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Abstract

We present a simple, yet effective data-augmentation technique to enable data-
efficient learning from parametric experts for reinforcement and imitation learning.
We focus on what we call the policy cloning setting, in which we use online or of-
fline queries of an expert or expert policy to inform the behavior of a student policy.
This setting arises naturally in a number of problems, for instance as variants of
behavior cloning, or as a component of other algorithms such as DAGGER, policy
distillation or KL-regularized RL. Our approach, augmented policy cloning (APC),
uses synthetic states to induce feedback-sensitivity in a region around sampled
trajectories, thus dramatically reducing the environment interactions required for
successful cloning of the expert. We achieve highly data-efficient transfer of behav-
ior from an expert to a student policy for high-degrees-of-freedom control problems.
We demonstrate the benefit of our method in the context of several existing and
widely used algorithms that include policy cloning as a constituent part. Moreover,
we highlight the benefits of our approach in two practically relevant settings (a)
expert compression, i.e. transfer to a student with fewer parameters; and (b) transfer
from privileged experts, i.e. where the expert has a different observation space than
the student, usually including access to privileged information.

1 Introduction

In various control and reinforcement learning settings, there is a need to transfer behavior from an
expert policy to a student policy. Broadly, when only samples from the expert policy are available, the
standard approach is to employ a version of regression from states to actions. This class of approaches
for producing a policy is known as behavioral cloning [Pomerleau, 1989, Michie and Sammut, 1996].
Behavioral cloning is quite flexible and supports the setting where the expert trajectories come from a
human teleoperating the relevant system directly, as well as various settings where the trajectories
are sampled from other controllers, which themselves may have been trained or scripted. However,
for any of the settings where the expert policy is actually available, rather than just samples from
the expert, it is reasonable to suspect that sampling random rollouts from the expert policy followed
by performing behavioral cloning is not the most efficient approach for transferring behavior from
the expert to the student. Once a trajectory has been sampled via an expert rollout, there is actually
additional information available that can be ascertained in the neighborhood of the trajectory, without
having to perform an additional rollout, via the local feedback properties of the expert.

We refer to this setting, where we want to transfer from an expert policy to a student policy, while
assuming the expert policy can be queried, as policy cloning. Naturally, there is still often an incentive
to reduce the total number of rollouts, which may require actually collecting data in an unsafe or costly
fashion, especially for real-world control problems. As such, there is a motivation to characterize any
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efficiency that can be gained in learning from small numbers of rollouts without as much concern for
how many offline queries are required of the expert policy.

If one has primarily encountered behavioral cloning in the context of learning from human demonstra-
tions, policy cloning, with an available expert policy may seem contrived. However, policy cloning
naturally arises in many settings. For example, an expert policy may be too large to execute due to
memory considerations as in Parisotto and Salakhutdinov [2021], where authors propose to distill a
large transformer network into small MLPs to be able to execute the policy on data collection workers.
In a different setting, we could aim to distill an expert which has access to additional privileged
information into a student without access to it, for example by distilling a full state policy into the
one which has vision observations. In applications such as robotics control tasks where observation
are provided via vision, it is typically much easier to train a policy if some additional features are
provided to the observations. However, these features might not be available when the policy should
be used on the real robot. And in the DAGGER setting [Ross et al., 2011], a student policy collects
data and is trained by regressing on the expert policy where state distribution comes from the student.
In yet another setting, the expert may be suboptimal and the student needs to learn from expert while
also being able to exceed the expert performance, perhaps by continuing to learn from a task via RL.
This problem has been described as kickstarting in one incarnation [Schmitt et al., 2018], but also
can arise when learning from behavioral priors [Tirumala et al., 2020], [Galashov et al., 2019], as
also happens, for example, in Distral [Teh et al., 2017]. In all of the aforementioned situations, we
implicitly rely on the assumption that it is cheap to query the expert policy. This, however, is not
typically a restriction and the main motivation is to minimize the amount of data a student policy
needs to collect.

To improve data-efficiency in supervised settings generally, including in behavioral cloning settings,
it is reasonable to consider data augmentation. Data augmentation refers to applying perturbations to
a finite training dataset to effectively amplify its diversity, usually in the hopes of producing a model
that is invariant to the class of perturbations performed. For example, in the well studied problem
of object classification from single images, it is known that applying many kinds of perturbation
should not affect the object label, so a model can be trained with many input perturbations all yielding
the same output [Shorten and Khoshgoftaar, 2019]. This setting is fairly representative, with data
augmentation usually intended to make the model “robust" to nuisance perturbations of the input.
This class of image-perturbation has also been recently demonstrated to be effective in the context of
control problems in the offline RL setting [Yarats et al., 2021, Laskin et al., 2020].

Critically, for control problems it is not the case that the action should be invariant to the input state.
Or rather, while it does make sense for a control policy to be invariant to certain classes of sensor
noise, an important class of robustness is that the policy is appropriately feedback-responsive. This is
to say that for small perturbations of the state of the control system, the optimal action is different
in precisely the way that the expert implicitly knows. This has been recognized and exploited in
previous research that has distilled feedback-control plans into controllers [Mordatch and Todorov,
2014, Mordatch et al., 2015, Merel et al., 2019]. A similar intuition also underlies schemes which
inject noise into the expert during rollouts to sample more comprehensively the space of how the
expert recovers from perturbations [Laskey et al., 2017, Merel et al., 2019]. Moreover, the idea of
recovery from perturbations was explored in scenarios where strong domain knowledge is avaialable.
In [Bojarski et al., 2016] for imitation learning for self-driging cars, the authros propose to shift
the camera images and associated shifted labels with these, which requires to know the model of
the shift. In [George et al., 2018], the authors used the label augmentation approach by assigning
fixed label to syntetically created images. In [Buhet et al., 2019], the authors proposed to perturb the
inputs and associate the labels which corresponded to the recovery of the perturbed inputs. Even if
these approaches are related to our work, they require a strong domain knowledge and in some cases
the knowledge of the perturbation model. In our approach presented below, we do not require any
domain knowledge, but only the ability to query the expert policy.

In this work, we leverage this insight to develop a highly efficient policy cloning approach that makes
use of both classes of data augmentation. For a high-DoF control problem that operates only from
state (humanoid run and insert peg tasks from DeepMind control suite [Tunyasuvunakool et al.,
2020]), we demonstrate the feasibility of policy cloning that employs state-based data augmentation
with expert querying to transfer the feedback-sensitive behavior of the expert in a region around a
small number of rollouts. Then on a more difficult high-DoF control problem that involves both state-
derived and egocentric image observations (humanoid running through corridors task from DeepMind
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control [Tunyasuvunakool et al., 2020]), we combine the state-based expert-aware data augmentation
with a separate image augmentation intended to induce invariance to image perturbations. Essentially
our expert-aware data augmentation involves applying random perturbations to the state-derived
observations, and training the student to match the expert-queried optimal action at each perturbed
state, thereby gaining considerable knowledge from the expert without performing excessive rollouts
simply to cover the state space around existing trajectories. Our approach compares favorably
to sensible baselines, including the naive approach of attempting to perform behavioral cloning
with state perturbations, which seeks to induce invariance (as proposed in Laskin et al., 2020)
rather than feedback-sensitivity to state-derived observations. We demonstrate that our approach
significantly improves data efficiency on all the settings mentioned above, i.e., behavioral cloning,
expert compression, cloning privileged experts, DAgger and kickstarting.

2 Problem description

2.1 Expert-driven learning

We start by introducing a notion of expert-driven learning that will be used throughout the paper.
At first, we present a general form of the expert-driven objective and then introduce a few concrete
examples. We consider a standard Reinforcement Learning (RL) problem. We present the domain as
an MDP with continuous states for simplicity, however the problem definition is similar for a POMDP
with observations derived from the state. Formally, we describe the MDP in terms of a continuous
state space S ∈ Rn, n > 0, an action space A, transition dynamics p(s′|s, a) : S × A → p(S),
and a reward function r : S × A → R. Let Π be a set of parametric policies, i.e. of mappings
πθ : S → p(A) from the state space S to the probability distributions over actions A, where θ ∈ Rm

for some m > 0. For simplicity of the notation, we omit the parameter in front of the policy, i.e.
π = πθ and optimizing over the set of policies would be equivalent to the optimizing over a set of
parameters. A reinforcement learning problem consists in finding such a policy π that it maximizes
the expected discounted future reward:

J(π) = Ep(τ)

[∑
t

γtr(at|st)

]
, (1)

where p(τ) = p(s0)
∏

t p(at|st)p(st+1|st, at) is a trajectory distribution. We assume the existence
of an expert policy πE(a|s). This policy could be used to simplify the learning of a new policy on the
same problem. Formally, we construct a new learning objective which aims to maximize the expected
reward of the problem at hand as well as to clone the expert policy:

J(π, πE) = αJ(π)− λD(π, πE), (2)

where D is a function which measures the closeness of π to πE and α ≥ 0, λ ≥ 0 are parameters
describing importance of both objectives. In most of the applications, α ∈ {0, 1} and λ ≥ 0
represents a relative importance of cloning an expert policy with respect to the RL objective.

2.2 Behavioral cloning (BC)

Behavioral cloning (BC) corresponds to optimizing the objective (2) with α = 0, λ = 1 where D is:

DBC(π, πE) = −E(a,s)∈BE
[log π(a|s)] (3)

Here, BE = {(si, ai), i = 1, . . . , N}, N > 0 is a fixed dataset containing expert data. Minimizing
the objective (3) is equivalent to maximizing the likelihood of the expert data under the policy π. The
action a in eqn. (3) can be replaced by πE(s) for deterministic policies or by the mean µE(s) for
Gaussian policies πE(·|s) = N (µE(s), σE(s)).

2.3 Expert compression

In case of expert compression, we are interested in optimizing a similar objective as in eqn. (3), but
where the student π has smaller number of parameters compared to πE .
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2.4 Learning from privileged experts

In case of learning from privileged experts, we optimize similar objective to eqn. (3), where student
receives different observations from the expert πE . We assume that the expert has access to the
privileged information, but the student does not. In particular, we consider the case where dataset
with expert data contains observations (rather than full state), i.e. BE = {(oi, ai), i = 1, . . . , N},
N > 0, but the expert has access to the full state si. More precisely, we consider an expert that
observes the state s = (sc, spriv), where sc is a set of observations common to both the student and
expert, whereas spriv is privileged information (containing some task-specific information). Then,
the observations for the student are obtained as o = (sc, ovis) where ovis is the vision-based input.

2.5 DAGGER

Performance of Behavioral Cloning (BC) can be limited due to the fixed dataset, since the resulting
policy may fail to generalize to states outside the training distribution. A different approach, known
in the literature as DAGGER [Ross et al., 2011] was proposed to overcome this limitation. In this
setting, the expert is queried in states visited by the student, thus reducing distribution shift. In our
notation, this corresponds to α = 0, λ = 1 in eqn. (2) and D is defined as:

DDAGGER(π, πE) = −Epβ(τ)[log π(a
′
t|st)], (4)

where pβ(τ), β ∈ [0, 1] is a trajectory distribution where actions are sampled according to the mixture
policy between a student and an expert:

pβ(a|s) = βπ̃(a|s) + (1− β)πE(a|s), (5)

The action a′t in eqn. (4) is obtained from the expert policy as a′t ∼ πE(·|st), as πE(s) for determin-
istic or as µE(s) for Gaussian policies πE(·|s) = N (µE(s), σE(s)) (see Section 2.2). The policy
π̃(a|s) corresponds to a frozen version of student policy π so that the gradient ∇πDDAGGER(π, πE)
ignores the acting distribution pβ(a|s). Note that even though, in eqn. (4) we collect data from the
environment, the setting nevertheless corresponds to pure imitation learning.

2.6 Kickstarting

In eqn. (2), we combine both maximization of expected task reward and minimization of distance to
the expert. In literature, it is known as Kickstarting [Schmitt et al., 2018]. In this case, the objective
from eqn. (2) becomes:

J(π, πE) = J(π)− λEp(τ)

[
−EπE(a|s) log π(a|s)

]
(6)

where p(τ) is a trajectory distribution, where actions are sampled according to the student policy
π(·|s). It corresponds to having α = 1, and λ ≥ 0 and D be state-conditional (across trajectory)
cross-entropy from expert to a student. Usually, in the Kickstarting setting, the expert is sub-optimal
and the goal is to train a policy that eventually outperforms the expert. Thus, it is customary to reduce
λ over the course of training. Yet, for simplicity, in our experiments we keep this coefficient fixed.

3 Augmented policy cloning

The previous section has demonstrated how the goal of cloning expert behavior can arise in different
scenarios. In this section we propose a new and simple method which can significantly improve
the data efficiency in the settings described in Section 2. We explain the basic idea for BC, but its
generalization to other expert-driven learning approaches described in Section 2 is straightforward.
In Section 6 we show results for these problems.

When optimizing the objective (3), for every state s ∈ DE from the expert trajectories dataset, we
consider a small Gaussian state perturbation:

δs ∼ N (0, σ2
s) (7)

which produces a new virtual state:
s′ = s+ δs (8)
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Figure 1: Schematic of APC (ours) method compared with a naive data augmentation approach.
The original states (magenta circles) and actions (magenta arrows) pairs are then augmented by new
virtual states (green circles). In Naive data augmentation, the same actions (magenta arrows) are used
for all new virtual states. In APC, however, for each new virtual state, we resample a new action
(green arrow) from the expert policy.

Then, for this state we query the expert and obtain a new action

a′ ∼ πE(·|s+ δs) (9)

We then augment the dataset BE with these new pairs of virtual states and actions. More explicitly
the idea can be expressed in terms of the following objective:

D(π, πE)APC = E(a,s)∈BE
[log π(a|s) + Eδs∼N (0,σ2

s),a
′∼πE(·|s+δs) log π(a

′|s + δs)] (10)

We call this approach Augmented Policy Cloning (APC) as it queries the expert policy to augment the
training data. This approach is different from a naive data-augmentation technique, where a new state
would be generated, but associated with the original action (and not a new one). It therefore allows to
build policies which are feedback-responsive with respect to the expert. We illustrate it in Figure 1
and we formulate APC algorithm for BC in Algorithm 1.

Algorithm 1 Augmented Policy Cloning (APC)
πθ - parametric student policy, θ0 - initial parameters, πE - expert policy, α - learning rate
σs - state perturbation noise, M - # augmented samples K - # gradient updates, L - batch size
Dataset BE = {(si, ai), i = 1, . . . , N}, N > 0 of expert state-action pairs
for k=1,. . . ,K do

Sample a batch of pairs {(ai, si)}Li=1 ∼ BE

For each state si, sample M perturbations δsj ∼ N (0, σs), j = 1, . . . ,M
Construct M virtual states s′i,j = si + δsj , i = 1, . . . , L, j = 1, . . . ,M
Resample new actions from expert a′i,j ∼ πE(·|s′i,j)
For Gaussian experts, the action ai = µE(si) and the new actions are a′i,j = µE(s

′
i,j)

Compute the empirical negative log-likelihood:
L = −

[
log πθk(ai|si) + 1

M

∑M
j=1 log πθk(a

′
i,j |s′i,j)

]
Update the parameters θk+1 = θk − α∇θL

end for

4 Experimental details

In this section we provide details common to all experiments. We provide additional details for each
set of results at the beginning of Section 5 and Section 6.

4.1 Domains

To study how our method performs on complex control domains, we consider three complex, high-
DoF continuous control tasks: Humanoid Run, Humanoid Walls and Insert Peg. All these domains
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are implemented using the MuJoCo physics engine [Todorov et al., 2012] and are available in the
dm_control repository [Tunyasuvunakool et al., 2020]. These problems are rather challenging,
requiring stabilization of a complex body (for humanoid tasks), vision to guide the movement
(Walls task), and solving a complex control problem with a weak reward signal (Insert Peg). These
environments are related to the domains that have been proposed for use in offline RL benchmarks
[Gulcehre et al., 2020]; however, the experiments we perform in this work require availability of the
expert policy, so we do not use offline data, but instead train new experts and perform experiments in
the very low data regime. We compare all methods on Humanoid Run and Humanoid Walls tasks and
report report a subset of results on Insert Peg, due to complex nature of the experiments.

4.2 Baselines

As baselines we consider simple BC as described in eqn. (3) as well as a simple modification of BC,
where, similarly to APC, we apply state perturbations to expert trajectories as in eqn. (7) and eqn. (8),
but we do not produce a new action from the expert (i.e., we augment the states but keep the same
action). We call this approach Naive Augmented Behavioral Cloning (Naive ABC). Essentially, this
method trains a student policy to produce the same action in response to small state perturbations.
This approach is motivated by analogy to how one might build robustness in a classifier. However,
this is naive when applied to continuous control problems where even small changes in input should
lead to a change in action. Moreover, for Humanoid Walls task, we considered additional random
crops augmentations applied to visual input of the student (not the expert) which is similar in spirit
to Laskin et al. [2020]. Note that in this case, it would also robustify the student to these vision
augmentations as it will not produce a new action even in the APC (since the expert was not trained
with data augmentations). When vision augmentations are used together with either APC or naive
ABC, we add "with image" to the method name. When only image augmentations are used (without
any state-based augmentations), we call it "image only". The purpose of combining vision and state
augmentations is to study the interplay between APC and more traditional data augmentation methods.
We only report results with vision augmentations for DAgger and kickstarting in the main paper and
we provide additional offline policy cloning results in Appendix 8.

5 Core results: offline policy cloning

Training and evaluation protocols. We train expert policies till convergence using MPO algo-
rithm Abdolmaleki et al. [2018] for Humanoid tasks and VMPO algorithm Song et al. [2019] for
Insert Peg task, as we found MPO was unable to learn on this task. The policies are represented
by the Gaussian distribution πE(·|s) = N (µE(s), σ(s)). We create datasets as in eqn. (3) using
pre-trained experts with a different number of expert trajectories. To asses the sensitivity of different
methods to the expert noise, when constructing a dataset, the expert action is drawn according to
Gaussian distribution with a fixed variance, i.e. a ∼ N (µE(s), σE), where σE is the fixed amount of
expert noise. In the subsequent BC experiments, we use σE = 0.2. Moreover, in order to analyze the
noise robustness of the student policy is trained via BC, π(·|s) = N (µ(s), σ(s)), we evaluate it by
executing the action drawn from a Gaussian with a fixed variance, i.e. a ∼ N (µ(s), σ), where σ is
the fixed amount of student noise. In all the experiments we use σ = 0.2. We apply early stopping
and select hyperparameters based on the evaluation performance on a validation set. We always report
performance based on 150 random environment instantiations. For more details, see Appendix 4.

5.1 Applying Augmented Policy Cloning

We evaluate the performance of APC when fitting the fixed dataset of expert trajectories. For the APC
method, we rely on Algorithm 1. We use baselines described in Section 4.2. In Figure 2, we show the
performance of different methods on different tasks as a function of number of trajectories available
in the dataset. We see that APC needs significantly fewer expert trajectories to achieve a high level of
performance. Moreover, we see that Naive ABC performs very similarly to BC. The results suggest
that when cloning an expert using a small fixed dataset APC can provide significant advantages.

In Appendix 6, we report additional results for a scenario, where instead of full long trajectories for
each task, we consider only short trajectories (i.e., the early portion of episodes). The motivation
for this experiment is to see whether we can further improve the data efficiency of the methods.
Incidentally, this supplemental comparison shows that for Insert Peg all methods performed better
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Figure 2: Offline expert cloning results. The X-axis represents the number of trajectories, the Y-axis
corresponds to the episodic reward across 150 independent evaluations. The red color corresponds to
APC, the blue to Naive ABC and the green to BC. The pink line depicts the average performance of
the teacher policy. Each subplot represents a different task.

with short trajectories, because initial snippets of episodes actually include the full solution to the
task (i.e., the expert policy rapidly inserts the peg and the episode doesn’t immediately terminate).
We report only long trajectories in Figure 2, since APC performs relatively well in both cases and full
length trajectories correspond to the most straightforward setting.

5.2 Expert compression
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Figure 3: Teacher compression results. We plot performances of different methods (rows) on
different tasks (columns) as a function of number of trajectories available in the expert dataset.
The legend corresponds to different student architectures used as well as the relative difference in
parameter count in a baseline torso architecture compared to the student torso architecture. We see
that the performance degrades much more drastically for BC compared to APC. The pink dashed line
corresponds to the performance of the expert policy. We report more complete results in Appendix
8.1

To study APC in a practically motivated setting we consider expert compression as discussed in
Section 2.3, where a student policy has fewer parameters than the expert. This setting occurs,
for instance, when the system is subject to computational contstraints (time, memory, etc.), as in
[Parisotto and Salakhutdinov, 2021]. To study APC’s data efficiency in this setting, we consider
different sizes of the student network torso, where [256, 256, 256] corresponds to the original network
size (see Appendix 4.1 for more details). We define the relative difference in parameter count in
baseline torso with respect to the student architecture torso r as the product of a baseline torso
dimensions, i.e. 2563 divided by the student torso dimensions (i.e., for a student torso [256, 256], it is
equal to 2562).

The results are given in Figure 3. We observe that the performance of all methods degrades when the
student network is smaller than the original one, but the degradation is much less severe for APC,
while maintaining high level of data efficiency. See Appendix 8.1 for more complete results (with
naive ABC) as well as additional ablation over student network torso sizes.
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5.3 Learning from privileged experts.
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Figure 4: Learning from privileged experts results. On the left plot we present the performance
of different methods on Insert Peg task where additional privileged information (target position)
is available. On the right, we present the results where instead of privileged information (target
position), we use visual input. We observe that learning from vision is less data efficient and more
complicated, but APC manages to obtain comparable performance to the scenario with privileged
information, whereas BC and Naive ABC fail to learn. The dashed pink line corresponds to the
performance of the expert policy.

Next, we consider a scenario where the expert has access to privileged information that is not available
to the student, as discussed in Section 2.4. To study the impact of APC in this scenario, we train
the expert on Insert Peg task where the full state contains common information (proprioception,
sword position and orientation) and privileged information of the target position. The student is given
access to the common observations as well as a third person (camera) view of the scene providing
information about the target position. The latter setup is similar in spirit to [Laskin et al., 2020] For
more details, see Appendix 4.2. From Figure 4, we observe that APC achieves similar performance
in both settings, provided a sufficient amount of trajectories are available, whereas BC and Naive
ABC fail to transfer the expert’s behavior to the student.

6 Additional Results: Augmented Policy Cloning as a subroutine

6.1 DAGGER with data augmentation
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Figure 5: DAGGER results. On the X-axis we report the number of environment steps. On the Y-axis
we report averaged across 3 seeds episodic reward achieved by the student. The legend corresponds
to the DAGGER variant with additional data augmentation is applied. We report confidence intervals
in the shaded areas. For Run task, the confidence intervals are very small and are not visible. In
solid line we report the performance without using expert policy during the acting. In dashed line,
we report the performance of the policy which mixes 30% with the expert. The dashed pink line
corresponds to the performance of the expert policy trained via MPO.

As described in Section 2.5, DAGGER [Ross et al., 2011] is a more sophisticated approach where
data is collected from the real environment by executing a policy from eqn. (5), which is a mixture
between a student and an expert. In this section we study how data augmentation approaches affect
the data efficiency of the DAGGER algorithm. For each task, we train expert policies to convergence
using the MPO algorithm Abdolmaleki et al. [2018]. We consider similar baselines for both tasks
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as in the previous section. For an expert policy that has been pre-trained via MPO [Abdolmaleki
et al., 2018], we perform online rollouts for two values of the expert-student mixing coefficient,
β = 0 and β = 0.3 (see eqn. 5). Since both student and expert are Gaussian distributions, instead of
using a log π in eqn. (4), we could use a state-conditional cross entropy from an expert to a student,
H[πE(·|s)||π(·|s)]. Empirically, we found that it worked better than using log π (see Appendix 8.6).
We run experiments in a data-restricted setup. For more details, see Appendix 5.1.

Results are shown in Figure 5. We report the performance of both the original DAGGER as well as
DAGGER with a data augmentation. We see that APC and its vision variant outperform BC and Naive
ABC similarly to the behavior cloning experiments. While we observe that image augmentation can
help, we see that the primary advantage comes from the state-based augmentation for APC. For the
Run task, we observe that all DAGGER methods achieve slightly lower performance than an expert
policy. We speculate that this is due to insufficient coverage of the state space during training.

6.2 Kickstarting with data augmentation.
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Figure 6: Kickstarting results. On the X-axis we show the number of environment steps and on
the Y-axis we report averaged across 3 seeds episodic reward achieved by the student. The legend
corresponds to the kickstarting variant where additional data augmentation is applied. We report
confidence intervals in the shaded areas. For Run task, these intervals are small and are not visible.
Dashed pink line shows the expert performance.

A similar in spirit approach is kickstarting Schmitt et al. [2018], where we solve an RL task as well
as cloning the expert policy. Similarly to previous section, we apply APC in kickstarting on the
cross entropy term in eqn. (6). For each task, we train expert policies to convergence using the MPO
algorithm Abdolmaleki et al. [2018]. Since in the kickstarting we are interested in outperforming a
sub-optimal expert, for each task, we select experts such that they achieve around 50 % of the optimal
performance. On top of kicktarting, we report the performance of MPO Abdolmaleki et al. [2018]
learning from scratch on the task of interest. We run experiment in a distributed, high data regime.
All the details are given in Appendix 5.2.

The results are given in Figure 6. We report the performance of both the original kickstarting as
well as kickstarting with additional data augmentation. We observe that APC performs better than
Naive ABC on Humanoid Run task and similarly on Humanoid Walls task. Both approaches perform
better than BC and learning from scratch. We hypothesise that the reason of not seeing a consistent
advantage could be due several factors. Firstly, as we are in a high-data and distributed regime, since
there is no limit on relative acting / learning ratio, and acting policies are not restricted to collect
trajectories, it is unclear whether data-augmentation should help. We tried to explore the rate-limiting
regime, but we experienced instability of kickstarting experiments. Secondly, we use reward signal
which makes the impact of expert cloning less important. Thirdly, on top of learning the policy, we
also need to learn an state-action value Q(s, a) function. Unfortunately, we cannot use APC-style
data augmentation for learning Q function, therefore it might be the bottleneck. Finally, unlike in
kickstarting Schmitt et al. [2018], we do not use an annealing schedule of λ to make the experiments
simpler, but we still observe that a fixed coefficient helps to kickstart an experiment and outperform
an expert policy. On top of that, we see that image-based augmentation have less of impact in this
setting and generally leads to poor performance.
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7 Discussion

Many expert-driven learning approaches actually have access to an expert that can be queried;
however, this opportunity is rarely exploited fully. In this work we demonstrated a general scheme for
more efficient transfer of expert behavior by augmenting expert trajectory data with virtual, perturbed
states as well as the expert actions in these virtual states. This data augmentation technique is widely
applicable and we demonstrated that it improves data efficiency when used in place of behavioral
cloning in various settings including offline cloning, expert compression, transfer from privileged
experts, or when behavioral cloning is used as a subroutine within online algorithms such as DAGGER
or kickstarting. One could argue that other way to clone the expert would be to query it on densely
covered state space. Such an approach, however, would require exponentially more number of queries
as the dimensionality of the state space grows. Our approach, however, would scale similarly to
baseline methods (such as DAGGER or Behavioral Cloning) as it would require only M additional
queries for each state during learning (see Algorithm 1). In case when the queries to the expert are
expensive, our approach may become problematic.

Critically, data efficiency is generally very important in realistic applications, where new data
acquisition cost could be high. In particular, settings involving deployment of policies in the real
world, such as robotics applications, may benefit from an ability to efficiently transfer expert policy
behavior from one neural network to another (for compression or execution speed reasons). While
overall, we consider the present work to be fairly basic research with limited ethical impact, insofar
as our approach decreases the amount of data which needs to be collected through processes which
could potentially be unsafe or costly, there is a potential positive social value.

Our approach is neither intended for nor suitable for all control settings. Fundamentally, our approach
relies upon the ability to query expert policy for the perturbed states. This arises frequently enough
to be worth our investigation, but is a limiting assumption. Our approach was also developed with
continuous control problems, essentially with continuous observation spaces as well as continuous
action spaces in mind. Related approaches may be worth pursuing in discrete control problems, but
that has not been a focus of the present work.

In future work, it may be interesting to develop an extension of our approach that is compatible with
offline RL. While offline RL operates with different assumptions, i.e., we generally do not have
access to the policy which produced the data, we may wish to consider adjacent scenarios where
the queryable expert can be combined with offlline learning RL or where augmentations facilitate
learning the Q-function.
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[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [No] , we won’t include the code and
the datasets in

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the pa-
per’s contributions and scope? [Yes] , we believe that the claims in the abstract and
introduction are accurately reflected by the paper’s contributions and scope.

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] , we
included details in the supplementary material, which could be used to reproduce the
experimental results

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] , we provided the details in the supplementary material

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [Yes] , for every plot we reported the mean and standard
deviations averaged across a number of independent random evaluations.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [TODO]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] , we used DeepMind
control suite tasks and we cited the appropriate publications.

(b) Did you mention the license of the assets? [No] , we did not explicitly mention the
licencse as it is clear from the corresponding references.

(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] , since the assets and references are in the public access, no
consent was required.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] , the assets which we used did not include any
personally identifiable information nor offensive content.

5. If you used crowdsourcing or conducted research with human subjects...
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(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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