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ABSTRACT

Causal discovery from observational data is pivotal for deciphering complex re-
lationships. While Causal Structure Learning (CSL) aims to extract causal Di-
rected Acyclic Graphs (DAGs), its efficacy is hampered by the expansive DAG
space and data sparsity. The advent of Large Language Models (LLMs) presents a
novel avenue, given their aptitude in causal reasoning, thereby constraining CSL
with knowledge-based causal inference. A pioneering study integrated LLMs into
CSL, achieving notable results in several real-world DAGs. Yet, it faced pitfalls
such as erroneous LLM inferences and the inefficacy of ancestral constraints. In
response, we introduce the Iterative LLM Supervised CSL (ILS-CSL) framework.
This approach seamlessly merges LLM-based causal inference with CSL, itera-
tively refining the causal DAG based on LLM feedback. Given LLM’s shortness
in distinguishing indirect causality form the direct, ILS-CSL is still capable to
offer constraints on direct causality that are more powerful than the indirect, by
integrating statistical dependencies indicated by data. Moreover, the prior errors
are significantly reduced while using identical LLM resources. Our evaluations
on eight real-world datasets confirm ILS-CSL’s dominance, establishing a new
benchmark in CSL performance.

1 INTRODUCTION

Causal discovery from observational data is pivotal in understanding intricate relationships across
various domains. A primary method, Causal Structure Learning (CSL), seeks to derive a causal
Directed Acyclic Graph (DAG)1 from observed data (Pearl, 2009). However, the super-exponential
growth of the DAG space introduces formidable challenges (Chickering, 1996). Exact algorithms
struggle with scalability, while scalable approximate algorithms are prone to local optima, yielding
low-quality structures (Kitson et al., 2023). Additionally, the typical sparse real-world data is
insufficient for accurately discerning causal DAGs (Morgan & Winship, 2015). Moreover, the
appropriate causal structures cannot be fully determined solely through statistical analysis of data,
leading to confusion about the direction of causality (Chickering, 2002).

Given the inherent limitations of purely data-driven CSL, the integration of prior knowledge to
constrain specific structures has been explored (Chen et al., 2016; Amirkhani et al., 2016). While
promising, this approach has been limited by the high costs and time associated with expert in-
put (Constantinou et al., 2023). However, the advent of Large Language Models (LLMs) has ush-
ered in a new frontier. Recent studies have underscored the capabilities of LLMs in causal rea-
soning, positioning them as a valuable and readily accessible resource for knowledge-based causal
inference (Kıcıman et al., 2023; Nori et al., 2023; Chen et al., 2023).

A most recent work pioneers the integration of LLMs into CSL (Ban et al., 2023). Given the lim-
itation of LLMs in specifying edge-level structures (Tu et al., 2023; Long et al., 2023) due to the
shortness in distinguishing direct causality from the the indirect, the study utilizes the LLM inferred
causal statements to constrain the existence of paths in CSL. The authors reach significant state-
of-the-art performance transcending the pure data-based CSL in four out of eight real-world causal
DAGs. However, their method falls short in the rest datasets bothered by the following issues:

1The causal DAG is the DAG in which each link represents direct functional relationship among the corre-
sponding variables.
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1. Erroneous Inference: LLMs often infers extraneous causal relationships, introducing er-
roneous structural constraints harming the CSL, please refer to Table 4 in Appendix A.1.

2. Ancestral Constraints: The used ancestral constraints, derived from LLM outputs, are
less effective2 and more risk-prone3 than edge specifications (Li & Beek, 2018), especially
as the number of variables increases, please refer to Table 5 in Appendix A.1.

3. Batching Complexity: They simultaneously query the LLM for multiple causal relation-
ships to enhance efficiency, which, however, compromises inference quality and nuance.

In response to the challenges, we introduce an iterative LLM supervised CSL framework (ILS-
CSL). Unlike the previous method that used LLMs to guide CSL in a separate manner, our method
seamlessly integrates LLM-based causal inference and CSL. Concretely, we employ the LLM to
verify the correctness of edges in the learned causal DAG and adapt the subsequent round of CSL to
rectify mistakes identified in the prior round. The iterative process terminates once there’s no further
discord between LLM-based inferences and data-based CSL within the established causal skeleton.
The main advantage of our method is summarized as follows:

1. Powerful Structural Constraints: By integrating direct dependencies (skeleton) indicated
by data, ILS-CSL transforms the causal inferences made by LLMs into precise structural
constraints, explicitly indicating the edge existence or absence. The edge-level constraint
is more powerful than its path-level counterpart in improving CSL.

2. Mitigation of Prior Errors: ILS-CSL markedly diminishes the count of erroneous con-
straints, all while harnessing identical LLM resources. The reduction is theoretically by
a factor of O(N), estimated as 1.8(N − 1), compared to the full inference on pairwise
variables. Please refer to Section 4.2 for detailed estimation.

3. Efficient Causal Inference by LLM: The number of pairwise variables for inference is
reduced from

(
N
2

)
to O(N) with N denoting the node count4. It allows for individual

conversations dedicated to inferring nuanced causality between pairwise variables.

We experiment on eight real-world datasets used in the initial LLM-driven CSL study (Ban et al.,
2023), demonstrating consistent enhancement of data-based CSL algorithms by our framework
across diverse scoring functions and search strategies. Moreover, ILS-CSL notably outperforms the
first work, particularly with increased variable counts. The results highlight its substantial potential
for aiding complex, real-world causal discovery tasks.

2 PRELIMINARIES

We begin by introducing the task of causal structure learning (CSL) and subsequently discuss the
integration of structural constraints.

Causal structure learning. CSL seeks to uncover a directed acyclic graph (DAG) from obser-
vational data over a set of random variables. This DAG aims to fully characterize the conditional
dependencies between variables and to be minimal (Pearl, 2009). Formally, let D ∈ Nm×n repre-
sent the observational data, where m denotes the number of observed samples and n represents the
number of observed variables, denoted as X = {X1, X2, . . . , Xn}. Each Xi in D takes discrete in-
teger values in the range [0, Ci). Given D, the goal is to determine the causal DAG G = (X,E(G)),
where E(G) denotes the set of directed causal edges among the variables in X . The formal defini-
tions are as follows:

E(G)← {Xi −Xj | D⇒ Xi ⊥̸⊥ Xj | Y, ∀Y ⊆ X \ {Xi, Xj}} (1)

max
G

σ(G;D) =

n∑
i=1

Lσ(Xi | Xpa(i);D), Xpa(i) = {Xj | Xj → Xi ∈ E(G)} s.t. G ∈ DAG (2)

2When an ancestral constraint is correctly identified, CSL might still recover a path that includes erroneous
edges. In contrast, specifying the existence of an edge directly ensures accuracy, as it cannot be misinterpreted.

3An incorrect ancestral constraint inevitably introduces at least one erroneous edge.
4Given that the causal DAG is usually sparse, the number of edges |E| is typically estimated as O(N).
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Equations (1) and (2) define the CSL task in the context of its two main solutions: constraint-based
and score-based methods. Constraint-based methods first determine the skeleton of the graph us-
ing undirected edges, Xi −Xj , based on conditional independence tests. Subsequently, they orient
some of these edges based on DAG constraints, albeit not all (Spirtes & Glymour, 1991; Strobl et al.,
2018). Score-based methods employ a scoring function, σ, to evaluate how well a given causal DAG
G represents the observed data D. Typically, σ can be decomposed into scores of local structures,
Lσ(Xi | Xpa(i);D), where Xpa(i) denotes the set of parent nodes of Xi (Heckerman & Geiger,
1995; Neath & Cavanaugh, 2012). The objective is to optimize these local scores by assigning ap-
propriate parent nodes to each node, ensuring the resulting graph is a DAG. An alternative approach
to searching the DAG space is the ordering-based search, which optimizes Equation (2) under a
given ordering O, inherently satisfying the DAG constraint (Yuan et al., 2011; Trösser et al., 2021).
The best-scored DAG of the searched orderings is then selected as the output.

Due to the ability of score-based methods to orient all edges, thereby facilitating the determination
of edge correctness, they serve as the foundational CSL algorithm in this paper.

Prior Constraints on Structures. Structural constraints play a pivotal role in improving the dis-
covery of causal structures. The most prevalent among these constraints include (Li & Beek, 2018):

• Edge Existence: Denoted as Xi → Xj or, when forbidden, Xi ↛ Xj . This constraint
dictates that the DAG should (or should not) contain the edge Xi → Xj .

• Ordering Constraint: Represented as Xi ≺ Xj , it mandates that Xi should precede Xj

in the variable ordering.
• Path Existence (Ancestral Constraint): Symbolized as Xi ⇝ Xj , it requires the DAG to

encompass the path Xi ⇝ Xj .

Algorithm 1: LLM supervised CSL

Require: Observed data, D; Textual descriptions, T
Ensure: Causal DAG, G

1: Initialize the set of structural constraints, λ← {}
2: repeat
3: G ← argmax

G
σ(G;D), s.t. G ∈ DAG,G |= λ

4: for Xi → Xj ∈ E(G) do
5: c← LLM infers causality between Xi and

Xj based on T
6: if c is Xi ← Xj then
7: λ← λ ∪ {Xj → Xi}
8: end if
9: if c is Xi ↮ Xj then

10: λ← λ ∪ {Xi ↛ Xj , Xj ↛ Xi}
11: end if
12: end for
13: until no new constraints are added
14: return G

Given the implication chain Xi → Xj ⇒
Xi ⇝ Xj ⇒ Xi ≺ Xj , it is clear that the
existence of an edge (direct causality) rep-
resents the most stringent structural con-
straint. Correspondingly, its derivation ne-
cessitates a thorough examination of poten-
tial combinations of causality. Regrettably,
as evidenced by the studies (Kıcıman et al.,
2023; Ban et al., 2023; Tu et al., 2023),
LLMs lack the ability to accurately specify
direct causality, often confusing it with in-
direct causality or non-causal correlations.
Please refer to Appendix A.5.2 for empiri-
cal estimation.

Regarding the application of these prior
constraints, there are two predominant
methodologies: hard and soft approaches.
The hard approach prioritizes adherence to
prior constraints, followed by score opti-
mization (de Campos & Castellano, 2007).
Conversely, the soft approach strikes a bal-
ance between honoring prior constraints and the associated score costs (Amirkhani et al., 2016).
This often involves adjusting the scoring function to σ(G;D) + b(G;λ), where a prior probability
P (λ) is assigned to structural constraints λ. A constraint is only accepted if the bonus score, b,
compensates for the penalty in the DAG-data consistency score, σ.

We implement both hard and soft approaches to incorporate structural constraints in this paper.

3 ITERATIVE LLM SUPERVISED CAUSAL STRUCTURE LEARNING

Given the observed data, D, and the descriptive texts on the investigated field and variables, T, the
LLM supervised causal structure learning is presented in Algorithm 1.
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Initially, a causal DAG G is learned from D with modular scoring function σ,Lσ (see Equation (2)
for definition), and search methodM. Subsequently, we explicate the details on LLM supervision
and how to constrain CSL accordingly.

1) LLM supervision: For each directed edge Xi → Xj ∈ E(G), we prompt the used LLM to
verify the causal statement that Xi causes Xj (Line 5 in Algorithm 1). The prompt design for
causal inference is inspired by the work (Kıcıman et al., 2023), which employs choice-based queries
to determine the orientation of pairwise variables with known causal relationships. On this basis,
we incorporate field-specific descriptions to provide context and introduce additional choices to
accommodate uncertainties in causal existence and intricate causal mechanisms. For a given edge
Xi → Xj and associated textual descriptions T = {tf , ti, tj}, the LLM is prompted as:

You are an expert on tf. There are two factors:Xi : ti,Xj : tj.
Which cause-and-effect relationship is more likely for following causal
statements for V1 and V2?
A.changing V1 causes a change in V2.
B.changing V2 causes a change in V1.
C.changes in V1 and in V2 are not correlated.
D.uncertain.
Provide your final answer within the tags <Answer>A/B/C/D</Answer>.
Analyze the statement:Xi Xj.

tf describes the investigated field, and ti, tj describes Xi, Xj , respectively. From the LLM’s re-
sponse to this prompt, we can obtain one of the answers: A, B, C, or D.

2) Constrain CSL: To specify constraints λ (Lines 6-11 in Algorithm 1), if the answer is B (reversed),
we specify the existence of Xj → Xi. If C (no causality), then we specify Xi ↮ Xj to forbid the
existence of edge. If D (uncertain) or A (correct), we do not specify constraints. This is because
specifying the existence of an edge already discovered from data does not often enhance the CSL
and can inadvertently lead to errors. For example, if the true structure is Xi ⇝ Xj but not directly,
Xi ↛ Xj , LLM easily infers that Xi causes Xj due to its shortness in distinguishing indirect
causality for the direct. If we specify Xi → Xj , an erroneous edge is introduced.

With the structural constraints λ obtained from LLM supervision, we integrate them into the next
iteration of CSL process (Line 3 in Algorithm 1), with either hard or soft approach. The process
terminates if no new constraint is specified.

Hard approach: We apply λ by pruning the space of local structures:

L(Xi;λ)← {Xpa(i) | K(i) ⊆ Xpa(i) ⊆ C(i)} (3)

K(i) = {Xj | Xj → Xi ∈ λ}, C(i) = X \ {Xj | Xj ↛ Xi ∈ λ} \ {Xi} (4)

where Lσ(·) is the score of the local structure of Xi and its parent nodes Xpa(i). The pruned space
of local structures is taken as input for the search methodM:

M : max
Xpa(i)

n∑
i

Lσ(Xi | Xpa(i);D), s.t.G ∈ DAG, Xpa(i) ∈ L(Xi;λ) (5)

In comparison to the problem form without prior constraints, as presented in Equation (2), the re-
striction of the candidate parent sets of each node, Xpa(i) ∈ L(Xi;λ), ensures that the output DAG
absolutely satisfies every edge constraint, G |= λ.

Soft approach: We adapt the scoring function to model the edge constraints as follows:

σ′(G;D, λ) =
n∑
i

Lσ(Xi | Xpa(i);D) + Lb(Xi, Xpa(i);λ) (6)

Lb(Xi, Xpa(i);λ) =
∑

Xj→Xi∈λ

IXj∈Xpa(i)
logP (λ) + IXj ̸∈Xpa(i)

log (1− P (λ))+

∑
Xj↛Xi∈λ

IXj∈Xpa(i)
log (1− P (λ)) + IXj ̸∈Xpa(i)

logP (λ)
(7)
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This formulation is grounded in the decomposability of edge constraints. A detailed derivation
can be found in Appendix A.2. Icondition is the indicator function, which takes the value 1 if the
condition is true and 0 otherwise. P (λ) is the prior confidence, a hyper-parameter. Then search
method M optimizes the modified score:

M : max
Xpa(i)

n∑
i

Lσ(Xi | Xpa(i);D) + Lb(Xi, Xpa(i);λ), s.t.G ∈ DAG (8)

The bonus score, Lb, favors DAGs that align more closely with the structural constraints. Note that
a constraint will not be satisfied if it excessively penalizes the score Lσ .

To sum up, while the hard approach derives greater benefits from accurate constraints (at the risk of
being more sensitive to errors), the soft approach might not always adhere to all correct constraints
but offers a degree of resilience against potential inaccuracies.

4 ANALYSIS ON IMPORTANT CONCERNS

This section provides in-depth analysis on 1) how does the supervision on the existing skeleton help
discovery of missing edges, and 2) the extent to which the prior error is reduced by restricting the
LLM inference on the learned causal DAG.

4.1 ANALYSIS OF MISSING EDGE DISCOVERY

A natural question arises when considering the orientation of the learned skeleton or the prohibition
of certain edges: Do these constraints aid in uncovering missing edges? We delve into this question,
providing an illustrative analysis for score-based CSL algorithms.

For the sake of discussion, let’s assume the ordering of the variables, denoted as O, is given. The
ordering naturally satisfies the DAG constraint. Consequently, the score-based search simplifies to
a series of independent optimization problems:

max
Xpa(i):Xpa(i)⊆{X|X≺Xi in O}

σ(Xi | Xpa(i)), ∀i ∈ {1, 2, ..., N}

where X ≺ Xi in O means that node X precedes Xi in the given order O. Given an edge Xj → Xi,
forbidding its existence removes Xj from the candidate parent set of Xi. This leads us to the
following conclusion5:
Lemma 1. Consider a node Xi in a Bayesian network and its candidate parent variable set C. If
Xopt represents the optimal parent set of Xi determined by a score-based causal structure learning
method, and if a node Xj is removed from C where Xj ∈ Xopt, then the newly determined optimal
parent set for Xi does not necessarily remain a subset of Xopt.

Lemma 1 is interpreted as that constraining on existing edges can potentially unveil new edges. It’s
crucial to note that this new edge is distinct from the original skeleton that adheres to O, since a
node can not be the parent of its candidate parent node given an ordering.

Viewing this from the lens of knowledge-based causality, constraints derived from known causal
relations can enhance the discovery of unknown causal mechanisms within data. This highlights the
invaluable role of prior knowledge in advancing causal discovery in uncharted fields.

4.2 ESTIMATION OF PRIOR ERROR COUNTS

Our objective is to estimate and juxtapose the number of erroneous constraints in our framework
against those stemming from a full inference on all pairwise variables, an intuitive strategy that the
first study (Ban et al., 2023) employs. Note that even if the authors reduce the number of valid causal
statements by conducting

(
N
2

)
pairwise causal inferences with a single prompt, the essential idea of

their method is to fully constrain the existence of causality inferred between each pair of variables.

We commence by defining four error types and one correctness type that might arise during LLM-
based causality inference, along with their respective probabilities:

5Please refer to Appendix A.3 for proof.
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1. Extra Causality (pe): Given a causal statement (X1, X2), if the true causal DAG neither
contains the path X1 ⇝ X2 nor X2 ⇝ X1, it’s an instance of extra causality.

2. Reversed Causality (pr): Given a causal statement (X1, X2), if the true causal DAG con-
tains the path X2 ⇝ X1, it’s an instance of reversed causality.

3. Reversed Direct Causality (pdr): Given a causal statement (X1, X2), if the true causal DAG
has an edge X2 → X1, it’s an instance of extra causality.

4. Missing Direct Causality (pdm): If an edge X1 → X2 or X2 → X1 exist in the true causal
DAG, but X1 and X2 are inferred to have no causal relationship, it’s a instance of missing
direct causality.

5. Correct Existing Causality (pc): Given a causal statement (X1, X2), if the path X1 ⇝ X2

exists in the true causal DAG, it’s a instance of correct existing causality.

We assume that the presence of these errors is independent of any specific properties of the pairwise
nodes other than its structural relationship. Suppose that the causal DAG comprises N nodes, and
the number of pairwise nodes devoid of paths is γ1

(
N
2

)
, and the learned causal DAG contains γ2N

edges with a rate of correct edges z1, reversed edges z2 and extra edges z3.

The number of prior errors derived from full inference consists of two parts: the extra causality,
peγ1

(
N
2

)
, and the reversed causality, pr(1 − γ1)

(
N
2

)
. Note that the missing causality will not harm

the CSL since it does not produce any structural constraints in this context. Then the total number
of erroneous constraints is estimated as:

Efull = (peγ1 + pr(1− γ1))

(
N

2

)
(9)

As for the prior errors within our framework, we consider the output DAG of CSL algorithms. The
erroneous constraints on the correctly discovered edges consist of the reversed and missing direct
causality: (pdr+pdm)z1γ2N ; The erroneous constraints derived from inferring causality on erroneous
edges consist of 1) missing direct causality on reversed edges, pdmz2γ2N , and 2) extra inferred direct
causality on extra edges no more than

(
pr + pcPR|E

)
z3γ2N , where PR|E is the probability where

for an extra edge X1 → X2 in the learned DAG, a reversed path X2 ⇝ X1 exists in the ground
truth. Gathering all these, we derive the number prior errors:

Eours ≤
(
(pdr + pdm)z1 + pdmz2 + (pr + pcPR|E)z3

)
γ2N (10)

We random sample pairwise variables on the eight used real-world datasets and prompt GPT-4 to
estimate LLM-related parameters p. For estimation of CSL-related ones λ, r, PR|E , we use outputs
of the MINOBSx algorithm, see Appendix A.4 for details. The results are present as:

pe ≈ 0.56, pr ≈ 0.15, pdr ≈ 0.03, pdm ≈ 0.05, pc ≈ 0.75

γ1 ≈ 0.51, γ2 ≈ 1.09, z1 ≈ 0.88,z2 ≈ 0.05, z3 ≈ 0.07, PR|E ≈ 0.05
(11)

And then we have:

Eours ≈ 0.10N,Efull ≈ 0.36

(
N

2

)
,
Eours

Efull
≈ 1

1.8(N − 1)
(12)

For a more in-depth analysis of the good resistance to erroneous prior constraints of ILS-CSL, please
refer to Appendix A.5.2.

Table 1: The used datasets of causal DAGs.

Dataset Cancer Asia Child Alarm Insurance Water Mildew Barley
Variables 5 8 20 37 27 32 35 48

Edges 4 8 25 46 52 66 46 84
Parameters 10 18 230 509 1008 10083 540150 114005
Data size 250 / 1000 250 / 1000 500 / 2000 1000 / 4000 500 / 2000 1000 / 4000 8000 / 32000 2000 / 8000

6



Under review as a conference paper at ICLR 2024

5 EXPERIMENTS

We conduct experiments to address the following research questions:

RQ1: As a model-agnostic framework, can ILS-CSL enhance data-based CSL baselines and out-
perform the existing LLM-driven CSL method?
RQ2: Across varied scoring functions and search strategies, can ILS-CSL consistently improve the
quality of discovered causl structures? How about the influence of strategies to apply constraints?
RQ3: Is ILS-CSL capable of minimizing erroneous prior constraints that arise from imperfect LLM
causal inferences?
RQ4: How does the process, where LLM supervises causal discovery, unfold in detail?

Table 2: Scaled SHD↓ comparison to data-based and LLM-driven CSL.

Dataset Cancer Asia Child Insurance
N 250 1000 250 1000 500 2000 500 2000

MINOBSx 0.75±0.22 0.46±0.29 0.52±0.32 0.31±0.07 0.38±0.08 0.21±0.04 0.46±0.05 0.29±0.02
+sepLLM-hard 0.13 -83% 0.00 -100% 0.27 -48% 0.04 -87% 0.42 +11% 0.31 +48% 0.91 +98% 0.60 +107%

+ILS-CSL-hard 0.50±0.22-33% 0.29±0.29-37% 0.42±0.37-19% 0.15±0.15-52% 0.25±0.06-34% 0.07±0.03-67% 0.42±0.03-9% 0.28±0.06-3%

CaMML 0.75±0.00 0.62±0.14 0.58±0.29 0.27±0.05 0.25±0.03 0.09±0.04 0.69±0.04 0.61±0.15
+sepLLM-soft 0.50 -33% 0.33 -47% 0.02 -97% 0.00 -100% 0.19 -24% 0.04 -56% 1.00 +45% 0.82 +34%

+ILS-CSL-soft 0.75±0.00+0% 0.33±0.20-47% 0.23±0.09-60% 0.15±0.18-44% 0.17±0.05-32% 0.04±0.00-56% 0.47±0.04-32% 0.47±0.11-23%

Dataset Alarm Mildew Water Barley
N 1000 4000 8000 32000 1000 4000 2000 8000

MINOBSx 0.21±0.06 0.14±0.04 0.50±0.02 0.46±0.05 0.77±0.07 0.61±0.04 0.56±0.04 0.40±0.03
+sepLLM-hard 0.27 +29% 0.19 +36% 0.88 +76% 0.47 +2% 1.01 +31% 0.84 +38% 0.62 +11% 0.65 +62%

+ILS-CSL-hard 0.09±0.03-57% 0.08±0.02-43% 0.43±0.00-14% 0.33±0.18-28% 0.68±0.05-12% 0.56±0.02-8% 0.54±0.02-4% 0.38±0.02-5%

CaMML 0.24±0.05 0.18±0.06 1.20±0.10 1.30±0.12 0.88±0.08 0.81±0.04 0.96±0.07 0.96±0.10
+sepLLM-soft 0.13 -46% 0.07 -61% 1.07 -11% 1.30 +0% 0.89 +1% 0.73 -10% 0.98 +2% 0.98 +2%

+ILS-CSL-soft 0.08±0.01-67% 0.06±0.01-67% 1.01±0.07-16% 1.26±0.05-3% 0.70±0.02-20% 0.63±0.04-22% 0.90±0.06-6% 0.83±0.06-14%

The suffixes ‘-hard’ and ’-soft’ represent the approach to apply the LLM inferred prior constraints. The performances of sepLLM method are
obtained from the work (Ban et al., 2023), where the authors do not report derivations.

Datasets and Baselines. To address RQ1, we employ the eight real-world datasets of causal DAGs
from the Bayesian Network Repository6 as used in the study by (Ban et al., 2023). Dataset specifics
are provided in Table 1. For backbone CSL algorithms, we adopt the same MINOBSx (BDeu
score) (Li & Beek, 2018) and CaMML (MML score) (O’Donnell et al., 2006) algorithms as the
aforementioned study, and utilize the same setting of prior probability for CaMML, 0.99999. For
supervision on CSL, we utilize GPT-4-WEB7. For RQ2, the used baselines comprise a combination
of popular scoring functions, namely BIC and BDeu score (Heckerman & Geiger, 1995), and search
algorithms, including HC (Gámez et al., 2011) and MINOBSx (Lee & van Beek, 2017).

Observed Data and evaluation metric. We utilize a collection of observed data sourced from a
public repository8. This data, generated based on the eight causal DAGs, is provided by the study (Li
& Beek, 2018) and used in the LLM-driven CSL by Ban et al. (2023). The repository offers datasets
in two distinct sample sizes for each DAG, as detailed in Table 1. For every sample size, six distinct
data segments are available.

To assess the quality of the learned causal structures, we primarily employ the scaled Structural
Hamming Distance (SHD) (Scutari et al., 2019). This metric is defined as the SHD normalized by
the total number of edges in the true causal DAG.

5.1 COMPARATIVE PERFORMANCE OF CSL BASED ON PURE DATA, SEPERATE LLM PRIOR
AND ILS-CSL (RQ1)

We compare the performance of MINOBSx (BDeu) and CaMML that are used in the separate LLM
prior-driven CSL approach proposed by (Ban et al., 2023), referred to as sepLLM, and our proposed
framework, termed ILS-CSL. This comparison is conducted using all the introduced observed data

6https://www.bnlearn.com/bnrepository/
7https://chat.openai.com/
8https://github.com/andrewli77/MINOBS-anc/tree/master/data/csv
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across eight datasets. The results, presented in terms of scaled SHD (where a lower value is prefer-
able), are detailed in Table 2. The difference between scaled SHD of data-based (∆data) and LLM-
driven (∆LLM) CSL is also reported, by calculating (∆LLM−∆data)/∆data. Please refer to Appendix
A.5.1 for the ranking of the methods and more detailed discussions.

Result observation. 1) ILS-CSL consistently improves the quality of data-based CSL in all cases,
with the sole exception observed in the Cancer dataset with 250 samples, where it maintains the
same performance. In contrast, sepLLM shows consistent improvement only in the Cancer and
Child datasets, while exhibiting partial performance degradation in others. This observation under-
scores the robust and stable enhancement offered by our ILS-CSL framework.
2) Our framework outperforms sepLLM in datasets with more than 20 variables, albeit showing
lesser performance in small-scale datasets, Cancer and Asia. This trend is attributed to the relatively
simple causal mechanisms in these smaller datasets, where LLM effectively infers correct causal
relationships between variables (refer to Table 6 in Appendix A.4). Despite sepLLM leveraging
all existing causality inferred by LLM, its advantage is pronounced only in these two datasets. As
the complexity of causal mechanisms increases with the number of variables, the quality of LLM
inference diminishes, highlighting the resilience of our framework against imperfect LLM inference.

Table 3: Scaled SHD↓ enhancement on data-based CSL with different scores, search algorithms and
approaches to apply prior constraints, by the proposed framework.

Dataset Cancer Asia Child Insurance
N 250 1000 250 1000 500 2000 500 2000

HC-BDeu 0.58±0.13 0.33±0.26 0.56±0.27 0.23±0.17 0.57±0.12 0.49±0.18 0.69±0.06 0.68±0.09
+ILS-CSL-hard 0.50±0.22-14% 0.29±0.29-12% 0.46±0.33-18% 0.15±0.15-35% 0.24±0.07-58% 0.10±0.02-80% 0.45±0.06-35% 0.34±0.04-50%

+ILS-CSL-soft 0.50±0.22-14% 0.29±0.29-12% 0.44±0.30-21% 0.15±0.15-35% 0.26±0.06-54% 0.11±0.03-78% 0.50±0.08-28% 0.35±0.04-49%

MINOBSx-BDeu 0.75±0.22 0.46±0.29 0.52±0.32 0.31±0.07 0.38±0.08 0.21±0.04 0.46±0.05 0.29±0.02
+ILS-CSL-hard 0.50±0.22-33% 0.29±0.29-37% 0.42±0.37-19% 0.15±0.15-52% 0.25±0.06-34% 0.07±0.03-67% 0.42±0.03-9% 0.28±0.06-3%

+ILS-CSL-soft 0.50±0.22-33% 0.29±0.29-37% 0.42±0.37-19% 0.15±0.15-52% 0.25±0.04-34% 0.08±0.04-62% 0.41±0.03-11% 0.26±0.04-10%

HC-BIC 0.92±0.29 0.62±0.34 0.48±0.36 0.31±0.29 0.53±0.07 0.38±0.16 0.76±0.05 0.72±0.06
+ILS-CSL-hard 0.92±0.29+0% 0.42±0.34-32% 0.33±0.25-31% 0.19±0.17-39% 0.26±0.07-51% 0.07±0.03-82% 0.60±0.03-21% 0.41±0.03-43%

+ILS-CSL-soft 0.92±0.29+0% 0.42±0.34-32% 0.35±0.26-27% 0.21±0.19-32% 0.27±0.08-49% 0.07±0.05-82% 0.62±0.06-18% 0.42±0.03-42%

MINOBSx-BIC 1.00±0.25 0.62±0.21 0.46±0.23 0.27±0.05 0.34±0.06 0.18±0.04 0.62±0.05 0.55±0.05
+ILS-CSL-hard 0.92±0.29-8% 0.38±0.26-39% 0.42±0.40-9% 0.12±0.08-56% 0.24±0.08-29% 0.06±0.02-67% 0.55±0.03-11% 0.39±0.08-29%

+ILS-CSL-soft 0.92±0.29-8% 0.38±0.26-39% 0.35±0.26-24% 0.15±0.12-44% 0.25±0.05-26% 0.06±0.02-67% 0.55±0.03-11% 0.41±0.09-25%

Dataset Alarm Mildew Water Barley
N 1000 4000 8000 32000 1000 4000 2000 8000

HC-BDeu 0.65±0.12 0.64±0.09 0.79±0.11 0.99±0.07 0.76±0.07 0.64±0.08 0.80±0.06 0.65±0.06
+ILS-CSL-hard 0.12±0.02-82% 0.08±0.01-88% 0.46±0.01-42% 0.22±0.02-78% 0.64±0.02-16% 0.55±0.03-14% 0.69±0.06-14% 0.57±0.06-12%

+ILS-CSL-soft 0.30±0.05-54% 0.25±0.06-61% 0.43±0.00-46% 0.47±0.04-53% 0.64±0.01-16% 0.56±0.03-12% 0.76±0.04-5% 0.62±0.03-5%

MINOBSx-BDeu 0.21±0.06 0.14±0.04 0.50±0.02 0.46±0.05 0.77±0.07 0.61±0.04 0.56±0.04 0.40±0.03
+ILS-CSL-hard 0.09±0.03-57% 0.08±0.02-43% 0.43±0.00-14% 0.33±0.18-28% 0.68±0.05-12% 0.56±0.02-8% 0.54±0.02-4% 0.38±0.02-5%

+ILS-CSL-soft 0.09±0.02-57% 0.07±0.01-50% 0.47±0.01-6% 0.37±0.02-20% 0.68±0.04-12% 0.56±0.02-8% 0.55±0.03-2% 0.38±0.02-5%

HC-BIC 0.68±0.05 0.59±0.10 0.90±0.06 0.91±0.13 0.76±0.04 0.70±0.03 0.87±0.05 0.80±0.08
+ILS-CSL-hard 0.22±0.04-68% 0.12±0.04-80% 0.58±0.01-36% 0.46±0.04-49% 0.69±0.02-9% 0.61±0.03-13% 0.76±0.02-13% 0.69±0.06-14%

+ILS-CSL-soft 0.41±0.04-40% 0.35±0.11-41% 0.71±0.01-21% 0.57±0.02-37% 0.69±0.02-9% 0.61±0.03-13% 0.82±0.04-6% 0.74±0.09-8%

MINOBSx-BIC 0.32±0.08 0.15±0.04 0.74±0.01 0.73±0.09 0.82±0.03 0.77±0.03 0.79±0.04 0.58±0.03
+ILS-CSL-hard 0.16±0.07-50% 0.09±0.03-40% 0.58±0.01-22% 0.45±0.03-38% 0.69±0.03-16% 0.62±0.01-19% 0.73±0.03-8% 0.55±0.03-5%

+ILS-CSL-soft 0.19±0.06-41% 0.10±0.01-33% 0.73±0.01-1% 0.64±0.04-12% 0.70±0.02-15% 0.64±0.02-17% 0.76±0.02-4% 0.56±0.03-3%

5.2 EFFECT OF ILS-CSL ACROSS DIFFERENT SCORES AND ALGORITHMS (RQ2)

We experiment with varying scoring functions, BDeu and BIC scores, and search algorithms, MI-
NOBSx and HC, and compare to corresponding data-based CSL performances. Moreover, we ex-
periment with both hard and soft approaches to apply prior constraints, with the prior probability
setting P (λ) = 0.99999 introduced in Equation (7). The results on the utilized observed data of
eight datasets are reported in Table 3.

Result observation. 1) Nearly all scenarios showcase an enhancement, underscoring the impact-
ful role of ILS-CSL in bolstering CSL performance across a diverse range of datasets and conditions.
2) ILS-CSL notably amplifies the performance of HC more than MINOBSx. This enhancement is so
pronounced that HC, when integrated with ILS-CSL, surpasses MINOBSx in performance, despite
HC’s inherently lower baseline performance. This observation highlights the substantial potential of
ILS-CSL to markedly boost the performance of search algorithms, even enabling those with initially
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lower effectiveness to outperform more advanced algorithms.
3) While in some cases ILS-CSL elevates BIC-based CSL to outshine BDeu baselines, this is not a
universal occurrence. This inconsistency underscores the influence of the employed scoring function
on the effectiveness of ILS-CSL, emphasizing the critical role the scoring function plays within a
prior knowledge-driven CSL framework. Despite this, BIC-based CSL with ILS-CSL is greatly im-
proved in ranking, see Appendix A.5.1 for the ranking of these methods along with further analysis.
4) The hard approach outperforms the soft approach, attributed to the high quality of specified con-
straints within ILS-CSL. This stands in stark contrast to the findings by Ban et al. (2023), where the
soft approach fared better due to the lower quality of prior constraints derived from full inference.
This comparison further highlights the tolerance to imperfect LLM inference brought by ILS-CSL.

5.3 ASSESSMENT OF ERRONEOUS LLM INFERENCE AND PRIOR CONSTRAINTS (RQ3)

Alarm Asia Cancer Child
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Figure 1: Erroneous LLM inference and erroneous specified edge
constraints of MINOBSx-BDeu+ILS-CSL-hard.

This section is dedicated to the
evaluation of ILS-CSL’s robust-
ness against the inaccuracies in
LLM inference. We scruti-
nize the erroneous causal rela-
tionships inferred by LLM on
the edges of the learned DAG,
along with the incorrect prior
constraints that stem from them.
The results pertaining to each
dataset, which includes two unique sizes of observed data related to MINOBSx-BDeu with the
hard approach, are illustrated in Figure 1.

Our observations highlight a substantial reduction in the errors of specified edge constraints com-
pared to erroneous LLM inference. This is attributed to the strategy of only imposing constraints
on causality that is inconsistent with what has been learned. This effect is grounded in the notable
precision of LLMs in negating additional causality or rectifying the direction of reversed causality,
which reduces the risk of their inaccuracy in pinpointing direct causality, please refer to Appendix
A.5.2 for estimation of precision of different types of causality inferred by LLM.

It’s important to note that various backbone CSL methods affect the output of causal DAGs, lead-
ing to a diverse range in the number of erroneous prior errors and LLM inferences. For a more
comprehensive set of results, refer to Appendix A.5.3.

5.4 ITERATIVE DETAILS OF ILS-CSL (RQ4)

We unfold details of ILS-CSL by 1) presenting the iterative trend of SHD with various backbone
algorithms on the eight datasets, see Appendix A.6.3, 2) evaluating the trend of constraint numbers
and errors in iteration, with results reported in Appendix A.6.3, and 3) visualize the evolution of
causal DAGs in ILS-CSL for in-depth understanding of the process supervising causal discovery by
LLM, please refer Appendix A.6.1.

6 CONCLUSIONS

This paper presents ILS-CSL, a framework that enhances causal discovery from data using Large
Language Models (LLMs). ILS-CSL seamlessly incorporates LLM inference on the edges of the
learned causal Directed Acyclic Graph (DAG), converting qualitative causal statements into precise
edge-level prior constraints while effectively mitigating constraint errors stemming from imper-
fect prior knowledge. Comprehensive experiments across eight real-world datasets demonstrate the
substantial and consistent improvement ILS-CSL brings to the quality of causal structure learning
(CSL) outputs. Notably, ILS-CSL surpasses the existing separate way to guide CSL by applying
LLM inferred causality as ancestral constraints, with a marked performance increase as the num-
ber of variables grows. This advancement underscores the promising application of the ILS-CSL
framework in assistance of complex, real-world causal discovery tasks.
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A APPENDIX

A.1 RELATED WORK

LLM-based causal inference. The majority of current research on LLM-driven causal inference
primarily focuses on evaluating the capabilities of LLMs themselves (Willig et al., 2022; Liu et al.,
2023). For instance, this work (Long et al., 2023) assesses LLMs by probing their proficiency in
generating simple causal structures for specific variable sets, typically comprising 3-4 variables. In a
more domain-specific study, this study (Tu et al., 2023) tasks LLMs with discerning causal structures
from variables pertinent to medical pain diagnosis. However, the results from this endeavor were
less than satisfactory.

Building on these insights, Kıcıman et al. (2023) channel their efforts into devising more effective
prompts, aiming to enhance LLM performance in discerning causal structures, particularly within
the medical pain diagnosis dataset. However, the quality of the causal DAG that LLM outputs
still has gap with that by data-based algorithms. Despite this, their research broadens the scope
to evaluate LLMs across a diverse set of causal tasks. Notably, they report significant accuracy in
tasks like pairwise causal discovery (Hoyer et al., 2008) and counterfactual reasoning (Frohberg &
Binder, 2021). It’s worth noting that, unlike causal structure learning, these tasks do not differentiate
between direct and indirect relationships.

Integration of LLM and data-based CSL. A recent work first introduces LLM into the frame-
work of data-driven CSL (Ban et al., 2023). Built upon the fact that LLMs are short in distinguish-
ing indirect causality from the direct one, the authors apply ancestral constraints according to the
statements of existence of causality between pairwise variables made by LLM. However, they ac-
knowledge that LLM can conflate correlation with causality, leading to erroneous constraints on
extra paths.

To reduce the harm of extra ancestral constraints and to enhance the efficiency of LLM inference, the
authors provide the LLM with all investigated variables and prompt for the most confident causal
statements, to reduce the number of causal statements and improves accuracy as possible. Yet,
this approach significantly complicates the causality inference process. The LLM faces immense
challenges in delivering as precise and comprehensive causal analyses as individual prompt for
each pairwise variables. As the number of variables increases, the accuracy of the inferred causal
statements diminishes, as evidenced in Table 4.

Furthermore, while ancestral constraints prove effective for small-scale DAGs, their efficacy wanes
with an increasing number of variables. This decline can be attributed to the heightened likelihood of
erroneous edges being incorporated into the recovered path, especially as inter-variable correlations
become more intricate. This observation is further corroborated by the structural hamming distance
(SHD) metrics presented by the authors in Table 5. Instances where the integration of GPT-4-driven
ancestral constraints adversely impacted CSL are highlighted in gray. Notably, the performance of
ancestral constraint-based CSL deteriorates in datasets like Child, Insurance, and Alarm, even when
the GPT-4-driven prior constraints are deemed high-quality.

Table 4: Correct and total count of GPT-4 inferred causal statements reported by Ban et al. (2023).

Dataset Cancer Asia Child Insurance Alarm Water Mildew Barley
Correct / Total 5 / 5 9 / 9 8 / 10 10 / 10 20 / 21 9 / 15 5 / 8 17 / 24
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Table 5: SHD↓ by data-based CSL and GPT-4 driven prior constraints reported by Ban et al. (2023).

Dataset Cancer
5 nodes

Asia
8 nodes

Child
20 nodes

Insurance
27 nodes

Alarm
37 nodes

Mildew
35 nodes

Water
32 nodes

Barley
48 nodes

Data size 250 1000 250 1000 500 2000 500 2000 1000 4000 8000 32000 1000 4000 2000 8000
MINOBSx 3.0 1.8 4.2 2.5 9.5 5.3 25.7 15.0 9.5 6.5 22.8 21.0 62.3 53.7 47.0 33.7

+GPT-4 0.5 0.0 2.2 0.3 10.5 7.8 24.5 16.2 12.3 8.8 40.5 21.5 66.7 55.7 52.0 54.5
CaMML 2.0 2.5 3.5 2.2 6.0 1.0 34.3 31.7 11.0 8.2 48.2 62.2 59.0 53.2 81.5 81.2
+GPT-4 2.0 1.3 0.2 0.0 4.7 1.0 27.0 22.2 6.0 3.0 49.2 60.0 58.7 48.3 82.2 82.3

*The bold SHD is the best performance in each dataset.

A.2 DERIVATION OF EQUATIONS (6) AND (7)

In this section, we derive a scoring function for the DAG G(X,E(G)) using data D and prior con-
straints, denoted as λ : <R,Π>. The set R = {r1, r2, · · · , rm} comprises edge variables on m
pairwise variables, where ri ∈ {→,↛}. Π = Πm

i=1P (ri) is the associated probability distribution.

Beginning with the derivation of the scoring function without prior constraints, let D be a complete
multinomial observed data over variables X . Utilizing the Bayesian Theorem, the probability of a
network G over X is expressed as:

P (G|D) ∝ P (D|G) · P (G)

Given that P (D) remains consistent across all DAGs, the score of a network is typically the loga-
rithm of P (G|D), resulting in Sc(G|D) = Sc(D|G) + Sc(G). Bayesian scoring methods, such as
K2 (Cooper & Herskovits, 1992) and BDe, BDeu (Heckerman & Geiger, 1995), aim to approximate
the log-likelihood based on various assumptions. When priors are uniform, Sc(G) can be disre-
garded during maximization. However, with the introduction of prior structural constraints, denoted
as λ, this term gains significance.

Let’s define C as a configuration, representing a joint instantiation of values to edge variables R =
{r1, r2, ..., rm}. The probability for this configuration is JC = P (R = C|Π). For a specific DAG
G, its configuration is represented as CG . Thus, we can express:

P (G | D, λ) =
P (D | G) · P (G | J)

P (D | J)
(13)

The above equation is derived from the understanding that, given the graph G, the data D is in-
dependent of J . This is because J offers no supplementary information about the data once the
graph structure is known. The term P (D | J) serves as a normalizing constant, consistent across all
DAGs. The term P (D | G) corresponds to the scoring function Sc(D | G) in the absence of prior
constraints. The scoring function can be expressed as:

Sc(G | D, λ) = Sc(D | G) + Sc(G | J) (14)

Here, Sc(D | G) represents the scoring function without prior constraints, denoted as σ(G | D).
Meanwhile, Sc(G | J) pertains to the bonus score associated with prior constraints.

Shifting our focus to the prior factor P (G | J), we have:

P (G | J) =P (G, CG | J) = P (G | J,CG) · P (CG | J)
=P (G | CG) · JCG

(15)

The first equation holds since CG is inherently a function of G. The term P (G | CG) denotes the
likelihood of graph G when a specific configuration is present. In the absence of any other prior
constraints, we assign an identical prior to all graphs sharing the same configuration. Let NC rep-
resent the count of DAGs over nodes V that have the configuration C. Thus, P (G | CG) = 1/NCG ,
leading to:

P (G | J) =
JCG

NCG

and Sc(G | J) = log

(
JCG

NCG

)
(16)
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Given that the count of edge variables (or edge constraints) remains consistent across all DAGs,
NCG is also consistent for all DAGs. Therefore:

Sc(G | J) = log JCG = logP (R = CG | Π) =
∑
ri∈R

logP (ri) (17)

Assuming P (ri) = P (λ) when λ indicates the presence of the corresponding edge, and P (ri) =
1− P (λ) when the edge’s existence is negated, we deduce:

Sc(G | J) =
∑

Xj→Xi∈λ

IXj→Xi∈E(G) logP (λ) + IXj→Xi ̸∈E(G) log(1− P (λ))+

∑
Xj↛Xi∈λ

IXj→Xi∈E(G) log(1− P (λ)) + IXj→Xi ̸∈E(G) logP (λ)
(18)

By integrating Equations (14), (18), and (2), we derive the form of the local prior constraint-based
scoring function, as depicted in Equations (6) and (7).

A.3 PROOF OF LEMMA 1

To substantiate Lemma 1, we begin by highlighting a characteristic inherent to wildly used scoring
functions designed specifically for CSL: the regularization mechanism9. This mechanism penalizes
the addition of edges in the causal DAG to reduce the model complexity. Without this regulariza-
tion, the DAG could gravitate towards becoming a complete graph, which would be nonsensical. It
synergizes with the evaluation based on likelihood probability inferred from observed data under a
specific distribution to constitute a scoring function.

When assessing a local structure, adding new variables to the parent set will lead to a penalty on the
local score Lσ(Xi | Xpa(i);D) due to the regularization mechanism. This implies that indiscrimi-
nately augmenting variables to the parent set doesn’t consistently enhance the local score.

Building on this understanding, let’s consider a scenario where the optimal and the second-best
solutions for Xpa(i), represented as Xopt and X ′

opt, comprise distinct variables. Specifically, there
exist variables Xj and Xk such that Xj is in X ′

opt but not in Xopt, and vice versa for Xk. If we
exclude Xk from the potential parent set, the optimal solution shifts to X ′

opt. Given that Xj is now in
X ′

opt but absent in Xopt, it’s evident that the revised optimal solution isn’t a subset of its predecessor.
This observation solidifies the proof for Lemma 1.

Consider a basic scenario where Xi has two candidate parent variables, A and B. If the score of
either A or B individually serving as the parent of Xi surpasses the score when A and B are both
parents (due to complexity penalties), then the following inequality holds: Lσ(Xi | {A}),Lσ(Xi |
{B}) > Lσ(Xi | {A,B}) > Lσ(Xi | ∅). In this scenario, {A} and {B} emerge as the optimal and
suboptimal solutions, corroborating the condition described earlier.

Finally, we illustrate a concrete example where forbidding specific edges aids in uncovering a miss-
ing true edge. We consider the BDeu scores for the first of six observed data sets on the Asia
dataset, comprising 1000 samples10. The true parent set for the variable X3(lung cancer) is
{X2(smoking)}.
The local scores are ranked as follows:

Lσ(X3 | Xpa(3),1) > · · · > Lσ(X3 | Xpa(3),k) > Lσ(X3 | {X2}) > · · · > Lσ(X3 | ∅) > · · ·
Xpa(3),j ∩ {X5(either), X6(positive xray), X7(dyspnoea)} ≠ ∅, j = 1, ..., k

(19)

where Xpa(3),i is the parent set that ranks i. Note that the ground truth ranks k + 1, and the empty
set ranks lower. The optimal parent set (ranked first) for X3 is:
Xpa(3),1 = {X1(tuberculosis), X5(either)}.

9This property is also known as global consistency, as referenced in (Chickering, 2002).
10Available in supplementary codes.
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Furthermore, each of the top k parent sets for X3 contains at least one variable from the set:
{X5(either), X6(positive xray), X7(dyspnoea)}.
The optimal parent set Xopt does not include the ground truth X2. Supervised by GPT-4, none of
X5, X6, X7 directly causes X2 based on intuitive knowledge, thereby constraining the parent set of
X3 to exclude X5, X6, and X7. The new optimal X ′

opt under the constraints is the ground truth
{X2} according to Equation (19). In this case, the missing true edge X2 → X3 is recovered by
forbidding three edges when supervising edges of the learned DAG.

A.4 PARAMETER ESTIMATION IN SECTION 4.2

This section presents the details on the estimation of parameters related to the quality of LLM based
causal inference, pe, pr, pdr , p

d
m, pc, structures of the true causal DAGs, γ1, and structures of the

learned causal DAGs, γ2, z1, z2, z3, PR|E .

Quality of LLM causal inference. We randomly sample three kinds of pairwise variables from
the employed eight datasets in experiments:

1. Direct edges: Sampling pairwise variables with direct edge Xi → Xj in the ground truth.

2. Indirect path: Sampling pairwise variables without direct edge but with a directed path,
Xi ↛ Xj , Xi ⇝ Xj .

3. Not connected: Sampling pairwise variables without any path, Xi ̸⇝ Xj , Xj ̸⇝ Xi.

For each type, we sample 20 pairwise variables form each dataset, if more than 20 pairwise variables
satisfying the condition exist in the causal DAG. Or we use all the pairwise variables as samples.

Subsequently, we query GPT-4 the causality between each pairwise variables through the prompt in
Section 3. The true answer of Types 1 and 2 is A, and that of Type 3 is C. The accuracy of GPT-4 on
different datasets on these samples together with the ratio of reversed inference (B for Types 1 and
2) are reported in Table 6.

Table 6: Accuracy and reversed ratio of the sampled pairwise variables on eight datasets.

Dataset Alarm Asia Insurance Mildew Child Cancer Water Barley
Direct causality (Acc1 /Rev1) 1.00 / 0.00 1.00 / 0.00 0.85 / 0.05 0.95 / 0.05 1.00 / 0.00 1.00 / 0.00 0.95 / 0.05 0.70 / 0.05

Indirect causality (Acc2 /Rev2) 0.65 / 0.15 1.00 / 0.00 0.95 / 0.05 1.00 / 0.00 0.50 / 0.40 1.00 / 0.00 0.50 / 0.50 0.30 / 0.30
No causality (Acc3) 0.60 0.80 0.35 0.10 0.50 0.00 0.45 0.50

Qualitative causality(Acc4 / Rev4) 0.72 / 0.12 1.00 / 0.00 0.92 / 0.05 0.99 / 0.01 0.70 / 0.24 1.00 / 0.00 0.67 / 0.33 0.36 / 0.26

Direct causality corresponds to direct edges, indirect causality to indirect paths, and no causality
corresponds to not connected variables. The accuracy and reversed ratio of LLM inference on them
is obtained by experiments. The qualitative causality corresponds the paths (including edges), whose
accuracy is estimated by Acc4 = (Acc1×|E|+Acc2×|P |)/(|E|+|P |), where |E| and |P | represents
the number of edges and indirect paths in the true causal DAG.

By weighted sum of the accuracy and reversed ratio, we obtain the estimation of them. Then the
probability of the five introduced error that GPT-4 makes are presented as follows:

1. Extra causality: pe = 1− Acc3 = 0.56

2. Reversed causality: pr = Rev4 = 0.15

3. Reversed direct causality: pdr = Rev1 = 0.03

4. Missing direct causality: pdm = 1− Acc1 − Rev1 = 0.05

5. Correct existing causality: pc = Acc4 = 0.75

We see that the major errors of GPT-4 inference is sourced from the extra causality, which is because
some intuitively correlated concepts may not generate real causal relations in an experiment with
specific conditions. And that is why we should refer to data for causal analysis. However, GPT-4 is
prone to infer correct causality on pairwise variables with direct causality, which is the base of our
framework to efficiently improves the quality of learned causal DAGs.
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Structural parameters. The structural parameters is estimated by the average value of them on
the eight datasets. The ones related to the causal structure learning of each dataset is estimated by
the average value of them on twelve segments of observed data, using MINOBSx search and BDeu
score. See the detailed results in Table 7.

Table 7: The estimated structural paramters on eight datasets.

Dataset Alarm Asia Insurance Mildew Child Cancer Water Barley Avg.
γ1 0.67 0.36 0.52 0.52 0.66 0.20 0.65 0.52 0.51
γ2 1.22 1.01 1.44 0.79 1.09 0.55 1.34 1.27 1.09
z1 0.96 0.88 0.91 0.87 0.98 0.90 0.67 0.84 0.88
z2 0.02 0.00 0.05 0.08 0.00 0.07 0.12 0.07 0.05
z3 0.02 0.12 0.04 0.05 0.02 0.03 0.21 0.09 0.07

PR|E 0.02 0.00 0.05 0.08 0.00 0.10 0.12 0.08 0.05

A.5 SUPPLEMENTARY EXPERIMENTS

This section provides additional results and a more detailed analysis to enhance and expand upon
the conclusions related to research questions 1, 2 and 3 presented in the main text.

A.5.1 RANKING OF THE INVESTIGATED CSL METHODS (RQ1 AND RQ2)

To rank the investigated CSL methods, we utilize Friedman test (Friedman, 1937), a popular method
used in the context of comparing the performances of different algorithms over multiple datasets.

Concretely, the algorithms are ranked for each dataset. If there are n algorithms, assign ranks from 1
to n. If two algorithms perform equally well, assign them the average of the ranks they would have
received. Then, calculate the Friedman statistic (χ2

F ) using the formula:

χ2
F =

12N

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4


where N is the number of datasets, k is the number of algorithms, and Rj is the rank sum of the
j-th algorithm across all datasets. On this basis, compare the calculated χ2

F value with the critical
value from the chi-square distribution with k − 1 degrees of freedom to determine the significance,
or calculate the p-value.

We report the friedman ranking and p-values of methods of Tables 2 and 3, in Tables 8 and 9, re-
spectively. The best and second ranking are highlighted with bold and underlined texts, repsectively.

Table 8: Friedman ranking of methods in Table 2, where p-value equals 2.7e-4.

Data-based CSL SepLLM ILS-CSL
MINOBSx CaMML MINOBSx CaMML MINOBSx CaMML

3.6 4.8 4.0 3.9 1.9 2.9

Table 9: Friedman ranking of methods in Table 3, where p-value equals 5.7e-19.

Data-based CSL ILS-CSL
Soft Hard

BDeu BIC BDeu BIC BDeu BIC
MINOBSx HC MINOBSx HC MINOBSx HC MINOBSx HC MINOBSx HC MINOBSx HC

7.0 10.1 9.8 11.2 2.8 5.3 6.2 8.0 2.7 3.4 4.9 6.6

Result observation. We observe a notable trend in the rankings of backbone CSL algorithms with
ILS-CSL, as they consistently secure positions within the top two as shown in Table 8. Intriguingly,
within the sepLLM framework, CaMML (employing soft constraints) surpasses MINOBSx (em-
ploying hard constraints). This trend is reversed within the ILS-CSL framework. This phenomenon
can be attributed to two primary factors:
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1. The sepLLM framework tends to generate more erroneous constraints compared to ILS-
CSL. Consequently, the error-tolerant nature of soft constraints proves more beneficial
within the sepLLM framework. In contrast, within the ILS-CSL framework, where con-
straints are of higher quality, hard constraints demonstrate greater significance.

2. The use of ancestral constraints within the sepLLM framework can inadvertently introduce
erroneous edges along a path, a problem not encountered with the edge constraints utilized
within the ILS-CSL framework.

In essence, even correct ancestral constraints can inadvertently introduce risk into the CSL pro-
cess, leading to scenarios where soft constraints may outperform hard constraints. This highlights
the critical importance of constraint quality and the potential pitfalls of ancestral constraints. ILS-
CSL adeptly addresses these two pivotal aspects, ensuring enhanced and stable performance while
utilizing the same LLM resources. This strategic approach fortifies the robustness and reliability
of ILS-CSL in diverse CSL scenarios, reinforcing its utility as a valuable tool for accurate causal
structure learning.

Table 9 predominantly reveals the following observations:

• Almost all the methods employing ILS-CSL rank higher than their data-based CSL coun-
terparts, with the exception of HC-BIC+ILS-CSL-soft (ranking 8.0) and MIONBSx+BDeu
(ranking 7.0). This underscores the superior performance enhancement brought about by
ILS-CSL, transcending the specific characteristics of the underlying backbone algorithms.

• The scoring function is more important than the search strategy. It is observed that ILS-
CSL, when used with different search methods but the same score, tends to have closer
rankings compared to the usage with the same search method but different scores. This
suggests that lower-performing search strategies are more substantially improved by ILS-
CSL than their scoring counterparts. This phenomenon can be attributed to the fact that
prior constraints can streamline the search process by narrowing down the search space,
albeit having a limited impact on amending inaccurate statistical data analysis.

• The hard constraint method consistently outperforms the soft constraint approach. This
finding aligns with previous conclusions, reinforcing the notion that ILS-CSL contributes
high-quality edge constraints to the causal discovery process. This advantage underscores
the significance of satisfying every constraint, which in the context of ILS-CSL, outweighs
the potential risks associated with errors.

These insights collectively highlight the robust and versatile performance enhancement capabilities
of ILS-CSL across various scenarios and configurations, affirming its value as a significant asset in
the realm of causal structure learning.

A.5.2 UNDERSTANDING ILS-CSL’S RESISTANCE TO ERRONEOUS CONSTRAINTS (RQ3)

This section elucidates the ability of ILS-CSL to minimize prior errors by limiting LLM supervision
to edge-level pairwise variables. We present the ratio of various real structures corresponding to all
pairwise variables inferred by GPT-4. Table 10 displays the results for all datasets, highlighting the
precision related to ILS-CSL (light red cells) and full inference (light blue cells). It distinguishes
between qualitative precision (correct directions) and structural precision (correct edges only).

In the context of the analysis, the outcomes A, B, and C from GPT-4 have specific meanings related
to inferred causal relationships between two variables X1 and X2:
Outcome A: GPT-4 infers that X1 causes X2 (X1 → X2).
Outcome B: GPT-4 infers that X2 causes X1 (X2 → X1).
Outcome C: GPT-4 infers that X1 and X2 are not causally related (X1 ↮ X2).
In the table, various columns represent different types of causal relationships in the ground truth:
Direct Edges: The ratio of cases where X1 directly causes X2 (X1 → X2).
Reversed Edges: The ratio of cases where X2 directly causes X1 (X2 → X1).
Indirect Paths: The ratio of cases where X1 indirectly leads to X2 (X1 ⇝ X2) without a direct
edge (X1 ↛ X2).
Reversed Indirect Paths: The ratio of cases where X2 indirectly leads to X1 (X2 ⇝ X1) without
a direct edge (X2 ↛ X1).
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Table 10: The precision along with ratio of different structures of different answers by GPT-4.

Overall PrecisionAnswer Dataset Direct
edges

Reversed
edges Precision Indirect

paths
Reversed

indirect paths
Not

reachable Qualitative Structural
Alarm 0.33 0.02 0.94 0.28 0.00 0.37 0.61 0.33
Asia 0.44 0.00 1.00 0.50 0.00 0.06 0.94 0.44

Barley 0.22 0.12 0.65 0.23 0.12 0.31 0.45 0.22
Cancer 0.36 0.09 0.80 0.36 0.09 0.09 0.73 0.36
Child 0.46 0.02 0.96 0.26 0.04 0.22 0.72 0.46

Insurance 0.41 0.05 0.89 0.32 0.06 0.15 0.74 0.41
Mildew 0.45 0.04 0.92 0.36 0.03 0.11 0.82 0.45

A

Water 0.47 0.13 0.78 0.11 0.01 0.28 0.58 0.47
Alarm 0.02 0.36 0.95 0.10 0.18 0.34 0.54 0.36
Asia 0.00 0.50 1.00 0.00 0.36 0.14 0.86 0.50

Barley 0.02 0.21 0.91 0.08 0.43 0.25 0.64 0.21
Cancer 0.00 0.60 1.00 0.00 0.00 0.40 0.60 0.60
Child 0.00 0.45 1.00 0.24 0.12 0.18 0.58 0.45

Insurance 0.02 0.59 0.97 0.02 0.10 0.27 0.68 0.59
Mildew 0.01 0.49 0.98 0.00 0.14 0.35 0.64 0.49

B

Water 0.03 0.51 0.94 0.29 0.03 0.14 0.54 0.51
Alarm 0.00 0.00 - 0.00 0.03 0.97 0.97 1.00
Asia 0.00 0.00 - 0.00 0.00 1.00 1.00 1.00

Barley - - - - - - - -
Cancer - - - - - - - -
Child 0.00 0.11 - 0.00 0.11 0.79 0.79 0.89

Insurance 0.03 0.05 - 0.00 0.10 0.83 0.83 0.93
Mildew 0.00 0.01 - 0.32 0.36 0.32 0.32 0.99

C

Water 0.00 0.04 - 0.30 0.19 0.47 0.47 0.96

Not Reachable: The ratio of cases where X1 and X2 are not reachable from each other (X1 ̸⇝
X2, X2 ̸⇝ X1).

Observation and Analysis. The edge-level pairwise variables precision (light red cells) is notably
high, significantly exceeding the precision on arbitrary variables for both qualitative and structural
aspects. Analyzing potential errors of ILS-CSL reveals:

1. For GPT-4 outcome C, the corresponding edge forbidden constraints exhibit high precision,
generating few erroneous structural constraints. This is attributed to the high confidence in
the absence of causal relations inferred based on knowledge, leading to excellent precision
on pairwise variables without structural edges, albeit with a lower recall.

2. For GPT-4 outcomes A or B, high precision is observed on learned edges belonging to the
true skeleton, producing few erroneous structural constraints. Given known direct causality
between pairwise variables, LLM can easily infer the correct causal direction, stemming
from the counterintuitive nature of reversed causal statements.

3. Major LLM inference errors stem from outcomes A and B on learned edges outside the true
skeleton. However, the impact of these errors on generating incorrect structural constraints
is mitigated by the low probability of extra edges occurring in a learned structure (z3 ≈
0.07, see Table 7) and the strategy of specifying a prior constraint only when inconsistent.

In essence, the primary limitation of LLM in causal inference is the confusion between direct causal
relationships, indirect causality, and correlations, evidenced by the low overall qualitative and struc-
tural precision. This limitation hampers the performance of using LLM-derived existence on causal-
ity as ancestral (qualitative precision) or edge constraints (structural precision) seperately.

Contrarily, ILS-CSL effectively minimizes prior errors by leveraging the inherent precision of LLM
in inferring non-causal relations and determining causal direction on pairwise variables with direct
causality. It smartly circumvents LLM’s limitation in discerning the existence of direct causal rela-
tionships, which are easily confused with indirect causality or correlations, by restricting the LLM
inference into the range of learned structures from data, as analyzed in point 3.

18



Under review as a conference paper at ICLR 2024

A.5.3 SUPPLEMENTARY RESULTS ON ERRORS OF LLM INFERENCE AND PRIOR
CONSTRAINTS (RQ3)

In this section, we present the count of incorrect causal statements inferred by GPT-4 along with the
erroneous prior constraints across various backbone algorithms and distinct observed data sizes of
eight datasets. Figure 2 delineates the results pertinent to the hard constraining approaches, while
Figure 3 elucidates those relevant to the soft constraining approaches.

We observe that the number of prior constraints is much fewer than that of LLM inferences. Please
refer Appendix A.5.2 for related analysis.
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Figure 2: Number of erroneous LLM inference and prior constraints during ILS-CSL related to hard
constraining approaches on various algorithms and datasets.
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Figure 3: Number of erroneous LLM inference and prior constraints during ILS-CSL related to soft
constraining approaches on various algorithms and datasets.
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A.6 DETAILS AND VISUALIZATION

In this section, we unfold the details of the iterative process of ILS-CSL for in-depth analysis, and
visualize a representative example for intuitive understanding.

A.6.1 VISUALIZATION

We provide a visualized example to illustrate the effect of ILS-CSL in enhancing the quality of
learned causal DAGs, including the improvement on the prior-independent structures (interpreted
as the unknown causal mechanisms). The result of HC (BDeu) algorithm on Child dataset, 2000
samples, with hard constraining approach in ILS-CSL, is reported in Figure 4.

Key observations Initially, HC (BDue) learns a causal DAG from pure observed data (Iteration 0),
whose edges are supervised by LLM, leading to edge constraints (colored arrows) on inconsistent
inferred edge by LLM. The constraints could refine local structures (red arrows) or bring harm due
to the erroneous inference (blue arrows). The erroneous edges (dotted arrows) are reduced as the
iteration goes. Details of further observations are presented as follows:

• The SHD of the learned causal DAG is greatly reduced from 12 to 3 by employing the
ILS-CSL framework, showcasing the significant capability of our framework to enhance
the quality of learned causality.

• The first round of LLM-based supervision refines the learned DAG to a much greater extent
than the following rounds. This addresses the acceptable efficiency loss of ILS-CSL, which
usually does not require many iterations.

• There are 7 correct constraints (red arrow) and 2 erroneous ones (blue arrow) in total. The
number of direct refined edges by these priors are 5 (7 − 2), while the reduced SHD is 8,
meaning that 3 edges that are distinct from those in constraints are corrected without any
prior knowledge on them. It underscores the capability of discovering structures unrelated
to prior constraints by integrating them. This phenomenon could be interpreted as the
capability of aiding discovery of unknown causal mechanisms by constraining the known
knowledge on causality.

Iteration 0 Iteration 1

Iteration 2

Correct edge Wrong edge Correct constraint Wrong constraint

Iteration 0 Iteration 1

Iteration 2

Correct edge Wrong edge Correct constraint Wrong constraint

Figure 4: Visualized process of HC-BDeu+ILS-CSL-hard on a set of observed data of Child, 2000
samples. The SHD of iterations are: 12 for Iteration 0, 3 for Iterations 1 and 2.
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A.6.2 TRENDS IN LEARNED DAG QUALITY OVER ITERATIONS

This section outlines the iterative trends of scaled SHD (aiming for a decrease, denoted as SHD↓)
and True Positive Rate (aiming for an increase, denoted as TPR↑) for various backbone algorithms
across eight datasets, as depicted in Figure 5. Each dataset spans two distinct data sizes, resulting
in 12 segments of observed data. It’s crucial to note the potential for significant derivation due to
performance differences across varying data sizes, particularly for smaller-scale datasets like Cancer
and Asia.

Observations: Key observations from the iterative trends include:

• Limited Iteration Numbers: Most cases require a limited number of iterations. The area
near the maximum iteration in each figure is small when exceeding 5, indicating that few
out of the 12 cases reach this point. Some cases even have a derivation of zero at the
maximum iteration, signifying that only one case attains this maximum value.

• Quality Improvement Trend: Generally, as the iteration number increases, the scaled
SHD decreases, and the TPR increases. This trend underscores the enhancement in the
quality of the learned causal structures as ILS-CSL progresses.

• Significant Initial Improvement: The most substantial improvement in the quality of
learned causal DAGs occurs in the first round of LLM supervision (from Iteration 1 to
2). Subsequent iterations offer diminished enhancements. This pattern is attributed to the
initial presentation of most inconsistent edges with LLM inference in the first iteration.
Post the integration of prior constraints, the new structures learned by CSL exhibit far
fewer inconsistencies with LLM inference.

• Potential Quality Degradation: In certain instances, the quality of the causal DAG di-
minishes across specific iterations. This decline could stem from the introduction of new
erroneous prior constraints in a given iteration or a statistical artifact. The latter scenario
arises when two consecutive iterations do not employ the same set of observed data, as
some cases conclude in the preceding iteration.

These observations provide a comprehensive insight into the iterative behavior of ILS-CSL, high-
lighting its effectiveness and areas of caution to ensure consistent enhancement in learned causal
structures.

A.6.3 TREND OF CONSTRAINTS DERIVED FROM LLM OVER ITERATIONS

This section discusses the trend in the number of total and erroneous prior constraints derived from
various backbone algorithms on eight datasets, as illustrated in Figure 6. The setup of the reported
cases remains consistent with that in Appendix A.6.2.

Observations: The following key observations emerge from the analysis:

• Increasing Total Prior Constraints with Few Errors: As the iterations progress, the
number of total prior constraints sees a rise, while the increase in erroneous constraints is
considerably smaller. This trend highlights the robust capability of ILS-CSL in generat-
ing high-quality, reliable constraints, enhancing the overall efficiency and reliability of the
causal discovery process.

• Occasional Decrease in Constraints: Despite a general increase, some iterations exhibit
a decrease in the number of prior constraints. This phenomenon is attributed to the same
statistical artifact discussed in Appendix A.6.2. Some cases conclude in earlier iterations,
leading to a varied set of statistical points across consecutive iterations, thereby affecting
the total count of constraints.

These observations further affirm the effectiveness of ILS-CSL in consistently generating high-
quality constraints throughout the iterations.
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Figure 5: TPR↑ (green line) and scaled SHD↓ (purple line) alongwith derivations (colored area) in
ILS-CSL with various algorithms on various datasets.
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Figure 6: Number of total (blue line above) and erroneous (red line below) prior constraints along
with derivations (colored area) in ILS-CSL with various algorithms on various datasets.
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