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ABSTRACT

Training large language models is constrained by a trade-off between optimizer
memory and curvature information. While memory-saving optimizers often dis-
card valuable second-order information, leading to slower convergence, full-matrix
methods are prohibitively expensive. We introduce CLEAN, a curvature-aware and
memory-efficient optimizer that resolves this dilemma. CLEAN approximates the
left and right gradient covariances using randomized Nyström sketches, enabling
balanced, two-sided preconditioning. The optimization proceeds by computing
updates within a compact, low-rank subspace and then projecting them back to the
full parameter space, capturing rich curvature information at a minimal memory
cost. A key innovation in CLEAN is a projection-aware moment transport mecha-
nism. As the low-rank subspace evolves, this transport realigns the optimizer’s first
and second moments to the new basis, which is critical for maintaining stability and
avoiding performance degradation from stale statistics. CLEAN’s memory foot-
print is orders-of-magnitude smaller than Adam’s, growing only linearly with the
number of parameters. Our experiments show CLEAN is highly effective for fine-
tuning, outperforming strong memory-efficient baselines, while also demonstrating
competitive feasibility in pre-training scenarios.

1 INTRODUCTION

The rapid scaling of large language models (LLMs) has shifted the training bottleneck from model
design to optimization. While larger models and longer sequences promise better performance, the
optimizer often becomes the limiting factor. Maintaining first– and second–moment statistics can
require as much or more memory than the model weights themselves, constraining the effective
batch size and sequence length on commodity hardware. At the same time, methods that reduce this
footprint typically discard curvature information, producing poorly conditioned updates and slowing
convergence. Balancing memory efficiency with curvature fidelity has therefore emerged as a central
challenge for efficient LLM training.

A range of optimizers have been proposed, each making a different trade–off between memory and
curvature. First–order methods such as Adam (Kingma & Ba, 2014) and Adafactor (Shazeer & Stern,
2018) are lightweight, storing only diagonal statistics. Their low memory cost makes them practical
for large models, but ignoring directional geometry often leads to slow convergence and higher sample
complexity.. Full–matrix second–order methods such as Shampoo (Gupta et al., 2018) and KFAC
(Martens & Grosse, 2015) explicitly capture curvature and can accelerate training, but their quadratic
state and computation make them prohibitive at LLM scale. Morwani et al. (2024) investigated the
theoretical underpinnings of Shampoo and suggested minor modifications—such as adopting a 1/2
power instead of 1/4—which are consistent with earlier empirical observations by (Anil et al., 2020).
More recently, low–rank projection methods have emerged as a compromise. GaLore (Zhao et al.,
2024) compresses gradients into a low–dimensional subspace, but it does not fully account for left–
and right–side covariances and becomes unstable as the subspace drifts over time. LDAdam (Robert
et al., 2024) adds projection–aware updates, yet still inherits GaLore’s limitations. SOAP (Vyas
et al., 2024) stabilizes low–frequency preconditioning by combining Shampoo’s eigenbasis with
Adam–style updates, but retains full covariance accumulators that remain costly in both memory
and time. Despite these advances, no existing approach simultaneously achieves memory efficiency,
curvature awareness, and long–horizon stability.
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To fill these gaps, we introduce CLEAN, a curvature–aware yet memory–efficient optimizer that
addresses these limitations. CLEAN is built on two key insights. First, the left and right gradient
covariances contain most of the useful curvature but are effectively low–rank in practice. We
therefore approximate them with randomized Nyström sketches, maintaining compact bases that
reduce optimizer state from quadratic to linear in the layer dimensions. Second, when these bases
evolve over time, exponential moving averages must be aligned with the new coordinates; otherwise
the accumulated moments become inconsistent and updates unstable. To resolve this, CLEAN

performs moment transport through change–of–basis transformations, ensuring that both first– and
second–order statistics remain valid as the subspace shifts. The overall design is simple: each
step forms a small core update in the sketched space, applies Adam’s moment updates there, and
then back–projects the result to the full parameter space. This procedure approximates balanced
preconditioning while storing only O((m+ n)r + r

2) state per matrix layer—orders of magnitude
smaller than full second–order methods. CLEAN is easy to implement, robust across a range of
ranks and refresh periods, and achieves the speed of first–order methods with significantly reduced
memory and improved sample efficiency.

Our contributions can be summarized as follows:

• We introduce CLEAN, a low–rank, projection–aware curvature optimizer that couples
Nyström sketches of gradient covariances with Adam updates in a compact core, plus a
principled mechanism for transporting moments across evolving subspaces.

• We analyze why this design approximates balanced preconditioning, provide mem-
ory/compute accounting, and propose practical stabilizations such as damping, eigenvalue
clamping, and optional one–sided projections.

• We demonstrate CLEAN’s strong empirical performance in fine-tuning tasks, where it pro-
vides significant advantages over existing optimizers. We also demonstrate its effectiveness
for pre-training of 130M parameter models, achieving competitive performance.

2 BACKGROUND AND PRELIMINARIES

Adaptive optimization as preconditioning. Most optimizers for deep learning can be understood
as applying a preconditioner to the gradient. For a parameter vector wt with gradient gt = →ωt(wt),
a generic update takes the form

wt+1 = wt ↑ ε P
→1/2
t gt,

where Pt is a positive definite matrix encoding accumulated curvature information. Full–matrix
AdaGrad (Duchi et al., 2011) sets Pt =

∑t
s=1 gsg

↑
s , yielding well–conditioned updates, but requires

O(d2) memory and inversion, which is infeasible for modern models with billions of parameters.
Common approaches simplify Pt to make optimization practical. Diagonal preconditioners, used in
optimizers like Adam (Kingma & Ba, 2014), restrict Pt to a diagonal matrix, capturing individual
parameter scales but ignoring cross-parameter correlations. One-sided preconditioners, such as
in GaLore (Zhao et al., 2024), apply transformations from either the left or right side, offering a
compromise by capturing some structural information with less overhead than full-matrix methods.

Balanced preconditioning for matrix layers. Large models are composed of weight matrices
W ↓ Rm↓n. For such structured parameters, the full preconditioner is an mn ↔ mn matrix. A
practical surrogate is to maintain left and right covariance accumulators:

Lt =
t∑

s=1

GsG
↑
s , Rt =

t∑

s=1

G
↑
s Gs,

where Gs is the gradient of W at step s. The preconditioned gradient is then

G̃t = L
→1/2
t Gt R

→1/2
t ,

which captures row and column geometry without constructing the full Kronecker product. This
balanced preconditioning underlies Shampoo (Gupta et al., 2018), a popular second-order precondi-

tioning method, and has become a standard approximation to full–matrix AdaGrad.
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Shampoo and practical variants. Shampoo computes and stores per–layer Lt and Rt and applies
fractional powers L→ω

t , R
→ω
t . The original choice ϑ = 1/4 matches AdaGrad in theory, but later

work found that ϑ = 1/2 often improves stability (Anil et al., 2020). However, fully storing Lt and
Rt still incurs quadratic memory in layer width, which is prohibitive for very wide layers. Our work
addresses this limitation by using a low-rank approximation.

Projection–aware moment transport. When low–rank bases Ut→1 are refreshed to Ut, stored
moments Mt→1, Vt→1 no longer align with the new coordinates. Naively reusing them causes
inconsistency and instability. A principled fix is to transport states via the change of basis:

Mt ↗ U
↑
t Ut→1 Mt→1 U

↑
t→1Ut,

(and similarly for Vt). This projection–aware transport preserves the semantics of exponential
averaging and is critical when refreshes are infrequent.

3 ALGORITHM

In this section we present our memory-efficient, computationally light framework that applies
low-rank compression to both the gradients and the optimizer state. The resulting algorithm carries
out optimization in a reduced-dimensional subspace, preserving curvature information while sidestep-
ping explicit second-order calculations. We start this section by introducing randomized Nyström
approximation.

3.1 LOW-RANK APPROXIMATIONS WITH RANDOMIZED NYSTRÖM

Gradient covariances are often numerically low–rank: their spectrum decays quickly, with most
energy concentrated in a small subspace. This motivates low–rank approximations. Given a PSD
matrix A ↓ Rm↓n and a random (Gaussian) matrix ! ↓ Rn↓r, the Nyström method builds

C = A!, W = !↑
A!, Ã = CW

†
C

↑ ↘ A. (1)

The result is a rank–r surrogate Ã requiring only O(nr + r
2) storage. Nyström sketches have strong

theoretical guarantees (Gittens & Mahoney, 2016) and practical efficiency, making them attractive
for optimizer states.

3.2 RANDOMIZED NYSTROM PRECONDITIONER

To address the high dimensionality and prohibitive memory requirements of full preconditioning, we
leverage low-rank approximations of the gradient covariance. Specifically, we employ the randomized
Nyström method (Gittens & Mahoney, 2016) to construct a memory-efficient preconditioner that
captures essential curvature information. While the naive implementation in equation 1 can be
numerically unstable, we adopt the stable and efficient implementation from (Tropp et al., 2017;
Frangella et al., 2023), presented in Algorithm 2 in the Appendix.

Our approach approximates the full covariance matrices, GT
G and GG

T, avoiding the computational
expense of forming them explicitly. Let !L ↓ Rm↓r and !R ↓ Rn↓r be Gaussian random matrices.
Following the procedure in Algorithm 2, we compute low-dimensional sketches GT!L ↓ Rn↓r and
G!R ↓ Rm↓r, followed by G(GT!L) ↓ Rm↓r and G

T(G!R) ↓ Rn↓r. This process yields the
approximations:

L = UL”LU
T
L ≃ GG

T
, R = UR”RU

T
R ≃ G

T
G. (2)

Inspired by (Gupta et al., 2018), we construct the preconditioned gradient as

G
pre = L

→1/2
GR

→1/2 = (UL”
→1/2
L U

T
L )G(UR”RU

T
R), (3)

In our proposed Algorithm 1, we replace the raw gradient G with its preconditioned counterpart Gpre.
This modification leverages the spectral information encoded in L and R, leading to better-conditioned
updates and improved convergence behavior.

3
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Algorithm 1 CLEAN Optimizer
Preconditioner Approximations , Preconditioner Accumulations , Projection-aware Moments

Projected Gradient

1: Input: Wt, Gt ↓ Rm↓n, learning rate ε, betas = (ϖ1,ϖ2), ranks r1 ⇐ m, r2 ⇐ n, accumulation
weight µ, scale factor ϑ, subspace update interval T , regularization factor ϱ.

2: Initialize first-order moment M0 ↓ Rr1↓r2 ↗ 0
3: Initialize second-order moment V0 ↓ Rr1↓r2 ↗ 0
4: Initialize step t ↗ 0

5: Gt ↓ Rm↓n ↗ ↑→Wωt(Wt)
6: if t mod T = 0 then

7: Ut,L,”t,L ↗ RandNystromApprox(Gt, rank = r1) {Lt = Ut,L”t,LU
T
t,L ≃ GtG

↑
t }

8: Ut,R,”t,R ↗ RandNystromApprox(GT
t , rank = r2) {Rt = Ut,R”t,RU

T
t,R ≃ G

T
t Gt}

9: if t > 0 then

10: [Ut,L,”t,L, Vt,L] ↗ SVD
([

⇒
µUt→1,L”

1/2
t→1,L

∣∣∣∣
⇒
1↑ µUt,L”

1/2
t,L

]
, rank = r1

)

[Ut,R,”t,R, , Vt,R] ↗ SVD
([

⇒
µUt→1,R”

1/2
t→1,R

∣∣∣∣
⇒
1↑ µUt,R”

1/2
t,R

]
, rank = r2

)

11: else

12: Ut,L,”t,L ↗ Ut→1,L,”t→1,L {Reuse the previous}
13: Ut,R,”t,R ↗ Ut→1,R,”t→1,R {Reuse the previous}
14: St ↗ (”t,L + ϱI)→1/2

U
T
t,LGtUt,R(”t,R + ϱI)→1/2 ↓ Rr1↓r2

15: G
pre
t ↗ Ut,LStU

T
t,R

16: if t mod T = 0 and t > 0 then

17:
18: Mt ↗ ϖ1 · UT

t,LUt→1,LMt→1U
T
t→1,RUt,R + (1↑ ϖ1) · St

19: Vt ↗ ϖ2 ·




(1↑ ϖ

t→1
2 ) ·

∣∣∣(UT
t,LUt→1,L)

2(Vt→1 ↑M
2
t→1)(U

T
t→1,RUt,R)

2

+ (UT
t,LUt→1,LMt→1U

T
t→1,RUt,R)

2
∣∣∣



+ (1↑ ϖ2)S2
t

20: else

21: Mt ↗ ϖ1Mt→1 + (1↑ ϖ1)St

22: Vt ↗ ϖ2Vt→1 + (1↑ ϖ2)S2
t

23: Mt ↗ Mt/(1↑ ϖ
t
1)

24: Vt ↗ Vt/(1↑ ϖ
t
2)

25: Nt ↗ Mt/(
⇒
Vt + ς)

26: G̃
pre
t ↗ Ut,LNtU

T
t,R {Project back to original space}

27: Wt ↗ Wt→1 + ϑε · G̃pre
t

28: t ↗ t+ 1
29: return Wt

3.3 THE CLEAN OPTIMIZER

We now give a detailed description of the CLEAN optimizer. Pseudo-code is provided in Algorithm 1;
here we elaborate on each step and the design choices that enable an efficient, low-memory adaptive
preconditioner.

Preliminaries. At iteration t we denote the (negated) gradient by Gt ↓ Rm↓n, i.e. Gt =
↑→Wωt(Wt). CLEAN maintains two low-rank, positive semi-definite (PSD) preconditioners:

4
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a left preconditioner Lt (an approximation of GtG
T
t ) with rank r1 ⇑ m and a right preconditioner

Rt (an approximation of GT
t Gt) with rank r2 ⇑ n. We never explicitly form the full m ↔ m or

n↔ n matrices Lt and Rt. Instead, using the randomized Nyström routine (Algorithm 2), we obtain
compact factors

Ut,L ↓ Rm↓r1 , ”t,L ↓ Rr1↓r1 , Ut,R ↓ Rn↓r2 , ”t,R ↓ Rr2↓r2 , (4)

such that Lt ≃ Ut,L”t,LU
T
t,L and Rt ≃ Ut,R”t,RU

T
t,R. Subspace updates are performed every T

iterations; between updates the previous factors are reused.

Smoothing / accumulation of preconditioners. To avoid abrupt changes in the low-rank basis and
to provide temporal smoothing of the preconditioner, CLEAN accumulates the previous and current
Nyström estimates. A natural additive accumulation is

L̃t = µLt→1 + (1↑ µ)Lt, R̃t = µRt→1 + (1↑ µ)Rt, (5)

with smoothing weight µ ↓ [0, 1]. Since each L is PSD, there exist Cholesky-like factors Ct→1,L and
Ct,L satisfying Lt→1 = Ct→1,LC

T
t→1,L and Lt = Ct,LC

T
t,L, where

Ct→1,L = Ut→1,L”
1/2
t→1,L, Ct,L = Ut,L”

1/2
t,L . (6)

We then form the concatenated factor

KL =
[⇒

µCt→1,L

∣∣ 1↑ µCt,L


(7)

so that L̃t = KLK
T
L . A truncated SVD (or economy SVD) of KL yields a rank-r1 factorization

L̃t ≃ Ut,L”t,LU
T
t,L without ever forming full m ↔ m matrices. The same procedure is applied

to produce R̃t from the right factors. In the pseudocode this concatenation plus truncation is
implemented in line 10; when t is not a refresh step the algorithm simply reuses the previous factors.

Preconditioning in the low-rank subspace. Following Gupta et al. (2018), we define the precondi-
tioned gradient

G
pre
t ↭ L

→1/2
t Gt R

→1/2
t . (8)

Using the Nyström factors this becomes

G
pre
t = (Ut,L”

→1/2
t,L U

T
t,L)Gt (Ut,R”

→1/2
t,R U

T
t,R). (9)

Forming G
pre
t explicitly would require O(mn) memory and computation. Instead, we compute the

small, projected matrix

St = ”→1/2
t,L U

T
t,L Gt Ut,R ”→1/2

t,R ↓ Rr1↓r2 , (10)

which represents Gpre
t in the low-dimensional coordinate system defined by Ut,L and Ut,R.

Projection-aware adaptive moments. CLEAN maintains Adam-style first and second moments
in the compact projected space (lines 18–27 of Algorithm 1). Let Mt and Vt denote the first- and
second-moment estimates in Rr1↓r2 space. Inspired by LDAdam (Robert et al., 2024), on subspace-
refresh steps (when the bases Ut,↔ have changed) we perform projection-aware moment accumulation:
the previous moments are transported into the new bases using the alignment matrices U↑

t,↔Ut→1,↔.
Concretely, when t is a refresh step we set

Mt ↗ ϖ1 U
↑
t,LUt→1,L Mt→1 U

T
t→1,RUt,R + (1↑ ϖ1)St, (11)

and a compatible expression is used for Vt to account for second moments and squared terms (see
Algorithm 1 for the exact form). For non-refresh steps we use the usual exponential moving averages

Mt ↗ ϖ1Mt→1 + (1↑ ϖ1)St, Vt ↗ ϖ2Vt→1 + (1↑ ϖ2)S
2
t . (12)

Bias correction is applied to both moments by dividing by 1 ↑ ϖ
t
1 and 1 ↑ ϖ

t
2, respectively. The

normalized projected update is then Nt = Mt↗
Vt+ε

, computed elementwise.
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Projection back and parameter update. The small matrix Nt ↓ Rr1↓r2 is re-expanded to the
original parameter space via G̃

pre
t = Ut,L Nt U

T
t,R, which is an m ↔ n matrix but is obtained by

low-rank factors. The parameter update (line 30) is Wt ↗ Wt→1 + ϑε · G̃pre
t , where ε is the base

learning rate and ϑ is a scale factor.

4 THEORETICAL RESULTS

In this section, we analyze the projection-aware property of CLEAN, its convergence and discuss its
computational advantages.

Projection-aware optimizer As introduced in Section 3.3 and Algorithm 1, CLEAN adopts
projection-aware update rules inspired by LDAdam (Robert et al., 2024). This ensures that when
the projection subspace is refreshed, the optimizer’s historical states (first and second moments)
are correctly transported to the new basis. This prevents instability and preserves the accumulated
information. The detailed derivation of the projection-aware moment update rules can be found in
Appendix A.

Convergence The following theorem establishes the convergence of CLEAN.
Theorem 4.1. (Convergence of CLEAN with fixed projections). Suppose that the gradient has the

parametric form Gt =
∑N

i=1 Ai ↑
∑N

i=1 BiWtCi where N is a batch size and the functions Ai, Bi

and Ci have LA, LB and LC continuity, respectively with respect to W . Let ⇓W⇓F ⇐ M with M

constant. Also, assume that the projection matrices remain constant during training. Then for a

suitable learning rate ε, the CLEAN optimizer satisfies

⇓St⇓F ⇐ [1↑ ε

φ0
(↼t→1 ↑ C)] ⇓St→1⇓F ,

where St is the projected gradient, φ0 is the minimum eigenvalue of the preconditioner approximation,

↼t→1 is a curvature term, and C is a constant related to the Lipschitz constants. A detailed statement

of the theorem and its proof are provided in Appendix A.

Costs and advantages. CLEAN avoids the O(mn) memory and computation that would be
required to form full preconditioned gradients by (i) representing preconditioners with Nyström
factors Ut,↔,”t,↔, (ii) operating on the small projected matrix St ↓ Rr1↓r2 , and (iii) using projection-
aware moment transport when bases change. Memory is therefore dominated by the factors Ut,L, Ut,R

and the small moments Mt, Vt, i.e. O(mr1+nr2+ r1r2), and per-iteration work is similarly reduced
relative to full-matrix adaptive methods. Smoothing via concatenation-and-truncation ensures the
accumulated preconditioner remains PSD and results in gradual basis evolution, which improves
stability when subspaces are refreshed periodically. Table 1 compares the memory for CLEAN vs
Adam, LoRA, Galore and SOAP. For CLEAN we assume r1 = r2 = r. This highlights that CLEAN

is a lightweight optimization method that achieves reduced memory overhead

Table 1: Comparison of optimizer states and weights memory for different baselines

Adam LoRA GaLore SOAP CLEAN

Weight mn mn+mr + nr mn mn mn

Optim. States 2mn 2mr + 2nr mr + 2nr 2m2 + 2n2 + 2mn mr + nr + 2r2

5 RELATED WORK

Low-rank Projection Methods. A popular approach to reducing optimizer memory is to project
gradients onto a low-rank subspace. GaLore (Zhao et al., 2024) introduced this strategy by performing
gradient updates within a low-rank subspace defined by the singular value decomposition (SVD)
of recent gradients. While effective at saving memory, this one-sided projection can be unstable as
the subspace drifts over time. LDAdam (Robert et al., 2024) and Subtrack++ (Rajabi et al., 2025)
attempted to mitigate this by incorporating projection-aware updates and more robust subspace

6
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tracking mechanisms. However, these methods still primarily operate on one-sided approximations
and do not fully capture the row-column geometry of the gradient covariances.

Second-order Preconditioning. Another line of work focuses on capturing gradient curvature
information using second-order methods. K-FAC (Martens & Grosse, 2015) approximates the
Fisher information matrix with Kronecker products, while Shampoo (Gupta et al., 2018) directly
approximates the full-matrix AdaGrad preconditioner by maintaining separate row and column
preconditioners. These balanced, two-sided preconditioners are powerful but require storing full-sized
covariance matrices, making them memory- and compute-intensive. Recent work like SOAP (Vyas
et al., 2024) combines Shampoo’s preconditioning with first-order updates but still retains the costly
full-matrix accumulators.

Positioning Our Method. Our optimizer, CLEAN, bridges the gap between these two approaches.
It combines the memory efficiency of low-rank methods with the curvature-awareness of two-sided
preconditioning by using randomized Nyström sketches, while ensuring stability through projection-
aware moment transport.

6 EXPERIMENTS

We evaluate CLEAN on both fine-tuning and a small-scale pre-training feasibility study. Baselines
include AdamW (Kingma & Ba, 2014), SOAP (Vyas et al., 2024), and GaLore (Zhao et al., 2024).
To demonstrate memory efficiency relative to parameter-efficient fine-tuning (PEFT), we also include
LoRA (Hu et al., 2021). Like GaLore and other PEFT approaches, our method restricts low-rank
compression to the two-dimensional matrices in self-attention layers, while larger embedding and
output layers are optimized with standard Adam. To ensure reproducibility, we include the complete
set of hyperparameters in the Appendix D. All experiments are conducted on NVIDIA H100 GPUs.

6.1 FINE-TUNING ON GLUE

To evaluate the fine-tuning performance of CLEAN, we test it on the GLUE benchmark (Wang
et al., 2018) using the RoBERTa-base model (Liu et al., 2019). We compare against several strong
baselines, including AdamW, LoRA, GaLore, and SOAP. Due to time limitations, we trained for 3
epochs with a batch size of 16, using rank-r = 32 for CLEAN and rank-r = 4, 8 for GaLore and
LoRA to ensure comparable memory usage. We also tune over a set of learning rates reported in
Table 4. Table 2 reports the best average over 3 seeds. As shown in this table CLEAN achieves
competitive performance, particularly on the STSB task, close to the full-rank SOAP optimizer.
While AdamW and SOAP act as full-rank baselines, CLEAN demonstrates competitive average
performance compared to low-rank baselines, highlighting its potential as an effective and memory-
efficient fine-tuning optimizer. As shown in Table 2, CLEAN has the lowest memory among all the
optimizers while achieving fast runtime with the highest average accuracy among low-rank methods.

Table 2: GLUE Fine-tuning Results (RoBERTa-base). Results are percentages (↔100). Best results
are in bold. Results are averaged across 3 seeds and best across 5 learning rates.

Method MRPC STS-B CoLA SST-2 QNLI QQP MNLI Average Time Optim. State (MB)

Training Samples 3.7k 7k 8.5k 67k 105k 364k 393k - - -

AdamW 88.97 90.21 59.94 94.23 92.73 91.42 87.77 86.47 1.00 951.0

SOAP (T=32) 89.05 89.95 57.55 92.55 91.76 90.82 85.01 85.24 4.56 2853.0

GaLore (T=500, r=4) 86.27 88.34 55.03 93.50 91.72 89.66 86.08 84.37 1.13 301.9
GaLore (T=500, r=8) 87.58 88.52 54.84 93.54 92.06 89.80 86.46 84.68 1.14 305.3

LoRA (r=4) 85.78 88.56 57.27 93.46 89.52 89.76 84.26 84.09 0.85 308.0
LoRA (r=8) 86.68 88.84 55.94 93.23 89.60 89.81 84.39 84.07 0.84 313.1

CLEAN (T=32, r=32) 87.25 89.96 56.89 93.20 91.63 89.59 85.75 84.90 1.09 299.1

6.2 ABLATION STUDIES

We performed an ablation study to assess the individual and combined contributions of different
hyperparameters on CLEAN optimizer.
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Rank sensitivity. We vary rank r ↓ {4, 8, 16, 32, 64} while fixing refresh T = 32. Table 3
shows that performance is stable across ranks: accuracy differences are less than 1% on the average
performance, while runtime grows modestly with rank. This indicates CLEAN is robust to rank
choice and practical even at small r.

Figure 1: Pre-training evaluation loss vs training step for of Llama 150M on C4 dataset

Subspace Update Interval. We vary the subspace update interval T ↓ 3, 10, 32, 100, 200, 500
while keeping the rank fixed at r = 32. As reported in Table 3, accuracy peaks slightly at T = 100,
whereas runtime follows the expected amortization trend: increasing T accelerates CLEAN, reaching
AdamW’s speed at T = 500. These results highlight both the low sensitivity of CLEAN to T ,
subspace update interval, and its ability to efficiently balance accuracy and computational cost.

Preconditioner accumulation weight µ. We test µ ↓ {0.05, 0.1, 0.3, 0.5, 0.75}. µ = 0.5 has
the highest accuracy, while highlighting low sensitivity of CLEAN optimizer to preconditioner
accumulation weight µ Table 3 summarizes.

Projection-aware transport. Disabling projection-aware transport degrades accuracy (⇔ more
than a point on GLUE). This confirms transport is critical for stable training under subspace update.

6.3 PRE-TRAINING FEASIBILITY STUDY

Setup. We evaluate the pre-training task on a subset of C4 dataset (Raffel et al., 2020). Due to
time and computational constraints, our experiments focus on a smaller Llama-family Touvron et al.
(2023) model with 130M parameters. Following the Chinchilla scaling rule (Hoffmann et al., 2022),
we allocate 20 training tokens per model parameter. Training is conducted with a token batch size
of ≃ 2M and a sequence length of 1024, corresponding to 1300 steps. Training uses bf16 precision.
We compare CLEAN with AdamW, SOAP. We perform a hyperparameter sweep over learning rates
{5e-4, 1e-3, 5e-3, 1e-2}, reporting the best results for ranks r = 256 for CLEAN in Figure 1.

Results. We benchmark our method with AdamW and SOAP to show that, even within a low-rank
subspace, it can compete with full-rank optimizers with less memory. Figure 1 shows evaluation loss
curves. This demonstrates feasibility for pretraining while highlighting directions to close the gap
(dynamic rank allocation, refresh scheduling, and hyperparameter tuning).

6.4 DISCUSSION

Our experiments highlight three main findings:

8
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Table 3: CLEAN Ablation Study (RoBERTa-base). Results are percentages (↔100). Best results are
in bold. Results are averaged across 3 seeds and the best across 5 learning rates.

Configuration MRPC STS-B CoLA SST-2 QNLI QQP MNLI Average Time Optim. State (MB)

Rank Variations (T=32, µ=0.1, s=1):

CLEAN (r=4) 86.27 88.29 55.16 92.70 89.75 89.30 84.43 83.70 1.03 298.5
CLEAN (r=8) 87.99 88.94 54.85 93.04 90.19 89.02 84.96 84.14 1.04 298.5
CLEAN (r=16) 87.66 89.39 54.46 92.89 91.04 89.05 85.21 84.24 1.06 298.6
CLEAN (r=32) 87.25 89.81 53.28 93.12 91.60 89.21 85.10 84.20 1.09 299.1
CLEAN (r=64) 88.24 89.94 56.38 93.08 91.70 88.93 84.44 84.67 1.18 300.8

Subspace Update Interval Variations (r=32, µ=0.1, s=1):

CLEAN (T=3) 86.85 89.26 52.15 91.90 89.61 87.50 83.60 82.98 1.94 299.1
CLEAN (T=10) 87.17 89.90 53.39 92.32 90.51 88.35 84.31 83.71 1.29 299.1
CLEAN (T=32) 87.25 89.81 53.28 93.12 91.60 89.21 85.10 84.20 1.09 299.1
CLEAN (T=100) 87.99 89.62 56.15 93.12 91.49 89.70 85.83 84.84 1.03 299.1

CLEAN (T=200) 87.25 89.50 55.44 93.54 91.57 89.77 85.97 84.72 1.01 299.1
CLEAN (T=500) 87.75 88.81 56.03 93.43 91.18 89.90 85.96 84.72 1.00 299.1

Accumulation Weight Variations (T=32, r=32, s=1):

CLEAN (µ=0.05) 87.09 89.63 54.60 92.74 91.47 89.19 85.01 84.25 1.10 299.1
CLEAN (µ=0.1) 87.25 89.81 53.28 93.12 91.60 89.21 85.10 84.20 1.09 299.1
CLEAN (µ=0.3) 87.83 89.85 56.25 93.27 91.52 89.35 85.50 84.79 1.09 299.1
CLEAN (µ=0.5) 87.25 89.96 56.89 93.20 91.63 89.59 85.75 84.90 1.09 299.1

CLEAN (µ=0.75) 88.15 89.79 55.39 93.20 91.48 89.75 86.01 84.82 1.08 299.1

Additional Configurations (T=100, r=32, µ=0.95, s=1):

CLEAN (proj-off) 85.78 88.60 53.95 92.74 90.13 N/A 85.71 82.82 1.03 299.1
CLEAN (proj-on) 87.66 89.74 55.76 93.08 91.41 N/A 86.13 83.97 1.03 299.1

• Fine-tuning. On GLUE, CLEAN achieves accuracy comparable to AdamW and SOAP
while using drastically less optimizer state memory. Compared to PEFT baselines such as
LoRA and GaLore, CLEAN delivers higher overall accuracy at smaller memory budgets.

• Robustness. Ablation studies show that accuracy is insensitive to rank, subspace update
interval and preconditioner accumulation weights within a broad range, making CLEAN

easy to deploy. Projection-aware transport is essential: disabling it reduces accuracy by
more than 1 point.

• Pre-training feasibility. In small-scale pre-training, CLEAN competes with AdamW and
SOAP. This gap highlights the need for adaptive rank allocation, subspace update interval,
and hyperparameter tuning, which we leave to future work.

Overall, CLEAN provides a practical optimizer for memory-constrained fine-tuning with clear
feasibility for pre-training. It achieves a favorable balance of accuracy, efficiency, and memory usage,
making it suitable for single-accelerator training scenarios.

7 CONCLUSION

In this work, we introduced CLEAN, a memory-efficient optimizer that retains curvature infor-
mation by coupling randomized Nyström sketches with projection-aware moment transport. Our
experiments demonstrate that CLEAN achieves a compelling trade-off between memory efficiency
and performance. It is particularly effective for fine-tuning language models, where it delivers
competitive accuracy with a substantially smaller memory footprint than traditional optimizers. The
feasibility study on pre-training also highlights its potential for training large models from scratch
under constrained hardware. As part of future work, we aim to investigate potential enhancements
to the design of CLEAN, specifically focusing on proposing its general form for tensor structure
gradients, making it applicable to tensors of arbitrary dimensionality.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our model architecture, training proce-
dures, and evaluation metrics in the main text and Appendix. Additionally, all experiments, including
baseline comparisons and ablation studies, are documented with sufficient detail to allow independent
replication. We also release the code and scripts to reproduce all results at https://github.
com/anon-code-2025/code_for_paper_submission/blob/main/clean.py.
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