (c=2) (Q = 50) (0.5) (deg =10) (dis=0.1) (f=0.1)

HiDDeN 88.34 87.96 60.14 52.96 74.74 82.94 82.85 90.79
StegaStamp ~ 92.16 91.72 90.78 84.42 77.53 87.19 88.46 91.21
MBRS 99.18 98.06 94.93 96.56 95.75 95.37 96.27 98.37
DWSF 90.17 89.76 89.40 87.33 76.47 86.56 65.90 78.36
TrustMark 87.65 83.72 82.60 75.22 76.58 49.50 62.13 87.25
RAIM ARk 78.67 78.67 78.67 54.33 57.67 77.24 74.58 71.67
Proposed 100 99.83 98.86 93.36 95.13 99.73 99.59 99.93

Table 2: Benchmark comparisons on robustness against different distortions. Where the mean value
of Gaussian Noise is 0, the kernel size of Gaussian Filter is 3, and JPEG Compression is simulated
using Kornia (Riba et al., [2020).

128 x 128 512 x 512 2048 x 2048 4096 x 4096
DIV2K COCO FFHQ DIV2K COCO FFHQ DIV2K COCO FFHQ DIV2K COCO FFHQ

DWSF 90.17 89.83 7893 5328 54.10 5273 50.80 50.73  50.64  50.03 50.33  50.12
TrustMark  87.65 92.15 96.10  49.55 4945 5023 49.77 49.58 4941 49.50 54.57 4725

Distortions Model

CrOPPINg  pATMank  78.67 7733 7830 5333 4867 4533 5400 4867 4667 5435 4946 4685
Proposed  99.99 9985 9991 99.86 99.84 99.95 9874 94.80 93.83 8594 8693 8323

DWSE  90.17 89.83 7893 8956 8940 77.90 8070 8083 67.07 6373 6343 56.57

Sealing  TSMark 8765 9215 9610 7915 8590 8943 7607 8625 8888 7951 8226 8677

RAIMark  78.67 7733 7830  61.67 6376  66.52  62.33 6437  63.16  62.67 64.48  62.89
Proposed 99.99 9985 9991  99.86 99.88  99.96  98.66 99.16 9933 9933  92.83  98.66

Table 3: Average decoding accuracy of different models for extreme cropping and scaling at different
resolutions.

This robust performance strongly demonstrates that INR-based embedding is an effective and highly
resilient mechanism for steganography.

4.4 Evaluation across Varying Image Resolutions

In this section, we investigate the performance of our method across different resolutions. We
compare it with several SOTA watermarking methods capable of operating at various resolutions.

As modern applications increasingly involve high-resolution images such as digital media, medical
imaging, and professional photography, scalable and reliable watermarking technology has become
essential. For high-resolution images, two key challenges are commonly encountered during trans-
mission: (1) High-ratio scaling, where the image is significantly reduced in size and (2) High-ratio
random cropping, where only a small portion of the image is retained. These operations severely
compromise the integrity of embedded watermarks, particularly when using traditional spatial domain
or CNN-based methods.

Table [3| presents the experimental results. To evaluate the generalizability of our model, we test it not
only on DIV2K but also on 200 separately sampled images from each of the COCO (Lin et al.}|2014)
and FFHQ (Karras et al.| 2019) datasets. We embed watermarks at different resolutions and evaluate
the performance of various methods under extreme cropping and scaling. Specifically, for cropping,
we randomly extract 128 x 128 patches for decoding, while for scaling, we uniformly resize the
images to 128 x 128 before decoding. To ensure a fair comparison, the PSNR is fixed at 35 for all
watermarked images.

As can be seen, our method is far superior to the others. DWSF, RAIM gk and TrustMark are all
struggling to resist cropping attacks in large-image watermarking. Although these methods perform
reasonably well at low resolutions (128 x 128), they encounter issues in high-resolution scenarios. For
instance, DWSF cannot withstand cropping at high resolutions because it is difficult to ensure that the
cropped image block contains a complete embedding block. TrustMark, which embeds watermarks
at high resolutions through interpolation, retains less watermark information after cropping, leading
to extraction failure. On the contrary, on 2K images, our method requires only 0.4% of the image
area to maintain a 98 % decoding accuracy. Notably, this high level of robustness extends even to 4K
resolution, where our method still achieves over 85% decoding accuracy using only a 128x128 patch,
which corresponds to just 0.1% of the total image area. This superiority primarily stems from our
coordinate sampling strategy and INR’s capability to model continuous signals.



Model Proposed DWSF TrustMark RAIMaRrk

CPU v x x X
Embedding Rate 4ms 74ms 308ms > 20min

Table 4: Embedding rates for different methods.Where the second row represents whether the
embedding is done using only the CPU or not, and the third row represents the average watermark
embedding rate for a single image with a resolution of 2K. We use AMD Ryzen 7 7840HS for our
CPU and NVIDIA RTX 3090 24G for our GPU for testing.

In addition, we test the performance of different distortions at different resolutions. As shown in
Figure[d our model achieves a performance of more than 90% at most resolutions, which is much
better than other models. At the same time, we observe an interesting phenomenon: at low resolutions,
the performance of Gaussian filtering and JPEG compression deteriorates. Both types of distortion
are related to the image’s frequency content, suggesting that the current method still has limitations.
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Figure 4: Average decoding accuracy of different models at different resolutions and distortions.
Where GN stands for Gaussian Noise and GF stands for Gaussian Filter. To ensure fairness, the
PSNR of all embedded images is standardized at 35.

4.5 Embedding Rate Comparison

In this subsection, we compare the computational efficiency between the different methods by the
embedding rate of the watermark. Since our focus is on watermark embedding for large images,
which often incur high computational costs due to their large resolution, the real-time performance of
watermarking systems can be significantly impacted. As shown in Table[d] our method is significantly
faster. This result primarily becauses it is based on template watermarking, allowing all watermarks
to be pre-generated once the model is trained. In contrast, other methods require the network to
process the carrier image during embedding, resulting in slower performance. Worth mentioning
is that RAIM gk requires INR encoding and watermark embedding fine-tuning for each image,
making its embedding rate extremely slow.



Coordinates Embedding Low-rank Injection
(num of layers) (rank)

x 1 2 4 | % 8 32 64

ACC 9091 9166 9386 9517 9377 84.69 9517 95.76
PSNR 3598 36.88 36.75 3727 36.04 37.08 37.27 36.37
SSIM  0.9706 0.9590 0.9565 0.9611 0.9639 0.9656 0.9611 0.9550

Table 5: Model performance with different components. Here, "%" indicates the absence of the
corresponding component. For Coordinates Embedding, this means that only the Coordinate Fourier
Mapper is used as an embedding feature. For Low-rank Injection, it signifies that features are
concatenated and directly predicted by an MLP.

Numof Bit PSNR SSIM  Avg ACC

30 37.27  0.9656 95.76
50 35.59 0.9563 95.62
100 31.32 09123 88.26

Table 6: The relationship between visual quality and decoding accuracy at varying numbers of bits.

4.6 Ablation Study

In this subsection, we examine the effectiveness of each component of our proposed method, focusing
on two main points: (1) the impact of the hierarchical multi-Scale coordinates embedding layers on
model performance, and (2) the effectiveness of low-rank watermark injection.

Table [5] presents the results of our ablation study. We embed watermarks into 2K-resolution images
and evaluate the average decoding accuracy after applying random attacks. The results show that
removing multi-scale coordinate embedding significantly degrades performance, while increasing the
number of embedding layers progressively improves it. For Low-rank Injection, replacing our design
with feature concatenation followed by MLP prediction results in inferior performance. Moreover, a
lower rank significantly degrades accuracy.

Additionally, we evaluated the watermarking capacity of our method. Table[6]illustrates the trade-off
between watermark capacity, visual quality, and decoding robustness. As the embedded bit count
increases from 30 to 100, the visual quality of images deteriorates, while accuracy remains at a high
level. Even under 100 bits, the accuracy exceeds 88%. Since our method handles high-intensity
cropping and scaling while maintaining high accuracy under current high payloads, it indicates that
our embedding strategy inherently introduces significant redundancy. Therefore, exploring more
efficient embedding patterns in the future to reduce redundancy and increase watermark capacity
while maintaining robustness will be a highly meaningful research direction.

5 Conclusion

In this paper, we introduce a novel watermarking framework that leverages implicit neural represen-
tations and a resolution-independent coordinate sampling for efficient watermark embedding and
extraction across images of high resolution. Unlike CNN-based methods that require processing
entire images, our approach can embed watermark at the pixel level, enabling watermark embedding
across different scales while avoiding excessive computational overhead and ensuring robustness
against extreme cropping and scaling distortions. Additionally, we introduce a hierarchical multi-scale
coordinate embedding and low-rank watermark injection to enhance model robustness. Experimental
results show that our method outperforms existing approaches in both performance and computa-
tional efficiency. These findings highlight the potential of INR-based methods for high resolution
watermarking solutions, offering valuable insights for future research on resolution-independent
image watermarking.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Section [I|explains our contributions
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Section and Supplementary Material [Bfexplain our limitations
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Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

 If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Section[3.2] gives the full proof.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section[d.1] gives details.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: Section.T|and Supplementary Material [A.3|give details.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section[d.1] gives details.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section ] gives details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Sectiond.1] gives details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: this paper ensures that the research adheres to ethical standards and the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The paper is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: the paper poses no such risks.

Guidelines:
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14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: he paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: the core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Appendix

A.1 Details of the Noise Layer

The combined noise layer is implemented using Kornia (Riba et al.,[2020)), incorporating various
transformations such as Identity, Rotation, Cropping, Translation, Scaling, Shearing, Dropout,
Cropout, Color Transformation, JPEG Compression, Gaussian Filtering, and Gaussian Noise. These
transformations are applied as follows:

* Rotation: Random rotation within the angle range of [—30°, 30°].
* Cropping: Randomly retains a scale of [0.5, 1] of the original image.

* Translation: Generates random displacements of [—0.1, 0.1] times the image’s edge length
along the x and y axes.

* Scaling: Random scaling within a factor of [0.5, 1.2].

* Shearing: Random shear transformation with an angle range of [—0.1, 0.1].
* Dropout: Randomly discards [10%, 30%)] of the pixels.

* Cropout: Randomly discards blocks of the image with a scale of [0.05, 0.1].

e Color Transformation: Perturbs Brightness, Saturation, and Hue with intensities of
[—0.4,0.4], [-0.4,0.4], and [—0.1, 0.1], respectively.

» JPEG Compression: Applies random quality factors between [50, 100].

* Gaussian Filter: Applies Gaussian filters with kernel sizes in the range of [3,8] and
intensities of [0.05,0.1] with o € [0.1, 2].

¢ Gaussian Noise: Adds Gaussian noise with a mean of 0 and variance of 0.01.

During training, a random noise type is selected and applied to perturb the watermarked image.

A.2 The Role of Hyperparameter ~

In the section "Low-rank Watermark Injection based on Implicit Neural Representations”, we intro-
duced the v parameter to regulate the embedding strength of the watermark. Since our INR-based
watermarking approach essentially functions as a template watermark, its pattern remains independent
of the carrier image. As a result, the model naturally tends to generate sparse high-frequency textures
to minimize visual loss, leading to significant spatial inefficiencies.

As illustrated in Figure [5] the left side shows the watermark generated without constraints. A
substantial portion of the area contains null values, which not only wastes available space but also
poses a critical issue—If the image is cropped to a region containing only null values, the essential
watermark information may be lost entirely during transmission. To address this, we impose a
constraint on the embedding strength, ensuring that the watermark is more uniformly distributed
across the image.

Moreover, we empirically set v = 0.02, as it maintains a PSNR of approximately 34 while preserving
good visual quality, even for a completely randomized watermark template. If 7y is reduced further,
the watermark’s robustness deteriorates due to insufficient redundancy.

A.3 TrustMark Settings in Baseline

Since TrustMark does not provide a training script, we rely on its pre-trained weights for testing.
However, TrustMark’s pre-trained watermarks are 100 bits long and are available in four open-source
versions. We use the version with a 40-bit payload (BCH_SUPER), with the remaining 60 bits
reserved for error correction and versioning. To ensure a relatively fair comparison, we modify the
decoding process: after extracting the full 100-bit sequence, we first apply error correction to the
40 valid bits and discard the remaining 60 bits. The evaluation is then based solely on the decoding
accuracy of the 40 valid bits.
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(b) Proposed

Figure 5: Different watermark styles generated by the hyperparameter ~.

A.4 More Results

In the main text, we present visualization results across different resolutions. Here, we provide
additional experimental results, as shown in Figure[6] We randomly select various resolutions for
embedding, where each group’s first row represents the cover images, the second row shows the
watermarked images, and the third row displays the watermarks. It can be observed that while the
watermarks exhibit scale-dependent variations at different resolutions, they consistently retain a
similar stripe-like structure and maintain considerable complexity at each resolution. This ensures
the successful decoding of watermark information across varying image scales.

B Limitations and Future Work

Our approach shows promise but has some limitations. The visual quality of the watermarked
images is lower than content-dependent methods, mainly due to INR’s weaker feature representation
compared to CNN. Additionally, INR fitting can be slow. Future work will aim to address these
issues by combining CNN with INR to enhance both visual quality and embedding efficiency. We
will also explore optimizing INR fitting to reduce training time and improve scalability. Moreover,
how to better enhance watermark capacity is another issue that needs to be addressed.
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Figure 6: Visualization results at different resolutions.
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