
Work in Progress: Enhancing Human-Robot
Interaction through a Speech and Command

Recognition System for a Service Robot Using ROS
Melodic

*Note: Sub-titles are not captured in Xplore and should not be used

Luis Emiliano Rodrı́guez Raygoza
Tecnologico de Monterrey

School of Engineering and Sciences
Monterrey, México
a01252086@tec.mx

Jorge De-J. Lozoya-Santos
Tecnologico de Monterrey

School of Engineering and Sciences
Monterrey, México
jorge.lozoya@tec.mx

Luis C. Félix-Herrán
Tecnologico de Monterrey

School of Engineering and Sciences
Monterrey, México

lcfelix@tec.mx

Juan C. Tudon-Martinez
Tecnologico de Monterrey

School of Engineering and Sciences
Monterrey, México

jc.tudon@tec.mx

Abstract—This paper presents the development and evaluation
of a Speech and Command Recognition system integrated into
PiBot, an autonomous service robot developed at Tecnológico
de Monterrey. The system executes on Robot Operating System
(ROS) Melodic framework running on a Jetson TX2 embedded
computer to enable natural language interaction through Au-
tomated Speech Recognition (ASR). The study focuses on the
challenges and opportunities of implementing speech recognition
in real-world environments, particularly within constrained hard-
ware platforms. The system achieved a 25% Word Error Rate
(WER) and a 73% Command Accuracy, with performance vary-
ing across different testing environments. The system achieved a
25% Word Error Rate (WER) and a 73% Command Accuracy,
with performance varying across different testing environments.
Difficulties were noted in recognizing uncommon or non-Spanish
words. A comparison with state-of-the-art models indicates room
for improvement. Future work will focus on fine-tuning the
model using datasets with ground truth transcriptions to enhance
reliability in complex, noise-prone settings.

Index Terms—Automated Speech Recognition (ASR), Human-
Robot Interaction (HRI), Service Robots, Command Detection,
Embedded Systems

I. INTRODUCTION

In recent years, robotics has made notable progress, with
service robots becoming prominent solutions designed to com-
municate, interact, and assist customers [8]. As society moves
toward greater automation, effective human-robot interaction
is increasingly important. Among the key elements facilitating
this interaction, speech algorithms are essential tools and
widely used approaches in Human-Robot Interaction (HRI)
[7]. Speech functions both as an input and an output in

dialogue systems. As an input, it allows robots to recognize
spoken language through Speech-to-Text (STT) or Automated
Speech Recognition (ASR). As an output, speech synthesis
converts textual responses into spoken language, enabling
natural language interaction [1].

This paper presents preliminary work focusing on the devel-
opment and evaluation of these systems to identify areas for
future improvement. The system is integrated into PiBot, an
autonomous service robot developed at Tecnológico de Mon-
terrey, with its design and development previously described
[5]. PiBot’s algorithms run within the Robot Operating System
(ROS) Melodic framework on Ubuntu 18.04, utilizing the
processing capabilities of a Jetson TX2 embedded computer.
While this combination of software and hardware is functional,
it presents limitations due to the constraints of embedded
computer architecture, reliance on battery power, and limited
availability of GPU-accelerated library versions. Additionally,
the Jetson TX2, an older model, poses specific challenges
impacting the system’s performance and flexibility.

This paper examines the challenges and opportunities of in-
tegrating speech recognition algorithms within a service robot,
emphasizing the practical implementation and evaluation of
these systems in real-world settings. Through experimentation
and analysis, we aim to identify the strengths and limitations
of current speech recognition technologies when deployed on
constrained hardware platforms like the Jetson TX2, providing
insights that may inform future enhancements in human-robot
interaction in complex, noise-prone environments.

The paper is organized as follows: Section II describes the



system integration and technological configuration. Section III
outlines the configuration and operation of the developed pro-
cessing nodes, detailing their roles in the processing pipeline.
Section IV discusses the testing and validation methodology
used to evaluate the system. The validation results are pre-
sented in Section V, and conclusions are drawn in Section
VI.

II. PIBOT’S SPEECH RECOGNITION INTEGRATION

The development of the Speech and Command Recognition
System for PiBot is a significant enhancement, significantly
improving its interactive capabilities. This system, detailed in
this section, facilitates verbal communication between humans
and PiBot, extending interactions beyond the existing terminal
and web interface. It also sets the stage for future voice-
activated motion tasks with their respective algorithms. The
integration process, which began with the ReSpeaker Mic
Array, is a crucial step in this journey. This device, connected
via USB, provides raw audio data and the relative direction
of sound, which will be used to activate motion tasks through
speech, thereby enhancing PiBot’s functionality.

The implementation of the Speech and Command Recog-
nition System for PiBot is designed to enable it to respond
to vocal instructions, a common interface method for HRI.
The process begins by connecting the ReSpeaker Mic Array
and setting up an inference node. This node is dedicated to
pre-processing the audio signal, performing inference on the
audio data, and post-processing the results to obtain interpreted
speech. The system then uses score criteria to determine
whether a command is present in the inferred text. If a
command is detected, it is forwarded to a state machine to
execute the appropriate task on PiBot.

A. Technological Framework and Adaptations

This section describes the hardware and software architec-
ture that integrates the Speech and Command Recognition
system into PiBot. The integration is supported by a Jetson
TX2 embedded computer running Ubuntu 18.04 with the
JetPack 4.6.5 SDK and a ReSpeaker 2.0 Mic Array connected
via USB for capturing audio input. The Jetson TX2 serves as
the central processing unit, handling all computational tasks
including audio inference, navigation, and sensor fusion. The
JetPack SDK includes essential libraries, such as CUDA 10.2
and cuDNN 8.2.1, providing GPU acceleration to handle the
demanding deep learning inference tasks required for real-time
operation [4].

The ROS Melodic framework provides a robust environ-
ment for developing modular nodes that handle specific tasks
within the speech recognition pipeline. The Jetson TX2’s GPU
accelerates the inference process of the ASR model, enabling
real-time speech processing. ROS topics and services are
used for inter-node communication, allowing the ReSpeaker
Node to publish audio data, the Inference Node to perform
GPU-accelerated speech-to-text conversion, and the Command
Detection Node to interpret commands. The State Machine
Node orchestrates the execution of commands, leveraging

ROS’s actionlib for asynchronous task handling, which ensures
that multiple actions can be managed concurrently.

Due to the limitations of the Jetson TX2 hardware, several
strategies were explored for configuring the necessary soft-
ware environment. The Nvidia JetPack SDK is crucial for
hardware-accelerated AI development, but due to compatibility
constraints, the available machine learning frameworks are
limited to older versions. Initially, a conda environment was
considered for managing the library versions required for
inference, but the lack of ARM-compatible versions proved
to be a significant barrier. A compatible PyTorch Docker con-
tainer was also investigated, offering GPU-accelerated support
for speech recognition. Despite the potential, this approach
faced practical challenges related to processing demands and
frequent image deletions.

Ultimately, we installed a specific version of PyTorch (pro-
vided by Nvidia) that works with CUDA 10.2, enabling us
to perform GPU-accelerated inference for speech recognition
tasks. This required transitioning from the torchaudio library to
the librosa library for certain audio processing tasks, maintain-
ing the same inference approach with some modifications. The
difference in performance was significant: GPU-accelerated
inference took 3–4 seconds, while CPU-based inference took
approximately 55 seconds, emphasizing the necessity of GPU
acceleration for achieving near real-time response. Figure X
illustrates the hardware and software integration within PiBot,
including the flow between ROS nodes, the Jetson TX2, and
the ReSpeaker Mic Array.

III. OPERATION OF PROCESSING NODES

This section details the setup and functionality of the
processing nodes developed for the speech and command
recognition system, highlighting their roles within the frame-
work. The system handles audio input, speech recognition,
command detection, and command execution through four dis-
tinct nodes. Each node operates within the processing pipeline,
collectively ensuring the system’s functionality. The initial
node was adapted from an existing ROS Melodic package
[2], which facilitates communication with the ReSpeaker 2.0
Mic Array. This array captures audio input and provides
directional sound data using its quad-microphone setup. The
directional information is intended for future enhancements,
such as activating motion tasks based on speech direction.

The second node, developed specifically for this imple-
mentation, handles inference. It receives audio segments, pre-
processes the data to reduce background noise, performs GPU-
accelerated inference using the jonatasgrosman/wav2vec2-
large-xlsr-53-spanish model [3], and post-processes the results
to identify keywords. The third node processes the inferred text
to determine if it contains a command from a predefined set
of keywords and thresholds. Finally, the fourth node functions
as a state machine, waiting for commands and executing the
corresponding tasks on PiBot.

Figure 1 illustrates the interconnection of these nodes, the
topics they broadcast, and the data types transmitted between
them. This visual aid clarifies the communication flow and the



Fig. 1. Schematic representation of the audio processing framework, showcasing the workflow from audio capture to command execution. It begins with the
ReSpeaker Node processing audio data, followed by the Inference Node for text inference and processing, and the Command Detection Node for command
detection and selection. The State Machine Node completes the sequence by executing the corresponding actions.

sequential processing steps from one node to the next. Each
node and the algorithms employed are further explained in the
subsequent subsections.

A. Inference Node Configuration and Operation

The Inference Node initiates the speech recognition process
by handling audio segments, pre-processing them, performing
inference, and converting the results into text. The node
subscribes to the ”/speech audio” ROS topic, where audio
segments are continuously published by the ReSpeaker node.
Upon receiving an audio message, the data undergoes several
processing steps before the inferred text is published to the
”/audio text topic” as a String message for the next node.

Audio processing begins with the initialization of neces-
sary libraries. The ’rospy’ library facilitates communication
between ROS nodes, while ’librosa’ and ’soundfile’ are used
for audio processing. Additional libraries support array ma-
nipulation, audio transformations, and machine learning tasks.
The core of the inference task utilizes the wav2vec2-large-
xlsr-53-spanish model, a speech recognition model already
fine-tuned with the Common Voice Corpus 6.1 dataset for
Spanish. This model, sources from Hugging Face [3], operates
on wav files sampled at 16,000 Hz. The dataset used for fine-
tuning, Common Voice Corpus 6.1, provides a diverse range
of transcriptions. For our implementation, we leveraged this
pre-existing fine-tuned model to process our collected audio
data without further modification. Global variables are set
during initialization, and the GPU device is configured. A
similarity threshold is established for fuzzy word matching,
and a spell checker and a set of keywords are initialized to
address common inference errors.

Once the model is ready, which takes approximately 20
seconds, the ROS node and subscriber are activated to lis-

ten for audio data on the ”/speech audio” topic. The main
processing occurs in the callback function, which is triggered
upon receiving an audio message. The audio data is converted
to a .wav file and loaded into a GPU-compatible tensor. Pre-
processing is performed using the ’noisereduce’ library to
minimize background noise, as illustrated in Figure 2, which
shows the effects of noise reduction on different audio signals.

The filtered audio is then processed by the Wav2Vec 2.0
model, which transcribes the spoken content into text. Post-
processing involves mapping the inferred text to correct com-
mon transcription errors. This includes mapping terms like
’piot’ to ’pibot’, ’pivot’ to ’pibot’, and ’machin’ to ’ma-
chine’. Additionally, the ’fuzzywuzzy’ library performs word
corrections based on the Levenshtein Distance, allowing for
corrections with a similarity threshold of 70%. Keywords such
as ’pibot’, ’pibotino’, and ’patrullar’ are specifically targeted
for this correction process. The refined text is then published to
the ”/audio text topic” ROS topic for the Command Detection
Node to process.

B. Command Detection Node

The Command Detection Node converts inferred text into
detected commands to execute later. It subscribes to the
”/audio text topic” ROS topic to receive text inputs from
the Inference Node. Upon receiving a message, the node
processes the text by tokenizing it into individual words for
detailed analysis. Special attention is given to the keywords
”pibot” and ”pibotino,” which identify the robot intended to
receive the commands. Detecting these keywords ensures that
only relevant commands are processed, filtering out unrelated
speech.

After recognizing the robot identifier, the node maps key-
words associated with each potential command. These key-



Command Intent Keywords Thresholds
talk about system For PiBot to play a series of audio files, explaining

itself, its capabilities, its components and its features.
(hablame, háblame, cuéntame, cuentame, explicame,
explı́cate), (ti), (sobre), (capacidades), (componentes)

0.2

talk about machine care For PiBot to play a series of audio files, explaining
Machine Care, a strategical business partner for PiBot
development.

(hablame, háblame, cuentame, cuéntame, explicame),
(machin, machine, care, quer)

0.6

talk about event For PiBot to play a series of audio files, explaining
the ENCLELAC event which invited PiBot to attend.

(háblame, hablame, cuéntame, cuentame, explicame),
(evento, clelac, conferencia, enclelac, claustro)

0.6

come towards me Command for a future action intended to command
PiBot to navigate towards the person closest to the
sound direction.

(ven, vente, acercate, aproxima, aproximate), (aca,
acá, aquı́)

0.6

patrol Command for future to start patrolling actions on
PiBot, navigating autonomously in a set of predefined
points.

(patrullaje, patrullar, vuelta), (empieza, comienza,
ponte)

0.2

look at me Command for future action intended to command
PiBot to rotate to face the sound direction source.

(voltea, volteame, observame, observa, boltea, mi-
rame, mira), (empieza, comienza, ponte)

0.3

stop action Some states are indefinite and are only stopped by
this action. Additionally, the audio sequences can be
stopped with this command.

(detente, alto, parate, cancela, basta, termina, inter-
rumpe, suspende, aborta)

0.2

continue Signals PiBot to continue with its last state, either
continuing from the last played audio, or continuing
an indefinite task.

(continúa, continua, reanuda) 1

TABLE I
LIST OF COMMANDS PROGRAMMED IN THE SPEECH RECOGNITION IMPLEMENTATION FOR PIBOT. THE LIST PRESENTS THE IDENTIFIER, THE INTENT

FOR THIS STATE (IN THE STATE MACHINE), KEYWORDS FOR EACH COMMAND, AND THE MINIMUM SCORE THRESHOLD TO SURPASS TO BE CONSIDERED
A POSSIBLE CANDIDATE.

words are grouped by synonyms to improve the accuracy of the
scoring mechanism, which determines the most likely intended
command. This grouping prevents score inflation from repet-
itive similar words, ensuring a more accurate interpretation.
The algorithm then evaluates the scores for each potential
command against predefined thresholds. If a command’s score
exceeds its threshold and is the highest among the candidates,
it is selected for execution. The selected command is published
to the ”/state topic” ROS topic as a String message for the
State Machine Node to execute relevant algorithms.

Table I lists the programmed commands, their intended ac-
tions, associated keywords, and the minimum score thresholds
required for selection.

C. State Machine Node

The State Machine Node manages the execution of tasks
corresponding to received commands using the smach library.
Each state within the state machine performs specific functions
and makes decisions based on the commands received. The
final state, FinishProgram, handles the concluding logic before
terminating the program. Figure 3 depicts the structure of the
state machine, which begins in the Initial Setup state and
transitions to the Waiting Mode state once all necessary nodes
are active. Upon receiving a command, the state machine
transitions to the appropriate state to execute the corresponding
task and then returns to Waiting Mode after completion or
interruption. If the state machine is stopped, it moves to the
End state.

The Initial Setup state verifies that all required ROS nodes,
specifically the Inference Node and Command Detection
Node, are operational. This verification accounts for the ap-
proximately 20-second power-on time. Once confirmed, the
state machine transitions to the Waiting Mode state, where

it remains ready to receive and process commands from the
”/state topic” ROS topic.

In the Waiting Mode state, the state machine continuously
monitors for incoming commands. Upon receiving a com-
mand, it transitions to the corresponding state to execute
the associated actions. All states responsible for providing
explanations are fully operational, playing a series of au-
dio files as intended. Users can interrupt these actions with
the ’stop action’ command, which halts audio playback and
records the last played audio. The ’continue’ command also
allows users to resume the last interrupted action. While com-
mands such as ’patrol’, ’come towards me’, and ’look at me’
are recognized and processed, the actions they trigger are
scheduled for future development.

Each state within the state machine is designed to han-
dle specific functionalities, with clearly defined transitions
ensuring a reliable and adaptable system. Audio feedback
is integral to the state machine, enhancing user interaction
by confirming received commands. When a command is
successfully detected, the system plays a randomly selected
confirmation audio from a pool of pre-recorded phrases. This
approach confirms command recognition and adds variety to
interactions, aiming to improve the user experience. Similarly,
continuation commands trigger randomized audio feedback to
inform users that the system has resumed its previous action.

IV. TESTING AND VALIDATION OF SPEECH RECOGNITION
IMPLEMENTATION

Evaluating the performance of the speech recognition sys-
tem implemented in PiBot is essential to ensure effective
interaction and accurate command execution and to highlight
critical areas of opportunity for future work in this platform.
This section details the testing methodology, including the
audio samples, testing environments, and the metrics used



Fig. 2. Comparison of Audio Waveforms Across Various Scenarios (spoken
text said is ”oye pibot hablame de ti”): a) Original clear audio waveform,
b) Noise-reduced waveform from the original clear audio, c) Original audio
waveform with added background noise, d) Noise-reduced waveform of the
audio with added background noise.

Fig. 3. Illustration of the State Machine structure implemented on PiBot, to
perform different algorithms based on the command received.

Desired Command Transcription
look at me oye pibot voltea

talk about system oye pibot hablame de ti
talk about event oye pibot hablame del evento
talk about event oye pibot hablame de clelac

look at me oye pibot voltea
patrol oye pibot ponte a patrullar

talk about machine care oye pibot hablame de machine care
come towards me oye pibot ven para aca
talk about system oye pibot cuentame sobre ti
talk about event oye pibot que sabes del evento

patrol oye pibot comienza a patrullar
TABLE II

LIST OF PHRASES WITH THE INTENDED COMMAND USED ON THE SPEECH
RECOGNITION TESTING.

to assess system reliability and accuracy. The testing was
performed on a computer running ROS Melodic on Windows
11 through the Windows Subsystem for Linux with Ubuntu
18.04. The focus was on evaluating the algorithmic accuracy
and reliability consistent across different platforms.

A. Recording and Preparation of Audio Data

Audio recordings for this validation were captured using
PiBot’s ReSpeaker Mic Array. A Python script defined each
audio segment’s start and end times based on keyboard inputs.
This resulted in individual .wav files named according to
the spoken phrase and the recording location; all recordings
were mono-channel with a sample rate of 16,000 Hz. Some
recordings included English words such as ”machine” and
”care” to test the system’s handling of multilingual inputs
even when fine-tuned with a Spanish dataset. Table II lists
the phrases and their corresponding intended commands. It is
important to note that all commands are in Spanish, aligning
with the system’s target language.

B. Testing Environments

The speech recognition system was tested in three different
environments to evaluate its performance under varying noise
conditions:

• Office Floor: Recordings were made on the second floor
of the CETEC tower at Tecnológico de Monterrey’s In-
novaction floor, where undergraduate students presented
their final projects. This environment featured signif-
icant background noise due to multiple conversations
and activities, providing a challenging setting for speech
recognition.

• Library: PiBot was positioned on the first floor of
Tecnológico de Monterrey’s library. Electrical escalators,
nearby shops, and student activity contributed to back-
ground noise, testing the system’s ability to function in a
moderately noisy environment.

• Laboratory: Recordings in the laboratory were con-
ducted in a wide, open space with minimal background
noise. This environment served as a control to assess the
system’s performance in ideal conditions.

During testing, the speaker maintained a consistent speaking
volume and pace. The impact of factors such as background



noise, echo, and microphone distance were analyzed to under-
stand their effects on WER and Command Accuracy.

Figures 4, 5, and 6 show PiBot’s placement in each of these
environments.

Fig. 4. PiBot located at Innovaction, where the set of phrases were recorded.

Fig. 5. PiBot located at Tec’s Library, where the set of phrases were recorded.

C. Evaluation Metrics

Two primary metrics were used to evaluate the system’s per-
formance: Word Error Rate (WER) and Command Prediction
Accuracy.

1) Word Error Rate (WER): WER measures the difference
between the recognized word sequence and the ground truth
transcription by calculating the minimum number of substi-
tutions, insertions, and deletions required to transform one
sequence into the other. It is calculated using the following
formula:

Word Error Rate =
S + I +D

N
(1)

• S (Substitutions): The number of words in the recognized
transcription that differ from the ground truth.

• I (Insertions): The number of additional words present
in the recognized transcription that are not in the ground
truth.

• D (Deletions): The number of words from the ground
truth that are missing in the recognized transcription.

Fig. 6. PiBot located at Tec’s Laboratory, where the set of phrases were
recorded.

• N (Number of words): The total number of words in the
ground truth transcription.

WER was calculated using the jewel Python library, which
compares the inferred transcription against the ground truth.

2) Command Prediction Accuracy: Command Prediction
Accuracy evaluates whether the system correctly identifies and
executes the intended command. This metric is binary: a score
of 1 is assigned if the inferred command matches the ground
truth command, and a score of 0 otherwise.

V. RESULTS

The tests were designed to evaluate the performance of
the speech recognition pipeline within operational scenarios,
specifically examining how spoken words trigger commands
in PiBot’s state machine. These evaluations assess the system’s
reliability and identify potential areas for enhancement. The re-
sults are detailed in Table V, which includes each file’s name,
inferred text, selected command, Word Error Rate (WER),
and command accuracy for each scenario. Additionally, Table
III summarizes the metrics to provide an overview of overall
averages and location-specific performance.

Word Error Rate Command Accuracy
Library 42% 50%

Laboratory 19% 70%
Office 13% 100%

Average 25% 73%
TABLE III

AVERAGES OF WER AND COMMAND ACCURACY AVERAGES IN
DIFFERENT LOCATIONS AND OVERALL.



PiBot’s speech recognition system achieved an overall com-
mand accuracy of 73% and a WER of 25%. Compared to
advanced models such as OpenAI’s Whisper, which achieves
a WER below 9% and maintains performance in noisy environ-
ments [6], there is potential for further improvement in PiBot’s
system. The variation in WER and Command Accuracy across
different environments suggests that factors beyond general
noise levels influence system performance. In the library, the
open space and echoes likely contributed to a higher WER
of 42% and lower Command Accuracy of 50%. Despite high
background noise in the office, the confined space may have
allowed the microphone array to better capture the speaker’s
voice, resulting in a lower WER of 13% and high Com-
mand Accuracy. The laboratory, covered by glass walls and
an open ceiling, showed intermediate results. These findings
could indicate that environmental acoustics, such as echo and
reverberation, and the directional characteristics of background
noise, significantly impact the system’s effectiveness.

VI. CONCLUSIONS

This study evaluated a speech recognition and command
detection system for the PiBot platform, achieving an average
Word Error Rate (WER) of 25% and a Command Accuracy
of 73%. The system’s performance varied across different
testing environments, with the library setting exhibiting the
highest WER of 42% and the lowest Command Accuracy of
50%. Conversely, despite its high background noise, the office
environment demonstrated a WER of 13% and a Command
Accuracy of 100%. The laboratory environment, characterized
by minimal background noise, showed a WER of 19% and a
Command Accuracy of 70%.

These results might indicate that factors beyond the general
noise level influence the system’s performance. The unexpect-
edly high accuracy in the noisy office environment suggests
that the system can perform well in high background noise
scenarios, while the specific conditions remain unclear. In
contrast, the library’s moderate noise levels adversely affected
both WER and Command Accuracy, being the only open
location. Additionally, the system faced challenges in rec-
ognizing certain words, particularly those uncommon or not
in Spanish, such as ”Enclelac” and ”Machine Care.” This
difficulty aligns with existing research, which indicates that
proper nouns and less frequent terms are more susceptible
to recognition errors in speech systems [1]. To address the
difficulties in recognizing uncommon or non-Spanish words,
we implemented post-processing techniques in the Command
Detection Node, specifically mapping commonly unrecognized
words to the correct terms. PiBot, the system’s name, was
common but had special difficulty due to the wide range of
inferences.

However, due to limitations and lack of a dataset for
this initial setup, these methods had limited effectiveness,
particularly in complex acoustic environments. To improve
this, future work should focus on fine-tuning the model
using a more comprehensive dataset, which should include
a wide range set of words and phrases that the system is

expected to handle. This dataset should be captured using the
ReSpeaker microphone array across various environments with
different noise levels. Such customization will likely enhance
the model’s ability to recognize specific terms and increase
overall command accuracy, as the current lack of effective
keyword detection negatively impacts the performance of short
command phrases.

Furthermore, advancing pre-processing techniques, mainly
through more effective noise reduction methods, could signif-
icantly increase the system’s robustness and accuracy. Some
noise reduction techniques include other libraries for spectral
subtraction and deep learning-based noise impression algo-
rithms that do not affect speech recognition tasks. These
improvements are essential for ensuring reliable and practical
real-world applications of PiBot in various and potentially
challenging acoustic environments.

REFERENCES

[1] C. Bartneck et al. Human-Robot Interaction: An In-
troduction. Cambridge University Press, 2020. ISBN:
9781108587303. URL: https : / / books . google . com . mx /
books?id=YibUDwAAQBAJ.

[2] Yuki Furuta. respeaker ros: ROS Package for ReSpeaker
Mic Array. https://github.com/jsk-ros-pkg/jsk 3rdparty/
tree/master/respeaker ros. Apache License 2.0. 2023.

[3] Jonatas Grosman. Fine-tuned XLSR-53 large model for
speech recognition in Spanish. https: / /huggingface.co/
jonatasgrosman/wav2vec2-large-xlsr-53-spanish. 2021.

[4] Nvidia Developer. JetPack SDK. https://developer.nvidia.
com/embedded/jetpack. Online; accessed 8 July 2024.
2013.

[5] Ricardo Osorio-Oliveros et al. “PiBOT: Design and De-
velopment of a Mobile Robotic Platform for COVID-19
Response”. In: Lecture Notes in Networks and Systems
347 LNNS (2022). Cited by: 0, pp. 252–260. DOI: 10.
1007/978-3-030-90033-5 27. URL: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85121573204&doi=
10.1007%5C%2f978- 3- 030- 90033- 5 27&partnerID=
40&md5=89743dec2d3a5b61529b2aefb77b9240.

[6] Alec Radford et al. Robust Speech Recognition via Large-
Scale Weak Supervision. 2022. DOI: 10.48550/ARXIV.
2212.04356. URL: https://arxiv.org/abs/2212.04356.

[7] Eduardo Benitez Sandoval, Scott Brown, and Mari
Velonaki. “How the inclusion of design principles con-
tribute to the development of social robots”. In: Cited
by: 7. 2018, pp. 535–538. DOI: 10 . 1145 / 3292147 .
3292239. URL: https : / / www . scopus . com / inward /
record . uri ? eid = 2 - s2 . 0 - 85061271823 & doi = 10 .
1145 % 2f3292147 . 3292239 & partnerID = 40 & md5 =
deb249bb9409edb33c9d3ed3ed767903.

[8] Jochen Wirtz et al. “Brave new world: service robots
in the frontline”. In: Journal of Service Management
(2018). URL: https://api.semanticscholar.org/CorpusID:
62889871.



Filename Inferred Text Detected Command WER Command Accuracy
comienza patrullar.wav oyemiotoveja patrullar 0.8 0

comienza patrullar laboratorio.wav oye ven pibot comienza a patrullar patrol 0.2 1
comienza patrullar office.wav oye pibot comienza a patrullar patrol 0 1

cuentame laboratorio.wav oye pibot cuentame sobre ti talk about system 0 1
cuentame sobre ti biblio.wav oye pibot cuentame sobre ti talk about system 0 1

cuentame ti office.wav oye pibot cuentame sobre ti talk about system 0 1
hablameenclelac.wav oye pibot hablame de 0.2 0

hablameenclelac biblio.wav eoundedte 1 0
hablameenclelac office.wav oye pibot hablame de enclelac talk about event 0 1
hablameevento biblio.wav oye pibot o aca del evento talk about event 0.4 1
hablameevento office.wav oye pibot hablame de evento talk about event 0.2 1

hablamedeeenclelac laboratorio.wav oye pibot hablame enclelac talk about event 0.2 1
hablamedelevento laboratorio.wav oye pibot hablame de evento 0.2 0

hablamedeti biblio.wav oye pibot hablame de ti talk about system 0 1
hablamedeti laboratorio.wav oye pibot hablame de ti talk about system 0 1

hablamedeti office.wav oye pibot hablame de ti talk about system 0 1
mc biblio.wav oye pibot hablame de aca 0.33 0

mc laboratiorio.wav oye pibot hablame de 0.33 0
mc office.wav oye pibot hablame de machin talk about machine care 0.33 1

patrullar laboratorio.wav oye mibun patrullar 0.6 0
pontepatrullar biblio.wav oye pibot bonda patrullar patrol 0.4 1
ponte patrullar office.wav oye pibot aca patrullar patrol 0.4 1
sabes evento biblio.wav oye pibot que moes de le ven 0.67 0

sabes evento laboratorio.wav oye pibot que sabes de evento talk about event 0.17 1
sabes evento office.wav oye pibot que sabes de evento talk about event 0.17 1

ven aca office.wav oye pibot ven par aca come towards me 0.2 1
ven biblio.wav oye pibot clelac talk about event 0.6 0

ven laboratorio.wav oye pibot ven par aca come towards me 0.2 1
voltea biblio.wav oye pibot voltea look at me 0 1

voltea laboratorio.wav oye pibot voltea look at me 0 1
voltea office.wav oye pibot voltea look at me 0 1

TABLE V
LIST OF GENERATED AUDIO FILES WITH THEIR TRANSCRIPTION, INFERRED TEXT, DETECTED COMMAND, WER, AND COMMAND ACCURACY METRICS.


