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Abstract

We consider the problem of resolving the envy of
a given initial allocation by adding elements from
a pool of goods. We give a characterization of the
instances where envy can be resolved by adding an
arbitrary number of copies of the items in the pool.
From this characterization, we derive a polynomial-
time algorithm returning a respective solution if it
exists. If the number of copies or the total num-
ber of added items are bounded, the problem be-
comes computationally intractable even in various
restricted cases. We perform a parameterized com-
plexity analysis, focusing on the number of agents
and the pool size as parameters. Notably, although
not every instance admits an envy-free solution,
our approach allows us to efficiently determine, in
polynomial time, whether a solution exists—an as-
pect that is both theoretically interesting and far
from trivial.

1 Introduction
Fair allocation of indivisible goods to agents is a fundamen-
tal problem in resource allocation [Amanatidis et al., 2023;
Liu et al., 2024; Mishra et al., 2023; Nguyen and Rothe,
2023] and has a plethora of applications such as dorm room
allocations, donations by a food bank, inheritance matters, di-
vorce disputes, or job allocations. While most work assumes
that the allocation starts with a blank sheet, i.e., all items are
initially unassigned and the agents do not envy each other,
there are many scenarios where some items are already allo-
cated. For example, in inheritance matters, the testament may
likely allocate some of the heritable goods in an unfair way.

Recent work provides a toolbox of approaches to increase
the fairness of such unfair allocations, such as deleting or
donating some of the allocated goods [Dorn et al., 2021;
Chaudhury et al., 2021; Boehmer et al., 2024], sharing
goods [Sandomirskiy and Segal-Halevi, 2022; Bredereck et
al., 2023], reallocating them [Aziz et al., 2019; Gourvès et
al., 2017], or providing subsidies [Halpern and Shah, 2019;
Brustle et al., 2020; Barman et al., 2022]. Naturally, these
approaches to increase fairness cannot be a good match for
every real-world scenario. Donating or sharing goods is not

always possible: The goods could have lost their value al-
ready (think of food donations by a community center), the
current allocation may need to abide some constraints such
as a testament, or the agents may become attached to their as-
signed goods. Clearly, subsidies are also not amenable in ev-
ery scenario, as they may fail to address urgent non-monetary
needs such as shelter, food, or medical care. Sometimes, cer-
tain approaches, such as reallocation, sharing, or subsidies,
are impossible for legal reasons.

We extend the toolbox with an approach for scenarios
where the initial allocation is fixed and the goal is to alle-
viate unfairness by allocating items from a pool of additional
goods. The feature of adding items that sets it apart from
the above approaches is that, theoretically, there is no natural
limit on the budget: While one cannot delete/reallocate/share
more than all items of the initial allocation, there is no bound
on the number of items one can add. Of course, if one could
add from the infinite pool of all possible resources, the prob-
lem would become trivial. Thus, we assume to be given a
finite set of resources with possibly unlimited supply.

While true infinity of course is unattainable in reality, sce-
narios where resources are plentiful or practically sufficient
provide a fertile ground for applications of our theoretical re-
sults. Consider, for instance, a community center distributing
leftover charity items. In such a setting, the center might pos-
sess a large stock of various goods that can be reallocated
with minimal constraint on quantities. This abundance al-
lows for flexible distributions that can address disparities and
highlights a scenario where adding items is feasible, whereas
redistributing money is not. Similarly, in some settings, of-
fering cash may be ineffective or even harmful. Recipients
might purchase unsuitable items, and non-monetary needs
may not be immediately met. Here, directly adding appro-
priate goods or services is more impactful than offering cash.
Another instance of practical abundance involves the use of
vouchers or gift cards, which can be thought of as having
an infinite supply from the perspective of the allocating au-
thority. Here, the challenge of achieving fairness can be sub-
stantially alleviated by issuing as many as needed to satisfy
fairness, thereby achieving a more balanced distribution of
intangible resources. Additionally, in the context of office liq-
uidations, there may exist vast amounts of leftover resources
such as laptops, chairs, and other equipments.

We study the computational complexity of alleviating un-



fairness by adding items from a pool of goods to an initial
allocation. Herein, we focus solely on envy-freeness and ad-
ditive, non-negative valuations.

Related work. When envy-freeness cannot be achieved,
one approach is to compensate agents with a divisible re-
source (e.g., money) to eliminate envy [Haake et al., 2002].
The study of fair division with subsidies or money transfers
[Halpern and Shah, 2019; Aziz, 2021] has focused on finding
allocations for which minimal subsidies will result in envy-
freeness. Instead of adding one divisible resource, our model
considers achieving envy-freeness by adding a given set of
additional indivisible items.

The idea of controlling fair division scenarios by adding or
deleting items, in order to arrive at an instance which can be
allocated fairly, has been explored in various contexts. Aziz et
al. [2016] consider the problem of adding/deleting/replacing
few items such that there is an envy-free complete allocation
with ordinal valuations. This is similar to our setting when
our initial allocation is empty; their NP-hardness results carry
over to our problem with ordinal valuations (but not with car-
dinal, additive valuations).

While we focus on achieving envy-freeness through the ad-
dition of resources, previous studies have primarily explored
fairness by considering item deletions. For example, Dorn et
al. [2021] analyzed the complexity of achieving proportional
allocations by removing items in settings with ordinal prefer-
ences. Similarly, Boehmer et al. [2024] investigated the com-
plexity of ensuring envy-free (and EF1) allocations through
item donations, when agents have additive utility-based val-
uations. Unlike these approaches, our work does not allow
modifications to the initial allocation.

Closest to ours is the recent work by Prakash et al. [2025]
who looked at scenarios where specific resources have been
pre-assigned to particular agents and the goal is to complete
the allocation by allocating all remaining resources such that
the overall allocation is fair and efficient. The key difference
to our work is that our pool of additional goods does not need
to be fully allocated and that our focus lies on variants where
the supply is unbounded.

Our contributions. We study the computational complex-
ity of ENVY ELIMINATION BY ADDING GOODS (defined in
Section 2), where the task is to extend an initial unalterable
allocation by adding items from a pool of additional goods to
the agents such that the extended allocation becomes envy-
free. We focus on the setting where the agents have additive,
non-negative valuations.

A major difference to settings where one can delete or re-
allocate items from the initial allocation is that there is no
natural bound on the number of additionally allocated items.
For example, the problem of deleting an unlimited amount
of items from an initial allocation is trivial: empty allocations
are envy-free. As it turns out, this is not the case when we add
an unlimited amount of items which all have infinite supply:
Consider the following example with two agents with iden-
tical valuations. The initial allocation gives an item of value
one to the first agent, and we may add any number of copies
of an item with value two.

While such observations often pave the way for an NP-
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Figure 1: Overview over our results for ENVY ELIMINATION
BY ADDING GOODS with different parameterizations. Results in
dashed boxes hold only for instances with the respective restriction.
Here, A denotes the set of agents, R the set of additional items, k
the upper bound on the number of items, and p the sum of the sup-
plies. An edge between two parameter boxes implies that the upper
parameter upper-bounds the lower parameter.

hardness proof, our main technical contribution shows that
whether one can resolve envy by adding any number of copies
of a given set of items can be decided in polynomial time
(Section 3). The main challenge herein are agents whose
valuations over the additional items are identical (or propor-
tional). As a special case, the envy between two agents can
only be resolved by an extension if there is an integer divis-
ible by the greatest common divisor within a certain ranges
quantified by the agents’ envy gaps. To resolve the envy be-
tween multiple agents, we verify whether this property can
be simultaneously fulfilled by an integer linear program (ILP)
derived from the above ranges. Polynomial-time solvability
of the ILP follows from the constraint matrix being totally
unimodular.

We next studied how bounding the supply of some items
(Section 4) or size (also called budget) of the extension (Sec-
tion 5) affects the computational complexity of our problem.
Motivated by computational intractability even when there
are only three additional items with finite supply, we initiate
a parameterized complexity analysis of our problem, show-
ing two other parameterized hardness results, but also fixed-
parameter tractability by the sum of item supplies if the bud-
get is bounded and by the parameter combination number of
agents plus number of resources. We refer to Figure 1 for an
overview of our results.

2 Preliminaries
For n ∈ N, we denote by [n] the set {1, 2, . . . , n}.

Let A = {a1, . . . , an} be the set of agents. We have two
sets of items: The (multi-)set P of initial items and the set R
of additional items. Moreover, each item r ∈ R has a sup-
ply #(r) ∈ N ∪ {∞} and each agent a ∈ A has a valuation
va : P ∪ R → N. Throughout this work, we assume valua-
tion functions to be additive and define va(S) :=

∑
r∈S va(r)

for all S ⊆ P ∪ R. We call a valuation va binary if
va(r) ∈ {0, 1}, and say that a approves item r if va(r) = 1.
Two valuations va and va′ are identical if va = va′ and pro-



portional if there is an α ∈ Q such that va(r) = αva′(r) for
all r ∈ R. We then write va = αva′ for short.

In our work, we are given an initial allocation σ : A → 2P ,
which allocates sets of initial items to agents. The set σ(a)
is called the initial bundle of a and is disjoint from the initial
bundle of any other agent.

We look for an extension ρ : A × R → N which speci-
fies the number of copies of item r to allocate to agent a.
We assert

∑
a∈A ρ(a, r) ≤ #(r) for each r ∈ R. The size

or budget of ρ is the number
∑

a∈A

∑
r∈R ρ(a, r) of allo-

cated items. For agents a, a′ ∈ A, we define va(ρ, a
′) :=∑

r∈R ρ(a′, r) · va(r).
An extended allocation (σ, ρ) consists of an initial alloca-

tion σ and an extension ρ. For two agents a, a′ ∈ A and an
extended allocation (σ, ρ), we say that a envies a′ if

va(σ(a)) + va(ρ, a) < va(σ(a
′)) + va(ρ, a

′).

We say that a initially envies a′ if va(σ(a)) < va(σ(a
′)).

We say that a is (initially) envious if it (initially) envies
some other agent. The envy graph Gσ,ρ of (σ, ρ) has a ver-
tex for each agent and a directed edge (a, a′) (also called
envy edge) if a envies a′. For any pair a, a′ of agents, the
envy gap of a and a′ with respect to (σ, ρ) is γρ(a, a

′) =
va(σ(a

′)) + va(ρ, a
′) − (va(σ(a)) + va(ρ, a)). We call an

extended allocation (σ, ρ) envy-free if Gσ,ρ is edgeless. We
then also say that ρ resolves envy. The initial envy gap of a
and a′ is γ(a, a′) = va(σ(a

′)) − va(σ(a)). We mention that
the (initial) envy gap can be both positive and negative (as
well as 0).

In this work, we consider the computational problem of
finding an envy-resolving extension, defined as follows.

Input: Sets P,R of items, a supply #(r) ∈ N ∪ {∞}
for each r ∈ R, a set A of agents, each with a valuation
function va : P ∪R → N, an initial allocation σ, and an
integer k ∈ N.
Question: Is there a size-k envy-resolving extension ρ?

ENVY ELIMINATION BY ADDING GOODS

We point out that the main part of this work is on the case
where the budget k is unrestricted, i.e., there is no restriction
on the number of items the extension can allocate.

We use standard notation from parameterized algorithmics
[Cygan et al., 2015]. A problem parameterized with some in-
teger k is called (1) fixed-parameter tractable (FPT), if it can
be solved in f(k) · |I|O(1) time, and (2) in XP, if it can be
solved in |I|f(k) time, where f is a computable function only
depending on k and |I| is the instance size. One can show that
a parameterized problem is likely not FPT by proving it to be
W[1]-hard (using parameterized reductions, which generalize
standard polynomial-time many-one reductions). Moreover,
if a parameterized problem is NP-hard even for constant pa-
rameter values, we call it para-NP-hard. In our running time
analysis, we assume that basic arithmetic operations over any
numbers in the input (or of similar size) can be performed in
constant time.

3 When Supply and Budget are Unbounded
We first look at the case where each item r ∈ R has infinite
supply. We show that this case is polynomial-time solvable.
We first show how to decide whether the envy between two
agents can be resolved. Afterwards, we generalize the result
to more than two agents.

We distinguish between agents with non-proportional and
proportional valuations. In the first case, envy can always be
overcome as shown next. Observe that valuations can only be
non-proportional if there are at least two items in R.
Lemma 1. Let a, a′ be two agents with non-proportional val-
uations. If each item in R has infinite supply, then there exists
an extension ρ that resolves envy between a and a′. Moreover,
ρ can be computed in O(m) time, where m = |R|.

Proof. Non-proportionality implies the existence of
r1, r2 ∈ R with differing ratios of valuations between
agents. For brevity, let va(r1) = x, va(r2) = c, va′(r1) = y,
and va′(r2) = d. Furthermore, assume without loss of
generality that r1 is more valuable relative to r2 for agent a
compared to agent a′, i.e.,

x

y
>

c

d
,

which is equivalent to cy < xd. As all of these values are
integers, we have xd − cy ≥ 1. We now show how we can
leverage the differing valuation ratios to eliminate envy by
careful distribution of these items.

If initially a envies a′, consider the extension ρ with
ρ(a, r1) = d and ρ(a′, r2) = y. Then

va(ρ, a) = d · x > y · c = va(ρ, a
′) and

va′(ρ, a) = d · y = y · d = va′(ρ, a′),

that is, the gap γ(a, a′) decreases by xd − cy ≥ 1 while
the valuation of a′ regarding the bundles of a and a′ does
not change as both values increase by dy. Thus, allocating
γ(a, a′) copies of ρ resolves the envy of a to a′ without creat-
ing new envy from a′ to a. If initially a′ envied a, then we can
do the same with the roles of a and a′ reversed by allocating
c ·γ(a′, a) copies of r1 to a and x ·γ(a′, a) copies of r2 to a′.

Note that finding r1, r2 ∈ R with different valuation ratios
takes O(m) steps as we can start with any object and then all
remaining objects either have the same valuation ratio or at
least one differs. Hence, we can compute an extension that
resolves envy between a and a′ in O(m) time.

We next turn to the case with proportional valuations. We
first prove a necessary and sufficient condition for resolving
envy between two agents a and a′. We mention that the valu-
ation of initial items does not need to be proportional.
Lemma 2. Let a, a′ be two agents with va(r) = αva′(r)
for all r ∈ R and some α. Suppose that a envies a′ and
let γ(a, a′) and γ(a′, a) be the envy gaps of a and a′ and
of a′ and a, respectively. If each item in R = {r1, . . . , rm}
has infinite supply, then there exists an extension ρ that re-
solves the envy between a and a′ if and only if there exists
an integer γ(a, a′) ≤ T ≤ −αγ(a′, a) that is divisible by
gcd(va(r1), . . . , va(rm)). Moreover, ρ can be computed in
O(m logW ) time, where W is the largest item valuation.



Proof. For brevity we let bi := ρ(a, ri) and b′i := ρ(a′, ri)
for each i ∈ [m]. Then ρ is envy-resolving if and only if

va(σ(a)) +

m∑
i=1

biva(ri) ≥ va(σ(a
′)) +

m∑
i=1

b′iva(ri)

and va′(σ(a′)) +

m∑
i=1

b′iva′(ri) ≥ va′(σ(a)) +

m∑
i=1

biva′(ri).

These inequalities can be reformulated as

m∑
i=1

(bi − b′i)va(ri) ≥ va(σ(a
′))− va(σ(a)) = γ(a, a′), and

m∑
i=1

(bi − b′i)va′(ri) ≤ va′(σ(a′)− va′(σ(a)) = −γ(a′, a).

As va(r) = αva′(r) for each r ∈ R, ρ is envy-resolving if
and only if

γ(a, a′) ≤
∑m

i=1(bi − b′i)va(ri)

=
∑m

i=1(bi − b′i)αva′(ri) ≤ −αγ(a′, a).

Next, if d := gcd(va(r1), . . . , va(rm)), then there are ki ∈ N
such that va(ri) = d · ki. Thus,∑m

i=1(bi − b′i)va(ri) = d
∑m

i=1(bi − b′i)ki,

and ρ is envy-resolving if and only if there is an integer

T = d
∑m

i=1(bi − b′i)ki

with γ(a, a′) ≤ T ≤ −αγ(a′, a). Clearly, T is divisible by
d.

We now show how such an extension can be computed if
it exists. By Bézout’s Lemma [Bézout, 1779], the equation
d := gcd(va(r1), va(r2), . . . , va(rm)) implies the existence
of integers c1, c2, . . . , cm with d =

∑m
i=1 civa(ri).

The computation of d and the coefficients ci can be car-
ried out iteratively using the EXTENDED EUCLIDEAN AL-
GORITHM [Knuth, 1997].

As d divides T , there is a q ∈ N such that T = q · d;
therefore

T = q ·
∑m

i=1 civa(ri) =
∑m

i=1(q · ci) · va(ri).

We then decompose each q ·ci into positive and negative parts

bi = max{0, q · ci}, b′i = max{0,−q · ci}.

Then bi−b′i = q ·ci, and therefore
∑m

i=1(bi−b′i)·va(ri) = T .
Once coefficients bi and b′i are computed, we define ρ to be

an extension, such that ρ(a, ri) = bi and ρ(a′, ri) = b′i, for
all ri ∈ R. As γ(a, a′) ≤ T ≤ −αγ(a′, a), we get

va(σ(a)) +
∑m

i=1 biva(ri)

= va(σ(a)) +
∑m

i=1 b
′
iva(ri) + T

≥ va(σ(a)) +
∑m

i=1 b
′
iva(ri) + γ(a, a′)

= va(σ(a
′)) +

∑m
i=1 b

′
iva(ri).

This confirms that agent a does not envy agent a′ under the
extended allocation. Similarly, since va(r) = αva′(r),

va′(σ(a′)) +
∑m

i=1 b
′
iva′(ri)

= va′(σ(a′)) +
∑m

i=1 biva′(ri)− T
α

≥ va′(σ(a′)) +
∑m

i=1 biva′(ri) + γ(a′, a)

= va′(σ(a)) +
∑m

i=1 biva′(ri).

Thus, agent a′ does not envy agent a, ensuring that neither
agent envies the other in the extended allocation.

The EXTENDED EUCLIDEAN ALGORITHM runs in O(m ·
logW ) time where W = maxa∈A,r∈R va(r). Scaling the
coefficients and decomposing them into bi and b′i is linear in
m. Thus, the overall running time is in O(m logW ).

We next generalize the above to more than two agents and
show the main result of this section.

Theorem 3. ENVY ELIMINATION BY ADDING GOODS is
polynomial-time solvable when #(r) = ∞ for all r ∈ R and
k is unbounded.

Proof. Let σ be an initial allocation. We start with an empty
extension ρ. Let Gσ,ρ denote the envy graph. Note that, as
shown in Lemma 2, finding an envy-resolving extension is
not always possible.

Our algorithm proceeds in two phases. The first phase ad-
dresses envy among agents which have proportional valua-
tions of all items in R, while the second phase eliminates envy
between agents with non-proportional valuations.

To implement the first phase, we utilize the fact that propor-
tional valuations form an equivalence relation. This allows us
to partition A into equivalence classes A1 ⊎ · · · ⊎ At, where
a, a′ ∈ Ai if and only if a and a′ have proportional valuations
over R. We begin by trying to resolve envy edges within each
equivalence class.

Once this is completed, we move on to the second phase,
where we eliminate envy between agents from different
equivalence classes.

Phase 1: Eliminating envy between two agents with pro-
portional valuations. Let Ai be an equivalence class and
recall that R = {r1, r2, . . . , rm}. First, we compute a nor-
malized valuation v′ as follows. For each a ∈ Ai, we com-
pute da = gcd(va(r1), va(r2), . . . , va(rm)) and set v′a(ri) =
va(r)
da

for all r ∈ P ∪ R. Note that v′a(r) is an integer for
all r ∈ R but not necessarily for r ∈ P . Moreover, it holds
that gcd(v′a(r1), v

′
a(r1), . . . , v

′
a(rm)) = 1 and an extension ρ

resolves envy with respect to valuations v′a if and only if it
resolves envy with respect to the original valuation va. Note
that the envy gap γ(a, a′) of two agents a, a′ ∈ Ai with re-
spect to v′ might not be integral. However, we can round all
these values up to the nearest integer as valuations can only
go up in integer steps as v′a(r) is an integer for each r ∈ R.
Slightly abusing notation, we will refer to γ′(a, a′) as the
rounded value.

We next show that v′a(r) = v′a′(r) for all a, a′ ∈ Ai and
all r ∈ R. Since a, a′ ∈ Ai, it holds that va(r) = αva′(r)
for all r ∈ R. Moreover, since va(r) and va′(r) are non-
negative integers, it holds that α = p

q for two positive coprime



integers p and q. We claim that p = q = 1. If p ̸= 1,
then v′a(r) is divisible by p for all r ∈ R, contradicting the
fact that gcd(v′a(r1), v

′
a(r1), . . . , v

′
a(rm)) = 1. Similarly, if

q ̸= 1, then v′a′(r) are divisible by q for each r ∈ R, another
contradiction. Hence α = 1 and v′a(r) = v′a′(r) for all r ∈ R.

We next build an integer linear program (ILP) that encodes
whether a solution exists. We start with a variable xa for each
agent a ∈ Ai that roughly encodes how much utility agent a
should get in a solution (with respect to the valuation v′a).
Note that since v′a(r) = v′a′(r) for all r ∈ R, the mean-
ing of variable xa is universal for all agents in Ai. For each
pair a, a′ ∈ Ai of agents, we add the constraint xa − xa′ ≥
γ′(a, a′). Note that γ′(a, a′) is a constant that can be pre-
computed in polynomial time. This constraint encodes that
if a gets an additional utility of xa and a′ gets an additional
utility of xa′ , then a does not envy a′. If there is an extension
that resolves all envy within Ai, then the constructed ILP has
a solution. It remains to show how to construct an extension
from a solution to the ILP and to discuss why a solution to
the constructed ILP can be found in polynomial time.

Towards the former, note that if a solution exists, then
it remains a solution if all agents in Ai get c additional
utility for any c ∈ N. Moreover, we use the fact that
gcd(v′a(r1), v

′
a(r2), . . . , v

′
a(rm)) = 1 for all a ∈ Ai. This

implies that there are two multisets X,Y of items such
that v′a(X) = v′a(Y )+ 1. If a solution is found, then for each
agent a ∈ Ai, we do the following. For each a ∈ Ai, let za be
the value assigned to variable xa in the solution. We give za
times the bundle X to agent a and za times the bundle Y to
all other agents in Ai. Note that the valuation of all bundles
except for a increases by za · v′a(Y ) and the valuation of the
bundle of a increases by za · v′a(X) = za · v′a(Y ) + za. That
is, the valuation of a’s bundle increases by precisely za com-
pared to the bundles of all other agents in Ai. After doing the
above for all agents in Ai, it holds that the difference in valu-
ation of the bundles of a and a′ changed by za − za′ , which
is precisely what the solution to the ILP required. Since all
of the above can be computed in polynomial time, we can
compute an extension resolving envy given a solution to the
constructed ILP.

To conclude the first phase, we note that the constructed
ILP encodes a totally unimodular matrix as each constraint
contains exactly two variables and one has coefficient 1 and
the other has coefficient -1 [Tamir, 1976]. Since all constants
in the ILP are integral, it holds that the corresponding poly-
hedron only has integer vertices and the ILP can be solved in
polynomial time [Hoffman and Kruskal, 1956] (or it can be
concluded that no (integral) solution exists).

Phase 2: Eliminating envy between two agents with non-
proportional valuations. Once the first phase has been ap-
plied to every equivalence class Ai ⊆ A, any remaining envy
must necessarily exist between agents with non-proportional
valuations. Let Ediff denote the set of remaining envy edges
between agents with non-proportional valuations. Next, we
eliminate envy between two agents with non-proportional
valuations without creating new envy similar to what we did
in Lemma 1.

Let a, a′ be two agents with non-proportional valuations

such that a envies a′. By Lemma 1, we know that it is always
possible to compute an extension ρ′ to eliminate this envy.
Let x, x′ be the number of items r, r′, respectively, added in
ρ′ to resolve the envy between a and a′.

We update ρ such that for each agent a∗ ∈ A we set
ρ(a∗, r) = ρ(a∗, r) + x if x · va∗(r) ≥ x′ · va∗(r′) and
ρ(a∗, r′) = ρ(a∗, r′) + x′ otherwise. For an agent a∗, as-
sume w.l.o.g. that x · va∗(r) ≥ x′ · va∗(r′). If agent a∗ did
not envy an agent a before the allocation, no matter which
item set a gets, no new envy will be created. This follows
from the fact that va∗(σ(a∗)) ≥ va∗(σ(a)) implies

va∗(σ(a∗)) + x · va∗(r) ≥ va∗(σ(a)) + x · va∗(r)

≥ va∗(σ(a)) + x′ · va∗(r′).

As no new envy edges are created, we can apply this step
until Ediff = ∅, implying that we have reached an envy-free
extended allocation of the items.

Running time. As shown above, phase one can be solved
in polynomial time for each equivalence class Ai. Since the
number of equivalence classes is at most n and they can be
computed in polynomial time, the first phase takes polyno-
mial time overall.

At the beginning of phase 2 there can be at most n2 envy
edges. For non-proportional envy edges, Lemma 1 guarantees
that no new envy edges are created during their elimination.
Consequently, this step is executed at most n2 times. As re-
solving one conflict edges takes O(m) time, the total running
time for the second phase is in O(n2 ·m). This concludes the
proof of Theorem 3.

4 When some Supply is Bounded
We next focus on the case where we still have no restric-
tions on the budget, but some items may have finite supply.
This makes finding an envy-resolving extension computation-
ally hard, even if we have only three different items with
finite supply. Also, as we will see, there is little hope for
fixed-parameter tractability for the number of agents alone.
However, when parameterizing by the number of agents plus
the number of (different) items, the problem becomes fixed-
parameter tractable.

We first show the two hardness results.

Proposition 4. ENVY ELIMINATION BY ADDING GOODS is
NP-hard even if there are three additional items, if the budget
is unbounded, and the valuations are binary.

Proof. We reduce from the CLIQUE problem, where the task
is to decide whether a given graph G = (V,E) contains a
complete subgraph with a given number ℓ of vertices. We
have an agent av for each vertex v ∈ V , an agent ae for each
edge e ∈ E, and an extra agent b. Initially, b holds an item
that is approved by b and each edge agent ae, each vertex
agent av holds an item that only av approves, and for each
e = {u, v} ∈ E, the edge agent ae holds an item that only au
and av approve. Thus, each edge agent ae envies b by one,
and each vertex agent av values its own bundle as valuable
as that of each incident edge agent, and more valuable by
one than that of each non-incident edge agent. We have three



additional items r, r′, r∗ with #(r) =
(
ℓ
2

)
, #(r′) = |E|−

(
ℓ
2

)
,

and #(r∗) = ℓ. All vertex agents av approve r and r∗, and
all edge agents ae approve r and r′.

Clearly, the reduction can be computed in polynomial time.
So let us prove its correctness. Suppose first that K ⊆ V
forms a clique of size ℓ in G, and let Ek ⊆ E be the set of(
ℓ
2

)
edges within that clique. Then we create an extension by

allocating a copy of r∗ to each av with v ∈ K, a copy of r
to each ae with e ∈ EK , and a copy of r′ to ae with e /∈
EK . Then the edge agents no longer envy b. Next, consider
a vertex agent av and an edge agent ae. If e /∈ EK , then
the value of ae’s bundle did not change for av , so there still
is no envy. So suppose that e ∈ EK . If e is not incident to
v, then av now values its bundle and that of ae equally. If e
is incident to v, then v ∈ K, and av’s valuation for its own
bundle and ae’s bundle increased by one. Thus, in all, this
extension resolves envy.

Suppose next that ρ resolves envy. As each edge agent ae
envies b by one, we need to assign at least one item to each ae
that ae approves. This only leaves the items r and r′, and as
#(r)+#(r′) = |E|, each edge must receive exactly one item.
Let EK be the set of edges such that for each e ∈ Ek, agent
ae receives r. Then each vertex agent av where v is incident
to an edge e ∈ EK must receive a resource r∗, otherwise it
envies ae. As #(r∗) = ℓ and |EK | = #(r) =

(
ℓ
2

)
, the edges

in EK must be incident to at most ℓ vertices. This is only
possible if these vertices form a clique of size ℓ, and EK are
the edges within that clique.

Moreover, there is little hope for fixed-parameter tractabil-
ity with the number of agents even if they all have identical
valuations.

Proposition 5. ENVY ELIMINATION BY ADDING GOODS
is W[1]-hard parameterized by |A|, even if all numbers in
the input are encoded in unary, and all agents have identical
valuations, even within the initial resource set.

Proof. We give a reduction from BIN PACKING parameter-
ized by the number ℓ of bins: Given integers u1, u2, . . . , un ∈
N, a number ℓ of bins, and a bin size B, the task is to de-
cide whether there is an assignment of the integers to the bins
such that the sum of the integers in one bin is at most B.
This problem is W[1]-hard even if all numbers are encoded in
unary and if the sum of all integers equals ℓB [Jansen et al.,
2013]; thus any solution must assign integers of value exactly
B to each bin. Given a BIN PACKING instance, we construct
an instance of ENVY ELIMINATION BY ADDING GOODS as
follows. We have ℓ + 1 agents a1, . . . , aℓ, b with identical
valuations; we call the valuation function v. Initially, only b
holds an item p with value v(p) = B. For each j ∈ [n], R<∞
contains an item rj with value v(rj) = uj .

Clearly, the construction can be computed in polynomial
time. We next show the two instances to be equivalent. The
BIN PACKING instance is a yes-instance if and only if there
is an assignment π : [n] → [ℓ] such that each bin receives
integers of value exactly to B. Observe that the extension
that allocates rj to aπ(j) for each j ∈ [n] assigns a set of
items with value exactly B to each agent ai and thus resolves
all envy with b. Indeed, an extension resolves envy if and

only if it assigns a set of value B to each ai; this proves the
equivalence of the two instances.

We conclude this section with a result that holds for the
bounded as well as for the unbounded variant of our problem.
From Proposition 5 we can conclude that parameter number
of agents is too small to hope for fixed-parameter tractability.
Proposition 4 demonstrates the same for the number of (dif-
ferent) additional items. However, when these parameters are
combined, the problem becomes fixed-parameter tractable.
This follows from a simple ILP formulation combined with
the algorithm by Eisenbrand and Weismantel [2020].
Observation 6. ENVY ELIMINATION BY ADDING GOODS
is FPT when parameterized by |A|+ |R|.

Proof. The ILP uses an integer variable 0 ≤ xr
a ≤ #(r) for

each agent a ∈ A and each item r ∈ R. Our formulation
contains the following constraints:∑

a∈A

xr
a ≤ #(r) for all r ∈ R (1)

va(σ(a))+
∑
r∈R

va(r)x
r
a ≥ va(σ(a

′))+
∑
r∈R

va′(r)xr
a′

for all a, a′ ∈ A.

(2)

The first constraint ensures that we add at most #(r) copies
of r ∈ R, while the second constraint ensures that the ex-
tended allocation is envy-free. If we are given an instance of
the bounded variant, we add the constraint∑

a∈A

∑
r∈R

xr
a ≤ k (3)

to ensure that the extension allocates at most k items.
Fixed-parameter tractability now follows from the fact that

our ILP contains O(|A|+ |R|) variables and O(|A|2 + |R|))
constraints and from the result by Eisenbrand and Weis-
mantel [2020] showing that solving ILPs is fixed-parameter
tractable with respect to their number of constraints.

5 When the Budget is Bounded
Finally, we consider the case where we have a bound k on
the size of the extension. We show that, even if the supply is
not the bottleneck, there is little hope for the problem to be
fixed-parameter tractable when parameterized by k.
Theorem 7. ENVY ELIMINATION BY ADDING GOODS with
envy-freeness is W[1]-hard with respect to k even if restricted
to binary valuations, if all supplies are k, and, initially, there
is only one envious agent.

Proof. We give a reduction from INDEPENDENT SET param-
eterized by solution size ℓ, which, given a graph G = (V,E)
and an integer ℓ, asks whether there is a set K ⊆ V of at least
ℓ pairwise non-adjacent vertices. Given such an instance, we
construct an equivalent instance of ENVY ELIMINATION BY
ADDING GOODS as follows. We have one agent ae for each
edge e ∈ E and one additional “selection” agent b. The set P
contains mℓ initially assigned items (where m = |E|) of two
different types t1 and t2. Each agent ae initially holds ℓ − 1



items of type t1 and one item of type t2. Agent b approves
items of both types and each agent ae only approves items
of type t2. Note that initially only agent b is envious (as b
does not hold any items). The set R contains one item rv for
each vertex v ∈ V . The item rv is approved by agent b and
all agents ae where e is incident to v in G. We complete the
construction by setting k = ℓ.

Clearly, the reduction can be computed in polynomial time.
We next show the two instances to be equivalent. Assume
first that there is an independent set K of size ℓ in G. Then
we create an extension that allocates one copy of each item in
{rv | v ∈ K} to b. As b has positive value for all these items,
b does not envy any other agent. Each agent ae evaluates
the bundle of each agent ae′ (including themselves) with 1.
However, since K is an independent set, agent b holds at most
one item that ae approves. Thus, no agent envies any other
agent and the constructed instance is a yes-instance of ENVY
ELIMINATION BY ADDING GOODS.

For the converse, let ρ be an envy-resolving extension of
size ℓ. All of these ℓ items must be assigned to b as otherwise
b envies all other agents. If ρ(b, ru) + ρ(b, rv) > 1 for any
edge e = {u, v}, then ae will envy b, as it has positive value
for both ru and rv , but only a value of 1 for its own bundle.
Thus, the set of items allocated by ρ form an independent set
of size ℓ in G.

As the hardness results from Section 4 also hold when we
have a size bound k, we cannot hope for fixed-parameter
tractability for the number of (different) items. We are how-
ever able to show fixed-parameter tractability with respect to
the sum over all item supplies.

We remark that this algorithm implies that ENVY ELIMI-
NATION BY ADDING GOODS is in XP with respect to k.

Theorem 8. ENVY ELIMINATION BY ADDING GOODS
can be solved in O(|R|min{p,k} · |A|2) time, where p =∑

r∈R #(r) is the sum of the finite supplies.

Proof. Our algorithm is based on a branching routine which
is given an instance (P,R,#, A, v, σ, k) and an (initially
empty) extension ρ that allocates items with finite supply, and
proceeds as follows.

If ρ resolves all envy, return yes. Otherwise, there exists
at least one envious agent a ∈ A. For each r ∈ R with
#(r) > 0 (if there is no such item or k = 0, return no), make
a recursive call with input (P,R,#′, A, v, σ, k − 1) and ρ′,
where #′ is a copy of # but #′(r) = #(r) − 1 and ρ′ is a
copy of ρ but ρ′(a, r) = ρ(a, r)+1. Return yes if one of the
calls returns yes, and no otherwise.

Clearly, every extension ρ in any recursive call is valid, i.e.,
it allocates each item r ∈ R at most #(r) times and breaks
as soon as k items have been allocated. Thus, if the algorithm
computes an extension which is envy-resolving, then we have
a yes-instance at hand.

For the converse, let ρ∗ be an envy-resolving extension of
size at most k. For two extensions ρ and ρ′ we write ρ ≤ ρ′

if ρ(a, r) ≤ ρ′(a, r) for all a ∈ A and r ∈ R. We prove
that the algorithm returns yes by induction over the size k′

of ρ. For each k′ ≥ 0, we claim that there is a recursive call
that is given an extension ρ of size k′ < k such that ρ ≤ ρ∗.

This statement is clearly true for k′ = 0. So suppose that
the statement is true for some fixed k′ and let ρ ≤ ρ∗ be the
corresponding extension. If the algorithm returns yes within
the current recursive call, then we are done. Note that specif-
ically, the algorithm returns yes if ρ(a, r) = ρ∗(a, r) for
all a ∈ A and r ∈ R, since ρ is envy-resolving. Suppose
that the algorithm does not return yes within the current re-
cursive call. Note that for each agent a, that is envious with
respect to (σ, ρ), and thus particularly the agent that is cho-
sen by the algorithm within our call, the solution ρ∗ must as-
sign at least one (additional) item from R to that agent; thus,
ρ(a, r) < ρ∗(a, r) for some item r ∈ R. This also implies
that #(r) > 0 in the current recursive call. Then, the al-
gorithm makes a call that is given an extension ρ′ that is a
copy of ρ, but ρ′(a∗, r) = ρ(a∗, r) + 1. Note that ρ′ allo-
cates k′ + 1 ≤ k finite supply items and ρ′ ≤ ρ∗, proving the
induction, and thus the correctness of the algorithm.

As for the running time, checking whether the current ex-
tension resolves envy takes O(|A|) time. In each recursive
call, one item is assigned and k is decreased by one. Thus,
the depth of the branching tree is at most min{p, k}. More-
over, as in each call, the algorithm makes at most |R| recur-
sive calls, the overall running time is as claimed.

6 Conclusion
We initiated the study of mitigating fairness of an initial allo-
cation by adding goods, restricting ourselves to the notion of
envy-freeness and additive valuations. In our parameterized
complexity analysis, we leave open whether ENVY ELIMI-
NATION BY ADDING GOODS is NP-hard or polynomial-time
solvable for a constant number of agents. Further, can The-
orem 8 be lifted to the setting where the budget is unlimited
and there are both finite and infinite supplies? (The parame-
ter would then become the sum of the finite supplies.) When
adapting the branching routine to only assign finite supply
items and calling the polynomial-time algorithm from The-
orem 3 to decide whether the current allocation can be ex-
tended with the infinite supply items, one would need to de-
rive a hint which agent is guaranteed to require an item with
finite supply. Finally, does Proposition 4 also hold for two
additional items?

Our problem can also be studied for other fairness no-
tions such as EF1 [Budish, 2010] or EFX [Caragiannis et al.,
2019], but also the many fair share notions [Steinhaus, 1948;
Budish, 2011; Babichenko et al., 2024]. As for EF1 and EFX,
we believe that our hardness results can be easily transferred.

Finally, investigating approximation guarantees, e.g. when
minimizing the number of added items could be an intriguing
research direction. Similarly, it seems attractive to minimize
(absolute or relative) envy approximately in our setting. Since
the latter approximation is known to be mostly intractable
when allocations are computed from scratch [Lipton et al.,
2004], it might be worth to combine this with parameterized
approaches or structural restrictions.
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Marx, and Ildikó Schlotter. Bin packing with fixed num-
ber of bins revisited. Journal of Computer and System
Sciences, 79(1):39–49, 2013.

[Knuth, 1997] Donald E Knuth. The art of computer pro-
gramming, Volume I: Fundamental Algorithms, 3rd Edi-
tion. Addison-Wesley, 1997.

[Lipton et al., 2004] R. J. Lipton, E. Markakis, E. Mossel,
and A. Saberi. On approximately fair allocations of in-
divisible goods. In Proceedings of the 5th ACM Confer-
ence on Electronic Commerce (EC), page 125–131. ACM,
2004.

[Liu et al., 2024] Shengxin Liu, Xinhang Lu, Mashbat
Suzuki, and Toby Walsh. Mixed fair division: A survey.
Journal of Artificial Intelligence Research, 80:1373–1406,
2024.

[Mishra et al., 2023] Shaily Mishra, Manisha Padala, and
Sujit Gujar. Fair allocation of goods and chores - tuto-
rial and survey of recent results. CoRR, abs/2307.10985,
2023.

[Nguyen and Rothe, 2023] Trung Thanh Nguyen and Jörg
Rothe. Complexity results and exact algorithms for fair
division of indivisible items: A survey. In Proceedings of
the 32nd International Joint Conference on Artificial In-
telligence, (IJCAI), pages 6732–6740, 2023.

[Prakash et al., 2025] Vishwa HV Prakash, Ayumi Igarashi,
and Rohit Vaish. Fair and efficient completion of indivisi-
ble goods. In Proceedings of the 39th AAAI Conference on
Artificial Intelligence (AAAI), pages 14045–14053, 2025.

[Sandomirskiy and Segal-Halevi, 2022] Fedor San-
domirskiy and Erel Segal-Halevi. Efficient fair di-
vision with minimal sharing. Operations Research,
70(3):1762–1782, 2022.

[Steinhaus, 1948] Hugo Steinhaus. The problem of fair divi-
sion. Econometrica, 16:101–104, 1948.

[Tamir, 1976] Arie Tamir. On totally unimodular matrices.
Networks, 6(4):373–382, 1976.


	Introduction
	Preliminaries
	When Supply and Budget are Unbounded
	When some Supply is Bounded
	When the Budget is Bounded
	Conclusion

