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Abstract

Modern machine learning models are becoming increasingly expensive to train
for real-world image and text classification tasks, where massive web-scale data is
collected in a streaming fashion. To reduce the training cost, online batch selection
techniques have been developed to choose the most informative datapoints. How-
ever, many existing techniques are not robust to class imbalance and distributional
shifts, and can suffer from poor worst-class generalization performance. This work
introduces REDUCR, a robust and efficient data downsampling method that uses
class priority reweighting. REDUCR reduces the training data while preserving
worst-class generalization performance. REDUCR assigns priority weights to
datapoints in a class-aware manner using an online learning algorithm. We demon-
strate the data efficiency and robust performance of REDUCR on vision and text
classification tasks. On web-scraped datasets with imbalanced class distributions,
REDUCR significantly improves worst-class test accuracy (and average accuracy),
surpassing state-of-the-art methods by around 15%.

1 Introduction

The abundance of data has had a profound impact on machine learning (ML), both positive and
negative. On the one hand, it has enabled ML models to achieve unprecedented performance on a
wide range of tasks, such as image and text classification [Kuznetsova et al., 2020, He et al., 2015,
Brown et al., 2020, Tran et al., 2022, Anil et al., 2023]. On the other hand, training models on such
large datasets can demand significant computational resources [Kaddour et al., 2023], making it
unsustainable in some situations [Bender et al., 2021, Patterson et al., 2021]. Additionally, the high
speed at which streaming data is collected can make it infeasible to train on all of the data before
deployment. To tackle these issues, various methods have emerged to selectively choose training data,
either through pre-training data pruning [Sorscher et al., 2022, Bachem et al., 2017] or online batch se-
lection techniques [Loshchilov and Hutter, 2016, Mindermann et al., 2022], ultimately reducing data
requirements and enabling ML models to handle otherwise unmanageable large and complex datasets.

In real-world settings, a variety of factors can affect the selection of datapoints, such as noise [Xiao
et al., 2015, Cao et al., 2021, Wei et al., 2021] and class-imbalance in the data [Van Horn et al.,
2018, Philip and Chan, 1998, Radivojac et al., 2004]. Online selection methods can exacerbate
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Figure 1: REDUCR starts by initializing weights of classes. At each timestep t, the model receives a batch
of datapoints Bt. REDUCR computes the selection scores for each datapoint based on its usefulness to the
model and the class weights, and selects new datapoints bt ⊂ Bt that achieve the highest selection scores. After
the model takes gradient steps on the selected datapoints, REDUCR adjusts the weights to reflect increased
priorities on underperforming classes.

these problems by further reducing the number of datapoints from underrepresented classes, which
can degrade the performance of the model on those classes [Buda et al., 2018, Cui et al., 2019].
Moreover, distributional shift [Koh et al., 2021] between training and test time can lead to increased
generalization error if classes with poor generalization error are overrepresented at test time.
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Figure 2: REDUCR significantly improves worst-
class test accuracy on Clothing1M outperforming
Uniform and other recent works.

In this work, we introduce REDUCR, which is a new
online batch selection method that is robust to noise,
imbalance, and distributional shifts. REDUCR
employs multiplicative weights update to reweight
and prioritize classes that are performing poorly
during online batch selection. Figure 1 illustrates the
intuition behind how the method works. REDUCR
can effectively reduce the training data while pre-
serving the worst-class generalization performance
of the model. For example, on the Clothing1M
dataset [Xiao et al., 2015], Figure 2 shows that, com-
pared to the best performing online batch selection
methods, REDUCR achieves around a 15% boost
in performance for the worst-class test accuracy.

Main contributions. (1) We formalise the maximin problem of robust data downsampling (§3).
(2) We propose the REDUCR algorithm, which is equipped with a new robust selection rule that
evaluates how much datapoints will affect the generalization error of a specific class (§4.2). (3) We
evaluate our algorithm on a series of text and image classification tasks and show that it achieves
strong worst-class test accuracy while frequently surpassing state-of-the-art methods in terms of
average test accuracy(§5).

Related work. Mindermann et al. [2022] have developed an online batch selection method called
RHO-LOSS, which uses a reference model trained on a holdout dataset to guide the selection of points
during training. Certain extensions of this work have focused on using a reference model in different
settings such as reinforcement learning [Sujit et al., 2022]. However, to our knowledge, none have
focused on improving the worst-class generalisation performance. Other batch selection methods
[Loshchilov and Hutter, 2016, Jiang et al., 2019, Kawaguchi and Lu, 2020] use the training loss of
points under the model or an approximate gradient norm [Katharopoulos and Fleuret, 2017] to select
challenging points. We observe that these methods (e.g., see Loshchilov and Hutter [2016] in Figure 2)
exhibit greater consistency in terms of worst-class generalization error in imbalanced datasets. Nev-
ertheless, Loshchilov and Hutter [2016] do not surpass the average generalization error achieved by
point selection with a reference model, namely, RHO-LOSS. Recently, several works have also used
reference models or a holdout dataset to train robust models. Oren et al. [2019], Liu et al. [2021], Clark
et al. [2019] use a reference model to identify difficult-to-learn groups (or points, or biases) during
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training. Han et al. [2018] use two models which act as a reference model for the other to remove noisy
points from the training data. Cao et al. [2021], Ren et al. [2018] use a holdout dataset to reweight
points or their regularization during training to achieve the best loss on the validation holdout dataset.

Sagawa et al. [2020] reweight groups known at training time and focus on fighting spurious
correlations and improving worst-group generalisation error. In contrast, in our setting, class labels
are available and we measure the performance in terms of worst-class generalisation error. Moreover,
whilst these works aim to train robust models they do not consider efficient data downsampling
strategies. The approach of Sagawa et al. [2020] to group robustness considers a small number of
groups (up to 4 in their empirical study). Similarly, in our work, we consider classification settings
with a controlled number of classes (< 1000) as the problem of robustness becomes less applicable
in settings where the number of classes are high.

Xie et al. [2023] use both weights update rules and a reference model to find mixtures of corpora
in LLM pretraining resulting in improved performance and training speed. Besides the problem
setup, our method differs in three ways: i) we focus upon online batch selection; ii) we use multiple
reference models; iii) and we use a class-holdout loss term (see Equation (8)) to reweight batches.
Efficient data downsampling is a well-explored problem with various approaches, including active
learning methods when label information is unknown [MacKay, 1992, Houlsby et al., 2011, Kirsch
et al., 2019, 2023, Ash et al., 2020]; data pruning and coreset techniques for pre-training data
downsampling [Sorscher et al., 2022, Bachem et al., 2017, Borsos et al., 2020, Coleman et al., 2020];
data distillation approaches [Cazenavette et al., 2022, Nguyen et al., 2021]; and non-parametric
inducing point methods [Galy-Fajou and Opper, 2021].

2 Background

We consider a C-way classification task and denote a model as p(y | x, θ), where x denotes an input
and y ∈ [C] the corresponding class label; the model is parameterized by θ. For any training dataset
D = {(xi, yi)}Ni=1 with N datapoints, we use a point estimate of θ to approximate the posterior
model as p(y | x,D) ≈ p(y | x, θ̂). This estimate θ̂ can be obtained by running stochastic gradient
descent (SGD) to optimize the cross-entropy loss over a training dataset D.

The goal of data downsampling is to select a dataset DT ⊂ D of size T (≪ N ) for training such
that the generalisation error of the resulting model is minimised. We write this objective in terms
of a separate holdout dataset Dho = {(xho,i, yho,i)}Nho

i=1 as follows:

DT = argmax
D⊂D,|D|=T

log p(yho|xho, D), (1)

where the inputs and their labels are xho = [xi,ho]
Nho
i=1 and yho = [yi,ho]

Nho
i=1 , respectively. Here,

the likelihood of the holdout dataset is used as a proxy for the generalisation error. The problem
is computationally prohibitive due to its combinatorial nature. Moreover, for a massive (or streaming)
training dataset D, it is not computationally possible to load D all at once and it is common to loop
through the data by iteratively loading subsets.

Online batch selection is a practical streaming setup to approximate the data downsampling problem,
where at each timestep t, the model observes a training data subset Bt ⊂ D, and the goal is to
iteratively select a small batch bt ⊂ Bt for the model to take gradient steps. A standard solution to
this problem is to design a selection score function that take into account the labels of the data. The
selection score function can then be used to score the utility of the small batch bt. See Algorithm 2 in
Appendix A.1 for an example method.

Reducible Holdout Loss (RHO-Loss) [Mindermann et al., 2022] is an online batch selection method
that uses the performance on a holdout dataset as the selection scores for small batches. More
precisely, for each timestep t, RHO-Loss selects

bt = argmax
b⊂Bt

log p(yho | xho,Dt ∪ b), (2)

where Dt =
⋃t−1

τ=1 bτ is the cumulative training data the model has encountered until iteration t.
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3 Problem Formulation

In this work, we introduce the robust data downsampling problem, where the goal is to select a
training dataset DT of size T such that worst-class performance is optimized. Let the holdout dataset

with class c ∈ [C] be D
(c)
ho = {(x, y) ∈ Dho | y ≡ c} = {(x(c)

ho,i, y
(c)
ho,i)}

N
(c)
ho

i=1 . We can write the
objective of robust data downsampling as

DT = argmax
D⊂D,|D|=T

min
c∈[C]

log p(y
(c)
ho | x

(c)
ho , D), (3)

where x
(c)
ho = [x

(c)
ho,i]

N
(c)
ho

i=1 and y
(c)
ho = [y

(c)
ho,i]

N
(c)
ho

i=1 correspond to the collections of inputs and labels in

the class-specific holdout dataset D(c)
ho .

Compared to Equation (1), the objective in Equation (3) is even more challenging because of the
maximin optimisation that involves C discrete classes. In fact, solving Equation (3) is known to
be NP-hard, even when the objectives (each p(y

(c)
ho |x

(c)
ho , ·), c ∈ [C]) are submodular set functions.

Chen et al. [2017] demonstrate the application of zero-sum game no-regret dynamics, where a learner
employs a (1− 1/e)-near-optimal greedy strategy and an adversary seeks to find a distribution over
loss functions that maximizes the learner’s loss. In this scenario, a single set is identified, which,
although larger than size T , achieves a constant-factor approximation.

Robust online batch selection approximates the robust data downsampling problem by taking into
account the practical limitations of data operation. Namely, we assume a streaming setting where
the model observes training data subset Bt ⊂ D at each timestep t. The goal is to select a small
batch bt ⊂ Bt to compute gradients for model training with SGD, such that the model obtains top
performance for the worst-class (Equation (3)). The robust setting motivates the development of
novel batch selection methods that consider how each datapoint affects the generalization error on the
worst-case class of inputs, rather than just the overall generalization error. Next, we introduce a new
selection rule that achieves this and propose a practical algorithm for its implementation.

4 REDUCR for Robust Online Batch Selection

We propose REDUCR, a robust and efficient data downsampling method using class priority
reweighting to solve the robust online batch selection problem in Section 3. The batch selec-
tion strategy of REDUCR relates the effect of training on a batch of candidate points bt to the
generalization error of a specific class in the holdout dataset.

4.1 Online Learning

To solve Equation (3) in an online manner, we propose to use class priority reweighting, a variant
of the multiplicative weights update method [Freund and Schapire, 1997, Cesa-Bianchi and Lugosi,
2006, Sessa et al., 2019]. At the beginning of training we initialise a weight vector w0 over a
C dimensional simplex, ∆ = {w = [wc]

C
c=1 ∈ RC |

∑C
c=1 wc = 1}. Each element of w0 is

initialised to be w0,c = 1/C. For each iteration t, small batch bt ⊂ Bt is chosen by maximising
the weighted sum of the C different class-specific scoring functions (i.e., by best-responding to the
current class-weights wt),

bt = argmax
b⊂Bt

C∑
c=1

wt,c

(
log p(y

(c)
ho |x

(c)
ho ,Dt ∪ b)

)
, (4)

where Dt =
⋃t−1

τ=1 bτ , wt = [wt,c]
C
c=1 ∈ ∆, and

wt,c = wt−1,c

exp
(
−η log p(y

(c)
ho |x(c)

ho ,Dt)
)

∑C
j=1 wt−1,j exp

(
−η log p(y

(j)
ho |x(j)

ho ,Dt)
) . (5)

In the previous alternating procedure, class-weights are updated multiplicatively according to how
well they perform given the selected batch, they increase for poorly performing classes and decrease
otherwise. In Equation (5), η is a learning rate that adjusts how concentrated the probability mass
is in the resulting distribution. Figure 1 shows an intuitive illustration of how reweighting works
in practice where classes that perform badly have low data likelihoods and are thus upweighted by
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Equation (5). In Appendix A.7.3 we explore an alternative solution to solve Equation (3); we solve
an approximate robust optimisation problem directly at every timestep t and empirically demonstrate
the multiplicative weights method outperforms it. We next introduce how to compute the likelihoods
for class-specific holdout sets, i.e., p(y(c)

ho |x
(c)
ho ,Dt ∪ b) in Equation (4).

4.2 Computing selection scores

Given the current datasetDt at timestep t and additional datapoints b ⊂ Bt, we would like to compute
the likelihood of the holdout dataset that belongs to class c. For simplicity, we consider the case
where the small batch to be selected only includes a single datapoint, i.e., b = {(x, y)}. We express
the objective using a Bayesian perspective,

log p(y
(c)
ho |x

(c)
ho ,Dt ∪ {(x, y)}) = log

p(y|x,D(c)
ho ,Dt)p(y

(c)
ho |x(c)

ho ,x,Dt)

p(y|x,x(c)
ho ,Dt)

(6)

= log
p(y|x,D(c)

ho ,Dt)p(y
(c)
ho |x(c)

ho ,Dt)

p(y|x,Dt)
(7)

= − log p(y |x,Dt) + log p(y |x,Dt,D(c)
ho ) + log p(y

(c)
ho |x

(c)
ho ,Dt).

Equation (6) follows from the application of the Bayes rule and the conditional independence of x
and x

(c)
ho with y

(c)
ho and y, respectively. The posterior terms in Equation (6) can be approximated with

point estimates of model parameters (see §2). Computing Equation (6) involves two models: (1) the
target model with parameters θt, which is trained on the cumulative training dataset Dt =

⋃t−1
τ=1 bτ ;

(2) a class-irreducible loss model (following the terminology from Mindermann et al. [2022]) with
parameters θ(c)t , which is trained on Dt and class-specific holdout data D(c)

ho . The target model is
what we are interested in for the classification task. We use L[y|x, θ] = − log p(y |x, θ) to denote
the cross-entropy loss for any model parameters θ, and we re-write Equation (6) as follows,

log p(y
(c)
ho | x

(c)
ho ,Dt ∪ {(x, y)}) ≈ L[y|x, θt]︸ ︷︷ ︸

model loss

− L[y|x, θ(c)t ]︸ ︷︷ ︸
class-irreducible loss

−L[y(c)
ho |x

(c)
ho , θt]︸ ︷︷ ︸

class-holdout loss

. (8)

We name the three terms in Equation (8) the model loss, class-irreducible loss and class-holdout loss,
respectively. We define the term excess loss as the difference of the model loss and class-irreducible
loss. The excess loss is the improvement in loss for point (x, y) by observing more data from class c
(i.e., D(c)

ho ). Intuitively, if two data points are from different classes, REDUCR will take into account
the weight of the worst-performing class, which is reflected by the class-holdout loss. This ensures
that REDUCR is focusing on improving the performance of the model on the classes that are most
difficult to learn. In a different scenario, if two datapoints are from the same class, their class-holdout
losses will be the same, and the point with a larger excess loss will be preferred. This means that
REDUCR prefers datapoints whose losses have more potential to be improved.

Computing the approximate in Equation (8) is far more tractable than naively re-training a new model
(i.e., log p(y(c)

ho |x
(c)
ho ,Dt ∪ {(x, y)})) for each possible candidate point (x, y). The model loss and

the class-holdout loss only require evaluating the cross-entropy losses of some datapoints on the
target model. More generaly, if batch b can include more than one point, we can simply change the x
and y to a list of inputs and labels instead. Next, we further improve the efficiency of REDUCR by
approximating the class-irreducible loss model.

4.3 Class-Irreducible Loss Models

For each selected batch bt under the current selection rule in Equation (8), we need to update C
class-irreducible loss models to compute the class-irreducible losses. We propose to approximate
these models using amortised class-irreducible loss models, which are trained for each class at the
beginning of REDUCR and do not need to be updated during online batch selection.

We interpret the class irreducible loss term as an expert model at predicting the label of points from a
specific class c due to the extra data from the holdout dataset this term has available. To create an
approximation of this expert model, we train the amortised class-irreducible loss models using an
adjusted loss function in which points with a label from the class c are up-weighted by a parameter
γ ∈ (0,+∞) (set in Section 5):

ϕc = argmin
ϕ

∑
(x,y)∈D⟨≀

(1 + γ I[c ≡ y])L[y|x, ϕ]. (9)
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Algorithm 1 REDUCR for robust online batch selection

1: Input: data pool D, holdout data Dho =
⋃

c∈C D
(c)
ho , learning rate η ∈ (0,∞), small batch size

k, total timesteps T/k
2: Initialize class weights w1 = 1

C1C

3: Use Dho to train C amortised class irreducible loss models as per Equation (9) to obtain ϕc

4: for t ∈ [T/k] do
5: Receive batch Bt ⊂ D
6: bt = argmax

b⊂Bt:|b|=k

∑
(x,y)∈b

∑
c∈C wt,c ·max(0,L[y|x, θt]− L[y|x, ϕc]) ▷ Select points with

top k selection scores
7: Compute the objective value for every class c ∈ C:

αc =
∑

(x,y)∈bt
max(0,L[y|x, θt]− L[y|x, ϕc])− L[y(c)

ho |x
(c)
ho , θt]

8: Update class weights for every class c ∈ C: wt+1,c = wt,c
exp(−ηαc)∑

j∈C wt,j exp(−ηαj)

9: θt+1 ← SGD(θt, bt)
10: end for

Here we define I[·] as the indicator function. Equation (9) optimizes over the parameters of the
amortised class-irreducible loss model for class c, and obtain ϕc to approximate θ

(c)
t in Equation (8),

i.e., L[y|x, θ(c)t ] ≈ L[y|x, ϕc]. The up-weighting of points can be considered a form of importance
weighting [Shimodaira, 2000], where by up-weighting points with labels in a specific class we
calculate a Monte Carlo approximation of the loss under a distribution in which points from class
c are more prevalent. Algorithm 3 details the full amortised class-irreducible loss model training
procedure in Appendix A.2. We provide further motivation of our approximation in Appendix A.3.

4.4 REDUCR as a practical algorithm

We use the selection objective in Equation (8) along with the amortised class-irreducible loss model
approximation (Section 4.3) and the online algorithm (Section 4.1) to reweight the worst performing
class during training and select points that improve its performance. See Algorithm 1 for a full
description of the REDUCR method.

At each iteration, the top k points are selected (Line 6) according to the weighted sum of Equation (8)
for each class c ∈ C, thus efficiently approximating the combinatorial problem from Equation (4). As
the class-holdout loss does not depend on the selected points bt and we sum over the classes, we can
remove this term from the weighted sum of the selection scores and only apply it when updating the
weights wt (in Line 7 and 8). We calculate the average class-holdout loss to remove any dependence
of the term upon the size of the classes in the holdout dataset. We find that clipping the excess loss
improves the stability of the algorithm in practice. We test this heuristic empirically in Section 5.2
and provide an intuitive explanation for why this is the case in Appendix A.7.2.

When comparing REDUCR to other online batch selection methods, we observe distinct batch
selection patterns. When the dataset is class-imbalanced, the underrepresented classes tend to perform
worse because of the lack of training data from those classes. RHO-LOSS may struggle to select
points from the underrepresented classes as they have less effect on the loss of the holdout dataset.
Selection rules that select points with high training loss [Loshchilov and Hutter, 2016, Kawaguchi
and Lu, 2020, Jiang et al., 2019] might select points from the underrepresented classes but have no
reference model to determine which of these points are learnable given more data and thus noisy
or task-irrelevant points may be selected. In contrast, REDUCR addresses both of these issues by
identifying underrepresented classes and using the class-irreducible loss model to help to determine
which points from these classes should be selected.

Even when the dataset is not imbalanced, certain classes might be difficult to learn; for example, due
to noise sources in the data collection processes. Via Equation (5), REDUCR is able to re-weight the
selection scores such that points that are harder to learn from worse-performing classes are selected
over points that are easier to learn from classes that are already performing well. This is in contrast to
RHO-LOSS which will always select points that are easier to learn. We empirically demonstrate this
on class balanced datasets in Section 5.
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Figure 3: REDUCR improves the worst-class test accuracy and data efficiency when compared with the
RHO-LOSS, TRAIN LOSS and UNIFORM baselines on the a) Clothing1M dataset, b) the CINIC10 dataset,
and c) the CIFAR100 dataset.

5 Experiments

In this section, we present empirical results to showcase the performance of REDUCR on large-scale
vision and text classification tasks.

Datasets. We train and test REDUCR on image and text datasets. We use CIFAR10 [Krizhevsky
et al., 2012], CINIC10 [Darlow et al., 2018], Clothing1M [Xiao et al., 2015], the Multi-Genre
Natural Language Interface (MNLI), and the Quora Question Pairs (QQP) datasets from the GLUE
NLP benchmark [Wang et al., 2019]. Each dataset is split into a labelled training, validation and
test dataset (for details see Appendix A.5), the validation dataset is used to train the class-irreducible
loss models and evaluate the class-holdout loss during training. The Clothing1M dataset uses 100k
additional points from the training dataset along with the validation dataset to train the irreducible
loss model(s) (as per [Mindermann et al., 2022]). We simulate the streaming setting by randomly
sampling batch Bt from dataset D at each timestep.

Models. For the experiments on image datasets (CIFAR10, CINIC10 and Clothing1M) all models
use a ResNet-18 model architecture [He et al., 2016]. For the Clothing1M dataset we use a ResNet-18
model pretrained on the imagenet dataset [Deng et al., 2009]. The networks are optimised with
AdamW [Loshchilov and Hutter, 2019] and the default Pytorch hyperparameters are used for all
methods except CINIC10 for which the weight decay is set to a value of 0.1. For the NLP dataset we
use the bert-base-uncased [Devlin et al., 2019] model from HuggingFace [Wolf et al., 2020] and set
the optimizer learning rate to 1e−6.

Baselines. We benchmark our method against the state-of-the-art RHO-LOSS [Mindermann et al.,
2022] and Loshchilov and Hutter [2016], an online batch selection method that uses the training loss
to select points. We refer to the latter baseline as TRAIN LOSS. We also compare against UNIFORM
where points are chosen at random from the large batch at each training step.2 All experiments
are run multiple times and the mean and standard deviation across runs calculated. Unless stated
otherwise 10% of batch Bt is selected as the small batch bt, and we set η = 1e− 4. γ = 9 is used
when training each of the amortised class-irreducible loss models on the vision datasets and γ = 4
for the NLP datasets. We study the impact of γ and η on REDUCR further in Appendix A.10. For
full details of the experimental setup see Appendix A.5.3

Metrics. Finally, it is important to note that we analyse the worst-class test accuracy metric which
can be interpreted as a lower bound on a model’s performance under all class distribution shifts.
This is because the worst possible distribution shift between the training and test set is one where
the entire test set consists of only points from the worst performing class.

5.1 Key results

The worst-class and average test accuracy for the datasets and model are shown in Table 1 and
Table 2, respectively. Across all datasets, REDUCR outperforms the baselines in terms of the
worst-class accuracy and matches or even outperforms the average test accuracy of RHO-LOSS
within one standard deviation. This is surprising because the primary goal of REDUCR is not to
optimize the overall average (over classes) performance. REDUCR performs particularly strongly

2We use training step and timestep interchangeably.
3Code available at https://github.com/williambankes/REDUCR
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Table 1: REDUCR outperforms RHO-LOSS (the best overall baseline) in terms of the worst-class test accuracy
on Clothing1M, CINIC10 and CIFAR10 by at least 5-26%. Across all baselines, REDUCR gains about 15%
more accuracy on the noisy and imbalanced Clothing1M dataset as shown in Figure 2. ∗CIFAR100 results from
training step 10k where REDUCR converges, after 10k further training steps TRAIN LOSS achieves a similar
performance.

Dataset Worst-Class Test Accuracy (%) ±1 std
UNIFORM TRAIN LOSS RHO-LOSS REDUCR

CIFAR10 (10 runs) 75.01 ± 1.37 76.1 ± 2.31 78.80 ± 2.09 83.29 ± 0.84
CINIC10 (10 runs) 64.70 ± 2.45 64.83 ± 4.75 69.39 ± 3.56 75.30 ± 0.85
CIFAR100∗ (5 runs) 10.59 ± 3.63 17.59 ± 5.17 16.0 ± 6.93 26.00 ± 2.65
Clothing1M (5 runs) 39.23 ± 5.41 40.37 ± 3.58 27.77 ± 10.16 53.91 ± 2.42
MNLI (5 runs) 74.70 ± 1.26 74.56 ± 1.44 76.74 ± 0.93 79.45 ± 0.39
QQP (5 runs) 73.21 ± 2.04 79.96 ± 2.34 78.21 ± 1.95 86.61 ± 0.49

Table 2: Together with Table 1, these results demonstrate that REDUCR improves the worst-class test accuracy
while maintaining strong average test accuracy despite REDUCR not explicitly optimizing the average test
accuracy. REDUCR outperforms the baseline methods on the CIFAR100 and Clothing1M datasets.

Dataset Average Test Accuracy (%) ±1 std
UNIFORM TRAIN LOSS RHO-LOSS REDUCR

CIFAR10 (10 runs) 85.09 ± 0.52 88.86 ± 0.22 90.00 ± 0.33 90.02 ± 0.44
CINIC10 (10 runs) 79.51 ± 0.30 79.25 ± 0.33 82.09 ± 0.30 81.68 ± 0.47
CIFAR100 (5 runs) 57.94 ± 0.69 59.77 ± 0.71 60.95 ± 0.64 62.21 ± 0.62
Clothing1M (5 runs) 69.60 ± 0.85 69.63 ± 0.30 71.07 ± 0.46 72.69 ± 0.42
MNLI (5 runs) 79.19 ± 0.53 76.85 ± 0.14 80.89 ± 0.31 80.28 ± 0.33
QQP (5 runs) 85.05 ± 0.43 86.30 ± 0.41 86.88 ± 0.31 86.99 ± 0.49

on the Clothing1M dataset, Table 1 shows REDUCR improves the worst-class test accuracy by
around 15% when compared to TRAIN LOSS, the next best-performing baseline, and by around 26%
when compared to RHO-LOSS, the overall best-performing baseline across datasets. Figure 3a shows
that REDUCR also achieves this performance in a more data efficient manner than the comparable
baselines, achieving a mean worst-class test accuracy of 40% within the first 10k training steps. We
also observe improved efficiency on the CINIC10 dataset, as shown in Figure 3b, and the MNLI
and QQP datasets as detailed in Figure 7.

The Clothing1M dataset also sees a distribution shift between the training and test dataset. In the test
dataset, the worst performing class is much more prevalent than in the training dataset and as such
improvements to its performance impact the average test accuracy significantly. Figure 5 shows the
impact of this distribution shift as the improved performance of the model on the worst-class results
in an improved average test accuracy to the state-of-the-art RHO-LOSS baseline.

5.2 Ablation Studies

To further motivate the selection rule in Equation (8), we conduct a series of ablation studies to show
that all the terms are necessary for robust online batch selection. Figure 4a shows the performance
of REDUCR on the CINIC10 dataset when the model loss, amortised class-irreducible loss and
class-holdout loss terms of the algorithm were individually excluded from the selection rule. All
three terms in Equation (8) are required to achieve a strong worst-class test accuracy.

Removing the Model Loss results in the worst performance in the set of ablation studies. This is
because the Model Loss provides REDUCR with information about which points are currently not
classified correctly by the model. By removing this term REDUCR only selects points which do
well under the Class Irreducible Loss model and does not prioritise points the model has not yet
learnt. Selecting points not yet learnt by the model is an important quality in online batch selection
approaches and the main premise of the Train Loss baseline algorithm. Likewise by removing the
Class Irreducible Loss Model term we remove the ability of the model to infer if a point can be
learnt or not. In Mindermann et al. [2022], the authors note that these pretrained models enable the
algorithm to pick points that are learnable and do not have label noise.
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Figure 4: a) The worst-class test accuracy decreases when the model loss, class irreducible loss, and
class-holdout loss terms are removed from REDUCR on CINIC10. Comparing REDUCR with clipping for
excess losses (Algorithm 1) and REDUCR (no clip) which removes the clipping, we observe that REDUCR
achieves more stable performance. We show the class weights w at each training step for b) REDUCR and
c) REDUCR with the class-holdout loss term ablated. The ablation model fails to consistently prioritise the
underperforming classes across multiple runs.
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Figure 5: REDUCR improves the average test ac-
curacy on the Clothing1M dataset.

The removal of the class-holdout loss term affects the
ability of REDUCR to prioritise the weights of the
model correctly. In Figure 4 we compare the class
weights of REDUCR and an ablation model with-
out the class-holdout loss term. The standard model
clearly prioritises classes 3, 4 and 5 during training
across all 5 runs, whilst the ablation model does not
consistently weight the same classes across multiple
runs. We also conducted an ablation study on the
clipping of the excess loss to motivate its inclusion
in the algorithm, this is also shown in Figure 4a, we
note that this stabilises the model performance to-
wards the end of training and investigate further in
Appendix A.7.2.

5.3 Scaling up the number of classes

REDUCR can handle problems involving a large number of classes without needing to train a
separate class-irreducible loss model for each class. One idea is to group the classes into superclasses,
where c ∈ Gi,Gi ∈ {Gi}|G|

i=1, Gi ∩ Gj = ∅ for i ̸= j and |G| < |C|, and solve the robust data
downsampling problem over these superclasses. We test the proposed variant of REDUCR on the
CIFAR100 dataset using the provided groupings with 20 superclasses in total [Krizhevsky et al.,
2012]. fig. 3c shows that REDUCR outperforms the baselines in terms of the worst-class test
accuracy, even though the robust objectives are over the superclasses. It achieves this performance
in half the number of training steps as shown in Table 1.

5.4 Imbalanced Datasets

We investigate the performance of models trained using REDUCR on imbalanced datasets. We
artificially imbalance the CIFAR10 training and validation datasets such that a datapoint of the
imbalanced class is sampled with probability p ∈ (0, 1/C] (referred to as the percent imbalance) and
datapoints from the remaining classes are sampled with probability (1− p)/(C − 1) during model
training. We conduct experiments with 0.01, 0.025 and 0.1 (which is equivalent to the balanced
dataset) percent imbalance on classes 3 and 5. The results are shown in Figure 6.

We find the performance of models trained using REDUCR deteriorates less than those trained with
the RHO-LOSS or UNIFORM baselines as the percent imbalance of a particular class decreases (see
Figure 6). For example, when class 3 is imbalanced, in the most imbalanced case (1.0%) the median
performance of REDUCR outperforms that of RHO-LOSS run by 14%. This demonstrates the
effectiveness of REDUCR in prioritising the selection of data points from underrepresented classes.
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Figure 6: REDUCR significantly reduces the deterioration in the worst-class test accuracy on CIFAR10 for
a) class 3 and b) class 5 when compared to the UNIFORM and RHO-LOSS baselines as the percent imbalance
is decreased from 10.0% (balanced) to 1.0%. Each experiment was repeated 10 times, the median value was
plotted and the error bars denote the best and worst run across 10 runs.

6 Conclusions, Broader Impact and Limitations

In summary, we identified the problem of class-robust data downsampling and proposed a new
method, REDUCR, to solve this problem using class priority reweighting. Our experimental results
indicate that REDUCR significantly enhances data efficiency during training, achieving superior test
accuracy for the worst-performing class and frequently surpassing state-of-the-art methods in terms
of average test accuracy. REDUCR excels in settings where the available data are class-imbalanced
by prioritising the selection of points from underrepresented classes.

Limitations. The computational efficiency of REDUCR scales linearly with the number of classes.
We propose one solution to this in Section 5.3, where we show that using groups of classes can still
result in improved worst-class performance. Another solution is to use smaller model architectures
for the class-irreducible loss model. [Mindermann et al., 2022] provide extensive evidence that small
reference models can improve computational efficiency whilst still providing a useful signal for data
selection, we leave investigation of these methods as a future research direction.

Broader Impact. Improving data efficiency is an important and practical problem as more machine
learning models are being trained and deployed for real-world applications. Moreover it is critical
to ensure the robustness of models for reliable and trustworthy machine learning. Our work proposes
a new method with the goal of improving the robustness of models whilst significantly reducing
the data required to achieve state of the art performance.
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A Appendix

A.1 Online Batch Selection Pseudo-Code

For the sake of convenience, we provide the pseudocode of the online batch selection protocol
described in Section 2.

Algorithm 2 Online batch selection

1: Input: data pool D, number of training steps T , stochastic gradient descent algorithm SGD, a
loss function L

2: for t = 1 to T do
3: Sample batch Bt randomly from D
4: bt = SelectBatch(Bt, θt)
5: L =

∑
(xi,yi)∈bt

L[yi|xi, θt]

6: θt+1 = SGD(L, θt)
7: end for

A.2 Class Irreducible Loss Model Training Pseudo-Code

Here we detail the pseudo-code for training the class irreducible loss model described in Section 4.3

Algorithm 3 Class Reference Model Training

1: Input: holdout dataset Dho, number of training steps T , stochastic gradient descent algorithm
SGD, a loss function L, a specific class c

2: for t = 1 to T do
3: Bho ∼ Uniform(Dho)
4: L =

∑
(xi,yi)∈Bho

(1 + γI[c = y])L[yi|xi, ϕt]

5: ϕt+1 = SGD(L, ϕt)
6: end for
7: Return Class-irreducible loss model parameters ϕT

A.3 The Amortised Class Irreducible Loss Model Approximation

The amortised class irreducible loss model is an important component in REDUCR as shown by our
ablation study in Figure 4a. For each class c ∈ [C], we approximate the second term of Equation (6),
log p(y|x,Dt,D(c)

ho ) via the model trained using Algorithm 3. This approximation has two steps:
firstly we remove dependence of the class irreducible model loss on the training dataset at time t. A
similar approximation is heavily explored by Mindermann et al. [2022] in Section 3 and Section 4
of their paper; in Appendix D of their work they show that this approximation is important for the
stable training of RHO-LOSS. The approximation also aligns RHO-LOSS and REDUCR with other
methods in the literature such as Xie et al. [2023], Oren et al. [2019] which similarly use a reference
model that does not vary during training.

Secondly we up-weight data points in the loss function when their label y ∈ [C] matches that
of the specific class c. Unlike RHO-LOSS we cannot approximate the class irreducible loss as
log p(y|x,Dt,D(c)

ho ) ≈ log p(y|x,D(c)
ho ) as this is a trivial model only trained on points with labels

from a single class and thus does not provide a suitable signal to guide point selection. We interpret
the original class irreducible loss log p(y|x,Dt,D(c)

ho ), as an expert model for class c as this model
trains on extra points only sampled from that class,D(c)

ho . In our approximation we train on the holdout
dataset which does not have excess examples of points from class c. We justify our up-weighting
of points as a form of importance weighting [Shimodaira, 2000], where by up-weighting points
with labels in a specific class we are calculating a Monte Carlo approximation of the loss under a
distribution in which points from class c are more prevalent.
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(a) QQP average test accuracy
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(b) QQP worst-class test accuracy
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(c) MNLI average test accuracy
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(d) MNLI worst-class test accuracy

Figure 7: REDUCR improves the worst-class test accuracy on the MNLI and QQP text datasets whilst
maintaining strong average test accuracy performance when compared with the TRAIN LOSS, RHO-LOSS and
UNIFORM baselines. On both datasets REDUCR matches the next best performing baseline’s mean result
across runs approximately 100k training steps earlier.

A.4 The Effect of the Class-Holdout Loss on the Selection of Points

The class-holdout loss term only affects the selection of points at each iteration t through the selection
of the weights wt. As it does not depend upon the candidate point (x, y) ∈ Bt and the weights sum
to one we can remove it from line 6 of Algorithm 1 and only include it in line 7 when we update the
class weights. Similarly as the model loss does not depend upon the class c we can write the selection
score as∑
c∈C

wt,c log p(y
(c)
ho |x

(c)
ho ,Dt∪({x, y})) = L[y|x, θt]−

∑
c∈C

wt,c(L[y|x, θ(c)t ])−
∑
c∈C

wt,c(L[y(c)
ho |x

(c)
ho , θt]).

(10)

A.5 Experiment Details

We provide the full code base anonymised for review purposes as part of the supplementary material.

CIFAR10 used half the training dataset (25k points) as a holdout validation dataset for training the
amortised class-irreducible loss models and calculating the class-holdout loss during the robust online
batch selection. We used the remaining 25k points as a training dataset and the provided test dataset
(10k) for testing.

CINIC10 used the provided validation dataset for both the class holdout loss and amortised class
irreducible loss models.

CIFAR100 used the provided validation dataset for both the class holdout loss and amortised class
irreducible loss models.

Clothing1M. The dataset consists of 1 million images labelled automatically using the keywords in
its surrounding text. The dataset consists of 72k ’clean’ images whose labels have been hand checked,
50k, 13k and 9k are respectively sorted into a clean training, validation, and test sub-dataset. To train
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the amortised class irreducible loss models we use 100k points randomly sampled from the union
of the validation, clean and noisy training datasets. We calculate the class-holdout loss term and
validation performance during training using the clean validation dataset. Figure 8 shows how the
class distribution changes between train and test times.
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Figure 8: Clothing1M train-test class distribution
shift. The number of points in classes 4 and 7
change dramatically between the train and test sets.

MNLI. The dataset [Williams et al., 2018] consists
of 412k labeled sentence pairs; similarly to Sagawa
et al. [2020] we split these sentence pairs into a train
(206k), validation (164k), and labelled test (41k)
dataset.

QQP. The dataset consists of 431k labeled sentence
pairs; we remove points from class 1 to further im-
balance the dataset resulting in 22% of the dataset
labelled class 1. We split the remaining points into a
train (148k), validation (67k), and labelled test (40k)
dataset. We do not adjust the balance of the test
dataset.

ResNet-18 used for the Clothing1M experiments is
the pretrained model available via the Torchvision [Marcel and Rodriguez, 2010] model library.
For the CIFAR10 and CINIC10 experiments we use the adapted ResNet-18 architecture detailed
in Mindermann et al. [2022] Appendix B.

Train Loss baseline is taken from Loshchilov and Hutter [2016] where points from the large batch
Bt are sampled with probability

pi ∝
1

exp(log(s)/|Bt|)i
. (11)

Here pi is the point with the ith highest training loss in the large batch. We set the selection pressure
parameter se = 100 and do not vary this during training as per the Experiments in Section 6. of
Loshchilov and Hutter [2016].

Compute Resources and Data Sources. All models were trained on GCP NVIDIA Tesla T4
GPUs. The Image datasets were sourced from pytorch via the torchvision datasets package
https://pytorch.org/vision/stable/datasets.html, the NLP datasets were sourced from
huggingface, https://huggingface.co/datasets/nyu-mll/glue.

Data Augmentation was applied to the training dataset during online batch selection and validation
dataset during the training of the amortised class-irreducible loss model. We apply a random crop
and random flip to the images.

A.6 Results with worst-class checkpointing

In Table 3 and Table 4 we show the worst-class and average test accuracy respectively, when the
UNIFORM, TRAIN LOSS and RHO-LOSS baselines use worst-class validation accuracy to checkpoint
the model during training. REDUCR still outperforms or matches the best baseline performance
across all datasets. In the cases where REDUCR matches the performance of the best performing
baseline, it does so in a more data efficient manner. Figure 7b and Figure 7d show the mean and
standard deviation worst-class test accuracy across multiple runs on the QQP and MNLI datasets.
REDUCR matches the best mean performance of the best performing baseline almost 100k training
steps earlier on both datasets.

A.7 Additional Experimental Results

In Appendix A.7.1 we show the per class weights for the Clothing1M dataset, whilst in Ap-
pendix A.7.2 we analyse the effect of the clipping term and provide some intuition behind its
inclusion in the algorithm.

A.7.1 Clothing1M Training Weights

The Clothing1M dataset is imbalanced with respect to class 4. Figure 9 shows that REDUCR is able
to consistently identify and weight the underrepresented class across model runs.
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Dataset Worst-Class Test Accuracy (%) ±1 std
UNIFORM TRAIN LOSS RHO-LOSS REDUCR

CIFAR10 (10 runs) 75.01 ± 1.37 79.32 ± 1.35 81.23 ± 1.18 83.29 ± 0.84
CINIC10 (10 runs) 70.86 ± 1.23 68.89 ± 0. 86 73.44 ± 1.16 75.30 ± 0.85
Clothing1M (5 runs) 39.23 ± 5.41 49.02 ± 2.32 32.19 ± 9.83 53.91 ± 2.42
MNLI (5 runs) 76.88 ± 1.21 75.75 ± 0.56 78.04 ± 1.73 79.45 ± 0.39
QQP (5 runs) 84.50 ± 0.56 85.49 ± 1.32 82.60 ± 1.12 86.61 ± 0.49

Table 3: Worst-class test accuracy, when the RHO-LOSS and TRAIN LOSS baselines are checkpointed using
their worst-class validation error during training.

Dataset Average Test Accuracy (%) ±1 std
UNIFORM TRAIN LOSS RHO-LOSS REDUCR

CIFAR10 (10 runs) 85.09 ± 0.52 87.74 ± 0.50 89.43 ± 0.57 90.02 ± 0.44
CINIC10 (10 runs) 79.57 ± 0.75 78.21 ± 0.57 81.28 ± 0.54 81.68 ± 0.47
Clothing1M (5 runs) 69.60 ± 0.85 69.46 ± 0.43 70.63 ± 0.87 72.69 ± 0.42
MNLI (5 runs) 78.85 ± 0.38 78.50 ± 0.33 80.50 ± 0.45 80.28 ± 0.33
QQP (5 runs) 85.23 ± 0.36 86.24 ± 0.26 86.75 ± 0.37 86.99 ± 0.49

Table 4: Average test accuracy, when the RHO-LOSS and TRAIN LOSS baselines are checkpointed using their
worst-class validation error during training.

A.7.2 Clipped Excess Loss Ablation Experiments
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Figure 9: Clothing1M class weights

To further understand the effects of clipping in the
algorithm we analyse the selection score of the se-
lected points with and without clipping. As detailed
in Appendix A.4 the class-holdout loss only affects
the selection of points via the weights wt at each time
step, as such we record only the excess loss (the dif-
ference between the model loss and class irreducible
loss). Figure 10 shows the quantiles of the weighted
sum of the excess losses of points selected at each
training step for the non-clipped and clipped model
respectively. When the excess loss is clipped, Fig-
ure 10a shows the selection scores smoothly decrease throughout training as the model loss improves.
Without clipping the excess loss decreases smoothly at the beginning of training and then shows
unstable behaviour across runs later in training.

In practice we select multiple points per batch by selecting the points with the top k selection scores.
When multiple points have the same score, points are selected at random. We note that the clipping
does not reduce the excess loss of the selected points to zero where points would be selected randomly
to make up the batch.

Intuitively we posit that the clipping reduces the effect of clashing amortised class irreducible loss
models in the weighted sum across the |C| selection rules. The amortised class irreducible loss
models are trained such that they are an expert in a specific class c. In some cases a model being
an expert in a specific class c′ may result in it being a poor predictor of classes C \ c′. Even if this
expert has a small weight wt,c′ large losses may still propagate into the selection of points. Clipping
the excess loss prevents a point from being down-weighted in the weighted sum of class specific
selection scores by a specific class too much.

A.7.3 Alternative Solutions to Robust Data Downsampling

In Section 4.1 we introduce an online solution to the robust data downsampling problem based upon
the multiplicative weights method. In this section we empirically evaluate a variation of REDUCR
where we solve the maximin optimisation problem directly. At each time step t we select a small
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(a) REDUCR Excess Loss
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(b) REDUCR Excess Loss No Clipping

Figure 10: The quantiles of the excess loss of points selected at each training step with (a) and without clipping
(b) of the excess loss term
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10000 20000 30000 40000
Training Steps

20

30

40

50

60

70

80

W
or

st
-C

la
ss

 Te
st

 A
cc

 (%
)

CINIC10 Payoff
CINIC10 REDUCR

CIFAR10 Payoff
CIFAR10 REDUCR

(b) Worst Class Test Accuracy

Figure 11: We compare REDUCR with Algorithm 4 in which the maximin optimisation problem approximated
by solving the payoff matrix directly at each step t, this is labelled Payoff. REDUCR consistently outperforms
this approach both in terms of (a) average test accuracy and (b) worst class test accuracy.

batch bt ⊂ Bt

bt = {(x, y)} = argmax
(x,y)∈Bt

min
c∈[C]
L[y|x, θt]− L[y|x, θ(c)t ]− L[y(c)

ho |x
(c)
ho , θt], (12)

for clarity we once again write the selection rule in terms of a single point. As |Bt| << |D| and both
[C] and Bt are discrete sets it is feasible to solve the optimisation problem directly. To do this we
first minimize the selection score for each datapoint (x, y) with respect to a class c and then select
the k datapoints with the greatest minimum score. The full algorithm is shown in Algorithm 4. We
compare this approach against REDUCR on the CIFAR10 and CINIC10 datasets. The results can be
seen in Figure 11 where REDUCR outperforms the direct optimisation approach in terms of both
average test accuracy and worst class test accuracy.

Algorithm 4 Robust Data Downsampling Approximated by Directly Solving the Payoff Matrix

1: Input: data pool D, holdout data Dho =
⋃

c∈C D
(c)
ho , total timesteps T/k, small batch size k

2: for t ∈ [T/k] do
3: Sample batch Bt randomly from D
4: bt = argmax

b∈Bt:|b|=k

∑
(x,y)∈b min

c∈|C|
L[y|x, θt]− L[y|x, θ(c)t ]− L[y(c)

ho |x
(c)
ho , θt] ▷ Select points

with top k min scores
5: θt+1 = SGD(θt, bt)
6: end for
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A.8 Experiments on ConvNext Architecture

We repeated the Clothing1M experiments using the facebook/convnext-tiny-224 ConvNext
model Liu et al. [2022] from HuggingFace, the results are shown in Figure 12. Here we note
REDUCR maintains strong performance in terms of the average test accuracy. The mean worst-class
test accuracy outperforms the other baselines, however is not statistically significant.
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Figure 12: a) REDUCR outperforms the relevant baselines in terms of the mean worst-class accuracy using
the facebook/convnext-tiny-224 ConvNext Model [Liu et al., 2022], we ran each experiment for 3 seeds with
no hyperparameter tuning. b) REDUCR continues to outperform all the baseline algorithms in terms of the
average test accuracy on the Clothing1M dataset when training the ConvNext model. Whilst the worst-class
test accuracy is noisy, the improvement REDUCR makes across multiple poorly performing classes results
in a large performance difference between it and the next best performing baseline.

A.9 Amortised Class Irreducible Loss Models

In Figure 13 we compare the average expert class (c ∈ C) test accuracy and non-expert class
(c′ ∈ C \ {c}) test accuracy across different values of γ for the amortised class-irreducible loss model
train on CIFAR10. For the model to be an expert in one class it loses performance in the non-relevant
classes. To avoid the problems described in Appendix A.7.2 we selected γ = 9 for the image datasets
as the performance of the non-expert class did not suffer too much.
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Figure 13: Class-irreducible loss model test accuracies on the expert class and non-expert classes. Class-
irreducible loss models are trained using gradient weights γ ∈ {0.25, 0.5, 1.0, 4.0, 9.0, 19.0, 49.0, 99.0}.

A.10 Hyperparameter Tuning

In this section, we test the sensitivity of REDUCR with respect to the hyperparameters introduced.
In particular, we investigate the sensitivity of the learning rate η, used for target model training; the
gradient weight γ, used for class-irreducible loss model training; the fraction of datapoints selected
for target model training |bt|/|Bt|, for a constant selected batch size |bt|; and the frequency with

19



0.0001 0.001 0.01 0.1 1 10

76

78

80

82

84

W
or

st
 C

la
ss

 Te
st

 A
cc

ur
ac

y 
(%

)

(a) CIFAR10 Final Worst-Class Test Accuracy
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(b) CIFAR10 Worst-Class Test Accuracy Curves
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(c) CIFAR10 Final Average Test Accuracy
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(d) CIFAR10 Average Test Accuracy Curves

Figure 14: The final average and worst-class test accuracy are not sensitive to the value of η on the CIFAR10
dataset. When using smaller values of η both the average and worst class test accuracy attain higher performance
at an earlier training step.

which the class holdout loss term is updated during training. All experiments in this section use
the CIFAR10 dataset. We use ResNet-18 target models, trained using η = 10−4 with a fraction of
datapoints selected of |bt|/|Bt| = 0.10, and ResNet-18 class irreducible loss models trained using
γ = 9 unless otherwise stated.

We find that REDUCR is not sensitive to the learning rate η or the frequency of the class holdout
loss term updates. We find that the performance of REDUCR is sensitive to the gradient weight γ at
high values. Finally, we find that REDUCR is not sensitive to the fraction of data points selected
for target model training (referred to as the percent train) for intermediate values of percent train,
though performance is poor for very low fractions and very high fractions recovers uniform selection
as bt = Bt when |bt|/|Bt| = 1.0 and Bt is sampled uniformly from the dataset.

In summary, REDUCR is largely insensitive to the values of the newly introduced hyperparameters
when trained on the CIFAR10 dataset. Sensitivity analyses on additional datasets are needed to
increase the robustness of these findings. However, a gradient weight of γ = 9 and a percent train of
0.10 perform well without additional hyperparameter tuning for several datasets, as shown in Table 1
and Table 2 which tentatively supports the robustness of these findings.

A.10.1 Learning Rate η

First, we perform a sensitivity analysis on the learning rate η for values η ∈
{10−4, 10−3, 10−2, 10−1, 100, 101}. The experimental results, shown in Figure 14, demonstrates
that smaller values of η result in a faster improvement of the average and worst class test accuracy
during training, although the final model performance is similar for all values of η investigated. In
practice, appropriately small values of η should be used in order to reduce computational cost. Note
that what constitutes an appropriately small value of η depends on the scale of losses in a particular
domain. Initial target model training runs can be done to identify a value of η for which class weights
do not prematurely concentrate on one class η.

A.10.2 Gradient Weight γ

To investigate the sensitivity of the gradient weight γ on the performance of REDUCR. We train
sets of class-irreducible loss models for each γ ∈ {0.25, 0.5, 1.0, 4.0, 9.0, 19.0, 49.0, 99.0} and train
a model for each set of class-irreducible loss models. The results, shown in Figure 15, show that
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(c) CIFAR10 Final Average Test Accuracy
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Figure 15: Average and worst-class test accuracy are sensitive to the value of γ on the CIFAR10 dataset,
though this likely reflects longer convergence times for class-irreducible loss model training when using larger
values of γ.

values of the gradient weight above 9.0 result in faster improvement of the average and worst class
test accuracy early in training, although these models converges to a lower average and worst class
test accuracy at the end of training. Higher gradient weights also increase the variance of the class-
irreducible training loss, models trained with higher weights thus required a greater number of gradient
descent steps to converge to a suitable class-irreducible loss model. We found class irreducible loss
models trained with gradient weights γ ∈ {19.0, 49.0, 99.0} are selected via checkpointing before the
model has converged and suspect this is a contributing factor in the poor test accuracy we observed.

This finding highlights the trade-off between fast target model training, which requires a large gradient
weight; fast class irreducible loss model training, which requires a smaller gradient weight; and
strong final performance of the model. Final average and worst class test accuracy is similar for all
models trained with gradient weights γ ∈ {0.25, 0.5, 1.0, 4.0, 9.0}.

A.10.3 Fraction of Selected Datapoints

We perform a sensitivity analysis on the fraction of datapoints selected for target model training
|bt|/|Bt|, referred to as the percent train hyperparameter. We use a constant small selected batch size
|bt| and vary the large batch size |Bt| in order to vary the fraction of datapoints selected for target
model training. In this setting, a smaller percent train allows REDUCR to select from a greater
number of candidate datapoints at each training step, which results in the selection of datapoints with
larger weighted reducible loss. Since datapoints with larger weighted reducible loss are those from
which a model can learn the most [Mindermann et al., 2022], we expect a smaller percent train to
result in a faster improvement in target model performance.

We train target models using REDUCR for each percent train and large batch size pair (|bt|/|Bt|, |Bt|)
in {(0.05, 640), (0.10, 320), (0.15, 216), (0.20, 160), (0.25, 128)} and present the results in Fig-
ure 16. We find that a percent train of 0.05 attains lower final worst-class and average test accuracy,
despite having most candidate datapoints to select from. This is surprising and is in contradiction with
the intuition provided above. Furthermore, percent trains {0.1, 0.15, 0.2, 0.25} attain similar average
test accuracy at the end of training, though larger percent trains attain slightly higher worst-class test
accuracy at the end of training.

These results demonstrate that the performance of REDUCR is largely insensitive to the percent train
hyperparameter for a constant selected batch size. In practice, a selected batch size |bt| should first be
chosen such that loss gradient estimates have a low variance, and then a large batch size |Bt| should
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Figure 16: REDUCR is broadly insensitive to changes of the percent train hyperparameter, |bt|/|Bt| on the
CIFAR10 dataset. The final worst class and average test accuracy is statistically similar across a variety of values
of the percent train hyperparameter. For a small value of percent train 0.05, the final worst class and average
test accuracy suffers and REDUCR requires more gradient descent steps to match the performance of models
trained with larger percent train values. The plots show the mean and standard deviation across 10 runs.

be chosen such that the percent train is an intermediate value for example 0.10. These results also
suggest that selecting datapoints with the very largest weighted reducible loss for model training may
not be most appropriate for improving model performance. Instead of top-k selection a more nuanced
approach that accounts for the joint distribution over all points in the selected batch could be used.

A.10.4 Frequency of Class Hold-out Loss Updating

The class holdout loss term is updated at the beginning of each training epoch using the full holdout
dataset. As each epoch consists of multiple gradient descent steps the actual performance of the
target model on the holdout dataset will vary before the class holdout loss term is recalculated. In this
section we investigate an alternative method in which the class holdout loss term is updated at every
gradient descent step.

It is computationally expensive to update the class holdout loss term using the full holdout dataset at
every gradient descent step. Therefore, we propose an alternative fast updating method, which only
uses a batch of holdout points to estimate the term at each timestep. The class holdout loss computed
in this manner is noisy. Therefore, we use an exponentially-weighted moving average of the class
holdout losses from previous timesteps to produce a smoother signal. Specifically, a batch of size
320 is sampled uniformly at random from the holdout dataset at each training step. Losses are then
computed for each datapoint in the sampled batch using the current target model. Finally, for each
class c ∈ [C], losses of datapoints of class c in the sampled batch are averaged and used to update a
debiased exponentially-weighted moving average with decay parameter a ∈ [0, 1].

We perform experiments using exponentially-weighted moving averages with decay parameters
a ∈ 0.9, 0.99 for fast updating of the class holdout loss term. The results shown in Figure 17
demonstrate REDUCR is not improved in a statistically significant manner by the more complex
exponentially-weighted moving average approach, both in terms of the final average and worst class
test ac-curacies or the number of training timesteps required to reach these accuracies.
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Figure 17: Test accuracies are not sensitive to the frequency with which class hold-out losses are updated. Plots
show minimums, medians and maximum across 10 seeds.

A.11 Highly Imbalanced Datasets

We also conduct experiments with 0.25% and 0.5% percent imbalances on classes 3 and 5. However,
(class) irreducible loss models and target models only receive 6.25 and 12.5 datapoints of the
imbalanced class during one training epoch (in expectation) with percent imbalances of 0.25% and
0.5% respectively. As a result, too few datapoints of the imbalanced class are seen during model
training to achieve good performance on the imbalanced class.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our paper introduces a new methods REDUCR and claims that REDUCR
improves robust data selection and sample efficiency. We provide experiments on multiple
domains that support this conclusion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: As per the guidelines we discuss the limitations of our work in the Conclusion,
Broader Impact and Limitations section of the paper.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Whilst we motivate our approach from first principals we then make several
approximations to develop a practical and implementable algorithm. These approximations
mean that we do not have any theoretical results in the paper and support our conclusions
empirically.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The paper details the full experimental setup in the main body of the paper and
Appendix A.5. we also include the full code used in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets used in the paper are publically available and cited where
relevant. The full code for our experiments is also provided in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experimental setting details in Section 5 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All graphs and results in the paper are repeated over multiple runs and standard
deviations are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Compute resource details are provided in Appendix A.3.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not involve human subjects. In regards to data related
concerns, we use dataset that are popular in academic machine learning journals and fully
cite the data source, we also provide url’s to the datasets as per the neurips guidelines. Our
research specifically focuses upon robust methods that try to address issues with bias and
discrimination by improving the performance of algorithms on these specific groups
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer:[Yes]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets are appropriately cited and URLs and data sources are provided in
the Appendix A.3.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release a new dataset.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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