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CREATIVE GENERATION

Anonymous authors
Paper under double-blind review

pet Chess set sofa

“A photo of a creative …”

 building jacket

Figure 1: Our method generates creative concepts such as novel pets, uniquely designed jackets, and uncon-
ventional buildings by steering the generation away from conventional patterns using a VLM-Guided Adaptive
Negative Prompting process.

ABSTRACT

Creative generation is the synthesis of new, surprising, and valuable samples that
reflect user intent yet cannot be envisioned in advance. This task aims to extend
human imagination, enabling the discovery of visual concepts that exist in the un-
explored spaces between familiar domains. While text-to-image diffusion models
excel at rendering photorealistic scenes that faithfully match user prompts, they
still struggle to generate genuinely novel content. Existing approaches to enhance
generative creativity either rely on interpolation of image features, which restricts
exploration to predefined categories, or require time-intensive procedures such as
embedding optimization or model fine-tuning. We propose VLM-Guided Adap-
tive Negative-Prompting, a training-free, inference-time method that promotes
creative image generation while preserving the validity of the generated object.
Our approach utilizes a vision-language model (VLM) that analyzes intermediate
outputs of the generation process and adaptively steers it away from conventional
visual concepts, encouraging the emergence of novel and surprising outputs. We
evaluate creativity through both novelty and validity, using statistical metrics in
the CLIP embedding space. Through extensive experiments, we show consistent
gains in creative novelty with negligible computational overhead. Moreover, un-
like existing methods that primarily generate single objects, our approach extends
to complex scenarios, such as generating coherent sets of creative objects and pre-
serving creativity within elaborate compositional prompts. Our method integrates
seamlessly into existing diffusion pipelines, offering a practical route to producing
creative outputs that venture beyond the constraints of textual descriptions.

1 INTRODUCTION

A growing body of research (Hertzmann, 2018; Yongjun et al., 2025; Ivcevic & Grandinetti, 2024)
revolves around a somewhat philosophical question: what are creativity and originality, and can
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computers create art? One suggestion by Boden (2009) is to categorize computational creativity
along a spectrum of increasing novelty. At the lowest level, combinatorial creativity produces un-
expected combinations of existing concepts, such as a hybrid creature that merges features of a bee
and a giraffe. Exploratory creativity goes further by discovering new possibilities within a known
domain while maintaining validity, for instance, inventing an animal species with entirely new but
biologically plausible traits. At the highest level, transformational creativity challenges the bound-
aries of existing categories altogether, such as conceiving an organism so unlike current life forms
that it forces us to reconsider the definition of “animal” itself.

Recent advances in text-to-image (T2I) diffusion models have demonstrated strong capabilities in
generating photorealistic images from natural language prompts. These models excel at reproduc-
ing and recombining simple visual concepts from their training data, allowing for combinatorial
creativity to some extent. However, they still struggle with novelty that falls under the category of
exploratory and transformational creativity. This limitation reflects an inherent tension in generative
modeling between mode coverage (i.e., capturing the full distribution), and mode seeking (i.e., gen-
erating high-quality typical samples). For example, a known technique that attempts to navigate this
tradeoff is Classifier-free guidance (CFG). Lower guidance scales increase diversity but compromise
text alignment, while higher scales improve prompt adherence but generate more typical outputs.

GPT-o3 GPT-4o SDXL FLUX SD3.5

Figure 2: Images generated with GPT-o3 (OpenAI,
2025), GPT-4o (OpenAI, 2024), SDXL (Podell et al.,
2023), FLUX-dev (Black Forest Labs, 2024), and
SD3.5 (Esser et al., 2024) using the prompt “Profes-
sional high-quality photo of a new type of pet.”

Our experiments show that simple prompt mod-
ifications fail to produce creative outputs from
current models. As demonstrated in Figure 2,
adding creativity-related terms such as “cre-
ative” or “new type of” produces outputs that
remain similar to conventional pets – like a blue
cat with wings, kittens, dogs, or a ferret-like an-
imal with long ears. On the other hand, our blue
pet, presented in Figure 1, cannot be described
as a combination of known pets.

Existing frameworks for creative generation fall
into two paradigms: combinatorial approaches
that blend predefined concept pairs through
rule-based searches (Li et al., 2024) or learnable tokens (Feng et al., 2024), and exploratory methods
like ConceptLab (Richardson et al., 2024) that optimize textual embeddings to discover novel con-
cepts. Specifically, ConceptLab formulates creative generation as an iterative optimization problem
over a learned textual embedding, minimizing a loss function that balances two objectives: maintain-
ing similarity to a broad target category while maximizing the distance from known subcategories in
the CLIP embedding space. While these demonstrate progress, they require either per-concept opti-
mization procedures, specialized training on curated datasets, or predefined concept specifications,
limiting their practical deployment and scalability.

To address these limitations, we propose VLM-Guided Adaptive Negative-Prompting, a training-
free method that integrates into any diffusion sampler without modifying pretrained weights or re-
quiring curated datasets. Unlike previous approaches, our method operates entirely at inference time
through a closed-loop feedback mechanism (Figure 3). We leverage a lightweight vision-language
model (VLM) to adaptively steer the generation process away from its typical predictions and thus
towards unexplored regions of possible outputs. Our approach utilizes the VLM to analyze interme-
diate denoising predictions at each timestep, identify dominant objects, and adaptively convert these
observations into negative prompts that are integrated into the next denoising step.

Through experiments across multiple VLM models, diffusion pipelines, and human evaluation stud-
ies, we demonstrate consistent improvements in exploratory creativity while maintaining categorical
coherence. Our analysis reveals how adaptive negative prompting guides the denoising trajectories
toward unexplored semantic regions and highlights the importance of VLM feedback during infer-
ence. Through extensive ablation studies, we validate our key design choices, including dynamic
negative prompt accumulation and per-generation adaptation, showing superiority over alternative
approaches. Furthermore, we demonstrate capabilities beyond existing methods, including the gen-
eration of coherent creative sets and the preservation of creativity within complex compositional
prompts, showcasing the versatility of our VLM-guided approach.

2
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2 RELATED WORK

Foundations of Creative Generation The pursuit of extending human imagination with machine
learning has motivated extensive research in computational creativity, from algorithmic design tools
(Cohen-Or & Zhang, 2016; Sims, 1994; 1991; Sun et al., 2025) to theoretical frameworks exam-
ining whether computers can create art or merely serve as sophisticated tools for human artists
(Hertzmann, 2018). Early work, such as Xu et al. (2012), introduced a set-evolution framework for
creative 3D shape modeling by steering the generation towards user-preferred shapes while main-
taining diversity. Other works (Elgammal et al., 2017; Sbai et al., 2019) proposed modifying losses
and training objectives to generate creative art by maximizing deviation from established styles
while minimizing deviation from the general art distribution.

Concept Blending and Combinatorial Creativity A significant portion of computational creativ-
ity involves combinatorial approaches. Some works (Liew et al., 2022; Zhou et al., 2025) leveraged
diffusion models to blend different visual and semantic concepts for the generation of novel outputs.
Dorfman et al. (2025) extended this to multiple visual inputs by crafting composite embeddings,
stitched from the projections of multiple input images onto concept-specific CLIP-subspaces iden-
tified through text. For text-based concept pairs, Li et al. (2024) suggested balance swap-sampling,
which generates creative combinatorial objects by randomly exchanging intrinsic elements of text
embeddings and selecting high-quality combinations based on CLIP distances. Feng et al. (2024)
takes a different approach and re-defines “creativity” as a learnable token. They iteratively sam-
ple diverse text pairs from their proposed dataset to form adaptive prompts and restrictive prompts,
and then optimize the similarity between their respective text embeddings. While these combinato-
rial approaches recombine user-specified concepts, we instead discover novel concepts within broad
categories without predefined targets.

VLM-Guided Creativity Approaches. Recent research leverages Vision-Language Models
(VLMs) to guide creative generation. Feng et al. (2025) uses VLMs to supervise distribution-
conditional generation, enabling multi-class concept blending through a learnable encoder-decoder
framework. While the above approaches focus on combinatorial creativity through concept blend-
ing, Richardson et al. (2024) introduces ConceptLab, which tackles the more challenging task of
exploratory creativity. They formulate the Creative Text-to-Image (CT2I) generation as an opti-
mization process of a learned textual embedding. To prevent convergence to existing concepts,
ConceptLab incorporates a question-answering VLM that adaptively adds new constraints to the
optimization problem. These VLM-guided approaches rely on per-concept optimization procedures
that require multiple iterations and substantial computational resources. Our approach leverages
VLMs as real-time oracles during the denoising process to reduce computational overhead.

Optimization-Free Creative Generation. Han et al. (2025) boosts creativity in Stable Diffusion
by amplifying features during denoising, primarily affecting color and textures. While we share the
goal of optimization-free creativity enhancement, our method operates through dynamic negative
prompting to guide the generation away from conventional semantic patterns rather than amplifying
existing features. The advantage of such optimization-free approaches lies in their immediate appli-
cability to existing models without requiring additional training or complex optimization procedures.

Theory of Creative Generation Recent work has explored creative generation from a more theo-
retical point of view, investigating the relation between memorization and novel sample generation.
Lu et al. (2024) propose a method which improves sample diversity and creativity of diffusion-based
image generative models and to prevent training data reproduction. Shah et al. (2025) investigates
whether creative generation requires memorization, proposing ambient diffusion techniques that re-
duce reliance on reproducing training data while maintaining generation quality. Kamb & Ganguli
(2025) provides theoretical foundations by analyzing creativity mechanisms in convolutional dif-
fusion models, offering formal frameworks for understanding how diffusion models can generate
samples that do not exist in their training distributions.

3 METHOD

Our VLM-Guided Adaptive Negative-Prompting method enhances creative generation in diffusion
models through a closed-loop feedback mechanism that dynamically navigates the denoising process
away from familiar visual patterns. As illustrated in Figure 3, our method monitors the intermediate
denoiser outputs using a Vision-Language Model (VLM), which identifies dominant elements (e.g.,
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“Professional high quality photo of a new type of pet”

“What pet do you 
identify in the 

photo?”

-“Cat” -“Cat, dog”
-“Cat, dog,  
bird, … , hamster”

r(T) ∪ p(T+1)
neg

vθ

𝒱
q(T)

vθ vθ vθ

̂x(T+1)
0 ̂x(T)

0 ̂x(T−1)
0

Figure 3: Overview of our VLM-guided negative prompting method. To generate a creative image (e.g., “new
type of pet”), we sample Gaussian noise and perform an augmented denoising process that maintains an adap-
tive list of negative prompts. At each denoising step, we query a pre-trained Vision-Language Model (VLM) to
identify visual concepts present in the intermediate output and update the list accordingly, steering the denois-
ing process away from them. For example, we add the token “cat” to the accumulating list to shift the denoising
trajectory away from generating an image resembling a cat as well as the previously detected pets.

“cat”) and accumulates them as dynamic negative prompts during the generation process. This
adaptive accumulation refines the guidance signal at each denoising step.

We begin by establishing the necessary background on negative prompting in Section 3.1 and de-
tailing our VLM-guided synthesis strategy in Section 3.2.

3.1 BACKGROUND: DIFFUSION MODELS AND NEGATIVE PROMPTING

Diffusion models generate images by gradually denoising a sample from pure noise xT over a series
of time steps. Latest diffusion models, including Stable Diffusion 3.5 (Esser et al., 2024) used in
our experiments, employ flow matching (Lipman et al., 2023) to generate images through iterative
denoising. Let xt denote the noisy image at timestep t ∈ [T, ..., 0]. In flow matching, the model
learns a velocity field vθ(xt, t, c) conditioned on text embedding c = E(p) derived from prompt p
via text encoder E. The denoising process follows the probability flow ODE: dxt

dt = vθ(xt, t, c).
During sampling, we can estimate the clean image at any timestep using the following equation:

x̂
(t)
0 = xt − t · vθ(xt, t, c) (1)

Classifier-free guidance (CFG) (Ho & Salimans, 2021) improves conditional generation by combin-
ing conditional and unconditional predictions: ṽwθ = vθ(xt, t,∅) +w · (vθ(xt, t, c)− vθ(xt, t,∅)),
where ∅ denotes the unconditional (null) embedding, and w is the guidance scale. When w = 0,
the model generates unconditional samples; as w increases, the model increasingly favors features
aligned with the conditioning text. The guidance operates by amplifying the difference between con-
ditional and unconditional predictions. When w = 0, the model generates unconditional samples.
As w increases, the model increasingly favors features that align with the conditioning text. This
mechanism was naturally extended (Saharia et al., 2022) to negative prompting, in which the model
is explicitly discouraged from generating features associated with a negative prompt pneg . Instead
of subtracting the unconditional prediction, we subtract a negatively conditioned prediction:

v̂wθ = vθ(xt, t, cneg) + w · (vθ(xt, t, cpos)− vθ(xt, t, cneg)) , (2)

where cneg = E(pneg) represents the negative prompt embedding derived from the unwanted con-
cepts pneg . This formulation steers generation away from cneg and toward cpos by amplifying their
differences. We further explain the intuition and the effect of negative prompting in Appendix C.

3.2 VLM-GUIDED ADAPTIVE NEGATIVE PROMPTING

To generate a creative image from a given prompt ppos, we sample initial Gaussian noise xT ∼
N (0, I) and initiate an augmented denoising process in which, at each denoising step, we dynami-
cally steer the generation away from common visual concepts identified through VLM analysis, as
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Positive prompt ppos: “A photo of a creative building”
VLM questions q: “What is the design of the building?”,“What is the shape of the building?”, “What is the building made of?”

Positive prompt ppos: “A photo of a new type of pet”
VLM questions q: “What pet do you identify in the photo?”

Positive prompt ppos: “A photo of a creative bag”
VLM questions q: “What is the design of the bag?”,“What is the bag made of?”, “What is the color of the bag?”

Positive prompt ppos: “A photo of a new type of fruit”
VLM questions q: “What fruit do you identify in the photo?”

Figure 4: Qualitative results of our method across different object categories. In all categories, our method
generates creative shapes and appearances while preserving object semantics. For instance, buildings with
unique forms and textures that retain windows, doors, and balconies, or bags made of varied materials that
remain recognizable as bags.

illustrated in Figure 3. Given the intermediate prediction x̂
(t)
0 , at each timestep t ∈ [0, T ], we query

the VLM to identify the dominant features present in the image. We denote the questioning process
as follows:

r(t) = V
(
x̂
(t)
0 , q(t)

)
, (3)

Where V is the VLM model, q(t) is the question, and r(t) is the VLM response at timestep t. Each
response r(t) is added to a growing set of negative prompts: p(t)neg = p

(t+1)
neg ∪ r(t) with initialization

p
(T )
neg = ∅. This creates a feedback loop where each timestep’s guidance reflects all previously

identified dominant features, progressively steering toward more creative outputs.

Runtime Analysis. Our method adds minimal overhead of 13 seconds when used in the least
efficient setting. Querying ViLT (Kim et al., 2021) for 28 steps while using the SD3.5-large decoder
for x0 predictions takes a total of 35 seconds, compared to 22 seconds for standard SD3.5-large
single image generation. In contrast, (Richardson et al., 2024) requires approximately 8 minutes
to train each concept on a single seed, and C3 requires approximately 30 minutes for amplification
factor search using 10 samples per concept. A full analysis can be found in Appendix B.4.

4 EXPERIMENTS

We comprehensively evaluate our approach through qualitative comparisons with existing creative
generation methods, a user study, and quantitative metrics. We validate our design choices with
extensive ablations examining the necessity of the VLM feedback A.1, seed-specific adaptation
A.2, the accumulation strategy A.3, different positive prompts A.5, robustness to different VLM
models A.6, the effect of question design on the final output A.7, analysis of the VLM response
on blurry predictions A.8, and analysis of the VLM querying frequency Appendices A.4 and B.1.
Finally, we present use cases and practical applications that our approach enables, extending the
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capabilities of previous creativity methods. Additional results and implementation details are in
Section 5 and Appendices A to D.

We display in Figure 4 the diverse creative outputs of our approach across categories ranging from
pets to bags. Through seed variation alone, our method explores a wide spectrum of novel concepts
without requiring retraining or additional optimization.

4.1 QUALITATIVE EVALUATION

We begin by comparing our method with the two competing approaches for exploratory creativity
within a category: ConceptLab (Richardson et al., 2024) and C3 (Han et al., 2025). As can be
seen in Figure 6, ConceptLab generates creative objects but often sacrifices category validity. For
example, it may produce a cup that cannot be drunk from or a couch with no seat. In contrast, our
method produces objects that are both valid and creative. For fair comparison, we use the same
base models as ConceptLab and C3, while also demonstrating that our method leverages newer
models to produce better results. ConceptLab and C3 have several assumptions preventing them
from integrating seamlessly to any base diffusion model.

Figure 5: Trade-off between novelty and category co-
herence in our user study. Higher values are better for
both axes. Our method (star) uniquely achieves high
scores on both dimensions compared to other creative
generation methods.

In Figure 7, we compare our method with
images generated by state-of-the-art models,
including Stable Diffusion 3.5 (Esser et al.,
2024), FLUX.1-dev (Black Forest Labs, 2024),
and GPT-4o (OpenAI, 2024), all prompted with
requests for “creative” or “new type of” vari-
ations. These comparisons demonstrate that
even the most advanced generative models,
when used with standard prompting, produce
typical category exemplars – such as regular
cars and fruits – rather than creative variations.
In contrast, our results present novelty while
maintaining validity. For example, the vehicle
has wheels and a space for a driver, yet does not
correspond to any existing vehicle type.

4.2 USER STUDY

Quantitative evaluation remains a fundamental challenge in computational creativity research (Lamb
et al., 2018). We conduct a user study to evaluate the human-perceived creativity and semantic
validity of images generated by our VLM-guided approach compared to existing methods. We
collected a total of 3,200 responses (25 participants × 32 image pairs × 4 comparisons), across 8
different categories. The full setup is described in Appendix E. For each image pair, participants
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Figure 6: Left: Comparison with ConceptLab (Richardson et al., 2024) (top row) and our VLM-Guided method
using Kandinsky2 (Razzhigaev et al., 2023) (middle row) and SD3.5 (bottom row). Right: Comparison with
C3 (Han et al., 2025) using SDXL (Podell et al., 2023) (top row) and our method using SDXL (middle row)
and SD3.5 (bottom row). Our method consistently generates more diverse and imaginative variations while
maintaining recognizability within each category.
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Figure 7: Creative generation comparison across different categories. Despite prompts explicitly requesting
novelty (“A new type of [category]” or “A creative [category]”), GPT-4o, FLUX and SD3.5 produce typical
category exemplars. Our method generates novel variations that navigate unexplored modes of the semantic
space. Each column uses identical seeds across all methods for fair comparison.

evaluate Creativity/Novelty: How creative or novel is the interpretation of the broad category? and
validity: How well does the image maintain its identification as the specified category? Figure
5 presents the results. “Creative Prompting” methods (SD3.5 and GPT-4o), explicitly requesting
novelty via prompts such as “A new photo of a [category]”, cluster in the upper-left region with
high category validity but minimal novelty, confirming our qualitative findings that simple prompt
modifications fail to produce creative exemplars. Creative-generation methods (ConceptLab and
C3) achieve moderate creativity results but at a significant cost in validity. In contrast, our method
achieves both high novelty and validity, maintaining both high creativity and validity.

4.3 ABLATION STUDIES

A natural question is whether the in-the-loop VLM guidance is necessary or does one of two offline
alternatives suffices: (i) using an LLM to derive a negative list from the positive prompt alone, or
(ii) using a VLM to analyze a random image once and then statically replaying the resulting list
across all seeds. We study four design variants to validate our adaptive negative prompting ap-
proach, as presented in Figure 8. First, we tested whether GPT-4o could generate static negative
prompt lists directly from the main object in the positive prompts. Second, applying our accumu-
lated negative prompts statically (replaying) from the beginning yields less creative outputs. Third,
reusing negative prompts across different seeds (Cross-Seed replay) produces suboptimal results.
Finally, removing accumulation allows generations to cycle back to the conventional patterns pre-
viously identified. Our method achieves the best scores across all reported metrics in Table 1.

Figure 9: Top 5 subcategory distribution of 100 gener-
ated pets per method classified with GPT-4o.

The full ablation studies are presented in Ap-
pendix A. They examine computational effi-
ciency (i.e., timestep reduction), VLM robust-
ness across different models, question design
impact, and positive prompt variations, all con-
firming the robustness of our approach.

4.4 QUANTITATIVE EVALUATION

Existing methods employ different strategies to
quantify and evaluate creativity. ConceptLab
measures the difference between CLIP similar-
ity to the positive concept prompt and the max-
imum CLIP similarity to any negative concept
prompt. We refer to this measure as “relative

7
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Table 1: Quantitative evaluation of creative generation methods across different prompting strategies. Refer-
ence: SD3.5 with “A photo of a [category]”. Creative Prompting: SD3.5 with “A photo of a creative [category]”.
VLM-Guided: Our adaptive negative prompting approach. C3 and ConceptLab images are generated as ex-
plained in the corresponding papers. The metrics are averaged over 400 samples, equally generated 100 from
4 categories: pet, plant, garment, vehicle. In bold are best results underline for second best, within each base-
model category. For validity we exclude the baselines (Reference & Creative Prompting) from the marking.

Novelty Diversity Validity

Method Relative
Typicality ↑ GPT Novelty

Score ↑ Total
Variance ↑ Vendi ↑ CLIP

Score ↑ GPT
Score ↑

ConceptLab-Kandinsky2 1.922 0.238 0.289 5.119 0.270 0.862

Stable Diffusion 3.5 Large Base Model

Reference SD3.5 1.640 0.065 0.188 3.174 0.282 1.000
Creative Prompting SD3.5 1.645 0.230 0.191 3.139 0.267 0.933

GPT-4o 10 Concepts 0.655 0.093 0.272 4.973 0.262 0.867
GPT-4o 15 Concepts 0.885 0.108 0.277 5.040 0.262 0.805
GPT-4o 28 Concepts 1.043 0.100 0.276 5.067 0.260 0.828
Cross-Seed Replay 1.703 0.065 0.265 4.584 0.261 0.843
No Accumulation 1.610 0.060 0.274 4.355 0.262 0.875
Captions Regeneration 1.317 0.187 0.279 5.020 0.248 0.663

Ours SD3.5 + ViLT 1.835 0.157 0.298 5.347 0.264 0.893
Ours SD3.5 + BLIP-1 2.005 0.230 0.299 5.414 0.264 0.856
Ours SD3.5 + BLIP-2 2.190 0.370 0.318 5.794 0.261 0.898
Ours SD3.5 + Qwen2.5 2.100 0.401 0.308 5.476 0.264 0.917

SDXL-1.0 Base Model

Reference SDXL 1.775 0.015 0.174 2.906 0.283 1.000
Creative Prompting SDXL 1.540 0.155 0.206 3.640 0.274 0.9125

C3-SDXL 1.075 0.232 0.271 4.726 0.254 0.895
Ours SDXL + Qwen2.5 1.795 0.405 0.296 5.427 0.252 0.895

typicality”. C3 evaluates three dimensions of creativity: novelty, diversity, and validity. We eval-
uate creativity through complementary metrics that capture novelty, diversity, and validity as well.
For novelty, we measure relative typicality (multiplied by 100 for readability) and the GPT Novelty
Score. For the diversity we measure Vendi score and total variance. For validity, we employ CLIP
alignment and GPT-4 verification. While these metrics have known limitations for creative outputs,
as creativity inherently deviates from training distributions, they provide consistent comparative
baselines. The formal definitions of the metrics are presented in Appendix F.
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Figure 8: Left: Non-Adaptive LLM Approach: GPT-4o (n ∈ [10, 15, 28]) - static LLM list of n negative
concepts applied at all steps. Ours (GPT-4o) dynamic, VLM-guided negatives using GPT-4o as our VLM.
Right: Replay (Per-Seed) - reuse the accumulated VLM list from the same seed at all steps; Replay (Cross-
Seed) - reuse a list extracted from a different seed at all steps; No Accumulation - use only the current step’s
VLM answers (no carry-over); Ours - adaptive accumulation of negative prompts.
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Quantitative Results Table 1 summarizes the quantitative results. We achieve significant im-
provements in diversity and novelty metrics with minimal tradeoff in CLIP and GPT scores. All
metrics are averaged across four categories: “vehicle”, “plant”, “pet”, and “garment” (100 images
each), so improvements reflect cross-category behavior. We divide our results based on the back-
bone base model used for the generation. When applied to SDXL (Podell et al., 2023) our method
still achieves significant improvements, even though SDXL is an inherently less capable and less
diverse base model than SD3.5, our method still produces improvements. This variant also outper-
forms C3-SDXL across novelty and diversity metrics while maintaining comparable validity scores.
This demonstrates that our method promotes creative exploration regardless of the base model. Our
method using SD3.5+Qwen2.5-3B and SD3.5+BLIP-2 achieves the best balance across all three
creativity dimensions, leading in novelty and diversity, and maintaining competitive validity, while
other methods either sacrifice creativity for validity or vise versa. The design variants we evaluate
under-perform our dynamic, per-step, per-seed approach, highlighting the importance of both tim-
ing and seed-specific guidance. A no-accumulation variant also trails our method, indicating that
remembering previously discovered negatives is beneficial. Notably, while ConceptLab achieves
the highest CLIP score, it shows the lowest GPT verification score. This happens because their
optimization process maximizes the CLIP-space distance from negative concepts but can produce
adversarial examples that satisfy mathematical constraints without maintaining semantic validity.
This manifests as objects that technically align with CLIP embeddings but fail human and GPT-4
verification as functional category members (e.g., cups without cavities and sofas without seating
surfaces). In contrast, our method maintains the highest performance across all three evaluation di-
mensions: “validity”, “diversity”, and “novelty”. The caption regeneration experiment demonstrates
a limitation of pre-determined prompting: we used Qwen2.5-VL (Bai et al., 2025) to generate de-
tailed captions of our creative images, then attempted to regenerate those images from the captions
alone. Despite having detailed descriptions of creative objects, explicitly prompting for creativity,
the regenerated images show substantially lower novelty and validity scores. This demonstrates that
even very detailed text prompts cannot replicate the creative exploration achieved by our adaptive
guidance approach.

GPT Novelty Score In Figure 9, we present the distribution of subcategories classified with GPT-
4o over 100 images of pets generated with ConceptLab, C3, Creative Prompting, and Our VLM-
Guided method. While Creative Prompting and C3 generate recognizable dogs and cats, with Con-
ceptLab exhibiting intermediate behavior, our approach primarily produces unknown or unclassifi-
able pets, approximately 87%, demonstrating our method’s ability to avoid known subcategories.

4.5 USE CASES

O
ur

s+
K

on
te

xt
C

on
ce

pt
L

ab

Generated
Creative Object

”... a bird’s eye
view of ...”

”... a colorful
building ...”

”...a pencil
sketch of ...”

Figure 10: Creative object in different scenes. Left
column: Novel objects generated by our VLM-guided
method and reused with Flux-Kontext (Black Forest
Labs, 2025) (top row) and ConceptLab (bottom row).

Diverse scenarios. Our method generates
novel objects within semantic categories and
can be used for practical applications by plac-
ing these objects in diverse contexts and scenes.
Recent controllable generation models like
Flux.1-dev Kontext (Black Forest Labs, 2025)
enable users to take our creatively generated
objects and seamlessly integrate them into vari-
ous environments while preserving their unique
characteristics. Interestingly, we found that this
approach achieves better consistency compared
to ConceptLab’s method of integrating opti-
mized tokens into different prompts. We show
an example of this phenomenon in Figure 10.
Each building that is generated by reusing the
textual token is different than the other. On the other hand, using Flux-Kontext our creative building
looks consistent throughout the scenes.

Figure 11: Creative objects presented in a complex en-
vironment described by the prompt.

Complex prompts. Figure 11 displays how
our VLM-guided approach seamlessly inte-
grates with elaborate prompt descriptions,“A
photo of an imaginary pet surfing on a board
near an island”, “A photo of a new type of plant

9
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blooming in an arctic field next to penguins”, “A photo of a woman wearing a creative jacket in
a french cafè” and “A photo of a new type of fruit sliced on a ceramic plate”, enabling creative
exploration even within complex requirements.

The adaptive negative prompting mechanism operates orthogonally to these additional constraints,
it identifies and steers away from conventional modes of the requested object described as “cre-
ative”, while respecting the stylistic and compositional requirements specified in the prompt.

Method VIE-SC VIE-PQ Total

Creative Prompting 8.992 8.659 8.769
Ours (SD3.5+ViLT) 9.163 8.609 8.848

Table 2: VIE scores on 200 complex prompts.

To evaluate our method’s controllability, we
constructed a benchmark of 200 diverse com-
plex prompts spanning categories such as an-
imals, plants, fashion, and food, each embed-
ding creative elements within elaborate scene
descriptions (e.g., “A photo of a creative insect
resting on a dew-covered leaf in a quiet morning meadow”). We evaluate prompt adherence and per-
ceptual quality using VIEscore (Visual Instruction-guided Explainable) scores (Ku et al., 2024). As
shown in Table 2, our method achieves higher VIE-SC scores compared to creative prompting with
SD3.5 alone, while maintaining comparable perceptual quality (VIE-PQ). This demonstrates that
our adaptive negative prompting generates central objects while respecting complex scene descrip-
tions and compositional constraints which aligns better with the prompt requesting for creativity.
Full benchmark construction details and automated question generation methodology are provided
in Appendix F.6.

Tea set Chess set Cutlery set Luggage set

Figure 12: Creative sets generated by our method
demonstrating coherent collections of related objects.
Each set exhibits individual creativity in its components
while maintaining stylistic and functional consistency
across the collection.

Beyond single objects. Our method extends
naturally from generating individual creative
objects to producing coherent sets of related
items that share a unified creative vision. By
applying our approach to prompts that describe
collections e.g., “Creative tea set”, as presented
in Figure 12, we demonstrate that our method
maintains validity and consistency across mul-
tiple objects while exploring creative varia-
tions.

5 CONCLUSIONS

We introduced VLM-Guided Adaptive Negative-Prompting, an inference-time method that lever-
ages the strength of vision-language models to dynamically steer diffusion models toward more
creative outcomes. By querying a VLM throughout the denoising process and accumulating seed-
specific negative prompts, our approach pushes generation away from conventional patterns while
preserving categorical coherence. The fact that a VLM is capable of analyzing noisy intermediate
states and providing guidance strong enough to redirect the trajectory highlights its potential as a
powerful mechanism for creative exploration.

While our VLM-guided approach demonstrates effective creative exploration, several limitations
can be addressed in future research. First, our method introduces computational overhead through
VLM inference at each timestep, though our ablation studies show this can be reduced to the first
10-15 steps without significant quality loss. Second, the quality of creative outputs depends on the
VLM’s ability to identify emerging patterns in noisy intermediate predictions; while we demonstrate
robustness across various VLMs, more sophisticated vision-language models generally yield better
results. Third, our approach requires careful question design for optimal performance; different
question formulations work better for different semantic categories, and automating this selection
remains an open challenge.

Looking ahead, we believe that the integration of feedback-driven guidance will open new directions
for creativity in generative models, and future work may extend this paradigm to other domains, such
as video, 3D, or multimodal content creation.

10
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Reproducibility Statement We provide the necessary details to reproduce our results. Algorith-
mic steps and Hyperparameters (feedback window, frequency f , accumulation, replay variants) are
specified in the main text and Appendix B; evaluation protocols, metrics, and prompts are in Ap-
pendix D. We release per-category negative lists (static and accumulated) and the exact question
templates used by the VLM in Appendix A. Random seeds, category splits, and generation counts
are stated in the implementation details (Appendix B). We will release the code of our project in the
near future.

Ethics Statement Our study involves image generation within broad, non-sensitive categories. We
avoid instructions and outputs that target protected attributes or hazardous content. The user study
(Appendix E) followed institutional guidelines: no personally identifying information was collected,
and data were anonymized and aggregated for analysis. All third-party models and datasets were
used under their respective licenses, and we disclose model choices and prompts (Appendices B
and D). We report compute and runtime to enable the assessment of environmental impact (Appendix
B). No conflicts of interest or external sponsorship influenced the findings.
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APPENDIX
This appendix provides comprehensive details supporting our main paper. Section A presents exten-
sive ablation studies. Section B provides technical implementation specifications. Section C extends
about the foundations of negative prompting. Section D details the qualitative evaluation framework
and the generation process of the evaluated methods. Section F details evaluation metrics. Section E
describes our human evaluation protocol.

A ABLATIONS

A.1 NON-ADAPTIVE LLM APPROACH.

Table 3: Exact GPT–4o lists used as pLLM
neg for the Jacket category in Figure 8.

N=10 N=15 N=28

bomber, biker,
trucker, parka,
puffer, blazer,
varsity, trench,
anorak, field

bomber, biker,
trucker, parka,
puffer, blazer,
varsity, trench,
anorak, field,
harrington, peacoat,
safari, quilted,
windbreaker

bomber, biker,
trucker, parka,
puffer, blazer,
varsity, trench,
anorak, field,
harrington, peacoat,
safari, quilted,
windbreaker, denim,
leather, fleece,
rain, down, coach,
double breasted,
chore, utility,
cagoule, car,
duffle, mac

Table 4: Exact GPT–4o lists used as pLLM
neg for the Sofa category in Figure 8.

N=10 N=15 N=28

sectional, loveseat,
chaise, recliner,
futon, sleeper,
modular, tuxedo,
chesterfield,
camelback

sectional, loveseat,
chaise, recliner,
futon, sleeper,
modular, tuxedo,
chesterfield,
camelback, lawson,
midcentury,
slipcovered, daybed,
settee

sectional, loveseat,
chaise, recliner,
futon, sleeper,
modular, tuxedo,
chesterfield,
camelback, lawson,
midcentury,
slipcovered, daybed,
settee, track arm,
roll arm, armless,
curved, divan,
sofa bed, pit,
pallet, reclining,
convertible, chaise
end, bench, ottoman

We used GPT-4o (OpenAI, 2024) to generate lists of common sub-categories for each creative
prompt at several sizes N ∈ [10, 15, 28]. For instance, given the prompt “A photo of a creative
jacket”, we asked GPT-4o: “List the N most common types of jackets. A single list, separated by
commas. Each description is a single word”. A typical result is: “bomber, biker, trucker ...”. We
then formatted the list as a static negative prompt pLLM

neg and applied it uniformly throughout the

entire denoising process p(0)neg = p
(1)
neg = · · · = p

(T )
neg = pLLM

neg . As shown in Figure 8, this approach
produces less creative results compared to our dynamic method. For example, in the second row,
our generated jacket features smooth, cloud-like spherical ornaments that are atypical for jackets,
whereas LLM-based lists yield colorful yet conventional wool or fabric designs and do not portray
creative ornaments. We attribute this to the lack of alignment between the static, seed-independent
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LLM-generated list and the actual generative trajectory. Such prompts cannot account for the spe-
cific visual patterns that emerge during the denoising process, nor for those encoded in the sampled
initial noise. While the LLM provides semantically reasonable negative concepts, it lacks the visual
awareness to recognize which particular modes are being generated from the specific sampled noise
at each timestep, resulting in generic rather than targeted steering.

A.2 NON-DYNAMIC REPLAY APPROACHES.

To isolate the importance of the dynamic process, we tested whether the accumulated negative
prompts from our full dynamic negatives list could be replayed statically from the beginning of
the generation. In this experiment, we first ran our complete dynamic method to generate the final
accumulated negative prompt pTneg =

⋃T
t=1 p

(t)
neg for a given seed, then used this pre-accumulated

prompt uniformly throughout a fresh denoising process: p
(t)
neg = p

(T )
neg for all timesteps t ∈ [0, T ].

Despite using the same negative concepts that our dynamic method accumulates, this static applica-
tion produces less creative results. For example, the bag in Figure 8 in the last row generated with
the adaptive method has flower ornaments and a unique shape while the bag under the “Replay (Per-
Seed)” column looks like a regular plastic bag. This demonstrates that timing and responsiveness to
emerging visual patterns are crucial; the same negative prompts, when applied at the wrong times,
fail to provide effective steering. The dynamic nature of our approach, which introduces negative
concepts precisely when the corresponding visual patterns begin to emerge, is essential for suc-
cessful creative exploration. We further investigate whether negative prompts can be reused across
different generation seeds to reduce computational overhead. We collected accumulated negative
prompts p

(T )
neg from successful creative generations and applied them to random seeds while main-

taining the same positive prompt. This cross-seed reuse consistently produces suboptimal results,
emphasizing that each generation seed follows a unique trajectory through the semantic space and
requires its own adaptive negative prompting strategy. When the VLM’s analysis of intermediate
predictions x̂(t)

0 is tailored to the specific seed’s denoising path, we achieve superior creative results,
as shown in Figure 8 under the column “Replay (Cross-Seed)”. For example, the bag in the last row
under the “Replay (Cross-Seed)” column looks like a regular paper bag compared to our unique bag
design. This finding reinforces the notion that the effectiveness of our method stems from its ability
to provide adaptive, trajectory-specific guidance rather than applying generic steering patterns.

A.3 NON-ACCUMULATING APPROACH.
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Figure 13: Effect of limiting VLM guidance to different
ranges of denoising timesteps. Columns correspond to
applying our method during only the first 5, 10, 15, 20,
or all 27 timesteps, while rows show results for Build-
ing, Bag, and Jacket categories.

Next, we explore the importance of our accu-
mulation strategy. To test its contribution, we
modify our approach to use only the current
VLM response as the negative prompt at each
timestep. Specifically, we replace the negative
prompt with p

(t)
neg = r(t) for each t ∈ [0, T ],

discarding all previously accumulated informa-
tion. This non-accumulating variant, shown in
Figure 8 under the column “No Accumulation”,
fails to maintain a memory of previously iden-
tified conventional modes, allowing the genera-
tion to cycle back toward familiar patterns that
were detected and should have been avoided in
earlier denoising steps. For example, the build-
ing in the first row under the column “No Ac-
cumulation” remains similar to the SD3.5 base-
line building, whereas our method produces a
unique, asymmetrically shaped building. For a fair comparison, the VLM query is identical across
methods: at every timestep, we ask “What type of bag is this?”.

A.4 TIMESTEPS ANALYSIS.

Our method introduces VLM evaluations at each denoising timestep, which un-
avoidably increases computational overhead compared to standard diffusion sam-
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Table 5: Exact GPT-4o lists used as pLLM
neg for all categories in the LLM ablation study presented in Table 1.

Category N=10 N=15 N=28

Pet dog, cat, fish,
bird, rabbit,
hamster, guinea
pig, turtle, lizard,
snake

dog, cat, fish,
bird, rabbit,
hamster, guinea
pig, turtle, lizard,
snake, parrot,
ferret, chinchilla,
hedgehog, tarantula

dog, cat, fish,
bird, rabbit,
hamster, guinea
pig, turtle, lizard,
snake, parrot,
ferret, chinchilla,
hedgehog, tarantula,
gecko, bearded
dragon, cockatiel,
budgerigar, finch,
tortoise, newt,
axolotl, hermit
crab, dwarf hamster,
betta, goldfish,
lovebird

Plant tree, shrub, grass,
fern, moss, cactus,
succulent, vine,
herb, flower

tree, shrub, grass,
fern, moss, cactus,
succulent, vine,
herb, flower, palm,
orchid, bamboo,
lily, rose

tree, shrub, grass,
fern, moss, cactus,
succulent, vine,
herb, flower, palm,
orchid, bamboo,
lily, rose, tulip,
daisy, sunflower,
maple, oak, pine,
conifer, broadleaf,
evergreen,
deciduous, ivy,
sedge, reed

Garment shirt, dress, pants,
skirt, jacket, coat,
sweater, hoodie,
t-shirt, blouse

shirt, dress, pants,
skirt, jacket, coat,
sweater, hoodie,
t-shirt, blouse,
jeans, shorts, suit,
cardigan, jumpsuit

shirt, dress, pants,
skirt, jacket, coat,
sweater, hoodie,
t-shirt, blouse,
jeans, shorts, suit,
cardigan, jumpsuit,
blazer, trenchcoat,
parka, raincoat,
overcoat, waistcoat,
sweatshirt,
tracksuit, leggings,
chinos, dungarees,
kimono, sari

Vehicle car, truck, bus,
van, motorcycle,
bicycle, scooter,
train, tram, subway

car, truck, bus,
van, motorcycle,
bicycle, scooter,
train, tram, subway,
boat, ship, ferry,
airplane, helicopter

car, truck, bus,
van, motorcycle,
bicycle, scooter,
train, tram,
subway, boat, ship,
ferry, airplane,
helicopter, yacht,
canoe, kayak,
jet, glider,
seaplane, submarine,
hovercraft,
snowmobile, atv,
forklift, tractor,
bulldozer
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Table 6: Accumulated lists reused for static application in Fig. 8.

Category Accumulated negative list

Building brick, regular building, glass, modern, skyscraper,
concrete, moderne, modernist, futuristic, curved

Bag tote, satchel, hobo, backpack, clutch,
messenger, crossbody, duffel, bucket, wristlet

pling. To improve practical efficiency, we investigate whether the num-
ber of VLM queries can be reduced without compromising creative quality.
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Figure 14: Effect of positive prompt wording on cre-
ative generation using our method. Columns corre-
spond to alternative prompt formulations (“New type”,
“Innovative”, “Unique”, “Creative” and simply “A
photo of a [category]”), while rows show results for
different semantic categories Across categories, our ap-
proach produces diverse and imaginative outputs.

Specifically, we analyze the minimum num-
ber of timesteps requiring VLM intervention to
achieve effective creative steering. As shown in
Figure 13, applying VLM guidance during only
the first 10 to 15 timesteps sufficiently steers
generation toward creative outputs. This effi-
ciency results from the momentum effect de-
scribed in (Ban et al., 2024) and explained in
our Section 2, where early negative prompt ac-
cumulation establishes persistent creative tra-
jectories that continue throughout the remain-
ing denoising process. This finding enables
improved computational efficiency, making our
approach more practical for real-world deploy-
ment. For all methods in this analysis, the VLM
query is identical and fixed at every queried
step: “What is the style of the [category]?”.

A.5 POSITIVE PROMPT SELECTION.
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Figure 15: Comparison of outputs when guiding
our method with different Vision-Language Models
(VLMs). Columns correspond to GPT-4o (OpenAI,
2024), Qwen2.5 (Bai et al., 2025), BLIP-2 (Li et al.,
2023), BLIP-1 (Li et al., 2022), and ViLT (Kim et al.,
2021), while rows show three semantic categories:
Unique Building, New Pet, and Creative Jacket. Across
models, our approach consistently produces creative
and coherent results, with stronger VLMs generally
yielding more novelty, demonstrating robustness of the
method to the choice of VLM.

Our approach demonstrates flexibility in pos-
itive prompt formulation, accepting various
creativity-indicating phrases such as “creative”,
“innovative”, “new”, “novel”, “unique”, and
other similar terms to produce creative out-
puts. Our VLM-guided approach works effec-
tively even with ambiguous positive prompts,
such as “a new type of...”. As demonstrated
in Figure 14, different formulations of creative
prompts yield diverse creative outputs while
maintaining the fundamental steering behavior
and the effectiveness of our method as well as
validity. When the indicative adjective is re-
moved entirely from the positive prompt (e.g.,
using simply “A photo of [obj]”), the resulting
images are diverse and aesthetically pleasing;
however, they lack the creative qualities that
distinguish our method.

A.6 ROBUSTNESS
TO VLM MODEL SELECTION.

Our method demonstrates robustness across a
variety of Vision-Language Models that differ
in architecture, training data, model size, and capabilities. As shown in Figure 15, we successfully
achieve creative outputs using models ranging from lightweight options such as ViLT (Kim et al.,
2021) and BLIP-1 (Li et al., 2022) to more sophisticated models like BLIP-2 (Li et al., 2023),
Qwen2.5 (Bai et al., 2025), and GPT-4o (OpenAI, 2024). While more capable VLMs generally
produce higher quality creative results, the consistent creative steering behavior across different
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model choices validates the generalization capabilities of our approach. This robustness ensures
that practitioners can select VLMs based on their specific computational constraints and quality
requirements while maintaining the fundamental creative exploration functionality. For all methods
in this analysis, the VLM query is identical and fixed at every queried step: “What type of [category]
is this?”.

A.7 QUESTION DESIGN FOR CREATIVE EXPLORATION.
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B
ag

SD3.5 Material Color Shape Design

Figure 16: Effect of the VLM question design on cre-
ative generation. Rows correspond to three semantic
categories. The first column shows a Stable Diffusion
3.5 baseline. The remaining columns apply our VLM-
Guided Adaptive Negative-Prompting while asking the
VLM about (i) the material, (ii) the dominant colors,
(iii) the object’s shape, and (iv) its design.

The choice of question formulation is a crit-
ical design parameter that determines which
visual features are identified and which are
steered away from, directly influencing the cre-
ative output. Based on our empirical findings,
we recommend object-focused questions (e.g.,
“What is the main object in this image?”) for
generating “new types” of variations within fa-
miliar categories(animals, furniture, buildings,
etc.). Style or attribute focused questions (e.g.,
“What is the style/design/texture/material in
this image?”) are optimal for aesthetic novelty
and creativity while preserving category coher-
ence. Figure 16 presents the variations of the
question q(t) choice and the direct influence on
the output. For example, when the VLM is
prompted about materials, the bag output trans-
forms from regular leather to a knitted, colorful
material.

A.8 VLM PREDICTION ANALYSIS.
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Figure 17: Correlation between the VLM answers
across different timesteps and the final generated image

To understand how our VLM-guided approach
effectively steers generation despite operating
on noisy intermediate predictions, we analyze
the VLM’s ability to identify emerging seman-
tic patterns throughout the denoising process.
We examine the correlation between VLM pre-
dictions on early, blurry x̂0 estimates and the
final generated content across timesteps 0 to
27. Figure 17 shows that VLM correlation
rapidly increases during the initial denoising
steps, reaching approximately 90% within the
first 3 to 5 timesteps, despite the highly noisy
nature of the early predictions. The high corre-
lation between early VLM predictions and final
outputs validates our approach of accumulating
negative prompts from the beginning of the denoising process, as the predictions of the VLM are
meaningful even under noisy conditions.

A.9 CREATIVE CAPTION GENERATION

To investigate whether detailed text descriptions that prompt for creativity can reproduce our results,
we conducted the following experiment: we used Qwen2.5-VL (Bai et al., 2025) to generate captions
for each image we used in our main quantitative experiment (Table 1), i.e., 400 images in total. The
prompt to Qwen2.5 we used is “Give a detailed caption to the image”. We then used SD3.5 to
generate new images from these detailed captions. This experiment evaluates empirically whether a
sufficiently detailed human-written (or VLM-written) prompt can achieve the same creative results
as our adaptive negative prompting approach. As shown in Table 1, the results of the captions
regeneration are less diverse, novel and decrease in validity.
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B IMPLEMENTATION DETAILS

Unless noted, experiments use SD3.5 large, 28 steps and classifier-free guidance (CFG) 4.5. The
default VLM is Qwen2.5-VL-3B-Instruct; we also support BLIP2 (Li et al., 2023), BLIP1 (Li et al.,
2022), ViLT (Kim et al., 2021), and GPT-4o (OpenAI, 2024). We run on a single NVIDIA A40, at
1024×1024 resolution.

B.1 VLM FEEDBACK WINDOW.

We allow the user to query the VLM over a predefined window of steps to minimize overhead. Let
tstart and tstop be the step indices when both are provided; otherwise, they are set by default to 0
and 28. Within this window we query at a fixed frequency f . The default is set to f = 1 (every
step), but users may increase f to reduce calls (e.g., every 2 or 4 steps). The feedback window and
frequency integrate directly into our guidance loop; see 3 for how VLM answers are accumulated
and applied.

B.2 ADAPTIVE NEGATIVE PROMPTING CONSTRUCTION.

At each step t ∈ [0, T ], we decode x̂0 to RGB and ask a set of questions {qi}(t). We then apply a
light normalizer: remove unwanted prefixes, e.g., “it looks like”, drop leading articles, and collapse
whitespace and punctuation. We maintain a single negative prompt string, containing a list of N
negatives with: (i) case-insensitive deduplication, (ii) re-encoding only when N changes, and (iii)
all the negatives are separated by commas. During the VLM feedback window, we update the
negative half of the CFG embedding pair from the comma-joined string of N negatives and keep the
positive half unchanged. When leaving the VLM feedback window, we clear the negative prompt
and replace it with an empty string.

B.3 DECODING x̂0: VAE VS. LINEAR APPROXIMATION.

The diffusion model operates in latent space. Therefore, obtaining clean image predictions x̂0 for
input to the VLM requires passing them through the VAE decoder, which is costly at every denoising
step. Prior works (Vass, 2024; Turner, 2022) have empirically shown that the decoders of common
text-to-image diffusion models can be well-approximated by a linear transformation, enabling sig-
nificant acceleration of the decoding process. For example, Vass (2024) showed that, in the case of
SDXL, this linear transformation can be expressed by the matrix:

w =

[
60 −60 25 −70
60 −5 15 −50
60 10 −5 −35

]
.

A similar linear transformation can be applied to SD3.5 with a different weight matrix. In our
method, using this linear approximation yields creative results comparable to those obtained with
the full decoder, while substantially reducing computational overhead.

B.4 FULL RUNTIME ANALYSIS.

Our method adds only modest overhead in the lightweight-VLM regimes (ViLT/BLIP-1/BLIP-2),
and reducing the amount of querying offers a simple, effective way to trade compute for guidance
strength.

B.5 VLM-QUERYING AUTOMATION

To make our method as easy to use as standard text-conditioned diffusion generation, we added the
option for automated question generation. The user passes a creative prompt (e.g., “A photo of a
creative animal”) as an argument to the model, and an LLM (GPT-4o (OpenAI, 2024)) automatically
generates VLM queries without manual tuning. The pipeline consists of three steps: first, we extract
the main object we aim to focus on from the positive prompt, i.e., we will extract “[animal]” in
this example. Then, we provide the LLM with the analysis we conducted on the question design
as context. The LLM is requested to generate similar questions appropriate for the specific main
object. We then pass those questions as an argument to our creative-generation pipeline.
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Table 7: Runtime with VLM-in-the-loop guidance. Total seconds for SD3.5-large single-image generation
when querying different VLM oracles at either every denoising step (28) or only the early steps (15). The
baseline performs no VLM queries. All runs use the same prompt and seed.

VLM Steps Runtime (Seconds)

Baseline No VLM 28 22

ViLT 28 35
15 29

BLIP-1 28 36
15 30

BLIP-2 28 43
15 33

Qwen2.5-3B 28 71
15 56

B.6 COMPLEX-PROMPTS BENCHMARK

To quantitatively evaluate controllability in complex scenarios, we created a benchmark of 200 di-
verse prompts that test whether our method can maintain prompt adherence while modifying only
the central objects to be creative. To construct such benchmark we prompted GPT-4o to provide with
200 diverse object categories, similar to those present in the paper (for example, animals, hairstyles,
accessories, etc.). Each prompt follows the template “A photo of a [creative/innovative/new type
of/novel/unique] [main object] [scene description]”. The template was filled by GPT-4o, accord-
ing to the query “Write a prompt using the template: A photo of a [creative/innovative/new type
of/novel/unique] [main object] [scene description]. Choose an appropriate creativity indicator from
the list [creative/innovative/new type of/novel/unique], and place the object in logically feasible
scene. Describe it briefly.” For each prompt we generated an automatic questions list using the
method described in the previous section.

Example Prompts: “A photo of an imaginary pet resting inside a terrarium filled with miniature
plants.”, “A photo of a creative hairstyle showcased on a model standing in a sunlit desert landscape.”
“A photo of a creative insect resting on a dew-covered leaf in a quiet morning meadow.”

C EXTENDED RELATED WORK

Negative Prompting Thus, negative prompting does not merely “subtract words”; it linearly re-
combines two conditional predictions inside the denoiser. Recent work by Ban et al. (2024) reveals
insights into negative prompt behavior. Their main finding shows that the negative prompt causes
target objects to be generated to cancel the contributions of the positive prompt through subtrac-
tion. They identify two key phenomena regarding negative prompting: the Inducing Effect occurs
when negative prompts create stronger guidance toward unwanted concepts than positive prompts
do, paradoxically generating the content that is meant to be avoided. The Momentum Effect shows
that sequential noise estimates maintain a high correlation, causing established trajectories to persist
through subsequent denoising steps. Building on these insights, we utilize negative prompting for
our creative exploration task. However, it differs fundamentally from the object removal task de-
scribed in (Ban et al., 2024), where the Inducing Effect is problematic. In creative generation, this
effect can beneficially push exploration toward unexplored visual modes. The Momentum Effect
ensures that once creative trajectories are established through our accumulated negative prompts,
they persist throughout the remaining denoising process, maintaining consistent steering away from
conventional modes and encouraging exploratory creativity within the target semantic category.

D QUALITATIVE EVALUATION FRAMEWORK

For a fair evaluation, we adopt each baseline’s evaluation setting including their prompts, models
and experimental protocols. Specifically, we use their original prompts: “a creative [obj]” for C3
and “Professional high quality photo of a new type of [obj]. photorealistic, HQ, 4k” for Concept-
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Lab. We also integrate our method into their respective models: SDXL (Podell et al., 2023) for C3
and Kandinsky 2.1 (Razzhigaev et al., 2023) for ConceptLab. We note that ConceptLab’s method
leverages Kandinsky’s Diffusion Prior model, which their optimization process specifically requires
for learning creative concepts in the prior’s output space (Richardson et al., 2024). To ensure direct
comparability, we integrate our method into each baseline’s model and generate samples using iden-
tical seeds. Additionally, we showcase our method’s full potential using Stable Diffusion 3.5 (Esser
et al., 2024), demonstrating superior creative generation with state-of-the-art architectures.

E USER STUDY

Participants view pairwise comparisons of images generated from the same broad category (e.g.,
“pet”, “building”, “vehicle”). Each comparison shows outputs from our method versus one of the
four baselines. Creative prompts: SD3.5 and GPT-4o using “A photo of a creative/new type of
[category]” and creative generation methods: ConceptLab and C3.

Table 8: User study results showing average ratings (1-5 scale) for novelty and category coherence. Our method
achieves the highest novelty while maintaining strong categorical identity.

Method Novelty ↑ validity ↑
SD3.5 1.753 4.886
GPT-4o 2.133 4.785

ConceptLab 3.502 3.950
C3 2.934 3.945

VLM-Guided (Ours) 4.550 4.503

F METRICS AND EVALUATION

F.1 EVALUATION SETUP

Figure 18: Distribution of fruit CLIP embeddings in 2D
PCA space and the Kernel Density Estimation (KDE) of
the distributions. Reference images (green): “A photo
of a fruit”. Creative baseline (blue): “A photo of a new
type of fruit”. Our VLM-guided method (red): explores
diverse regions with minimal overlap with reference.

The core idea of our evaluation protocol is
to represent images in the CLIP embedding
space and compute metrics that characterize
the resulting distribution. Standard metrics like
the CLIP score measure one-to-one image-text
similarity, which is problematic for creativity
evaluation — creative outputs should deviate
from typical patterns while maintaining cate-
gory membership. A creative pet that scores
lower than a typical cat on CLIP alignment
might actually represent a more successful cre-
ative generation. Specifically, we use the fol-
lowing metrics: (1) For validity assessment, we
employ the CLIP score and GPT-4o verification
to ensure outputs remain recognizable as valid
category members despite their creative varia-
tions. Our goal is not to maximize CLIP score
but to remain relatively close to reference val-
ues while exploring novel variations; (2) For
novelty assessment, we compute relative typicality to measure the difference between broad cate-
gory similarity (e.g., “pet”) and average subcategory similarity (e.g., “cat”, “dog”), ensuring outputs
avoid conventional modes, alongside GPT-4o Novelty Score which counts how often GPT-4o cannot
classify the specific type and responds “unknown”; (3) For diversity assessment, we use distribution-
based metrics (total variance and Vendi score (Friedman & Dieng, 2022)) that quantify the spread
of creative exploration in the CLIP embedding space.

To evaluate and compare the methods quantitatively, we generate 100 images from four different
categories: “pet”, “garment”, “plant” and “vehicle” using our method, C3, ConceptLab, and two

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

baselines. “Reference” images are generated with SD3.5 from the prompt “A photo of a [category]”
and “Creative Prompting” uses the prompt “A photo of a creative / new type of [category]”.

F.2 VISUALIZING THE DISTRIBUTION

We begin by visualizing the resulting distribution in CLIP’s space. To do so, we project embeddings
to a two dimensional space via PCA. In Figure 18, we visualize the CLIP embedding distributions
for “Reference”, “Creative Prompting”, and our VLM-guided approach. The background distribu-
tion is computed on a discrete grid G of size 50 × 50. The density at any point p ∈ G is estimated
using Gaussian KDE. The plot in Figure 18 shows that our approach pushes mass away from typ-
ical exemplars, while the “Creative Prompting” remains close and overlaps with the “Reference”
distribution.

F.3 NOVELTY AND DIVERSITY

To quantify deviation from conventional patterns, we employ two complementary metrics: Relative
Typicality measures creative deviation from familiar subcategories while maintaining broad category
coherence. For a generated image we extract a CLIP embedding zi, using CLIP-ViT-B32, and
measure the alignment to the broad category text prompt embedding tc e.g., “A photo of a pet”, and
subcategory text prompts embeddings e.g., “A photo of a cat”, “A photo of a dog” etc.). Overall, we
compute:

Trel(zi) = cosine similarity(zi, tc)− max
j∈{1,...,m}

cosine similarity(zi, t(j)s ), (4)

where tc is the CLIP text embedding of the broad category prompt and {t(j)s }mj=1 are the embeddings
of subcategory prompts. Positive values indicate the image aligns more with the broad category than
with any specific known subcategory, suggesting successful creative generation within the category
boundaries.

GPT Novelty Score quantifies how often GPT-4o cannot identify the specific type of object. We
query GPT-4o to classify each generated image into known subcategories. The score represents the
fraction of images classified as “unknown” or unrecognizable variants, directly measuring deviation
from familiar modes.

The Vendi score (Friedman & Dieng, 2022) quantifies diversity through the Shannon entropy of the
eigenvalues of a normalized similarity matrix. Formally, given a collection of samples x1, . . . , xn ∈
X and a positive semi-definite similarity function k : X ×X → R with k(x, x) = 1, let K ∈ Rn×n

denote the kernel matrix with Kij = k(xi, xj). The Vendi score is defined as:

Vendi(X ) = exp

(
−

n∑
i=1

λi log λi

)
= exp

(
−tr
(
K

n
log

K

n

))
, (5)

where λ1, . . . , λn are the eigenvalues of K/n, with the convention that 0 log 0 = 0. This metric
can be interpreted as the effective number of dissimilar elements in the sample, ranging from 1 (all
identical) to n (all maximally distinct).

Total Variance, computed as the trace of the covariance matrix Tr(Σ) =
∑d

i=1 λi, measures over-
all variability across all dimensions in the CLIP embedding space. Higher values indicate greater
dispersion and exploration spread.

F.4 VALIDITY

While diversity and novelty distinguish a creative concept from an existing one, validity ensures that
it is practical, preventing it from being merely eccentric or nonsensical. We compute the practicality
of the generated concepts with two metrics, CLIP text-image alignment score and GPT score to
verify semantic validity.

For the GPT score, we provide GPT-4o with a generated image and ask it, “Is this a [category]?”.
Then we compute the number of times the answer was yes divided by the overall amount of images.
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F.5 SUBCATEGORY SELECTION

For relative typicality computation, we use the following subcategories:
Pet: cat, dog, hamster, rabbit, bird, fish, turtle, mouse, gerbil, insect.
Vehicle: car, truck, motorcycle, bicycle, bus, train, scooter, van, airplane, drone.
Plant: tree, flower, cactus, fern, grass, bush, wildflower, moss, wild mushroom.
Garment: shirt, jacket, dress, pants, coat, sweater, hoodie, socks, underwear.

F.6 VIESCORE

VIEScore (Ku et al., 2024) is an explainable automatic metric for evaluating conditional image gen-
eration tasks. Instead of relying on similarity scores alone, it uses a Multi-Modal Large Language
Model (MLLM, like GPT-4o (OpenAI, 2024)) to produce both a score and a natural language ex-
planation of the judgment. On seven conditional image tasks, VIEScore with GPT-4o reaches a
Spearman correlation of about 0.4 with human ratings (a high correlation value - close to the 0.45
human-to-human agreement). We use VIEScore (Ku et al., 2024) with GPT-4o (OpenAI, 2024) as
the base model.

For text-to-image tasks, the metric measures the quality according to two main pillars: first, SC
(Semantic Consistency) measures how well the generated image matches the given prompt. This is
processed by the MLLM into sub-scores with guiding questions and then combined into a single SC
score. Second, PQ (Perceptual Quality) measures how good the image looks visually. It rates things
like naturalness, absence of artifacts, distortions, watermarks, and other visual defects, again via
sub-scores that are combined into one PQ score. We add an example of the reasoning explanations
in Figure 19.

Figure 19: VIE scorer reasoning for controllable creative generation. Top: SD3.5 baseline generates a common
cat, receiving lower semantic consistency for missing the ”imaginary” aspect. Bottom: Our method produces
a more creative creature that better aligns with the ”imaginary pet” prompt specification, achieving higher
semantic consistency while maintaining perceptual quality.

G LLM USAGE

Large language models were used exclusively for English language editing and grammatical refine-
ment of the manuscript text. Specifically, we employed LLMs to improve sentence structure, correct
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grammatical errors, and enhance clarity of technical descriptions. All research ideation, experimen-
tal design, implementation, analysis, and scientific conclusions were conducted by the authors. The
core technical contributions, methodology, and experimental results represent original work by the
authors.
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