

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VLM-GUIDED ADAPTIVE NEGATIVE PROMPTING FOR CREATIVE GENERATION

Anonymous authors

Paper under double-blind review

“A photo of a creative ...”

Figure 1: Our method generates creative concepts such as novel pets, uniquely designed jackets, and unconventional buildings by steering the generation away from conventional patterns using a VLM-Guided Adaptive Negative Prompting process.

ABSTRACT

Creative generation is the synthesis of new, surprising, and valuable samples that reflect user intent yet cannot be envisioned in advance. This task aims to extend human imagination, enabling the discovery of visual concepts that exist in the unexplored spaces between familiar domains. While text-to-image diffusion models excel at rendering photorealistic scenes that faithfully match user prompts, they still struggle to generate genuinely novel content. Existing approaches to enhance generative creativity either rely on interpolation of image features, which restricts exploration to predefined categories, or require time-intensive procedures such as embedding optimization or model fine-tuning. We propose VLM-Guided Adaptive Negative-Prompting, a training-free, inference-time method that promotes creative image generation while preserving the validity of the generated object. Our approach utilizes a vision-language model (VLM) that analyzes intermediate outputs of the generation process and adaptively steers it away from conventional visual concepts, encouraging the emergence of novel and surprising outputs. We evaluate creativity through both novelty and validity, using statistical metrics in the CLIP embedding space. Through extensive experiments, we show consistent gains in creative novelty with negligible computational overhead. Moreover, unlike existing methods that primarily generate single objects, our approach extends to complex scenarios, such as generating coherent sets of creative objects and preserving creativity within elaborate compositional prompts. Our method integrates seamlessly into existing diffusion pipelines, offering a practical route to producing creative outputs that venture beyond the constraints of textual descriptions.

1 INTRODUCTION

A growing body of research (Hertzmann, 2018; Yongjun et al., 2025; Ivcevic & Grandinetti, 2024) revolves around a somewhat philosophical question: what are creativity and originality, and can

054 computers create art? One suggestion by Boden (2009) is to categorize computational creativity
 055 along a spectrum of increasing novelty. At the lowest level, *combinatorial* creativity produces un-
 056 expected combinations of existing concepts, such as a hybrid creature that merges features of a bee
 057 and a giraffe. *Exploratory* creativity goes further by discovering new possibilities within a known
 058 domain while maintaining validity, for instance, inventing an animal species with entirely new but
 059 biologically plausible traits. At the highest level, *transformational* creativity challenges the bound-
 060 boundaries of existing categories altogether, such as conceiving an organism so unlike current life forms
 061 that it forces us to reconsider the definition of “animal” itself.

062 Recent advances in text-to-image (T2I) diffusion models have demonstrated strong capabilities in
 063 generating photorealistic images from natural language prompts. These models excel at reproduc-
 064 ing and recombining simple visual concepts from their training data, allowing for combinatorial
 065 creativity to some extent. However, they still struggle with novelty that falls under the category of
 066 exploratory and transformational creativity. This limitation reflects an inherent tension in generative
 067 modeling between mode coverage (i.e., capturing the full distribution), and mode seeking (i.e., gen-
 068 erating high-quality typical samples). For example, a known technique that attempts to navigate this
 069 tradeoff is Classifier-free guidance (CFG). Lower guidance scales increase diversity but compromise
 070 text alignment, while higher scales improve prompt adherence but generate more typical outputs.

071 Our experiments show that simple prompt mod-
 072 ifications fail to produce creative outputs from
 073 current models. As demonstrated in Figure 2,
 074 adding creativity-related terms such as “cre-
 075 ative” or “new type of” produces outputs that
 076 remain similar to conventional pets – like a blue
 077 cat with wings, kittens, dogs, or a ferret-like an-
 078 imal with long ears. On the other hand, our blue
 079 pet, presented in Figure 1, cannot be described
 080 as a combination of known pets.

081 Existing frameworks for creative generation fall
 082 into two paradigms: *combinatorial* approaches
 083 that blend predefined concept pairs through
 084 rule-based searches (Li et al., 2024) or learnable tokens (Feng et al., 2024), and *exploratory* methods
 085 like ConceptLab (Richardson et al., 2024) that optimize textual embeddings to discover novel con-
 086 cepts. Specifically, ConceptLab formulates creative generation as an iterative optimization problem
 087 over a learned textual embedding, minimizing a loss function that balances two objectives: maintain-
 088 ing similarity to a broad target category while maximizing the distance from known subcategories in
 089 the CLIP embedding space. While these demonstrate progress, they require either per-concept opti-
 090 mization procedures, specialized training on curated datasets, or predefined concept specifications,
 091 limiting their practical deployment and scalability.

092 To address these limitations, we propose VLM-Guided Adaptive Negative-Prompting, a training-
 093 free method that integrates into any diffusion sampler without modifying pretrained weights or re-
 094quiring curated datasets. Unlike previous approaches, our method operates entirely at inference time
 095 through a closed-loop feedback mechanism (Figure 3). We leverage a lightweight vision-language
 096 model (VLM) to adaptively steer the generation process away from its typical predictions and thus
 097 towards unexplored regions of possible outputs. Our approach utilizes the VLM to analyze interme-
 098 diate denoising predictions at each timestep, identify dominant objects, and adaptively convert these
 099 observations into negative prompts that are integrated into the next denoising step.

100 Through experiments across multiple VLM models, diffusion pipelines, and human evaluation studies,
 101 we demonstrate consistent improvements in *exploratory* creativity while maintaining categorical
 102 coherence. Our analysis reveals how adaptive negative prompting guides the denoising trajectories
 103 toward unexplored semantic regions and highlights the importance of VLM feedback during infer-
 104 ence. Through extensive ablation studies, we validate our key design choices, including dynamic
 105 negative prompt accumulation and per-generation adaptation, showing superiority over alternative
 106 approaches. Furthermore, we demonstrate capabilities beyond existing methods, including the gen-
 107 eration of coherent creative sets and the preservation of creativity within complex compositional
 108 prompts, showcasing the versatility of our VLM-guided approach.

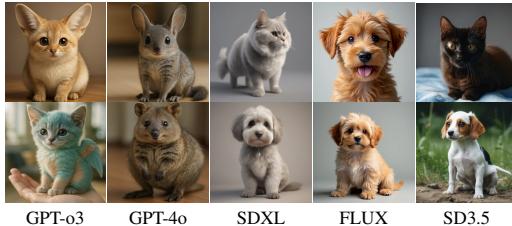


Figure 2: Images generated with GPT-o3 (OpenAI, 2025), GPT-4o (OpenAI, 2024), SDXL (Podell et al., 2023), FLUX-dev (Black Forest Labs, 2024), and SD3.5 (Esser et al., 2024) using the prompt “Professional high-quality photo of a new type of pet.”

108

2 RELATED WORK

110 **Foundations of Creative Generation** The pursuit of extending human imagination with machine
 111 learning has motivated extensive research in computational creativity, from algorithmic design tools
 112 (Cohen-Or & Zhang, 2016; Sims, 1994; 1991; Sun et al., 2025) to theoretical frameworks examining
 113 whether computers can create art or merely serve as sophisticated tools for human artists
 114 (Hertzmann, 2018). Early work, such as Xu et al. (2012), introduced a set-evolution framework for
 115 creative 3D shape modeling by steering the generation towards user-preferred shapes while main-
 116 taining diversity. Other works (Elgammal et al., 2017; Sbai et al., 2019) proposed modifying losses
 117 and training objectives to generate creative art by maximizing deviation from established styles
 118 while minimizing deviation from the general art distribution.

119 **Concept Blending and Combinatorial Creativity** A significant portion of computational creativ-
 120 ity involves combinatorial approaches. Some works (Liew et al., 2022; Zhou et al., 2025) leveraged
 121 diffusion models to blend different visual and semantic concepts for the generation of novel outputs.
 122 Dorfman et al. (2025) extended this to multiple visual inputs by crafting composite embeddings,
 123 stitched from the projections of multiple input images onto concept-specific CLIP-subspaces iden-
 124 tified through text. For text-based concept pairs, Li et al. (2024) suggested balance swap-sampling,
 125 which generates creative combinatorial objects by randomly exchanging intrinsic elements of text
 126 embeddings and selecting high-quality combinations based on CLIP distances. Feng et al. (2024)
 127 takes a different approach and re-defines “creativity” as a learnable token. They iteratively sam-
 128 ple diverse text pairs from their proposed dataset to form adaptive prompts and restrictive prompts,
 129 and then optimize the similarity between their respective text embeddings. While these combina-
 130 torial approaches recombine user-specified concepts, we instead discover novel concepts within broad
 categories without predefined targets.

131 **VLM-Guided Creativity Approaches.** Recent research leverages Vision-Language Models
 132 (VLMs) to guide creative generation. Feng et al. (2025) uses VLMs to supervise distribution-
 133 conditional generation, enabling multi-class concept blending through a learnable encoder-decoder
 134 framework. While the above approaches focus on combinatorial creativity through concept blend-
 135 ing, Richardson et al. (2024) introduces ConceptLab, which tackles the more challenging task of
 136 exploratory creativity. They formulate the Creative Text-to-Image (CT2I) generation as an optimi-
 137 zation process of a learned textual embedding. To prevent convergence to existing concepts,
 138 ConceptLab incorporates a question-answering VLM that adaptively adds new constraints to the
 139 optimization problem. These VLM-guided approaches rely on per-concept optimization procedures
 140 that require multiple iterations and substantial computational resources. Our approach leverages
 141 VLMs as real-time oracles during the denoising process to reduce computational overhead.

142 **Optimization-Free Creative Generation.** Han et al. (2025) boosts creativity in Stable Diffusion
 143 by amplifying features during denoising, primarily affecting color and textures. While we share the
 144 goal of optimization-free creativity enhancement, our method operates through dynamic negative
 145 prompting to guide the generation away from conventional semantic patterns rather than amplifying
 146 existing features. The advantage of such optimization-free approaches lies in their immediate appli-
 147 ability to existing models without requiring additional training or complex optimization procedures.

148 **Theory of Creative Generation** Recent work has explored creative generation from a more theo-
 149 retical point of view, investigating the relation between memorization and novel sample generation.
 150 Lu et al. (2024) propose a method which improves sample diversity and creativity of diffusion-based
 151 image generative models and to prevent training data reproduction. Shah et al. (2025) investigates
 152 whether creative generation requires memorization, proposing ambient diffusion techniques that re-
 153 duce reliance on reproducing training data while maintaining generation quality. Kamb & Ganguli
 154 (2025) provides theoretical foundations by analyzing creativity mechanisms in convolutional dif-
 155 fusion models, offering formal frameworks for understanding how diffusion models can generate
 156 samples that do not exist in their training distributions.

157

3 METHOD

158 Our VLM-Guided Adaptive Negative-Prompting method enhances creative generation in diffusion
 159 models through a closed-loop feedback mechanism that dynamically navigates the denoising process
 160 away from familiar visual patterns. As illustrated in Figure 3, our method monitors the intermediate
 161 denoiser outputs using a Vision-Language Model (VLM), which identifies dominant elements (e.g.,

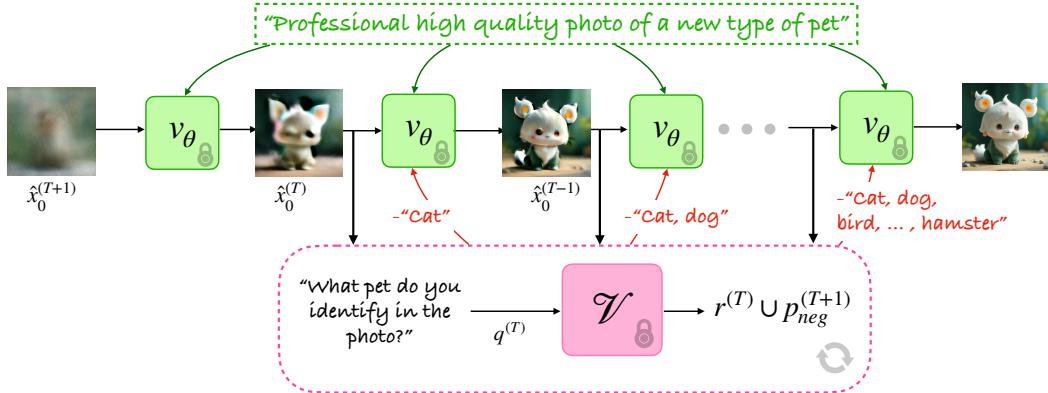


Figure 3: Overview of our VLM-guided negative prompting method. To generate a creative image (e.g., “new type of pet”), we sample Gaussian noise and perform an augmented denoising process that maintains an adaptive list of negative prompts. At each denoising step, we query a pre-trained Vision-Language Model (VLM) to identify visual concepts present in the intermediate output and update the list accordingly, steering the denoising process away from them. For example, we add the token “cat” to the accumulating list to shift the denoising trajectory away from generating an image resembling a cat as well as the previously detected pets.

“cat”) and accumulates them as dynamic negative prompts during the generation process. This adaptive accumulation refines the guidance signal at each denoising step.

We begin by establishing the necessary background on negative prompting in Section 3.1 and detailing our VLM-guided synthesis strategy in Section 3.2.

3.1 BACKGROUND: DIFFUSION MODELS AND NEGATIVE PROMPTING

Diffusion models generate images by gradually denoising a sample from pure noise x_T over a series of time steps. Latest diffusion models, including Stable Diffusion 3.5 (Esser et al., 2024) used in our experiments, employ flow matching (Lipman et al., 2023) to generate images through iterative denoising. Let x_t denote the noisy image at timestep $t \in [T, \dots, 0]$. In flow matching, the model learns a velocity field $v_\theta(x_t, t, c)$ conditioned on text embedding $c = E(p)$ derived from prompt p via text encoder E . The denoising process follows the probability flow ODE: $\frac{dx_t}{dt} = v_\theta(x_t, t, c)$. During sampling, we can estimate the clean image at any timestep using the following equation:

$$\hat{x}_0^{(t)} = x_t - t \cdot v_\theta(x_t, t, c) \quad (1)$$

Classifier-free guidance (CFG) (Ho & Salimans, 2021) improves conditional generation by combining conditional and unconditional predictions: $\tilde{v}_\theta^w = v_\theta(x_t, t, \emptyset) + w \cdot (v_\theta(x_t, t, c) - v_\theta(x_t, t, \emptyset))$, where \emptyset denotes the unconditional (null) embedding, and w is the guidance scale. When $w = 0$, the model generates unconditional samples; as w increases, the model increasingly favors features aligned with the conditioning text. The guidance operates by amplifying the difference between conditional and unconditional predictions. When $w = 0$, the model generates unconditional samples. As w increases, the model increasingly favors features that align with the conditioning text. This mechanism was naturally extended (Saharia et al., 2022) to negative prompting, in which the model is explicitly discouraged from generating features associated with a negative prompt p_{neg} . Instead of subtracting the unconditional prediction, we subtract a negatively conditioned prediction:

$$\hat{v}_\theta^w = v_\theta(x_t, t, c_{neg}) + w \cdot (v_\theta(x_t, t, c_{pos}) - v_\theta(x_t, t, c_{neg})) , \quad (2)$$

where $c_{neg} = E(p_{neg})$ represents the negative prompt embedding derived from the unwanted concepts p_{neg} . This formulation steers generation away from c_{neg} and toward c_{pos} by amplifying their differences. We further explain the intuition and the effect of negative prompting in Appendix C.

3.2 VLM-GUIDED ADAPTIVE NEGATIVE PROMPTING

To generate a creative image from a given prompt p_{pos} , we sample initial Gaussian noise $x_T \sim \mathcal{N}(0, I)$ and initiate an augmented denoising process in which, at each denoising step, we dynamically steer the generation away from common visual concepts identified through VLM analysis, as

Figure 4: Qualitative results of our method across different object categories. In all categories, our method generates creative shapes and appearances while preserving object semantics. For instance, buildings with unique forms and textures that retain windows, doors, and balconies, or bags made of varied materials that remain recognizable as bags.

illustrated in Figure 3. Given the intermediate prediction $\hat{x}_0^{(t)}$, at each timestep $t \in [0, T]$, we query the VLM to identify the dominant features present in the image. We denote the questioning process as follows:

$$r^{(t)} = \mathcal{V} \left(\hat{x}_0^{(t)}, q^{(t)} \right), \quad (3)$$

Where \mathcal{V} is the VLM model, $q^{(t)}$ is the question, and $r^{(t)}$ is the VLM response at timestep t . Each response $r^{(t)}$ is added to a growing set of negative prompts: $p_{neg}^{(t)} = p_{neg}^{(t+1)} \cup r^{(t)}$ with initialization $p_{neg}^{(T)} = \emptyset$. This creates a feedback loop where each timestep's guidance reflects all previously identified dominant features, progressively steering toward more creative outputs.

Runtime Analysis. Our method adds minimal overhead of 13 seconds when used in the *least* efficient setting. Querying ViLT (Kim et al., 2021) for 28 steps while using the SD3.5-large decoder for x_0 predictions takes a total of 35 seconds, compared to 22 seconds for standard SD3.5-large single image generation. In contrast, (Richardson et al., 2024) requires approximately 8 minutes to train each concept on a single seed, and C3 requires approximately 30 minutes for amplification factor search using 10 samples per concept. [A full analysis can be found in Appendix B.4](#).

4 EXPERIMENTS

We comprehensively evaluate our approach through qualitative comparisons with existing creative generation methods, a user study, and quantitative metrics. [We validate our design choices with extensive ablations examining the necessity of the VLM feedback A.1](#), seed-specific adaptation A.2, the accumulation strategy A.3, different positive prompts A.5, robustness to different VLM models A.6, the effect of question design on the final output A.7, analysis of the VLM response on blurry predictions A.8, and analysis of the VLM querying frequency Appendices A.4 and B.1. Finally, we present use cases and practical applications that our approach enables, extending the

270 capabilities of previous creativity methods. Additional results and implementation details are in
 271 Section 5 and Appendices A to D.
 272

273 We display in Figure 4 the diverse creative outputs of our approach across categories ranging from
 274 pets to bags. Through seed variation alone, our method explores a wide spectrum of novel concepts
 275 without requiring retraining or additional optimization.

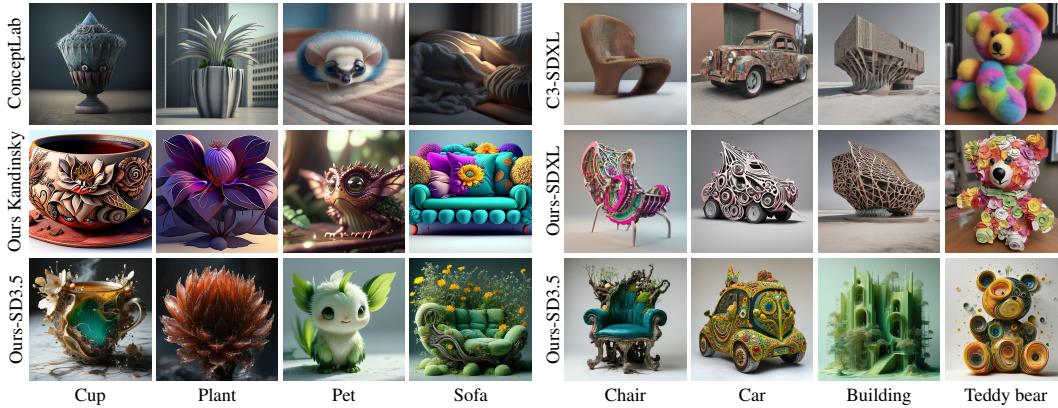
276 4.1 QUALITATIVE EVALUATION

277 We begin by comparing our method with the two competing approaches for exploratory creativity
 278 within a category: ConceptLab (Richardson et al., 2024) and C3 (Han et al., 2025). As can be
 279 seen in Figure 6, ConceptLab generates creative objects but often sacrifices category validity. For
 280 example, it may produce a cup that cannot be drunk from or a couch with no seat. In contrast, our
 281 method produces objects that are both valid and creative. For fair comparison, we use the same
 282 base models as ConceptLab and C3, while also demonstrating that our method leverages newer
 283 models to produce better results. ConceptLab and C3 have several assumptions preventing them
 284 from integrating seamlessly to any base diffusion model.
 285

286 In Figure 7, we compare our method with images generated by state-of-the-art models,
 287 including Stable Diffusion 3.5 (Esser et al., 2024), FLUX.1-dev (Black Forest Labs, 2024),
 288 and GPT-4o (OpenAI, 2024), all prompted with
 289 requests for “creative” or “new type of” variations. These comparisons demonstrate that
 290 even the most advanced generative models, when used with standard prompting, produce
 291 typical category exemplars – such as regular cars and fruits – rather than creative variations.
 292 In contrast, our results present novelty while
 293 maintaining validity. For example, the vehicle
 294 has wheels and a space for a driver, yet does not
 295 correspond to any existing vehicle type.
 296

300 4.2 USER STUDY

301 Quantitative evaluation remains a fundamental challenge in computational creativity research (Lamb
 302 et al., 2018). We conduct a user study to evaluate the human-perceived creativity and semantic
 303 validity of images generated by our VLM-guided approach compared to existing methods. We
 304 collected a total of 3,200 responses (25 participants \times 32 image pairs \times 4 comparisons), across 8
 305 different categories. The full setup is described in Appendix E. For each image pair, participants
 306



307
 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
 Figure 6: **Left:** Comparison with ConceptLab (Richardson et al., 2024) (top row) and our VLM-Guided method
 325 using Kandinsky2 (Razzhigaev et al., 2023) (middle row) and SD3.5 (bottom row). **Right:** Comparison with
 326 C3 (Han et al., 2025) using SDXL (Podell et al., 2023) (top row) and our method using SDXL (middle row)
 327 and SD3.5 (bottom row). Our method consistently generates more diverse and imaginative variations while
 328 maintaining recognizability within each category.

Figure 7: Creative generation comparison across different categories. Despite prompts explicitly requesting novelty (“A new type of [category]” or “A creative [category]”), GPT-4o, FLUX and SD3.5 produce typical category exemplars. Our method generates novel variations that navigate unexplored modes of the semantic space. Each column uses identical seeds across all methods for fair comparison.

evaluate Creativity/Novelty: How creative or novel is the interpretation of the broad category? and validity: How well does the image maintain its identification as the specified category? Figure 5 presents the results. “Creative Prompting” methods (SD3.5 and GPT-4o), explicitly requesting novelty via prompts such as “A new photo of a [category]”, cluster in the upper-left region with high category validity but minimal novelty, confirming our qualitative findings that simple prompt modifications fail to produce creative exemplars. Creative-generation methods (ConceptLab and C3) achieve moderate creativity results but at a significant cost in validity. In contrast, our method achieves both high novelty and validity, maintaining both high creativity and validity.

4.3 ABLATION STUDIES

A natural question is whether the in-the-loop VLM guidance is necessary or does one of two offline alternatives suffice: (i) using an LLM to derive a negative list from the positive prompt alone, or (ii) using a VLM to analyze a random image once and then statically replaying the resulting list across all seeds. We study four design variants to validate our adaptive negative prompting approach, as presented in Figure 8. First, we tested whether GPT-4o could generate static negative prompt lists directly from the main object in the positive prompts. Second, applying our accumulated negative prompts statically (replaying) from the beginning yields less creative outputs. Third, reusing negative prompts across different seeds (Cross-Seed replay) produces suboptimal results. Finally, removing accumulation allows generations to cycle back to the conventional patterns previously identified. Our method achieves the best scores across all reported metrics in Table 1.

The full ablation studies are presented in Appendix A. They examine computational efficiency (i.e., timestep reduction), VLM robustness across different models, question design impact, and positive prompt variations, all confirming the robustness of our approach.

4.4 QUANTITATIVE EVALUATION

Existing methods employ different strategies to quantify and evaluate creativity. ConceptLab measures the difference between CLIP similarity to the positive concept prompt and the maximum CLIP similarity to any negative concept prompt. We refer to this measure as “relative

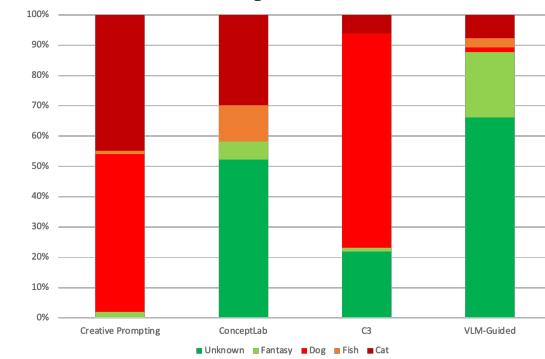
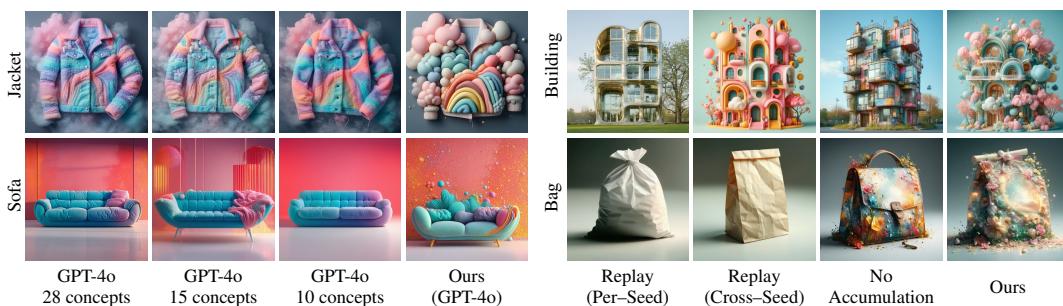


Figure 9: Top 5 subcategory distribution of 100 generated pets method classified with GPT-4o.

378
 379 Table 1: Quantitative evaluation of creative generation methods across different prompting strategies. Reference:
 380 SD3.5 with “A photo of a [category]”. Creative Prompting: SD3.5 with “A photo of a creative [category]”.
 381 VLM-Guided: Our adaptive negative prompting approach. C3 and ConceptLab images are generated as ex-
 382 plained in the corresponding papers. The metrics are averaged over 400 samples, equally generated 100 from
 383 4 categories: pet, plant, garment, vehicle. In **bold** are best results underline for second best, within each base-
 384 model category. For validity we exclude the baselines (Reference & Creative Prompting) from the marking.
 385

Method	Novelty		Diversity		Validity	
	Relative Typicality ↑	GPT Novelty Score ↑	Total Variance ↑	Vendi ↑	CLIP Score ↑	GPT Score ↑
ConceptLab-Kandinsky2	1.922	0.238	0.289	5.119	0.270	0.862
Stable Diffusion 3.5 Large Base Model						
Reference SD3.5	1.640	0.065	0.188	3.174	0.282	1.000
Creative Prompting SD3.5	1.645	0.230	0.191	3.139	0.267	0.933
GPT-4o 10 Concepts	0.655	0.093	0.272	4.973	0.262	0.867
GPT-4o 15 Concepts	0.885	0.108	0.277	5.040	0.262	0.805
GPT-4o 28 Concepts	1.043	0.100	0.276	5.067	0.260	0.828
Cross-Seed Replay	1.703	0.065	0.265	4.584	0.261	0.843
No Accumulation	1.610	0.060	0.274	4.355	0.262	0.875
Captions Regeneration	1.317	0.187	0.279	5.020	0.248	0.663
Ours SD3.5 + ViLT	1.835	0.157	0.298	5.347	0.264	0.893
Ours SD3.5 + BLIP-1	2.005	0.230	0.299	5.414	0.264	0.856
Ours SD3.5 + BLIP-2	2.190	<u>0.370</u>	0.318	5.794	0.261	<u>0.898</u>
Ours SD3.5 + Qwen2.5	2.100	0.401	<u>0.308</u>	<u>5.476</u>	0.264	0.917
SDXL-1.0 Base Model						
Reference SDXL	1.775	0.015	0.174	2.906	0.283	1.000
Creative Prompting SDXL	1.540	0.155	0.206	3.640	0.274	0.9125
C3-SDXL	1.075	0.232	0.271	4.726	0.254	0.895
Ours SDXL + Qwen2.5	1.795	0.405	0.296	5.427	<u>0.252</u>	0.895

408
 409
 410 typicality”. C3 evaluates three dimensions of creativity: novelty, diversity, and validity. We eval-
 411 uate creativity through complementary metrics that capture novelty, diversity, and validity as well.
 412 For novelty, we measure relative typicality (multiplied by 100 for readability) and the GPT Novelty
 413 Score. For the diversity we measure Vendi score and total variance. For validity, we employ CLIP
 414 alignment and GPT-4 verification. While these metrics have known limitations for creative outputs,
 415 as creativity inherently deviates from training distributions, they provide consistent comparative
 416 baselines. The formal definitions of the metrics are presented in Appendix F.
 417



418
 419 Figure 8: **Left:** Non-Adaptive LLM Approach: GPT-4o ($n \in [10, 15, 28]$) - static LLM list of n negative
 420 concepts applied at all steps. Ours (GPT-4o) dynamic, VLM-guided negatives using GPT-4o as our VLM.
 421 **Right:** Replay (Per-Seed) - reuse the accumulated VLM list from the *same* seed at all steps; Replay (Cross-
 422 Seed) - reuse a list extracted from a *different* seed at all steps; No Accumulation - use only the current step’s
 423 VLM answers (no carry-over); Ours - adaptive accumulation of negative prompts.
 424
 425
 426
 427
 428

432 **Quantitative Results** Table 1 summarizes the quantitative results. We achieve significant improvements in diversity and novelty metrics with minimal tradeoff in CLIP and GPT scores. All
 433 metrics are averaged across four categories: “vehicle”, “plant”, “pet”, and “garment” (100 images
 434 each), so improvements reflect cross-category behavior. **We divide our results based on the back-
 435 bone base model used for the generation.** When applied to SDXL (Podell et al., 2023) our method
 436 still achieves significant improvements, even though SDXL is an inherently less capable and less
 437 diverse base model than SD3.5, our method still produces improvements. This variant also outper-
 438 forms C3-SDXL across novelty and diversity metrics while maintaining comparable validity scores.
 439 **This demonstrates that our method promotes creative exploration regardless of the base model.** Our
 440 method using SD3.5+Qwen2.5-3B and SD3.5+BLIP-2 achieves the best balance across all three
 441 creativity dimensions, leading in novelty and diversity, and maintaining competitive validity, while
 442 other methods either sacrifice creativity for validity or vice versa. The design variants we evaluate
 443 under-perform our dynamic, per-step, per-seed approach, highlighting the importance of both tim-
 444 ing and seed-specific guidance. A no-accumulation variant also trails our method, indicating that
 445 remembering previously discovered negatives is beneficial. Notably, while ConceptLab achieves
 446 the highest CLIP score, it shows the lowest GPT verification score. This happens because their
 447 optimization process maximizes the CLIP-space distance from negative concepts but can produce
 448 adversarial examples that satisfy mathematical constraints without maintaining semantic validity.
 449 This manifests as objects that technically align with CLIP embeddings but fail human and GPT-4
 450 verification as functional category members (e.g., cups without cavities and sofas without seating
 451 surfaces). In contrast, our method maintains the highest performance across all three evaluation
 452 dimensions: “validity”, “diversity”, and “novelty”. **The caption regeneration experiment demonstrates
 453 a limitation of pre-determined prompting: we used Qwen2.5-VL (Bai et al., 2025) to generate de-
 454 tailed captions of our creative images, then attempted to regenerate those images from the captions
 455 alone. Despite having detailed descriptions of creative objects, explicitly prompting for creativity,
 456 the regenerated images show substantially lower novelty and validity scores. This demonstrates that
 457 even very detailed text prompts cannot replicate the creative exploration achieved by our adaptive
 458 guidance approach.**

459 **GPT Novelty Score** In Figure 9, we present the distribution of subcategories classified with GPT-
 460 4o over 100 images of pets generated with ConceptLab, C3, Creative Prompting, and Our VLM-
 461 Guided method. While Creative Prompting and C3 generate recognizable dogs and cats, with Con-
 462 ceptLab exhibiting intermediate behavior, our approach primarily produces unknown or unclassifi-
 463 able pets, approximately 87%, demonstrating our method’s ability to avoid known subcategories.

464 4.5 USE CASES

465 **Diverse scenarios.** Our method generates
 466 novel objects within semantic categories and
 467 can be used for practical applications by plac-
 468 ing these objects in diverse contexts and scenes.
 469 Recent controllable generation models like
 470 Flux.1-dev Kontext (Black Forest Labs, 2025)
 471 enable users to take our creatively generated
 472 objects and seamlessly integrate them into vari-
 473 ous environments while preserving their unique
 474 characteristics. **Interestingly, we found that this**
 475 **approach achieves better consistency compared**
 476 **to ConceptLab’s method of integrating opti-
 477 mized tokens into different prompts. We show**
 478 **an example of this phenomenon in Figure 10.**
 479 **Each building that is generated by reusing the**
 480 **textual token is different than the other. On the other hand, using Flux-Kontext our creative building**
 481 **looks consistent throughout the scenes.**

482 **Complex prompts.** Figure 11 displays how
 483 our VLM-guided approach seamlessly inte-
 484 grates with elaborate prompt descriptions, “A
 485 photo of an imaginary pet surfing on a board
 near an island”, “A photo of a new type of plant

Figure 10: Creative object in different scenes. Left column: Novel objects generated by our VLM-guided method and reused with Flux-Kontext (Black Forest Labs, 2025) (top row) and ConceptLab (bottom row).

Figure 11: Creative objects presented in a complex environment described by the prompt.

blooming in an arctic field next to penguins”, “A photo of a woman wearing a creative jacket in a french cafè” and “A photo of a new type of fruit sliced on a ceramic plate”, enabling creative exploration even within complex requirements.

The adaptive negative prompting mechanism operates orthogonally to these additional constraints, it identifies and steers away from conventional modes of the requested object described as “creative”, while respecting the stylistic and compositional requirements specified in the prompt. To evaluate our method’s controllability, we constructed a benchmark of 200 diverse complex prompts spanning categories such as animals, plants, fashion, and food, each embedding creative elements within elaborate scene descriptions (e.g., “A photo of a creative insect resting on a dew-covered leaf in a quiet morning meadow”). We evaluate prompt adherence and perceptual quality using VIEscore (Visual Instruction-guided Explainable) scores (Ku et al., 2024). As shown in Table 2, our method achieves higher VIE-SC scores compared to creative prompting with SD3.5 alone, while maintaining comparable perceptual quality (VIE-PQ). This demonstrates that our adaptive negative prompting generates central objects while respecting complex scene descriptions and compositional constraints which aligns better with the prompt requesting for creativity. Full benchmark construction details and automated question generation methodology are provided in Appendix F.6.

Beyond single objects. Our method extends naturally from generating individual creative objects to producing coherent sets of related items that share a unified creative vision. By applying our approach to prompts that describe collections e.g., “Creative tea set”, as presented in Figure 12, we demonstrate that our method maintains validity and consistency across multiple objects while exploring creative variations.

5 CONCLUSIONS

We introduced VLM-Guided Adaptive Negative-Prompting, an inference-time method that leverages the strength of vision-language models to dynamically steer diffusion models toward more creative outcomes. By querying a VLM throughout the denoising process and accumulating seed-specific negative prompts, our approach pushes generation away from conventional patterns while preserving categorical coherence. The fact that a VLM is capable of analyzing noisy intermediate states and providing guidance strong enough to redirect the trajectory highlights its potential as a powerful mechanism for creative exploration.

While our VLM-guided approach demonstrates effective creative exploration, several limitations can be addressed in future research. First, our method introduces computational overhead through VLM inference at each timestep, though our ablation studies show this can be reduced to the first 10-15 steps without significant quality loss. Second, the quality of creative outputs depends on the VLM’s ability to identify emerging patterns in noisy intermediate predictions; while we demonstrate robustness across various VLMs, more sophisticated vision-language models generally yield better results. Third, our approach requires careful question design for optimal performance; different question formulations work better for different semantic categories, and automating this selection remains an open challenge.

Looking ahead, we believe that the integration of feedback-driven guidance will open new directions for creativity in generative models, and future work may extend this paradigm to other domains, such as video, 3D, or multimodal content creation.

Method	VIE-SC	VIE-PQ	Total
Creative Prompting	8.992	8.659	8.769
Ours (SD3.5+ViLT)	9.163	8.609	8.848

Table 2: VIE scores on 200 complex prompts.

Figure 12: Creative sets generated by our method demonstrating coherent collections of related objects. Each set exhibits individual creativity in its components while maintaining stylistic and functional consistency across the collection.

540 **Reproducibility Statement** We provide the necessary details to reproduce our results. Algorithmic steps and Hyperparameters (feedback window, frequency f , accumulation, replay variants) are
 541 specified in the main text and Appendix B; evaluation protocols, metrics, and prompts are in Appendix D. We release per-category negative lists (static and accumulated) and the exact question
 542 templates used by the VLM in Appendix A. Random seeds, category splits, and generation counts
 543 are stated in the implementation details (Appendix B). We will release the code of our project in the
 544 near future.

545
 546 **Ethics Statement** Our study involves image generation within broad, non-sensitive categories. We
 547 avoid instructions and outputs that target protected attributes or hazardous content. The user study
 548 (Appendix E) followed institutional guidelines: no personally identifying information was collected,
 549 and data were anonymized and aggregated for analysis. All third-party models and datasets were
 550 used under their respective licenses, and we disclose model choices and prompts (Appendices B
 551 and D). We report compute and runtime to enable the assessment of environmental impact (Appendix
 552 B). No conflicts of interest or external sponsorship influenced the findings.

553
 554 **REFERENCES**

555
 556 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 557 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 558 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 559 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report, 2025.

560
 561 Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Minhao Cheng, Boqing Gong, and Cho-Jui Hsieh.
 562 Understanding the impact of negative prompts: When and how do they take effect? In *European
 563 Conference on Computer Vision*, 2024.

564
 565 Black Forest Labs. Flux.1 tools. Technical report, 2024.

566
 567 Black Forest Labs. Flux.1 kontext: Flow matching for in-context image generation and editing in
 568 latent space, 2025.

569
 570 Margaret A. Boden. Computer models of creativity. *AI Mag.*, 2009.

571
 572 Daniel Cohen-Or and Hao Zhang. From inspired modeling to creative modeling. *Vis. Comput.*,
 573 2016.

574
 575 Sara Dorfman, Dana Cohen-Bar, Rinon Gal, and Daniel Cohen-Or. Ip-composer: Semantic compo-
 576 sition of visual concepts, 2025.

577
 578 Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. Can: Creative ad-
 579 versarial networks generating “art” by learning about styles and deviating from style norms. *8th
 580 International Conference on Computational Creativity, ICCC*, 2017.

581
 582 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 583 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
 584 glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
 585 transformers for high-resolution image synthesis, 2024.

586
 587 Fu Feng, Yucheng Xie, Xu Yang, Jing Wang, and Xin Geng. Redefining ‘creative’ in dictionary:
 588 Towards an enhanced semantic understanding of creative generation, 2024.

589
 590 Fu Feng, Yucheng Xie, Xu Yang, Jing Wang, and Xin Geng. Distribution-conditional generation:
 591 From class distribution to creative generation, 2025.

592
 593 Dan Friedman and Adji Boussou Dieng. The vendi score: A diversity evaluation metric for machine
 594 learning. In *Transactions on Machine Learning Research*, 2022.

595
 596 Jiyeon Han, Dahee Kwon, Gayoung Lee, Junho Kim, and Jaesik Choi. Enhancing creative gen-
 597 eration on stable diffusion-based models. In *Proceedings of the Computer Vision and Pattern
 598 Recognition Conference*, 2025.

599
 600 Aaron Hertzmann. Can computers create art? *Arts*, 2018.

594 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS Workshop on Deep*
 595 *Generative Models and Downstream Applications*, 2021.
 596

597 Zorana Ivcevic and Mike Grandinetti. Artificial intelligence as a tool for creativity. *Journal of*
 598 *Creativity*, 2024.

599 Mason Kamb and Surya Ganguli. An analytic theory of creativity in convolutional diffusion models,
 600 2025. URL <https://arxiv.org/abs/2412.20292>.

602 Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-and-language transformer without convo-
 603 lution or region supervision, 2021. URL <https://arxiv.org/abs/2102.03334>.

604 Max Ku, Dongfu Jiang, Cong Wei, Xiang Yue, and Wenhui Chen. Viescore: Towards explainable
 605 metrics for conditional image synthesis evaluation, 2024. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2312.14867)
 606 2312.14867.

608 Carolyn Lamb, Daniel G. Brown, and Charles L. A. Clarke. Evaluating computational creativity:
 609 An interdisciplinary tutorial. *ACM Comput. Surv.*, 2018.

610

611 Jun Li, Zedong Zhang, and Jian Yang. *TP2O: Creative Text Pair-to-Object Generation Using Bal-*
 612 *ance Swap-Sampling*. Springer Nature Switzerland, 2024.

613 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 614 training for unified vision-language understanding and generation, 2022.

615 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 616 pre-training with frozen image encoders and large language models, 2023.

617

618 Jun Hao Liew, Hanshu Yan, Daquan Zhou, and Jiashi Feng. Magicmix: Semantic mixing with
 619 diffusion models. *arXiv preprint arXiv:2210.16056*, 2022.

620

621 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
 622 ing for generative modeling. In *The Eleventh International Conference on Learning Representa-*
 623 *tions*, 2023.

624

625 Jack Lu, Ryan Teehan, and Mengye Ren. Procreate, don't reproduce! propulsive energy diffusion
 626 for creative generation, 2024. URL <https://arxiv.org/abs/2408.02226>.

627 OpenAI. Gpt-4o system card, 2024. URL <https://arxiv.org/abs/2410.21276>.

628

629 OpenAI. Introducing openai o3 and o4-mini. Technical report, 2025.

630

631 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 632 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 633 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.

634

635 Anton Razzhigaev, Arseniy Shakhmatov, Anastasia Maltseva, Vladimir Arkhipkin, Igor Pavlov, Ilya
 636 Ryabov, Angelina Kuts, Alexander Panchenko, Andrey Kuznetsov, and Denis Dimitrov. Kandin-
 637 sky: an improved text-to-image synthesis with image prior and latent diffusion, 2023. URL
 638 <https://arxiv.org/abs/2310.03502>.

639

640 Elad Richardson, Kfir Goldberg, Yuval Alaluf, and Daniel Cohen-Or. Conceptlab: Creative concept
 641 generation using vlm-guided diffusion prior constraints. *ACM Transactions on Graphics*, 2024.

642

643 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
 644 yar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim Sal-
 645 imans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image dif-
 646 fusion models with deep language understanding, 2022. URL [https://arxiv.org/abs/](https://arxiv.org/abs/2205.11487)
 647 2205.11487.

648

649 Othman Sbai, Mohamed Elhoseiny, Antoine Bordes, Yann LeCun, and Camille Couprie. *DesIGN:*
 650 *Design Inspiration from Generative Networks*. 2019.

648 Kulin Shah, Alkis Kalavasis, Adam R. Klivans, and Giannis Daras. Does generation require mem-
649 orization? creative diffusion models using ambient diffusion, 2025. URL <https://arxiv.org/abs/2502.21278>.
650

651 Karl Sims. Artificial evolution for computer graphics. In *Proceedings of the 18th Annual Conference*
652 *on Computer Graphics and Interactive Techniques*, SIGGRAPH '91, 1991.
653

654 Karl Sims. Evolving virtual creatures. In *Proceedings of the 21st Annual Conference on Computer*
655 *Graphics and Interactive Techniques*, SIGGRAPH '94. Association for Computing Machinery,
656 1994.
657

658 Zhida Sun, Zhenyao Zhang, Yue Zhang, Min Lu, Dani Lischinski, Daniel Cohen-Or, and Hui Huang.
659 Creative blends of visual concepts. In *Proceedings of the 2025 CHI Conference on Human Factors*
660 *in Computing Systems*, pp. 1–17, 2025.
661

662 Kevin Turner. Decoding latents to rgb without upscaling. [https://discuss.huggingface.co/t/decoding-
663 latents-to-rgb-without-upscaling/23204](https://discuss.huggingface.co/t/decoding-latents-to-rgb-without-upscaling/23204), 2022.
664

665 Timothy Alexis Vass. Explaining the sdxl latent space. Technical report, 2024.
666

667 Kai Xu, Daniel Cohen-Or, and Baoquan Chen. Fit and diverse: set evolution for inspiring 3d shape
668 galleries. *ACM Transactions on Graphics*, 2012.
669

670 Li Yongjun, Li Xinyue, and Wang Lizheng. Generating creativity through chatgpt: an empirical
671 investigation in open innovation platforms. *Information Technology and Management*, 2025.
672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

APPENDIX

This appendix provides comprehensive details supporting our main paper. Section A presents extensive ablation studies. Section B provides technical implementation specifications. Section C extends about the foundations of negative prompting. Section D details the qualitative evaluation framework and the generation process of the evaluated methods. Section F details evaluation metrics. Section E describes our human evaluation protocol.

A ABLATIONS

A.1 NON-ADAPTIVE LLM APPROACH.

Table 3: Exact GPT-4o lists used as $p_{\text{neg}}^{\text{LLM}}$ for the Jacket category in Figure 8.

$N=10$	$N=15$	$N=28$
bomber, biker,	bomber, biker,	bomber, biker,
trucke, parka,	trucke, parka,	trucke, parka,
puffer, blazer,	puffer, blazer,	puffer, blazer,
varsity, trench,	varsity, trench,	varsity, trench,
anorak, field	anorak, field,	anorak, field,
	harrington, peacoat,	harrington, peacoat,
	safari, quilted,	safari, quilted,
	windbreaker	windbreaker, denim,
		leather, fleece,
		rain, down, coach,
		double breasted,
		chore, utility,
		cagoule, car,
		duffle, mac

Table 4: Exact GPT-4o lists used as $p_{\text{neg}}^{\text{LLM}}$ for the Sofa category in Figure 8.

$N=10$	$N=15$	$N=28$
sectional, loveseat,	sectional, loveseat,	sectional, loveseat,
chaise, recliner,	chaise, recliner,	chaise, recliner,
futon, sleeper,	futon, sleeper,	futon, sleeper,
modular, tuxedo,	modular, tuxedo,	modular, tuxedo,
chesterfield,	chesterfield,	chesterfield,
camelback	camelback, lawson,	camelback, lawson,
	midcentury,	midcentury,
	slipcovered, daybed,	slipcovered, daybed,
	settee	settee, track arm,
		roll arm, armless,
		curved, divan,
		sofa bed, pit,
		pallet, reclining,
		convertible, chaise
		end, bench, ottoman

We used GPT-4o (OpenAI, 2024) to generate lists of common sub-categories for each creative prompt at several sizes $N \in [10, 15, 28]$. For instance, given the prompt “A photo of a creative jacket”, we asked GPT-4o: “List the N most common types of jackets. A single list, separated by commas. Each description is a single word”. A typical result is: “bomber, biker, trucker ...”. We then formatted the list as a static negative prompt $p_{\text{neg}}^{\text{LLM}}$ and applied it uniformly throughout the entire denoising process $p_{\text{neg}}^{(0)} = p_{\text{neg}}^{(1)} = \dots = p_{\text{neg}}^{(T)} = p_{\text{neg}}^{\text{LLM}}$. As shown in Figure 8, this approach produces less creative results compared to our dynamic method. For example, in the second row, our generated jacket features smooth, cloud-like spherical ornaments that are atypical for jackets, whereas LLM-based lists yield colorful yet conventional wool or fabric designs and do not portray creative ornaments. We attribute this to the lack of alignment between the static, seed-independent

756 LLM-generated list and the actual generative trajectory. Such prompts cannot account for the spe-
 757 cific visual patterns that emerge during the denoising process, nor for those encoded in the sampled
 758 initial noise. While the LLM provides semantically reasonable negative concepts, it lacks the visual
 759 awareness to recognize which particular modes are being generated from the specific sampled noise
 760 at each timestep, resulting in generic rather than targeted steering.

761 A.2 NON-DYNAMIC REPLAY APPROACHES.

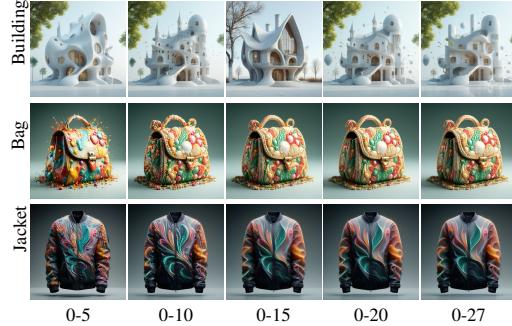
762 To isolate the importance of the dynamic process, we tested whether the accumulated negative
 763 prompts from our full dynamic negatives list could be replayed statically from the beginning of
 764 the generation. In this experiment, we first ran our complete dynamic method to generate the final
 765 accumulated negative prompt $p_{neg}^T = \bigcup_{t=1}^T p_{neg}^{(t)}$ for a given seed, then used this pre-accumulated
 766 prompt uniformly throughout a fresh denoising process: $p_{neg}^{(t)} = p_{neg}^{(T)}$ for all timesteps $t \in [0, T]$.
 767 Despite using the same negative concepts that our dynamic method accumulates, this static applica-
 768 tion produces less creative results. For example, the bag in Figure 8 in the last row generated with
 769 the adaptive method has flower ornaments and a unique shape while the bag under the “Replay (Per-
 770 Seed)” column looks like a regular plastic bag. This demonstrates that timing and responsiveness to
 771 emerging visual patterns are crucial; the same negative prompts, when applied at the wrong times,
 772 fail to provide effective steering. The dynamic nature of our approach, which introduces negative
 773 concepts precisely when the corresponding visual patterns begin to emerge, is essential for suc-
 774 cessful creative exploration. We further investigate whether negative prompts can be reused across
 775 different generation seeds to reduce computational overhead. We collected accumulated negative
 776 prompts $p_{neg}^{(T)}$ from successful creative generations and applied them to random seeds while main-
 777 taining the same positive prompt. This cross-seed reuse consistently produces suboptimal results,
 778 emphasizing that each generation seed follows a unique trajectory through the semantic space and
 779 requires its own adaptive negative prompting strategy. When the VLM’s analysis of intermediate
 780 predictions $\hat{x}_0^{(t)}$ is tailored to the specific seed’s denoising path, we achieve superior creative results,
 781 as shown in Figure 8 under the column “Replay (Cross-Seed)”. For example, the bag in the last row
 782 under the “Replay (Cross-Seed)” column looks like a regular paper bag compared to our unique bag
 783 design. This finding reinforces the notion that the effectiveness of our method stems from its ability
 784 to provide adaptive, trajectory-specific guidance rather than applying generic steering patterns.

785 A.3 NON-ACCUMULATING APPROACH.

786 Next, we explore the importance of our accu-
 787 mulation strategy. To test its contribution, we
 788 modify our approach to use only the current
 789 VLM response as the negative prompt at each
 790 timestep. Specifically, we replace the negative
 791 prompt with $p_{neg}^{(t)} = r^{(t)}$ for each $t \in [0, T]$,
 792 discarding all previously accumulated infor-
 793 mation. This non-accumulating variant, shown in
 794 Figure 8 under the column “No Accumulation”,
 795 fails to maintain a memory of previously iden-
 796 tified conventional modes, allowing the genera-
 797 tion to cycle back toward familiar patterns that
 798 were detected and should have been avoided in
 799 earlier denoising steps. For example, the build-
 800 ing in the first row under the column “No Ac-
 801 cumulation” remains similar to the SD3.5 base-
 802 line building, whereas our method produces a
 803 unique, asymmetrically shaped building. For a fair comparison, the VLM query is identical across
 804 methods: at every timestep, we ask “What type of bag is this?”.

805 A.4 Timesteps Analysis.

806 Our method introduces VLM evaluations at each denoising timestep, which un-
 807 avoidably increases computational overhead compared to standard diffusion sam-



808 Figure 13: Effect of limiting VLM guidance to different
 809 ranges of denoising timesteps. Columns correspond to
 applying our method during only the first 5, 10, 15, 20,
 or all 27 timesteps, while rows show results for Build-
 ing, Bag, and Jacket categories.

810 Table 5: Exact GPT-4o lists used as $p_{\text{neg}}^{\text{LLM}}$ for all categories in the LLM ablation study presented in Table 1.
811

812 Category	813 $N=10$	814 $N=15$	815 $N=28$
816 Pet	817 dog, cat, fish, 818 bird, rabbit, 819 hamster, guinea 820 pig, turtle, lizard, 821 snake	822 dog, cat, fish, 823 bird, rabbit, 824 hamster, guinea 825 pig, turtle, lizard, 826 snake, parrot, 827 ferret, chinchilla, 828 hedgehog, tarantula	829 dog, cat, fish, 830 bird, rabbit, 831 hamster, guinea 832 pig, turtle, lizard, 833 snake, parrot, 834 ferret, chinchilla, 835 hedgehog, tarantula 836 gecko, bearded 837 dragon, cockatiel, 838 budgerigar, finch, 839 tortoise, newt, 840 axolotl, hermit 841 crab, dwarf hamster, 842 betta, goldfish, 843 lovebird
844 Plant	845 tree, shrub, grass, 846 fern, moss, cactus, 847 succulent, vine, 848 herb, flower	849 tree, shrub, grass, 850 fern, moss, cactus, 851 succulent, vine, 852 herb, flower, palm, 853 orchid, bamboo, 854 lily, rose	855 tree, shrub, grass, 856 fern, moss, cactus, 857 succulent, vine, 858 herb, flower, palm, 859 orchid, bamboo, 860 lily, rose, tulip, 861 daisy, sunflower, 862 maple, oak, pine, 863 conifer, broadleaf, 864 evergreen, 865 deciduous, ivy, 866 sedge, reed
867 Garment	868 shirt, dress, pants, 869 skirt, jacket, coat, 870 sweater, hoodie, 871 t-shirt, blouse	872 shirt, dress, pants, 873 skirt, jacket, coat, 874 sweater, hoodie, 875 t-shirt, blouse, 876 jeans, shorts, suit, 877 cardigan, jumpsuit	878 shirt, dress, pants, 879 skirt, jacket, coat, 880 sweater, hoodie, 881 t-shirt, blouse, 882 jeans, shorts, suit, 883 cardigan, jumpsuit, 884 blazer, trenchcoat, 885 parka, raincoat, 886 overcoat, waistcoat, 887 sweatshirt, 888 tracksuit, leggings, 889 chinos, dungarees, 890 kimono, sari
892 Vehicle	893 car, truck, bus, 894 van, motorcycle, 895 bicycle, scooter, 896 train, tram, subway	897 car, truck, bus, 898 van, motorcycle, 899 bicycle, scooter, 900 train, tram, subway, 901 boat, ship, ferry, 902 airplane, helicopter	903 car, truck, bus, 904 van, motorcycle, 905 bicycle, scooter, 906 train, tram, 907 subway, boat, ship, 908 ferry, airplane, 909 helicopter, yacht, 910 canoe, kayak, 911 jet, glider, 912 seaplane, submarine, 913 hovercraft, 914 snowmobile, atv, 915 forklift, tractor, 916 bulldozer

864

Table 6: Accumulated lists reused for static application in Fig. 8.

865

866

867

868

869

870

871

872

pling. To improve practical efficiency, we analyze the minimum number of VLM queries can be reduced without compromising creative quality. Specifically, we analyze the minimum number of timesteps requiring VLM intervention to achieve effective creative steering. As shown in Figure 13, applying VLM guidance during only the first 10 to 15 timesteps sufficiently steers generation toward creative outputs. This efficiency results from the momentum effect described in (Ban et al., 2024) and explained in our Section 2, where early negative prompt accumulation establishes persistent creative trajectories that continue throughout the remaining denoising process. This finding enables improved computational efficiency, making our approach more practical for real-world deployment. For all methods in this analysis, the VLM query is identical and fixed at every queried step: “What is the style of the [category]?”.

A.5 POSITIVE PROMPT SELECTION.

Our approach demonstrates flexibility in positive prompt formulation, accepting various creativity-indicating phrases such as “creative”, “innovative”, “new”, “novel”, “unique”, and other similar terms to produce creative outputs. Our VLM-guided approach works effectively even with ambiguous positive prompts, such as “a new type of...”. As demonstrated in Figure 14, different formulations of creative prompts yield diverse creative outputs while maintaining the fundamental steering behavior and the effectiveness of our method as well as validity. When the indicative adjective is removed entirely from the positive prompt (e.g., using simply “A photo of [obj]”), the resulting images are diverse and aesthetically pleasing; however, they lack the creative qualities that distinguish our method.

A.6 ROBUSTNESS TO VLM MODEL SELECTION.

Our method demonstrates robustness across a variety of Vision-Language Models that differ in architecture, training data, model size, and capabilities. As shown in Figure 15, we successfully achieve creative outputs using models ranging from lightweight options such as ViLT (Kim et al., 2021) and BLIP-1 (Li et al., 2022) to more sophisticated models like BLIP-2 (Li et al., 2023), Qwen2.5 (Bai et al., 2025), and GPT-4o (OpenAI, 2024). While more capable VLMs generally produce higher quality creative results, the consistent creative steering behavior across different

Category	Accumulated negative list
Building	brick, regular building, glass, modern, skyscraper, concrete, moderne, modernist, futuristic, curved
Bag	tote, satchel, hobo, backpack, clutch, messenger, crossbody, duffel, bucket, wristlet

Figure 14: Effect of positive prompt wording on creative generation using our method. Columns correspond to alternative prompt formulations (“New type”, “Innovative”, “Unique”, “Creative” and simply “A photo of a [category]”), while rows show results for different semantic categories. Across categories, our approach produces diverse and imaginative outputs.

Figure 15: Comparison of outputs when guiding our method with different Vision-Language Models (VLMs). Columns correspond to GPT-4o (OpenAI, 2024), Qwen2.5 (Bai et al., 2025), BLIP-2 (Li et al., 2023), BLIP-1 (Li et al., 2022), and ViLT (Kim et al., 2021), while rows show three semantic categories: Unique Building, New Pet, and Creative Jacket. Across models, our approach consistently produces creative and coherent results, with stronger VLMs generally yielding more novelty, demonstrating robustness of the method to the choice of VLM.

918 model choices validates the generalization capabilities of our approach. This robustness ensures
 919 that practitioners can select VLMs based on their specific computational constraints and quality
 920 requirements while maintaining the fundamental creative exploration functionality. For all methods
 921 in this analysis, the VLM query is identical and fixed at every queried step: “What type of [category]
 922 is this?”.
 923

924 A.7 QUESTION DESIGN FOR CREATIVE EXPLORATION.

925
 926 The choice of question formulation is a critical
 927 design parameter that determines which
 928 visual features are identified and which are
 929 steered away from, directly influencing the creative
 930 output. Based on our empirical findings,
 931 we recommend object-focused questions (e.g.,
 932 “What is the main object in this image?”) for
 933 generating “new types” of variations within
 934 familiar categories(animals, furniture, buildings,
 935 etc.). Style or attribute focused questions (e.g.,
 936 “What is the style/design/texture/material in
 937 this image?”) are optimal for aesthetic novelty
 938 and creativity while preserving category coherence.
 939 Figure 16 presents the variations of the
 940 question $q^{(t)}$ choice and the direct influence on
 941 the output. For example, when the VLM is
 942 prompted about materials, the bag output trans-
 943 forms from regular leather to a knitted, colorful
 944 material.
 945

946 A.8 VLM PREDICTION ANALYSIS.

947 To understand how our VLM-guided approach
 948 effectively steers generation despite operating
 949 on noisy intermediate predictions, we analyze
 950 the VLM’s ability to identify emerging semantic
 951 patterns throughout the denoising process.
 952 We examine the correlation between VLM pre-
 953 dictions on early, blurry \hat{x}_0 estimates and the
 954 final generated content across timesteps 0 to
 955 27. Figure 17 shows that VLM correlation
 956 rapidly increases during the initial denoising
 957 steps, reaching approximately 90% within the
 958 first 3 to 5 timesteps, despite the highly noisy
 959 nature of the early predictions. The high corre-
 960 lation between early VLM predictions and final
 961 outputs validates our approach of accumulating
 962 negative prompts from the beginning of the denoising
 963 process, as the predictions of the VLM are
 964 meaningful even under noisy conditions.
 965

966 A.9 CREATIVE CAPTION GENERATION

967 To investigate whether detailed text descriptions that prompt for creativity can reproduce our results,
 968 we conducted the following experiment: we used Qwen2.5-VL (Bai et al., 2025) to generate captions
 969 for each image we used in our main quantitative experiment (Table 1), i.e., 400 images in total. The
 970 prompt to Qwen2.5 we used is “Give a detailed caption to the image”. We then used SD3.5 to
 971 generate new images from these detailed captions. This experiment evaluates empirically whether a
 972 sufficiently detailed human-written (or VLM-written) prompt can achieve the same creative results
 973 as our adaptive negative prompting approach. As shown in Table 1, the results of the captions
 974 regeneration are less diverse, novel and decrease in validity.

Figure 16: Effect of the VLM question design on creative generation. Rows correspond to three semantic categories. The first column shows a Stable Diffusion 3.5 baseline. The remaining columns apply our VLM-Guided Adaptive Negative-Prompting while asking the VLM about (i) the material, (ii) the dominant colors, (iii) the object’s shape, and (iv) its design.

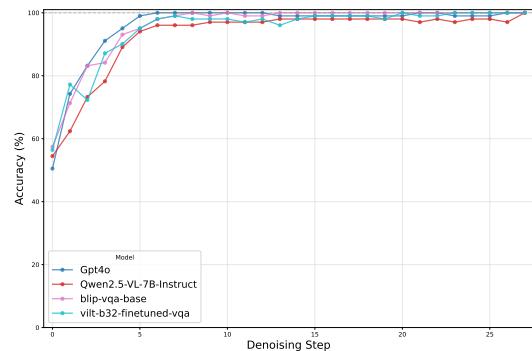


Figure 17: Correlation between the VLM answers across different timesteps and the final generated image

18

972 **B IMPLEMENTATION DETAILS**
973974 Unless noted, experiments use SD3.5 large, 28 steps and classifier-free guidance (CFG) 4.5. The
975 default VLM is Qwen2.5-VL-3B-Instruct; we also support BLIP2 (Li et al., 2023), BLIP1 (Li et al.,
976 2022), ViLT (Kim et al., 2021), and GPT-4o (OpenAI, 2024). We run on a single NVIDIA A40, at
977 1024×1024 resolution.978 **B.1 VLM FEEDBACK WINDOW.**
979980 We allow the user to query the VLM over a predefined window of steps to minimize overhead. Let
981 t_{start} and t_{stop} be the step indices when both are provided; otherwise, they are set by default to 0
982 and 28. Within this window we query at a fixed frequency f . The default is set to $f = 1$ (every
983 step), but users may increase f to reduce calls (e.g., every 2 or 4 steps). The feedback window and
984 frequency integrate directly into our guidance loop; see 3 for how VLM answers are accumulated
985 and applied.986 **B.2 ADAPTIVE NEGATIVE PROMPTING CONSTRUCTION.**
987988 At each step $t \in [0, T]$, we decode \hat{x}_0 to RGB and ask a set of questions $\{q_i\}^{(t)}$. We then apply a
989 light normalizer: remove unwanted prefixes, e.g., “it looks like”, drop leading articles, and collapse
990 whitespace and punctuation. We maintain a single negative prompt string, containing a list of \mathcal{N}
991 negatives with: (i) case-insensitive deduplication, (ii) re-encoding only when \mathcal{N} changes, and (iii)
992 all the negatives are separated by commas. During the VLM feedback window, we update the
993 negative half of the CFG embedding pair from the comma-joined string of \mathcal{N} negatives and keep the
994 positive half unchanged. When leaving the VLM feedback window, we clear the negative prompt
995 and replace it with an empty string.996 **B.3 DECODING \hat{x}_0 : VAE VS. LINEAR APPROXIMATION.**
997998 The diffusion model operates in latent space. Therefore, obtaining clean image predictions \hat{x}_0 for
999 input to the VLM requires passing them through the VAE decoder, which is costly at every denoising
1000 step. Prior works (Vass, 2024; Turner, 2022) have empirically shown that the decoders of common
1001 text-to-image diffusion models can be well-approximated by a linear transformation, enabling sig-
1002 nificant acceleration of the decoding process. For example, Vass (2024) showed that, in the case of
1003 SDXL, this linear transformation can be expressed by the matrix:

1004
1005
$$w = \begin{bmatrix} 60 & -60 & 25 & -70 \\ 60 & -5 & 15 & -50 \\ 60 & 10 & -5 & -35 \end{bmatrix}.$$

1006

1007 A similar linear transformation can be applied to SD3.5 with a different weight matrix. In our
1008 method, using this linear approximation yields creative results comparable to those obtained with
1009 the full decoder, while substantially reducing computational overhead.1010 **B.4 FULL RUNTIME ANALYSIS.**
10111012 Our method adds only modest overhead in the lightweight-VLM regimes (ViLT/BLIP-1/BLIP-2),
1013 and reducing the amount of querying offers a simple, effective way to trade compute for guidance
1014 strength.1015 **B.5 VLM-QUERYING AUTOMATION**
10161017 To make our method as easy to use as standard text-conditioned diffusion generation, we added the
1018 option for automated question generation. The user passes a creative prompt (e.g., “A photo of a
1019 creative animal”) as an argument to the model, and an LLM (GPT-4o (OpenAI, 2024)) automatically
1020 generates VLM queries without manual tuning. The pipeline consists of three steps: first, we extract
1021 the main object we aim to focus on from the positive prompt, i.e., we will extract “[animal]” in
1022 this example. Then, we provide the LLM with the analysis we conducted on the question design
1023 as context. The LLM is requested to generate similar questions appropriate for the specific main
1024 object. We then pass those questions as an argument to our creative-generation pipeline.

1026 Table 7: Runtime with VLM-in-the-loop guidance. Total seconds for SD3.5-large single-image generation
 1027 when querying different VLM oracles at either every denoising step (28) or only the early steps (15). The
 1028 baseline performs no VLM queries. All runs use the same prompt and seed.

VLM	Steps	Runtime (Seconds)
Baseline No VLM	28	22
ViLT	28	35
	15	29
BLIP-1	28	36
	15	30
BLIP-2	28	43
	15	33
Qwen2.5-3B	28	71
	15	56

B.6 COMPLEX-PROMPTS BENCHMARK

To quantitatively evaluate controllability in complex scenarios, we created a benchmark of 200 diverse prompts that test whether our method can maintain prompt adherence while modifying only the central objects to be creative. To construct such benchmark we prompted GPT-4o to provide with 200 diverse object categories, similar to those present in the paper (for example, animals, hairstyles, accessories, etc.). Each prompt follows the template “A photo of a [creative/innovative/new type of/novel/unique] [main object] [scene description]”. The template was filled by GPT-4o, according to the query “Write a prompt using the template: A photo of a [creative/innovative/new type of/novel/unique] [main object] [scene description]. Choose an appropriate creativity indicator from the list [creative/innovative/new type of/novel/unique], and place the object in logically feasible scene. Describe it briefly.” For each prompt we generated an automatic questions list using the method described in the previous section.

Example Prompts: “A photo of an imaginary pet resting inside a terrarium filled with miniature plants.”, “A photo of a creative hairstyle showcased on a model standing in a sunlit desert landscape.” “A photo of a creative insect resting on a dew-covered leaf in a quiet morning meadow.”

C EXTENDED RELATED WORK

Negative Prompting Thus, negative prompting does not merely “subtract words”; it linearly recombines two conditional predictions inside the denoiser. Recent work by Ban et al. (2024) reveals insights into negative prompt behavior. Their main finding shows that the negative prompt causes target objects to be generated to cancel the contributions of the positive prompt through subtraction. They identify two key phenomena regarding negative prompting: the *Inducing Effect* occurs when negative prompts create stronger guidance toward unwanted concepts than positive prompts do, paradoxically generating the content that is meant to be avoided. The *Momentum Effect* shows that sequential noise estimates maintain a high correlation, causing established trajectories to persist through subsequent denoising steps. Building on these insights, we utilize negative prompting for our creative exploration task. However, it differs fundamentally from the object removal task described in (Ban et al., 2024), where the Inducing Effect is problematic. In creative generation, this effect can beneficially push exploration toward unexplored visual modes. The Momentum Effect ensures that once creative trajectories are established through our accumulated negative prompts, they persist throughout the remaining denoising process, maintaining consistent steering away from conventional modes and encouraging exploratory creativity within the target semantic category.

D QUALITATIVE EVALUATION FRAMEWORK

For a fair evaluation, we adopt each baseline’s evaluation setting including their prompts, models and experimental protocols. Specifically, we use their original prompts: “a creative [obj]” for C3 and “Professional high quality photo of a new type of [obj]. photorealistic, HQ, 4k” for Concept-

1080
 1081 Lab. We also integrate our method into their respective models: SDXL (Podell et al., 2023) for C3
 1082 and Kandinsky 2.1 (Razzhigaev et al., 2023) for ConceptLab. We note that ConceptLab’s method
 1083 leverages Kandinsky’s Diffusion Prior model, which their optimization process specifically requires
 1084 for learning creative concepts in the prior’s output space (Richardson et al., 2024). To ensure direct
 1085 comparability, we integrate our method into each baseline’s model and generate samples using iden-
 1086 tical seeds. Additionally, we showcase our method’s full potential using Stable Diffusion 3.5 (Esser
 1087 et al., 2024), demonstrating superior creative generation with state-of-the-art architectures.
 1088

E USER STUDY

1090 Participants view pairwise comparisons of images generated from the same broad category (e.g.,
 1091 “pet”, “building”, “vehicle”). Each comparison shows outputs from our method versus one of the
 1092 four baselines. Creative prompts: SD3.5 and GPT-4o using “A photo of a creative/new type of
 1093 [category]” and creative generation methods: ConceptLab and C3.

1094 Table 8: User study results showing average ratings (1-5 scale) for novelty and category coherence. Our method
 1095 achieves the highest novelty while maintaining strong categorical identity.

Method	Novelty \uparrow	validity \uparrow
SD3.5	1.753	4.886
GPT-4o	2.133	4.785
ConceptLab	3.502	3.950
C3	2.934	3.945
VLM-Guided (Ours)	4.550	4.503

F METRICS AND EVALUATION

F.1 EVALUATION SETUP

1109 The core idea of our evaluation protocol is
 1110 to represent images in the CLIP embedding
 1111 space and compute metrics that characterize
 1112 the resulting distribution. Standard metrics like
 1113 the CLIP score measure one-to-one image-text
 1114 similarity, which is problematic for creativity
 1115 evaluation — creative outputs should deviate
 1116 from typical patterns while maintaining cate-
 1117 gory membership. A creative pet that scores
 1118 lower than a typical cat on CLIP alignment
 1119 might actually represent a more successful cre-
 1120 ative generation. Specifically, we use the fol-
 1121 lowing metrics: (1) For validity assessment, we
 1122 employ the CLIP score and GPT-4o verifica-
 1123 tion to ensure outputs remain recognizable as valid
 1124 category members despite their creative varia-
 1125 tions. Our goal is not to maximize CLIP score
 1126 but to remain relatively close to reference val-
 1127 ues while exploring novel variations; (2) For
 1128 novelty assessment, we compute relative typicality to measure the difference between broad cate-
 1129 gory similarity (e.g., “pet”) and average subcategory similarity (e.g., “cat”, “dog”), ensuring outputs
 1130 avoid conventional modes, alongside GPT-4o Novelty Score which counts how often GPT-4o cannot
 1131 classify the specific type and responds “unknown”; (3) For diversity assessment, we use distribution-
 1132 based metrics (total variance and Vendi score (Friedman & Dieng, 2022)) that quantify the spread
 1133 of creative exploration in the CLIP embedding space.

To evaluate and compare the methods quantitatively, we generate 100 images from four different categories: “pet”, “garment”, “plant” and “vehicle” using our method, C3, ConceptLab, and two

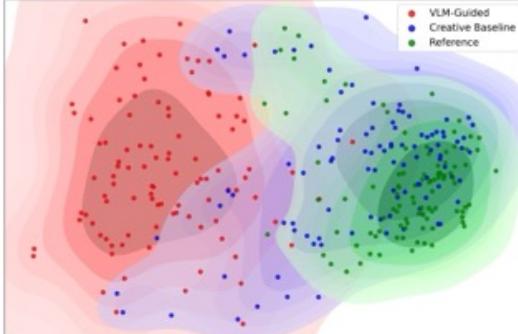


Figure 18: Distribution of fruit CLIP embeddings in 2D PCA space and the Kernel Density Estimation (KDE) of the distributions. Reference images (green): “A photo of a fruit”. Creative baseline (blue): “A photo of a new type of fruit”. Our VLM-guided method (red): explores diverse regions with minimal overlap with reference.

1134 baselines. “Reference” images are generated with SD3.5 from the prompt “A photo of a [category]”
 1135 and “Creative Prompting” uses the prompt “A photo of a creative / new type of [category]”.
 1136

1137 F.2 VISUALIZING THE DISTRIBUTION

1139 We begin by visualizing the resulting distribution in CLIP’s space. To do so, we project embeddings
 1140 to a two dimensional space via PCA. In Figure 18, we visualize the CLIP embedding distributions
 1141 for “Reference”, “Creative Prompting”, and our VLM-guided approach. The background distribu-
 1142 tion is computed on a discrete grid \mathcal{G} of size 50×50 . The density at any point $p \in \mathcal{G}$ is estimated
 1143 using Gaussian KDE. The plot in Figure 18 shows that our approach pushes mass away from typ-
 1144 ical exemplars, while the “Creative Prompting” remains close and overlaps with the “Reference”
 1145 distribution.

1146 F.3 NOVELTY AND DIVERSITY

1149 To quantify deviation from conventional patterns, we employ two complementary metrics: *Relative*
 1150 *Typicality* measures creative deviation from familiar subcategories while maintaining broad category
 1151 coherence. For a generated image we extract a CLIP embedding z_i , using CLIP-ViT-B32, and
 1152 measure the alignment to the broad category text prompt embedding t_c e.g., “A photo of a pet”, and
 1153 subcategory text prompts embeddings e.g., “A photo of a cat”, “A photo of a dog” etc.). Overall, we
 1154 compute:

$$1155 T_{\text{rel}}(z_i) = \text{cosine_similarity}(z_i, t_c) - \max_{j \in \{1, \dots, m\}} \text{cosine_similarity}(z_i, t_s^{(j)}), \quad (4)$$

1157 where t_c is the CLIP text embedding of the broad category prompt and $\{t_s^{(j)}\}_{j=1}^m$ are the embeddings
 1158 of subcategory prompts. Positive values indicate the image aligns more with the broad category than
 1159 with any specific known subcategory, suggesting successful creative generation within the category
 1160 boundaries.

1161 *GPT Novelty Score* quantifies how often GPT-4o cannot identify the specific type of object. We
 1162 query GPT-4o to classify each generated image into known subcategories. The score represents the
 1163 fraction of images classified as “unknown” or unrecognizable variants, directly measuring deviation
 1164 from familiar modes.

1166 *The Vendi score* (Friedman & Dieng, 2022) quantifies diversity through the Shannon entropy of the
 1167 eigenvalues of a normalized similarity matrix. Formally, given a collection of samples $x_1, \dots, x_n \in$
 1168 \mathcal{X} and a positive semi-definite similarity function $k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ with $k(x, x) = 1$, let $K \in \mathbb{R}^{n \times n}$
 1169 denote the kernel matrix with $K_{ij} = k(x_i, x_j)$. The Vendi score is defined as:

$$1170 \text{Vendi}(\mathcal{X}) = \exp \left(- \sum_{i=1}^n \lambda_i \log \lambda_i \right) = \exp \left(- \text{tr} \left(\frac{K}{n} \log \frac{K}{n} \right) \right), \quad (5)$$

1173 where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of K/n , with the convention that $0 \log 0 = 0$. This metric
 1174 can be interpreted as the effective number of dissimilar elements in the sample, ranging from 1 (all
 1175 identical) to n (all maximally distinct).

1177 *Total Variance*, computed as the trace of the covariance matrix $\text{Tr}(\Sigma) = \sum_{i=1}^d \lambda_i$, measures over-
 1178 all variability across all dimensions in the CLIP embedding space. Higher values indicate greater
 1179 dispersion and exploration spread.

1181 F.4 VALIDITY

1183 While diversity and novelty distinguish a creative concept from an existing one, validity ensures that
 1184 it is practical, preventing it from being merely eccentric or nonsensical. We compute the practicality
 1185 of the generated concepts with two metrics, CLIP text-image alignment score and GPT score to
 1186 verify semantic validity.

1187 For the GPT score, we provide GPT-4o with a generated image and ask it, “Is this a [category]?”.
 1188 Then we compute the number of times the answer was yes divided by the overall amount of images.

1188
1189

F.5 SUBCATEGORY SELECTION

1190

For relative typicality computation, we use the following subcategories:

1191

Pet: cat, dog, hamster, rabbit, bird, fish, turtle, mouse, gerbil, insect.

1192

Vehicle: car, truck, motorcycle, bicycle, bus, train, scooter, van, airplane, drone.

1193

Plant: tree, flower, cactus, fern, grass, bush, wildflower, moss, wild mushroom.

1194

Garment: shirt, jacket, dress, pants, coat, sweater, hoodie, socks, underwear.

1195

F.6 VIESCORE

1197

VIEScore (Ku et al., 2024) is an explainable automatic metric for evaluating conditional image generation tasks. Instead of relying on similarity scores alone, it uses a Multi-Modal Large Language Model (MLLM, like GPT-4o (OpenAI, 2024)) to produce both a score and a natural language explanation of the judgment. On seven conditional image tasks, VIEScore with GPT-4o reaches a Spearman correlation of about 0.4 with human ratings (a high correlation value - close to the 0.45 human-to-human agreement). We use VIEScore (Ku et al., 2024) with GPT-4o (OpenAI, 2024) as the base model.

1204

For text-to-image tasks, the metric measures the quality according to two main pillars: first, SC (Semantic Consistency) measures how well the generated image matches the given prompt. This is processed by the MLLM into sub-scores with guiding questions and then combined into a single SC score. Second, PQ (Perceptual Quality) measures how good the image looks visually. It rates things like naturalness, absence of artifacts, distortions, watermarks, and other visual defects, again via sub-scores that are combined into one PQ score. We add an example of the reasoning explanations in Figure 19.

1211

1212

“A photo of an imaginary pet resting inside a terrarium filled with miniature plants.”

1213

Semantic Consistency:

Reasoning: “... it might be argued that a cat could be a common pet and does not heavily emphasize the ‘imaginary’ aspect. Thus, it slightly misses the unique imaginary characteristic.”

Perceptual Quality:

Reasoning: “... The image looks very natural overall with the cat comfortably nestled among the plants...”

Semantic Consistency:

Reasoning: “The image perfectly matches the prompt. It features an imaginary pet ...”

Perceptual Quality:

Reasoning: “... The image appears largely natural, with the exception of the context (an animal in a plant terrarium which is an unusual setup)...”

1234

Figure 19: VIE scorer reasoning for controllable creative generation. Top: SD3.5 baseline generates a common cat, receiving lower semantic consistency for missing the “imaginary” aspect. Bottom: Our method produces a more creative creature that better aligns with the “imaginary pet” prompt specification, achieving higher semantic consistency while maintaining perceptual quality.

1237

1238

G LLM USAGE

1239

1240

Large language models were used exclusively for English language editing and grammatical refinement of the manuscript text. Specifically, we employed LLMs to improve sentence structure, correct

1242 grammatical errors, and enhance clarity of technical descriptions. All research ideation, experimen-
1243 tal design, implementation, analysis, and scientific conclusions were conducted by the authors. The
1244 core technical contributions, methodology, and experimental results represent original work by the
1245 authors.

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295