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ABSTRACT

Generative AI has substantially facilitated realistic image synthesizing, posing
great challenges for reliable forensics. When image forensic detectors are de-
ployed in the wild, the inputs usually undergone various distortions including
compression, rescaling, and lossy transmission. Such distortions severely erode
forensic traces and make a detector fail silently—returning an over-confident bi-
nary prediction while being incapable of making reliable decision, as the detector
cannot explicitly perceive the degree of data distortion. This paper argues that reli-
able forensics must therefore move beyond “is the image real or fake?” to also ask
“how trustworthy is the detector’s decision on the image?” We formulate this re-
quirement as Detector’s Distortion-Aware Confidence (DAC): a sample-level con-
fidence that a given detector could properly handle the input. Taking AI-generated
image detection as an example, we empirically discover that detection accuracy
drops almost monotonically with full-reference image quality scores as distortion
becomes severer, while such references are in fact unavailable at test time. Guided
by this observation, the Distortion-Aware Confidence Model (DACOM) is pro-
posed as a useful assistant to the forensic detector. DACOM utilizes full-reference
image quality assessment to provide oracle statistical information that labels the
detectability of images for training, and integrates intermediate forensic features
of the detector, no-reference image quality descriptors and distortion-type cues to
estimate DAC. With the estimated confidence score, it is possible to conduct se-
lective abstention and multi-detector routing to improve the overall accuracy of a
detection system. Extensive experiments have demonstrated the effectiveness of
our approach.

1 INTRODUCTION

With the rapid development of generative artificial intelligence (e.g., GANs (Goodfellow et al., 2014)
and Diffusion Models (Ho et al., 2020)), photo-realistic contents can be manipulated or synthesized
at scale. To defense against such fake visual contents, image forensics increasingly underpin safety-
critical decisions. However, great challenges are presented in the practical deployment of forensic
detectors. Most images have already undergone various degradations, such as compression, resam-
pling, lossy platform transmission, and so on. Such distortions which may not be well-informed can
weaken forensic traces and often push an input beyond the detector’s “comfort zone”. Unfortunately,
as most detectors are trained exclusively on clean data, they remain largely unaware of distortions;
consequently, as shown in Figure 1 (a), they report only a binary decision (real or fake) without
quantifying how much the decision should be trusted. Lacking this confidence signal, downstream
systems (e.g., human fact-checkers, multi-detector pools) cannot assess which detector performs
better on a certain sample, and thus are unable to reasonably abstain or select among detectors,
raising both reliability and usability concerns. Consequently, we argue that confidence matters in
reliable image forensics.

To tackle the above challenges, several intuitive strategies could be employed in practice, yet they
suffer from clear limitations. Robustness training seeks a model that works under distortions, but
the combinatorial explosion of distortion type/degree makes it elusive and computationally costly.
Confidence calibration (Guo et al., 2017) can improve probability estimates in standard classifi-
cation, but distortion shifts the input distribution heterogeneously and thus breaks the calibration
assumptions. Using image quality (assessed without reference) as a proxy for distortion level is
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Figure 1: When facing open-world dis-
tortions, detectors’ outputs lack relia-
bility. The proposed Distortion-Aware
Confidence Model (DACOM) provides
sample-level confidence scores to facil-
itate reliable detection.

potential to estimate forensic performance, as shown
in prior study (Kim et al., 2024). However, common
no-reference image quality assessment (NR-IQA) is de-
signed for human perception and cannot directly reflect
the detection confidence (refer to Section 3). Another
line of work examines forensicability (Chu et al., 2015;
Pasquini & Böhme, 2018)—the intrinsic detectability de-
termined by the data distribution. However, such treat-
ments do not bridge detectability of data with specific de-
tector, leaving a gap in practical application. Therefore,
we propose constructing a Distortion-Aware Confidence
(DAC) score, a detector-conditioned score that estimates
the probability that a given image will be classified cor-
rectly under its present distortions.

In this paper, we take AI-generated image (AIGI) de-
tection as a case study to analyze how distortion affects
forensic performance and how to link image quality with
DAC. Our analysis reveals that, when a pristine reference
is available, full-reference image quality assessment (FR-
IQA) produces scores that line up almost monotonically
with detector accuracy across all tested distortions, suggesting that forensic confidence can be ob-
tained with the guidance of image quality. The gaps for practical applications lie in: (i) Image quality
must be estimated without reference at test time. While NR-IQA is available, it is too noisy to serve
as a direct surrogate. (ii) Our analysis shows that different types of distortions lead to different de-
grees of detection confidence, even when the resulting FR-IQA score is the same. It indicates that
we need to build a more sophisticated and generalizable model to bridge image quality, distortion
type, and forensic performance, so as to effectively estimate DAC which can be served as an useful
indicator for either human decision or expert system fusion.

Building on the above insights, this paper proposes to develop a Distortion-Aware Confidence Model
(DACOM). The key idea is to distill the reliable relationship observed with FR-IQA into a trainable
confidence model, eliminating the need for references at test time. DACOM fuses forensic features
derived from the detector, no-reference image quality descriptors, and distortion-type cues to pro-
duce confidence scores. During training, for each distortion type, we record the detector’s empirical
accuracy at different levels of image quality by using FR-IQA as an oracle, and treat the correspond-
ing accuracy as image label explicitly linking distortion degree to forensic performance. A regressor
is trained to map the features to the obtained labels. Once trained, DACOM outputs a confidence
score per image (Figure 1 (b)), which can be attached to legacy detectors or to an ensemble of de-
tectors, enabling abstention policies and multi-detector routing. Our contributions are summarized
as follows:

• We formulate DAC, providing a principled reliability target for practical forensics. On this
basis, we conduct an in-depth analysis and reveal the relationship between FR-IQA scores
and forensic accuracy, offering the empirical foundation for confidence modelling.

• We introduce DACOM to connect image quality with detection confidence. It uses super-
vision guided by FR-IQA during training, yet at inference it estimates sample-level DAC
scores without reference. DACOM can be deployed with diverse forensic detectors.

• Extensive experiments on multiple datasets, detectors, and distortion types shows that DA-
COM can effectively predict confidence and unlock advantages in downstream tasks, in-
cluding a 7.66% relative accuracy improvement via selective filtering and a 5.84% accuracy
improvement in multi-detector routing compared with naive logit calibration.

2 RELATED WORKS

Robust AIGI detection. Early CNN-based detectors focused on spatial features and employed data
augmentation (e.g., JPEG compression, blurring) (Wang et al., 2020; Gragnaniello et al., 2021) to
gain robustness against common distortions, but they generalized poorly to unseen processing. Later
methods exploited frequency features (Tan et al., 2024a; 2023; Li et al., 2024b; Tan et al., 2024b),
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(a) DISTS with CD (b) SSIM with ND (c) MS-SSIM with C2P*

(d) QualiCLIP with CD (e) ARNIQA with ND (f) QualiCLIP with C2P*

Figure 2: Relationship between IQA Metrics and Model Detection Performance. (a)-(c) show the
relationship between FR-IQA scores and model balanced accuracy; (d)-(f) show the corresponding
relationship for NR-IQA metrics.

handcrafted extractors (Li et al., 2024a) to enhance subtle forensic cues and improve generalization.
Yet, frequency-domain information is highly distortion-sensitive, where even slight perturbations
can cause sharp performance drops. Some approaches (Tao et al., 2025) improved robustness to
JPEG and OSN distortions by adding paired original-compressed samples during training. More re-
cently, reconstruction-based methods use diffusion models to recover authentic counterparts, where
latent-space reconstruction (Chen et al., 2024a) yields greater robustness than pixel-space (Wang
et al., 2023) under the same augmentations. While these methods improve robustness, they seldom
address the reliability of predictions under diverse distortions. In contrast, our work focuses on
quantifying reliability by linking distortion intensity to detection performance.

Model self-assessment and forensibility. Many methods have been proposed for uncertainty esti-
mation (Blundell et al., 2015; Gal & Ghahramani, 2016; Lakshminarayanan et al., 2017; Van Amers-
foort et al., 2021; 2020; Guo et al., 2017; Liang et al., 2017; Naeini et al., 2015), but they are mostly
designed for general tasks and have not been systematically adapted to image forensics. Recently,
several studies (Zhang et al., 2025; Ji et al., 2023; Lin et al., 2024; Hao et al., 2024; Pan et al., 2024)
have introduced uncertainty modeling into forensics, yet typically as a means to boost model perfor-
mance or robustness, rather than as a principled quantification of detection reliability. In addition,
the information-theoretic notion of forensicability (Chu et al., 2015; Pasquini & Böhme, 2018; Chen
et al., 2022; Pasquini & Böhme, 2017; Schlögl et al., 2021; Li et al., 2023) provides valuable insights
into the theoretical limits of forensic systems. However, its application has largely remained at a the-
oretical level, with limited validation under realistic conditions, leading to a gap between theoretical
potential and practical effectiveness.

3 ANALYSIS OF FORENSIC PERFORMANCE: A DISTORTION PERSPECTIVE

Before introducing our confidence model, we first present an analysis of forensic performance from
a distortion perspective, establishing the empirical foundation for our framework. Specifically, we
aim to answer two questions:

(i) How do common distortions affect the accuracy of forensic detectors?

(ii) Can off-the-shelf Image Quality Assessment (IQA) metrics serve as proxies for esti-
mating the detection confidence on a given image?

Setup of analysis. We adopt three pretrained AIGI detectors (CD, ND, and C2P*; details provided
in Section 5.1) and six common distortion types (additional results for more distortion types is
provided in Appendix Figure 6) in our empirical analysis. For every distorted image, we employ
image quality assessment (IQA) methods to quantify the degree of distortion. Specifically, we com-
pute FR-IQA scores—DISTS (Ding et al., 2020), SSIM (Hore & Ziou, 2010), and MS-SSIM (Sara
et al., 2019)—using the pristine reference, as well as NR-IQA scores—ARNIQA (Agnolucci et al.,
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2024b), QualiCLIP (Agnolucci et al., 2024a), etc. We then bucket images by quality score and mea-
sure balanced accuracy in each bucket, thereby obtaining the forensic performance of each detector
on images subjected to a certain type and a certain degree of distortion. The obtained results are
shown in Figure 2.

FR-IQA strongly correlate with detection performance. A clear positive correlation between FR-
IQA metrics and the performance of different detectors is observed in Figure 2 (a)-(c): for a fixed
distortion type, a more severe degradation (i.e., a lower FR-IQA score) results in poorer detection
performance. This suggests that FR-IQA can reliably characterize the relation between distortion
intensity and performance degradation under a given distortion type. Moreover, we observe that the
more severe FR-IQA degradation, the greater shifts in the logit distribution (Appendix B). Therefore,
we conclude that FR-IQA captures an oracle notion of distortion severity that is strongly predictive
of forensic performance. We should also note that FR-IQA methods cannot be applied at inference
time as they require access to the reference images.

NR-IQA alone is insufficient to predict detection performance. In contrast to FR-IQA, the cor-
relation between NR-IQA metrics and detection performance is relatively weak. As shown in Fig-
ure 2 (d)-(f), the NR-IQA scores fail to exhibit a consistent trend of “lower quality leads to lower
performance”. This is primarily because NR-IQA metrics are designed based on human perceptual
quality, which is highly content-dependent and thus difficult to be directly applied to predicting the
behavior of forensic models. These observations indicate that while NR-IQA methods are deployable
and can perceive degradation, their scores exhibit a weak and inconsistent correlation with forensic
performance, making them unsuitable to be used alone as a reliable indicator of model confidence.

Distortion type is a critical factor. As shown in Figure 2, even at the same level of distortion,
different distortion types lead to noticeably different accuracies, no matter FR-IQA or NR-IQA is
used. This implies that distortion type is an indispensable factor for assessing forensic performance.

The above findings confirm that both the distortion type and its severity determine forensic per-
formance. While FR-IQA provides a dependable signal, it is inherently reference-dependent. At
test time, only NR-IQA scores and detector-internal features are available, and either source alone is
insufficient to predict detection confidence. These observations motivate a reference-free, distortion-
aware confidence model that (i) learns to distill the relationship between FR-IQA scores and detec-
tion performance during training, and (ii) fuses detector features with cues of distortion type and
severity at inference. The proposed model is described in the next section.

4 METHODOLOGY

In this section, we first formalize the goal of Distortion-Aware Confidence (DAC), then detail a two-
stage pipeline that (i) converts full-reference image quality statistics into per-image reliability labels
and (ii) trains a reference-free Distortion-Aware Confidence Model (DACOM) that can be plugged
into a given detector.

4.1 PROBLEM FORMULATION

Consider an image forensic detector M : x ∈ RH×W×3 → c ∈ {0, 1} trained in the standard
binary-classification paradigm. A real-world test image x is typically subjected to an (unknown)
distortion operation ϕt,s—characterised by its type t∈T and severity s—to a pristine image
x0: x = ϕt,s(x0). As distortion attenuates forensic traces, the softmax or logit value of detector M
on x is no longer a trustworthy indicator of correctness. Our target thus is to obtain a DAC score,
which is defined as the sample-level probability that M is correct:

DACM (x) = Pr(M(x) = c | x) ∈ [0, 1]. (1)

At test time we assume no access to the pristine reference x0 and the class label c; only the image x
itself and intermediate features of M are available.

4.2 DISTORTION-AWARE CONFIDENCE PIPELINE

As already revealed in Sec. 3, detector accuracy varies monotonically with the FR-IQA score, and
NR-IQA and detector embeddings are readily available at runtime but neither alone aligns well
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Figure 3: Overview of the distortion-aware confidence pipeline. (a) illustrates the process of adaptive
severity binning and data labeling, where prior knowledge of forensic performance is used to assign
labels to data within each intensity bin for every distortion type. (b) depicts the training process of
the DACOM. (c) shows the architecture of the DACOM.

with detection accuracy. These observations inspire us to adopt a two-stage pipeline as illustrated
in Fig. 3 (a)-(b). Stage A — Collect statistics and perform labeling. For every distortion type t
we use FR-IQA scores qFR(x, x0) to build an ordered distortion severity axis, divide it into several
bins, bucket image according to bins, and record the detector’s balanced accuracy as a label of
“detectability prior”. Stage B — Train a reference-free predictor. We train DACOM, a regressor that
fuses three inference-available feature streams, including detector embeddings, NR-IQA descriptors,
and distortion-type cues, and regresses to the detectability label obtained in Stage A. Once trained,
DACOM outputs ŝ(x;M)≈DACM (x) for a given image without requiring reference images.

4.3 STAGE A: SEVERITY BINNING AND LABEL ASSIGNMENT

We construct a large-scale distorted dataset that covers multiple distortion types t ∈ T and a range
of severities. Guided by FR-IQA, we build, within each type t, a unified severity axis and bucket the
samples along this axis. Since different distortion types exhibit distinct ranges and/or distributions of
FR-IQA scores (Appendix C), naive uniform partitioning by absolute FR-IQA values causes severe
imbalance across types and bins. To avoid this, we adopt type-wise adaptive binning with a fixed
number of bins B for every t, so that each distortion type contributes B buckets with comparable
sample sizes.

Type-wise adaptive binning. Let qFR be an FR-IQA metric whose larger value indicates higher
quality. For each distortion type t we split its FR-IQA score distribution into B equal-frequency
bins and collect samples into each bin as:

bin(t, b) = {x | t(x) = t, q
(b−1)
t ≤ qFR(x, x0) < q

(b)
t }, b = 1 . . . B, (2)

where t(x) is the distortion type of x and q
(b)
t are the b

B -quantiles w.r.t. distortion type t. Quantile
binning guarantees similar sample counts per (t, b) and avoids the imbalance caused by the different
dynamic ranges of FR-IQA metrics across types. In addition, a dedicated bin is reserved for pristine
images, i.e., bin(pristine, 1).

Bin-wise detectability labeling. For each bin, we compute the detector’s balanced accuracy on
samples lying in the bin:

BAcct,b = Accbal (M ; bin(t, b)) . (3)

This bin-level statistic serves as a statistical average, which is then converted into a scalar label for
representing the degree of a sample is expected to be correctly classified by M . Specifically, BAcct,b
is mapped to a detectability label within the range of [0, 1]:

yt,b = 2, |BAcct,b − 0.5| , (4)
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where yt,b = 0 means random guessing and yt,b = 1 means perfect detection. Every sample
x ∈ bin(t, b) inherits the label y(x) = yt,b. These labels encode both distortion severity and type
influence, providing supervised targets for Stage B.

4.4 STAGE B: CONSTRUCTING THE DISTORTION-AWARE CONFIDENCE MODEL

As illustrated in Fig. 3 (c), for an image x DACOM first extracts features with three complementary
encoders:

• Forensic Trace encoder ϕM : it extracts intermediate features from the frozen forensic
detector M , carrying information about forensic traces and their corruption.

• Image Quality Encoder ϕIQ: it extracts distortion-sensitive features by using an NR-IQA
descriptor.

• Distortion Type Encoder ϕDT: it extracts embeddings of a distortion-type classifier, which
is capable of identifying various distortion types.

Features from each branch are then linearly projected to a D-dimensional space (D=256):

zM = WMϕM (x), zIQ = WIQϕIQ(x), zDT = WDTϕDT(x). (5)

and optionally subjected to LayerNorm. The concatenated feature vector h(x) = [zM∥zIQ∥zDT] ∈
R3D is fed to a MLP head gθ for predicting the distortion-aware confidence:

ŝ(x;M) = gθ (h(x)) ∈ [0, 1]. (6)

Training objective. Given the bin-derived label y(x), DACOM minimises a weighted mean-squared
error:

LMSE =
1

N

N∑
i=1

wti,bi (ŝ(xi;M)− y(xi))
2
, (7)

where wt,b inversely scales with the bin’s sample size to counter residual imbalance. Empirically,
this simple loss can preserve the monotonicity FR-IQA observed in Sec. 3.

Inference and usage. At deployment, DACOM needs only the three features extracted from a given
image to output ŝ(x;M). The output score enables: (i) selective abstention: refrain from mak-
ing decisions when ŝ(x;M) is insufficiently high; and (ii) multi-detector selection: given multiple
detectors {Mj}, pick the one with the highest ŝ(x;Mj) for each input x. Both applications can
enhance overall reliability.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

AIGI Detectors. We evaluate our confidence model on six representative AIGI detectors: CD (Wang
et al., 2020), ND (Gragnaniello et al., 2021), NPR (Tan et al., 2024b), FreqNet (Tan et al., 2024a),
SAFE (Li et al., 2024b) and C2P (Tan et al., 2025). All models except C2P were retrained on
the ForenSynths dataset using the four-class training protocol (i.e., cars, cats, chairs, and horses).
Since NPR, FreqNet, and SAFE were originally trained on pristine images without robustness
enhancements, we incorporated two distortions as augmentations during their training, i.e., JPEG
compression and blurring. The JPEG compression quality was sampled from [30, 100], and the
blurring kernel size varied in [0, 3]. Both augmentations were applied with a probability of 10%. The
resulting models were denoted NPR+, FreqNet+ and SAFE+. Unless stated otherwise, experiments
were conducted with the trained models CD, ND, NPR+, FreqNet+, SAFE+. C2P provides no
training code; we therefore used its released pretrained weights, denoted as C2P*.

Datasets. Eight distortion families were used when training DACOM, including JPEG, Blur, Noise,
Resize, Color warming, Color cooling, Brighten, and Darken. Each distortion has an associated
test split, forming the Seen Distortion test sets. To evaluate the generalization ability, we con-
structed Unseen Distortion test sets comprising ten distortion types that never appear in training.
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Figure 4: Correlation between average confidence and detection accuracy. ◦: seen distortions; △/×:
unseen single/platform-compression distortions.

Additionally, to evaluate the screening performance, we also included an Evaluation-dataset and a
Cross-dataset. More details about datasets are provided in Appendix D.

Implementation of DACOM. To form the training-time supervision, we experimented with four
FR-IQA metrics, including SSIM (Hore & Ziou, 2010), MS-SSIM (Sara et al., 2019), FSIM (Zhang
et al., 2011), and DISTS (Ding et al., 2020), producing four variants of our model. The models
are referred to as DACOMSSIM, DACOMMS-SSIM, DACOMFSIM and DACOMDISTS. In the pro-
posed confidence model, we employ QualiCLIP, a NR-IQA model that operates entirely in a self-
supervised manner without relying on Mean Opinion Score (MOS) for supervision, as our Image
Quality Encoder. We adopt the feature extractor from ARNIQA (Agnolucci et al., 2024b) as our
Distortion Type Encoder, considering its strong capability in identifying distortion types. Further
details regarding the selection of Distortion Type Encoder are discussed in the Appendix E. More
details of the experimental configuration of DACOM are provided in the Appendix F.

Comparison methods. We compare DACOM against three categories of methods in our exper-
iments: (1) FR-IQA methods: SSIM, MS-SSIM, FSIM, and DISTS; for clarity, we prefix full-
reference metrics with “FR-”. (2) NR-IQA methods: TOPIQ (Chen et al., 2024b), ARNIQA, and
QualiCLIP. (3) Post-hoc logit calibration (Guo et al., 2017). For the logit calibration baseline, the
same training set as used for the confidence model is employed to normalize the output of each
classifier, and the detector’s confidence score is given by |logit − 0.5|.

5.2 CORRELATION BETWEEN ESTIMATED CONFIDENCE AND DETECTOR ACCURACY

We first verify whether DACOM can faithfully predict the confidence of a given detector. Using the
conventional linear- and rank-correlation measures, DACOM achieves a Pearson linear correlation
coefficient (PLCC) of 97.61% and a Spearman rank correlation coefficient (SRCC) of 93.99% on
the test set, confirming the effectiveness of our strategy. Complete results are reported in Appendix
Table 6. Figure 4 plots average confidence against detection accuracy for both the seen and unseen
distortion test sets. A strong positive correlation is evident for all the involved detetors. Detailed
quantitative results are provided in the Appendix G.

5.3 RESULTS OF TOP-1 ROUTING IN MULTI-DETECTOR SCENARIO

We next test whether the estimated confidence can guide an on-the-fly choice among multiple detec-
tors. The six detectors described in Section 5.1 are each equipped with its own DACOM. Given an
image, six confidence scores are computed and the prediction of the detector with the highest score
is returned, denoted as “Top-1 routing” fusion. This strategy is compared against two baselines: (1)
using a single detector’s output; (2) using the calibrated logit-based confidence to perform Top-1
routing. Results on the Seen Distortion test sets (Table 1) show that Top-1 routing with DACOM
consistently outperforms the single best detector, demonstrating the effectiveness of our confidence
model in identifying the most suitable detector for each input. Notably, our best result surpasses
logit-based Top-1 routing by 5.82% in mean accuracy (Acc) and 8.98% in mean average preci-
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Table 1: Performance (%) of multi-detector fusion on the Seen Distortion test sets. For every image
we conduct Top-1 routing, using the prediction from the detector whose associated DACOM yields
the highest confidence score. “Average” is the mean value over all eight distortion subsets, whereas
“Worst” corresponds to the poorest performance observed on any single subset.

Method JPEG Blur Noise Resize Color shift Brightness Average Worst

Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP Acc AP

CD 94.20 99.28 94.80 99.36 65.70 93.37 98.30 99.90 62.30 90.75 93.80 99.74 84.85 97.07 62.30 90.75
ND 87.10 95.88 93.90 99.01 68.10 80.71 98.70 99.93 54.00 66.79 88.00 98.33 81.63 90.11 54.00 66.79

FreqNet+ 55.20 67.40 82.40 90.66 50.50 50.87 94.90 98.15 58.70 64.48 86.80 95.02 71.42 77.76 50.50 50.87
NPR+ 68.50 79.99 91.90 97.85 51.30 51.34 98.90 99.98 67.80 76.86 92.40 98.85 78.47 84.15 51.30 51.34

SAFE+ 52.30 55.11 63.30 79.31 49.00 48.06 92.60 99.21 78.20 85.73 93.20 98.39 71.43 77.63 49.00 48.06
C2P* 92.70 97.98 81.10 94.15 92.90 99.27 99.20 100.00 90.90 99.05 99.00 99.99 92.63 98.41 81.10 94.15

Logit Calib. 92.20 98.07 92.70 97.59 64.40 55.46 99.90 100.00 89.20 92.09 99.10 99.78 89.58 90.49 64.40 55.46

DACOMSSIM 94.00 99.28 94.70 98.91 92.90 99.27 99.40 99.90 90.90 99.05 98.90 99.98 95.13 99.42 90.90 99.05
DACOMMS-SSIM 94.20 99.19 95.30 98.92 92.90 99.27 99.40 99.99 90.90 99.05 98.90 99.98 95.27 99.40 90.90 99.05

DACOMFSIM 94.20 99.13 95.60 99.38 92.90 99.27 99.60 99.99 90.90 99.05 99.20 99.99 95.40 99.47 90.90 99.05
DACOMDISTS 94.30 99.13 95.50 99.38 92.90 99.27 99.60 99.99 90.90 99.05 99.00 99.99 95.37 99.47 90.90 99.05

Table 2: Performance (%) of multi-detector fusion on the Unseen Distortion test sets.

Method Histogram Saturation Sharpening Mix1 Mix2 WeChat QQ Weibo Facebook SRx2 Average Worst

Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap Acc Ap

CD 87.30 97.72 93.70 99.75 89.60 99.32 75.50 88.92 85.80 94.66 90.30 99.12 84.30 98.86 95.20 99.61 95.90 99.74 99.30 99.99 89.69 97.77 75.50 88.92
ND 88.30 98.83 91.40 98.90 68.20 89.58 71.30 79.61 78.20 85.69 78.70 92.93 70.30 90.24 89.40 97.17 91.70 98.32 98.10 99.70 82.56 93.02 68.20 89.58

FreqNet+ 82.80 93.29 89.10 94.83 60.80 75.10 55.00 53.34 52.80 59.97 63.90 67.83 54.80 58.34 68.30 74.04 74.30 81.25 99.10 99.91 70.09 75.79 52.80 53.34
NPR+ 91.00 98.57 90.50 96.24 91.00 97.22 62.50 69.07 60.30 67.41 71.70 81.10 62.90 72.39 79.90 88.31 83.30 91.35 95.00 99.46 78.81 86.11 60.30 67.41

SAFE+ 82.90 95.26 95.10 99.23 99.10 99.94 52.40 50.48 51.60 50.85 52.20 58.32 52.20 54.77 52.40 58.94 53.40 60.43 93.00 98.56 68.52 72.68 51.60 50.48
C2P* 99.80 100.00 97.70 99.97 94.10 99.99 83.90 92.08 84.60 93.78 90.20 95.78 74.90 88.94 95.00 98.61 95.00 98.30 100.00 100.00 91.52 96.75 74.90 88.94

Logit Calib. 99.90 100.00 97.50 99.83 98.70 99.24 77.20 68.66 82.50 92.07 85.50 85.03 78.40 83.56 88.30 86.58 95.10 96.06 100.00 100.00 90.31 90.95 77.20 68.66

DACOMSSIM 99.80 100.00 97.00 99.35 94.10 99.99 85.20 93.24 86.90 95.23 90.70 98.93 84.00 98.26 95.30 99.55 96.10 99.65 97.00 99.33 92.70 98.53 84.00 93.24
DACOMMS-SSIM 99.80 100.00 97.60 99.77 94.10 99.99 83.20 91.07 86.70 95.03 90.80 98.79 83.40 97.28 95.60 99.54 96.10 99.49 98.50 99.94 92.58 98.04 83.20 91.07

DACOMFSIM 99.80 100.00 97.70 99.97 94.10 99.99 85.40 93.33 86.30 95.11 90.80 98.93 83.80 97.75 95.50 99.62 96.20 99.55 99.70 99.80 92.93 98.40 83.80 93.33
DACOMDISTS 99.80 100.00 97.70 99.87 94.10 99.99 84.90 93.16 87.00 95.21 90.70 98.79 83.20 97.45 95.40 99.57 95.90 99.47 99.70 99.80 92.84 98.33 83.20 93.16

sion (AP). On unseen distortion types (Table 2), our approach still outperforms logit-based fusion
by 2.62% in mean accuracy and 8.45% in mean AP, showcasing its robustness and generalization
capabilities, especially under complex distortion conditions such as social media transmission.

5.4 RESULTS OF CONFIDENCE-BASED FILTERING

We finally examine whether DACOM can serve as a reliable basis for rejecting uncertain predic-
tions. Experiments are carried out on the Evaluation-dataset and the Cross-dataset, and each image
undergoes a single, randomly selected distortion. For every detector we rank all test images by the
confidence produced by its corresponding DACOM. Starting from the full set, we iteratively dis-
card the lowest-confidence p% of samples and compute the Balanced Accuracy (BAcc) and Equal
Error Rate (EER) on the retained subset. Tables 3 (Evaluation-dataset) and 4 (Cross-dataset) show
that, at every filtering rate, DACOM achieves higher BAcc and lower EER compared to the logit-
based confidence baseline. The results for random multiple distortions are provided in Appendix H
and exhibit similar trend. Furthermore, we plot the Risk-Coverage (RC) curve (Figure 5). As
more low-confidence samples are filtered out, the risk on the retained set monotonically decreases,
demonstrating the effectiveness of confidence-based filtering.

Table 3: Evaluation-dataset Single-Distortion Filtering (%). Averages over multiple detectors. “Dis-
tortion” reports BAcc and EER on distorted sets; “Filtering Proportion” is the fraction of samples
removed. Best and second-best are bold and underlined, respectively.

Method Distortion Filtering Proportion

BAcc ↑ EER ↓ 0.05 0.10 0.15 0.20 0.30 0.40

Topiq

84.43 14.79

84.89 14.51 85.35 14.19 85.90 13.84 86.52 13.21 87.98 11.63 89.30 10.13
ARNIQA 84.86 14.50 85.18 14.40 85.46 14.38 85.73 14.27 85.53 14.86 85.89 14.45

QualiCLIP 85.02 14.27 85.69 13.67 86.23 13.15 86.76 12.64 87.89 11.58 88.55 10.86
Logit Calib. 85.86 14.19 86.93 13.53 87.85 13.30 88.54 12.73 90.33 11.61 92.21 10.73

FR-SSIM

84.43 14.79

85.34 13.97 86.22 13.21 87.10 12.36 87.87 11.44 89.31 10.32 90.95 8.80
FR-MS-SSIM 84.90 14.46 85.63 13.81 86.49 13.04 87.22 12.30 88.60 10.89 90.40 9.22

FR-FSIM 84.93 14.38 85.49 14.08 86.30 13.34 87.20 12.38 89.46 10.05 91.65 8.05
FR-DISTS 84.98 14.39 85.79 13.76 86.67 12.88 87.85 11.64 90.23 9.29 92.28 7.46

DACOMSSIM

84.43 14.79

86.01 13.13 87.53 11.54 88.99 10.51 89.91 9.24 91.61 7.11 93.26 5.35
DACOMMS-SSIM 86.04 13.10 87.56 11.57 89.03 10.41 89.98 9.18 91.67 7.06 93.32 5.26

DACOMFSIM 86.04 13.05 87.60 11.43 89.05 10.44 90.00 9.14 91.70 7.11 93.35 5.27
DACOMDISTS 86.17 12.96 87.66 11.41 89.05 10.43 89.97 9.21 91.65 7.15 93.52 5.12
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Table 4: Results on Cross-dataset Single-Distortion Filtering (%).

Method Distortion Filtering Proportion

BAcc ↑ EER ↓ 0.05 0.10 0.15 0.20 0.30 0.40

Topiq

70.19 27.26

70.65 26.70 71.05 26.11 71.42 25.54 71.81 24.94 72.53 23.85 73.20 22.86
ARNIQA 70.24 27.22 70.33 27.10 70.38 26.91 70.42 26.86 69.98 27.06 69.83 26.97

QualiCLIP 70.91 26.33 71.50 25.57 71.96 25.02 72.38 24.49 72.92 23.85 73.25 23.49
Logit Calib. 70.81 27.16 71.38 27.08 71.92 27.14 72.29 26.98 73.06 27.07 73.71 27.50

FR-SSIM

70.19 27.26

70.82 26.54 71.41 25.80 71.97 25.16 72.51 24.65 73.31 23.79 74.16 22.89
FR-MS-SSIM 70.66 26.70 71.24 26.01 71.82 25.34 72.46 24.61 73.50 23.55 74.49 22.46

FR-FSIM 70.67 26.66 71.20 26.00 71.80 25.27 72.35 24.60 73.35 23.54 74.44 22.41
FR-DISTS 70.94 26.32 71.75 25.30 72.48 24.47 73.14 23.70 74.51 22.18 75.73 20.96

DACOMSSIM

70.19 27.26

71.01 26.03 71.86 24.92 72.87 23.89 73.70 23.12 75.37 21.71 77.06 20.09
DACOMMS-SSIM 71.05 25.94 71.95 24.85 72.94 23.85 73.74 23.14 75.39 21.79 77.09 19.99

DACOMFSIM 71.06 26.02 71.97 24.87 72.97 23.88 73.80 23.09 75.46 21.73 77.22 19.89
DACOMDISTS 71.06 25.97 71.95 24.81 72.83 23.88 73.71 23.09 75.54 21.69 77.32 19.87
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Figure 5: Risk-Coverage (RC) curves with risk defined as 1−BAcc (x-axis: coverage, y-axis: risk).
(a) and (b) show results on the evaluation dataset with single- and multi-distortion, while (c) and (d)
present Cross-dataset results under single- and multi-distortion.

5.5 ABLATION STUDY

To disentangle the contribution of each design choice inside DACOM, we evaluate the DACOM en-
coder design and the choice of the Image Quality Encoder ϕIQ. As summarized in Appendix I, in-
corporating distortion-sensitive features from ϕIQ consistently improves regression. The best con-
figuration is using QualiCLIP as Image Quality Encoder and including a Distortion Type En-
coder, achieving the strongest overall performance with the average PLCC of 97.66% and SRCC
of 93.97% across detectors.

6 CONCLUSION

This work takes the problem of AI-generated image (AIGI) detection as a test-bed and offers the
first systematic analysis of detector reliability in the presence of common, real-world distortions.
We show that the raw outputs of detectors cannot convey sample-level confidence once images are
degraded, and we introduce DACOM, a distortion-aware confidence model, to enable detectors to
output a confidence score for each image under distortion. Experiments across diverse distortions
and detectors support three findings: (i) FR-IQA-based distortion levels align more strongly with
forensic performance than no-reference IQA (NR-IQA) scores; (ii) distortion effects are detector-
and type-dependent—even at matched intensities—revealing systematic interaction patterns; and
(iii) the proposed confidence model enables effective sample-level filtering and multi-detector fu-
sion, improving overall reliability. Limitation. Although DACOM is designed to handle distortion
effects, its performance degrades under Cross-dataset evaluation, reflecting sensitivity to change in
data source distribution. Future Work. We will pursue more general, shift-resilient formulations of
distortion-aware, detector-conditioned reliability modeling, strengthening the framework as a foun-
dation for future reliability modeling under real-world degradations.
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Cecilia Pasquini and Rainer Böhme. Information-theoretic bounds for the forensic detection of
downscaled signals. IEEE Transactions on Information Forensics and Security, 14(7):1928–1943,
2018.

Umme Sara, Morium Akter, and Mohammad Shorif Uddin. Image quality assessment through fsim,
ssim, mse and psnr—a comparative study. Journal of Computer and Communications, 7(3):8–18,
2019.
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A IQA METRICS AND DETECTION PERFORMANCE

We present the correlation between IQA scores and model detection performance for a broader set
of distortion types in Figure 6. The results indicate a consistently strong correlation across diverse
distortion categories.

(a) Dists with CD (b) SSIM with ND (c) MS-SSIM with C2P*

(d) Qualiclip with CD (e) ARNIQA with ND (f) Qualiclip with C2P*

Figure 6: Relationship between IQA Metrics and Model Detection Performance.

B DISTORTION TYPES, FR-IQA, AND MODEL LOGIT DISTRIBUTIONS

We visualize the drift in output logit distributions of various detectors as the distortion severity
increases (indicated by a decrease in FR-IQA metrics). As shown in the Figure 7, we observe that
different detectors exhibit distinct distributional shifts under the same distortion type and severity.

(a) CD with white noise (b) NPR+ with white noise (c) SAFE+ with white noise

(d) CD with color cooling (e) FreqNet+ with color cooling (f) C2P* with color cooling

(g) CD with media platforms (h) NPR+ with media platforms (i) SAFE+ with media platforms

Figure 7: The logit distribution shifts under the influence of distortion. Blue/yellow: clean real/fake;
green/red: distorted real/fake.
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In Figure 7 (a)-(c), under Gaussian white noise with increasing intensity, both CD and SAFE+ exhibit
a shift of the fake distribution toward the real distribution, whereas NPR+ shows the opposite trend.
In Figure 7 (d)-(f), under color shift distortions, CD shows a shift of the fake distribution toward
the real one; FreqNet+ displays a convergence of both distributions toward the decision boundary;
and C2P behaves oppositely to CD. In Figure 7 (g)-(i), under distortions introduced by four different
social media platforms, CD consistently shows the fake distribution shifting toward the real one;
NPR+ exhibits a convergence of both distributions toward the center; and SAFE+ demonstrates a
complete shift of the real distribution into the domain of fakes. These results indicate that under
identical distortion conditions, different detectors are affected dissimilarly, leading to varied patterns
of misclassification.

C DISTRIBUTION OF IMAGE QUALITY ASSESSMENT SCORES UNDER
DISTORTION
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(d) DISTS

Figure 8: Distribution of No-Reference IQA Scores Across Distortion Types.

We visualize the distribution ranges of full-reference image quality assessment (FR-IQA) scores
across different datasets of distortion types, as illustrated in the accompanying Figure 8. The dis-
tortion types from top to bottom are: JPEG, Blur, Noise, Resize, Color warming, Color cooling,
Brighten, Darken, Saturation, Histogram, Sharpening, Mix1, Mix2, SRx2, WeChat, QQ, WeiBo,
and Facebook. For each distortion type, we present the score distributions for real images, fake
images, and their combination. Several key observations can be made. First, the score ranges vary
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considerably across distortion types. For instance, the scores for JPEG compression consistently fall
within [0.8, 1.0] across all four FR-IQA methods, and a similar concentration is observed for the
four social media platforms (WeChat, QQ, WeiBo, Facebook). Second, the distributions for real and
fake images are highly consistent for each distortion type. This indicates that the FR-IQA methods
perceive the overall quality of real and fake images similarly, without being significantly affected by
potential artifacts. This property ensures that our approach treats both real and fake data fairly.

D DATASET DETAILS

We randomly sample 4,000 images (with an equal number of real and fake samples) from the Pro-
GAN test set (totaling 8,000 images) (Wang et al., 2020) to form the base dataset for the confidence
model. Based on this, we design eight common distortion types: JPEG compression, blur, additive
white Gaussian noise, resize, darkening, brightening, and two types of color shift. Each distortion
type is applied at 10 intensity levels, generating 40,000 distorted images per type (covering all inten-
sities of that distortion), resulting in a total of 320,000 distorted images for training and evaluating
the regression performance of the confidence model. During training and evaluation, the original
4,000 images are split into 2,500/500/1,000 for the training, validation, and test sets, respectively.
After applying distortions, the overall dataset sizes become 202,500, 40,500, and 81,000 for these
three subsets. The remaining 4,000 images from the ProGAN test set are reserved as an independent
Evaluation-dataset and are not involved in the training or validation of the confidence model.

Table 5: Dataset construction with distortions, number of samples, and sources.

Dataset Distortion Number Source
Training
Validation
Test

JPEG, Blur, Noise, Resize,
Color warming, Color cooling,
Brighten, Darken

202,500 2500 samples from ForenSynths ProGan
40,500 500 samples from ForenSynths ProGan
81,000 1000 samples from ForenSynths ProGan

Seen Distortion
test sets

JPEG 1,000

From the same data split as the test

Blur 1,000
Noise 1,000
Resize 1,000
Color shift 1,000
Brightness 1,000

Unseen Distortion
test sets

Mix1 1,000
Mix2 1,000
Saturation 1,000
Histogram 1,000
Sharpening 1,000
SR (2× upscaling) 1,000
QQ 1,000
WeChat 1,000
Weibo 1,000
Facebook 1,000

Evaluation-dataset
single distortion

randomly select
one distortion type 4,000 4000 samples from ForenSynths Progan

Evaluation-dataset
multiple distortions

randomly combine
2–4 distortion types 4,000

Cross-dataset
single distortion

randomly select
one distortion type –

Subsets for which the detector achieves
reasonable performance (accuracy > 0.75)
ForenSynths: {Stylegan, Stylegan2, Biggan,
Cyclegan, Stargan, Gaugan, Deepfake}

Cross-dataset
multiple distortions

randomly combine
2–4 distortion types –

Universal: {glide 100 10, glide 100 27, glide 50 27,
DALLE, ldm 100, ldm 200, ldm 200 cfg},
GenImage: {ADM, BigGAN, glide, Midjourney,
SD v14, SD v15, VQDM},
DiTFake: {FLUX, PixArt, SD3}

To further evaluate the model’s generalization capability, we construct test sets containing both seen
and Unseen Distortions. Seen Distortion test sets. We merge Brighten and Darken into Bright-
ness, and Color warming and Color cooling into Color shift. For each of the six distortion types
mentioned above, we apply a randomly selected intensity to every image in the test set (original im-
ages), resulting in six corresponding distorted subsets. Unseen Distortion test sets. This includes
the following ten categories: (1) Mix1: Randomly select 2–4 distortion types from {JPEG, Blur,
Noise, Resize} and apply them sequentially; (2) Mix2: Similarly randomly select 2–4 distortion
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types from {JPEG, Blur, Noise, Resize}, but fix the final step as JPEG; (3) QQ platform transmis-
sion; (4) WeChat platform transmission; (5) Weibo platform transmission; (6) Facebook platform
transmission; (7) Saturation adjustment; (8) Histogram equalization; (9) Image sharpening:
using the unsharp mask (USM) enhancement algorithm; (10) Super-Resolution (2× upscaling):
performed with a Transformer-based architecture (Zhang et al., 2022).

Additionally, in the sample filtering experiments, we introduce Cross-dataset evaluation based on
the Evaluation-dataset. Specifically, from the three dataset collections–ForenSynths (Wang et al.,
2020), Universal (Ojha et al., 2023), GenImage (Zhu et al., 2023) and DiTFake (Li et al., 2024b)–
we select subsets on which the detector achieves reasonable performance (accuracy > 0.75). Note
that the number of selected subsets may vary across detectors due to performance differences. We
then apply single distortions (randomly selecting one distortion type and intensity) and multiple
distortions (randomly combining 2–4 distortion types) to these subsets, limiting the distortions to
the eight types already encountered by the confidence model. Table 5 presents the full details of our
datasets.

E DISTORTION TYPE CLASSIFICATION MODEL

(a) ARNIQA (b) QualiCLIP (c) Topiq (d) BRISQUE

Figure 9: Confusion Matrix for Distortion Type Classification

To investigate whether features from NR-IQA methods can be used for explicit distortion identifi-
cation, we report the distortion-type classification results of several NR-IQA methods (ARNIQA,
QualiCLIP, Topiq (Chen et al., 2024b), and BRISQUE (Mittal et al., 2012)). We freeze the feature
extractors of each NR-IQA model and directly feed their output features into a classification head
for distortion-type classification.

We sample 9,600 distorted images from the distorted dataset, covering eight types of distortions:
JPEG compression, noise, resizing, blur, darken, brighten, and two types of color shifts (“Sat Down”
corresponding to Cool and “Sat Up” corresponding to Warm). Among these, 8,000 images are
used to train the classifier, and 1,600 are reserved for testing. We visualize the confusion matrices
corresponding to the best classification performance achieved by each NR-IQA method over 100
epochs, as shown in the figure 9. “Sat Down” and “Sat Up” refer to the two specific types of
color shifts. It can be intuitively observed that ARNIQA achieves the best classification accuracy,
followed by QualiCLIP. Therefore, we select ARNIQA as the Distortion-Type Encoder in our
method section.

Table 6: Regression performance of DACOM across detectors trained with different FR-IQA
(SSIM, MS-SSIM, FSIM, DISTS). Evaluated by PLCC and SRCC on the test set; all methods yield
consistently high scores, supporting the proposed FR-guided supervision strategy.

Method CD ND NPR+ FreqNet+ SAFE+ C2P* Average

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

DACOMSSIM 97.71 90.10 97.71 95.44 98.59 95.91 97.74 95.49 98.15 95.76 96.05 91.11 97.66 93.97
DACOMMS-SSIM 98.03 90.55 97.70 95.57 98.62 96.12 97.77 95.54 98.24 95.08 96.01 91.23 97.73 94.01

DACOMFSIM 97.65 90.83 97.75 95.13 98.70 96.01 97.70 95.37 97.88 94.90 94.79 90.18 97.41 93.74
DACOMDISTS 97.70 90.93 97.59 95.21 98.64 96.38 97.77 95.54 98.16 95.70 96.05 91.70 97.65 94.24
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F IMPLEMENTATION DETAILS

For our distortion-aware confidence model(DACOM), we employed the Adam optimizer with a
weight decay term. The batch size was set to 64, and the model was trained for 5 epochs with an
initial learning rate of 1 × 10−5. A linear warm-up strategy was applied during the first epoch,
where the learning rate increased gradually from 10% of the initial value to the full rate. After the
warm-up, a cosine annealing schedule was used, with the minimum learning rate set to 5% of the
initial value. Model checkpoints are selected based on the highest SRCC achieved on the validation
set. The input to the Confidence Model’s Image Quality Encoder and Distortion-Type Encoder is of
size 256×256 pixels, while the input to the Forensic Detector Encoder is processed according to the
specific requirements of the corresponding detector.

G DISTORTION-TYPE CONFIDENCE WITH DETECTION PERFORMANCE

Table 7: Correlation between Distortion-Type Confidence and Detection Performance (%).

Method CD ND NPR+ FreqNet+ SAFE+ C2P* Average

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

DACOMSSIM 93.25 83.82 86.49 86.18 90.83 85.80 90.67 86.76 98.23 88.95 71.65 75.94 88.52 84.58
DACOMMS-SSIM 93.10 87.35 85.79 87.94 92.34 89.92 92.35 88.53 98.38 88.07 71.63 79.18 88.93 86.83

DACOMFSIM 92.78 81.47 85.13 86.47 91.55 86.83 92.18 87.35 97.54 90.43 67.99 80.50 87.86 85.51
DACOMDISTS 93.78 81.76 85.93 87.65 92.29 88.01 90.99 87.35 98.33 90.13 69.81 82.27 88.52 86.19

The regression performance of DACOM across all detectors is summarized in Table 6. We evaluate
the relationship between the average confidence and accuracy of our proposed confidence model on
datasets comprising various distortion types, including both seen and unseen distortions. As shown
in the Table 7, we report the PLCC and SRCC correlation metrics between average confidence and
accuracy. Using MS-SSIM as the full-reference IQA method, the model achieves average PLCC
and SRCC values of 88.93% and 86.83%, respectively. Experimental results demonstrate that the
confidence model generalizes well across different distortion types, and its outputs exhibit a strong
correlation with detection performance, effectively predicting the likelihood of correct detection.

H MULTI-DISTORTION FILTERING

As shown in Table 8 and Table 9, we present the filtering results under random multiple distortions
for the Evaluation-dataset and Cross-dataset, respectively. This setting is particularly challenging,
especially for Cross-dataset, as most compared methods show limited performance gains. While
this is the case, our approach still manages to achieve competitive results in BAcc and EER across
most screening ratios.

Table 8: Results on Evaluation-dataset Multi-Distortion Filtering

Method Distortion Filtering Proportion

BAcc ↑ EER ↓ 0.05 0.10 0.15 0.20 0.30 0.40

Topiq

72.79 25.77

73.05 25.38 73.31 25.22 73.61 24.98 73.80 24.70 74.47 24.03 75.22 23.33
ARNIQA 72.94 25.70 73.03 25.66 73.11 25.62 73.34 25.56 73.65 25.57 73.84 25.35

QualiCLIP 73.22 25.24 73.54 24.88 74.08 24.37 74.55 23.98 75.35 23.25 76.12 22.66
Logit Calib. 73.63 25.50 74.45 25.43 75.01 25.37 75.45 25.41 75.92 25.15 76.46 24.69

FR-SSIM

72.79 25.77

73.33 25.17 73.82 24.76 74.48 24.02 75.00 23.50 76.03 22.59 77.15 21.60
FR-MS-SSIM 73.14 25.36 73.51 24.90 73.79 24.64 74.28 24.26 75.19 23.39 76.31 22.28

FR-FSIM 73.00 25.52 73.21 25.33 73.66 24.95 74.03 24.61 74.72 23.79 75.94 22.45
FR-DISTS 73.26 25.21 73.56 24.93 73.97 24.53 74.29 24.14 75.32 23.07 76.69 21.63

DACOMSSIM

72.79 25.77

73.78 24.61 74.69 23.54 75.70 22.63 76.70 21.70 78.02 20.24 78.72 19.09
DACOMMS-SSIM 73.77 24.55 74.61 23.62 75.76 22.60 76.73 21.64 78.18 20.11 78.83 19.01

DACOMFSIM 73.79 24.53 74.75 23.46 75.72 22.64 76.73 21.66 78.29 20.11 78.70 19.06
DACOMDISTS 73.87 24.51 74.83 23.46 75.91 22.42 76.85 21.56 78.26 20.13 78.95 18.76
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Table 9: Results on Cross-dataset Multi-Distortion Filtering

Method Distortion Filtering Proportion

BAcc ↑ EER ↓ 0.05 0.10 0.15 0.20 0.30 0.40

Topiq

60.64 36.20

60.86 35.95 61.06 35.68 61.31 35.40 61.55 35.06 61.94 34.62 62.47 33.84
ARNIQA 60.54 36.29 60.46 36.35 60.41 36.50 60.44 36.44 60.32 36.64 60.10 36.74

QualiCLIP 61.00 35.76 61.37 35.21 61.70 34.83 61.98 34.49 62.54 33.82 63.06 33.42
Logit Calib. 60.68 36.37 60.69 36.68 60.65 37.08 60.71 37.47 60.81 37.80 61.12 38.28

FR-SSIM

60.64 36.20

60.95 35.85 61.27 35.53 61.61 35.09 61.96 34.76 62.72 33.98 63.46 33.41
FR-MS-SSIM 60.82 36.06 61.11 35.77 61.42 35.46 61.77 34.96 62.48 34.17 63.20 33.45

FR-FSIM 60.83 36.00 61.04 35.84 61.29 35.11 61.60 35.21 62.30 34.45 63.14 33.64
FR-DISTS 61.03 35.72 61.44 35.24 61.83 34.70 62.22 34.34 63.08 33.36 63.92 32.54

DACOMSSIM

60.64 36.20

60.93 35.71 61.30 35.06 61.73 34.50 62.21 33.96 63.15 33.06 64.02 32.46
DACOMMS-SSIM 60.95 35.65 61.35 35.00 61.79 34.43 62.28 33.86 63.20 33.02 64.05 32.29

DACOMFSIM 60.96 35.71 61.35 35.07 61.77 34.54 62.36 33.89 63.35 32.97 64.12 32.33
DACOMDISTS 60.97 35.64 61.34 35.01 61.77 34.44 62.25 33.85 63.22 32.98 64.19 32.23

Table 10: Ablation studies on the effectiveness of each module (%). Here, ϕ(Q)
IQ and ϕ

(T )
IQ denote

the use of QualiCLIP and Topiq as the Image Quality Encoder, respectively.

ϕM ϕ
(T )
IQ ϕ

(Q)
IQ

ϕDT
CD ND NPR+ FreqNet+ SAFE+ C2P* Average

PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

✓ 93.40 78.22 93.76 87.91 97.23 94.04 90.86 86.50 94.21 91.33 86.86 81.88 92.72 86.65
✓ ✓ 95.14 81.41 95.03 90.34 97.80 94.29 94.04 90.16 95.61 92.74 88.18 82.63 94.30 88.60
✓ ✓ 96.49 85.92 96.48 92.99 98.33 95.12 96.56 93.23 96.78 94.12 91.99 87.01 96.11 91.40
✓ ✓ ✓ 97.71 90.10 97.71 95.44 98.58 95.91 97.74 95.49 98.15 95.76 96.05 91.11 97.66 93.97

I ABLATION RESULTS

As shown in Table 10, our ablation study shows that adding each proposed module leads to a substan-
tial increase in both PLCC and SRCC, demonstrating their individual necessity and effectiveness.

J REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our work. All datasets used in this paper
are publicly available and the exact training/testing splits and preprocessing steps are documented
in Appendix D. Our proposed Distortion-Aware Confidence Model (DACOM) is described in de-
tail, including its motivation in Section 3, methodological steps in Section 4, training procedures in
Section 4.4, and hyperparameters and implementation details in Section 5.1 and Appendix F. To fur-
ther facilitate reproduction, we will release our source code, pretrained models, and data-processing
scripts upon publication.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this manuscript, Large Language Models (LLMs), specifically GPT-5,
were employed as versatile writing and research assistants. Their primary contributions included:

• Refining and Polishing Language: Improving clarity, conciseness, and grammatical ac-
curacy of the text, with particular attention to academic English style and phrasing.

• Formatting LaTeX Code: Supporting the generation and debugging of LaTeX code for
tables, figures, and mathematical equations, thereby ensuring professional presentation and
consistent formatting.

It is important to note that all core research ideas, experimental design, implementation, and inter-
pretation of results were independently conceived and conducted by the human authors. The LLM
was used solely as a tool to enhance the quality and readability of the manuscript’s presentation,
without contributing to the original scientific findings.
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