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ABSTRACT

In addition to achieving high accuracy, in many applications, it is important to
estimate the probability that a model prediction is correct. Predictive uncertainty
is particularly important on out-of-distribution (OOD) data where accuracy de-
grades. However, models are typically overconfident, and model calibration on
OOD data remains a challenge. In this paper we propose a simple post hoc cal-
ibration method that significantly improves on benchmark results (Ovadia et al.,
2019) on a wide range of corrupted data. Our method uses outlier exposure to
properly calibrate the model probabilities.

1 PREDICTIVE UNCERTAINTY

When a machine learning model makes a prediction, we want to know how confident (or uncertain)
we should be about the result. Uncertainty estimates are useful for both in distribution and out-
of-distribution (OOD) data. Predictive uncertainty addresses this challenge by endowing model
predictions with estimates of class membership probabilities. The baseline method for predictive
uncertainty is to simply use the softmax probabilities of the model, psoftmax(x) = softmax(f(x)),
as a surrogate for class membership probabilities (Hendrycks & Gimpel, 2017). Here f(x) denotes
the model outputs. Other approaches include temperature scaling (Guo et al., 2017), dropout (Gal &
Ghahramani, 2016; Srivastava et al., 2014), and model ensembles (Lakshminarayanan et al., 2017),
as well as Stochastic Variational Bayesian Inference (SVBI) for deep learning (Blundell et al., 2015;
Graves, 2011; Louizos & Welling, 2016; 2017; Wen et al., 2018), among others.

All methods suffer from some degree of calibration error, which is the difference between pre-
dicted error rates and actual error rates, as measured by collecting data into bins based on pmax =
maxi p

softmax
i bins. The standard measurement of calibration error is the expected calibration er-

ror (ECE) Guo et al. (2017), although other measures have been used (see Nguyen et al. (2015),
Hendrycks & Gimpel (2017)), including the Brier score (DeGroot & Fienberg, 1983), which is also
used in Ovadia et al. (2019).

1.1 OUR RESULTS

We are interested in image classification problems, in particular the CIFAR-10 and Imagenet 2012
datasets, in the setting of distribution covariate shift, where the data has been corrupted by an un-
known transformation of unknown intensity. These corruptions are described in Hendrycks & Di-
etterich (2019). Our starting point is the work of Ovadia et al. (2019) which offers a large-scale
benchmark of existing state-of-the-art methods for evaluating uncertainty on classification problems
under dataset shift by providing the softmax model outputs. One of main take-aways from the work
of Ovadia et al. (2019) is that, unsurprisingly, the quality of the uncertainty predictions deteriorates
significantly along with the dataset shift. In order to be able to calibrate for different intensity levels
of unknown corruptions, we make use of surrogate calibration sets, which are corruptions of the
data by a different (known) corruption. Then, when given an image (or sample of images), we first
estimate the corruption level, and then recalibrate the model probabilities based on the surrogate
representative calibration set. The latter step is done with a simple statistical calibration step, con-
verting the model outputs into calibrated uncertainty estimates. Surprisingly we can estimate the
corruption level just using the model outputs. We focus on the probability of correct classification,
using the pmax values.
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(b) CIFAR-10
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Figure 1: Comparison of the benchmark implementation (Ovadia et al., 2019), versus our single and
multiple image methods. Mean Expected Calibration Error (ECE) across different corruptions types,
for fixed corruption intensity going from 0 to 5. Each box represents a different uncertainty method.
The ECE decreases across almost all methods and levels of intensity with the greatest improvement
at the higher intensities. See Tables 1 and 2 in the Appendix for numerical comparisons.

In Figure 1 we compare each benchmark uncertainty method with our two methods. The single
image method determines the appropriate calibration set using only a single image. The multiple
image method uses a sample of images (all drawn from the same corruption level and type) to choose
the calibration set. More images allow for a better choice of the calibration set, further reducing the
calibration error. As shown in the figure, the ECE decreases across almost all methods and levels of
intensity with the greatest improvement at the higher intensities. The Brier scores give similar results
(see Figure 5 below). We also reproduce a figure in Ovadia et al. (2019) which gives a whisker plot
of the distribution of the values.

Our results are based on the fact that data distribution shift typically leads to overconfident models
(Nguyen et al., 2015): the pmax values are above the true probability, and so they themselves are
shifted. This allows us to use the pmax distribution shift as a surrogate for data distribution shift and
ultimately significantly reduce the calibration error using a purely statistical approach. In practice,
we perform the model recalibration for the different corruptions and intensities based simply on
the pmax distribution shift, which we detect using surrogate corrupted calibration sets Crucially,
the corruption used to generate the surrogate corrupted datasets is left out of the test set. The
calibrated probabilities are visualized using histograms in Figure 2. In Figure 3, we can see the pmax

distributions for the chosen surrogate corrupted calibration sets and for a specific test set corruption.

1.2 OTHER RELATED WORK

Models trained on a given dataset are unlikely to perform as well on a shifted dataset (Hendrycks &
Dietterich, 2019). Moreover, there are inevitable tradeoffs between accuracy and robustness (Chun
et al., 2020). Training models against corruptions can fail to make models robust to new corruptions
(Vasiljevic et al., 2016; Geirhos et al., 2018). Hendrycks et al. (2019) deals with anomaly detection,
the task of distinguishing between anomalous and in-distribution data. They propose an approach
called Outlier Exposure (OE) that consists in training anomaly detectors on an auxiliary dataset

2



Under review as a conference paper at ICLR 2021

(a) Imagenet

0.0 0.2 0.4 0.6 0.8 1.0
ECE = 10.938%
Brier = 0.178

0.0

0.2

0.4

0.6

0.8

1.0
Ovadia et al

Calibration
Test

0.0 0.2 0.4 0.6 0.8 1.0
ECE = 3.055%
Brier = 0.165

0.0

0.2

0.4

0.6

0.8

1.0
Single Image

Calibration
Test

0.0 0.2 0.4 0.6 0.8 1.0
ECE = 2.521%
Brier = 0.164

0.0

0.2

0.4

0.6

0.8

1.0
Multi Image

Calibration
Test

(b) CIFAR-10
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Figure 2: Visualization of calibration errors for the Vanilla method on corrupted images on ImageNet
and CIFAR-10 using the elastic transform corruption with intensity 4. The x-axis corresponds to
the pmax values and the y-axis to the confidence estimates of pcorrect. The blue histogram is the
calibration probabilities, the orange is the test probabilities, and the brown is where both overlap.
The ECE is large (lower is better) for the Vanilla method at higher corruption levels, due to the
probability shift. The Brier score (lower is better) is also improved. The gap between the orange
and blue curves represents the calibration error. Notice that we used 30 equally sized bins, so in the
CIFAR-10 plot, there are very few values below .4, which is why the first bin is wide.

of outliers. Similarly in Hendrycks et al. (2020), the authors propose AUGMIX, a method that
improves both robustness and uncertainty measures by exposing the model to perturbed images
during training. Shao et al. (2020) propose a confidence calibration method that uses an auxiliary
class to separate mis-classified samples from correctly classified ones which thus allowing the mis-
classified samples to be assigned with a low confidence. Nado et al. (2020) argues that the internal
activations of the deep models also suffer from covariate shift in the presence of OOD images. Thus
they propose to recompute the batch norm at prediction time using a sample of the unlabeled images
from the test distribution improving the accuracy and ultimately the calibration. Park et al. (2020)
and Wang et al. (2020) focus on the more general problem of unsupervised domain adaptation where
one assumes assumes to have unlabeled examples from the test distribution which may only share
the same classification classes as the train distribution. Park et al. (2020) propose an approach based
on importance weighting to correct for the covariate shift in the data, together with learning an
indistinguishable feature map between training and test distributions. Wang et al. (2020) extend the
temperature scaling method into domain adaption achieving more accurate calibrations with lower
bias and variance without introducing any hyperparameters.
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Figure 3: Histogram of the pmax values for the vanilla method on CIFAR-10. Top: calibration sets
{0}, {0,1}, {0,2}, {0,3}, {0,4}, and {0,5} (left to right) with contrast corruption. Bottom: test set
with elastic transform corruption with increased intensities ranging from 1 to 5 (left to right) and
SVHN dataset (right most picture). The multi image method outputs calibrated probabilities based
the surrogate calibration set {0, 3},{0, 3},{0, 3},{0, 4},{0, 4},{0, 5}, respectively.

2 BACKGROUND

2.1 CLASSIFICATION AND LABEL PROBABILITIES

Predictive uncertainty seeks to estimate the probability that an input x belongs to each class,

pclassk (x) = P [y = k | x] , for each k ∈ Y. (1)
Here we write x ∈ X for data, y ∈ Y = {1, . . . ,K} for labels.

In the benchmark methods, the softmax of the model outputs, psoftmax(x) = softmax(f(x)) are
used as a surrogate for the class probabilities. In the case of the vanilla and temperature scal-
ing methods, f(x) is simply the model outputs. Similarly, for the Ensemble or Dropout methods,
psoftmax(x) represents the average of the probability vectors over the multiple models or queries of
the model, respectively.

Generally speaking, these softmax values are not an accurate prediction of the class probabilities
pclassk (x) (Domingos & Pazzani, 1996). Here we focus on the correct classification

pcorrect(x) = P [y = ŷ(x)] (2)
where the classification of the model is given by ŷ(x) = argmax fi(x). Guo et al. (2017) showed
that pmax = maxi p

softmax
i usually overestimates pcorrect. We can extend our method to top 5

correctness, as well as to other quantities of interest, such as, using different binning methods, based
on structured predictors (Kuleshov & Liang, 2015).

3 METHOD

Problem definition We are given a model (or ensemble of models) trained on a given dataset
ρtrain. We want to have calibrated error estimates on an unknown (different) data set ρtest, which
could have different levels of corruption. Since one model cannot be calibrated on all of the possible
(different) datasets, we want to allow for multiple calibrations, and apply them accordingly.

We study two cases: (i) we have a single image drawn from an unknown distribution, or (ii) we have
multiple images, each drawn from the same unknown distribution. In the latter case, we use the full
test set (we obtain similar results using 100 images).

3.1 CALIBRATING FOR DATASET SHIFT

We choose C distinct calibration sets generated from shifted distributions ρCAL,j . These sets are
chosen to have different representative degrees of corruption intensity. Each calibration set leads
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(a) ImageNet

(b) CIFAR-10

Figure 4: Comparison of the benchmark implementation (Ovadia et al., 2019) versus our single and
multiple image methods. Expected Calibration Error (ECE) distribution across different corruptions
types, for fixed corruption intensity going from 0 to 5. Each box represents a different uncertainty
method.
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(b) CIFAR-10
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Figure 5: Comparison of the benchmark implementation (Ovadia et al., 2019) versus our single and
multiple image methods. Mean Brier score across different corruptions types, for fixed corruption
intensity going from 0 to 5. Each box represents a different uncertainty method. See Tables 3 and 4
for numerical comparisons.

to a different uncertainty estimate for a given pmax value. We adaptively choose the calibration set
given an image (Single Image Method) or a test set of images (Multiple Image Method).
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(a) ImageNet

(b) CIFAR-10

Figure 6: Comparison of the benchmark implementation (Ovadia et al., 2019) versus our single
and multiple image methods. Brier score distribution across different corruptions types, for fixed
corruption intensity going from 0 to 5. Each box represents a different uncertainty method. See
Tables 3 and 4 in the Appendix for numerical comparisons.

For each calibration dataset SCAL,j , we convert the pmax values on that calibration set into the
pcorrect values, as follows. Recall that pmax = maxi p

softmax
i , i.e., the model’s probability for the

predicted class.

(i) Evaluate the model pmax values on the calibration set, PCAL,j = {pmax(x) | x ∈ SCAL,j}.
Record the probability density hCAL,j(x), of the pmax values as a histogram, by binning
the pmax using equally spaced bins.

(ii) Define the calibrated model probabilities by

pCAL,j
correct(x) = P [y = ŷ(x) | pmax(x)] , (3)

using ground truth labels on the calibration set SCAL,j . These probabilities are computed
using a histogram in the following way. Partition SCAL,j = {x1, . . . , xm} into bins Bi

according its pmax values. Given an image x with pmax(x) ∈ Bi, approximate pCAL,j
correct(x)

as
1

|Bi|
∑

pmax(xj)∈Bi

1y(xj)=ŷ(xj)

See (Oberman et al., 2020) for more details.

Single Image Method: Given a single image x drawn from an unknown distribution ρtest, we
estimate the likelihood that the corruption level of the image corresponds to each of the calibration
sets, and then take the corresponding weighted average of the calibrated probilities. Ideally, in the
single image method we would like to obtain qi(pmax) close to one for the calibration set whose
pmax distribution looks closely to the pmax distribution of the test images.

(i) The probability that the pmax value came from a given calibration set, making the standard
assumption that the a priori likelihoods of the calibration sets are all equal, is

qi(pmax) =
hCAL,i(pmax)∑C
j=1 h

CAL,j(pmax)

(ii) Then the calibrated probability, conditional on each of the calibration sets, is given by

ptestcorrect(x) =

C∑
j=1

qj(pmax(x)) p
CAL,j
correct(x)
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Figure 7: Confidence of CIFAR-10 (bottom) trained models on entirely OOD data (SVHN dataset
(Netzer et al., 2011)). The benchmark method (blue) has highest confidence. The single and multi
image method are much less confidence on OOD data.

Multiple Image Method: Given a sample of images Stest = {x1, . . . , xm} drawn from an un-
known distribution, ρtest, where m > 1.

(i) Record the corresponding model pmax values, P test = {pmax(x) | x ∈ Stest}, and com-
pute the mean µ.

(ii) Compare to the means µj of PCAL and find the closest mean for the calibration sets, i =
argminj |µ− µj |. Set

ptestcorrect(x) = pCAL,i
correct(x).

We can use a simpler formula for the multiple image method, because with multiple samples, know-
ing the mean is sufficient to estimate the correct calibration set.

3.2 PRACTICAL IMPLEMENTATION OF OUR METHOD

In Ovadia et al. (2019) the additional methods used include (LL) Approximate Bayesian inference
for the parameters of the last layer only (Riquelme et al., 2018), (LL SVI) Mean field stochastic
variational inference on the last layer, (LL Dropout) Dropout only on the activations before the last
layer. We refer to Ovadia et al. (2019) for more details on how each method was implemented. All
these methods ultimately use the softmax probabilities as a surrogate for the class probabilities. The
difference between the methods is how these probabilities are obtained.

The distributional shift on ImageNet used 16 corruption types with corruption intensity on a scale
from 0 to 5: various forms of Noise, and Blur as well as Pixelate, Saturate, Brightness, Contrast,
Fog and Frost, etc. See Figure S3 in (Ovadia et al., 2019).

We used the published softmax value of each of the methods from the benchmark dataset in Ovadia
et al. (2019). We selected Contrast as the corruption to use for calibration, removing it from the
test set. We calibrated our models using equally sized bins, on each of following calibration sets:
{0}, {0,1}, {0,2}, {0,3}, {0,4}, and {0,5}. For instance the set 0, 1 corresponds to clean images
and respective corruption with an intensity level of 1. Heuristically we always want clean images in
our calibration set while having different shifted means as a result of increasingly corrupted images
(see Figure 3). Without the clean images, the single image method would become uncalibrated
for in-distribution images as the calibration sets would have a disproportional amount of corrupted
images. For both CIFAR-10 and Imagenet, we select 5000 images for calibration, which are shared
across the different calibration sets. This means that for instance the calibration set corresponding
to {0, 1} contains a total of 10000 images: the selected 5000 clean images and their corrupted
counterparts at an intensity level of 1. A more sophisticated combination of calibration sets could
lead to improvements.

We reproduced the figures in Ovadia et al. (2019) with a small adjustment: we measure the ECE
and Brier score just for pcorrect, rather than for pclassk . However this made a negligible difference
to the values. In addition, ECE can depend on the binning procedures (equally spaced or equally
sized). Equally sized bins are more effective for calibration since they reduce statistical error. They
do however lead to different bin edges on different calibration sets, which required combining the
bins. This can be done by refinement (which we used here) or simple by one dimensional density
estimation (Wasserman, 2006, Chapter 6).
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(b) Not-MNIST
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Figure 8: Confidence of MINST trained models on entirely OOD data: Fashion-MNIST (Xiao et al.,
2017) and Not-MNIST (Bulatov, 2011). Our proposed methods are significantly less confident on
OOD than the benchmark method.

3.3 DISCUSSION OF THE RESULTS

Both our single and multi image methods improve on the benchmark widely across methods and
corruption intensity levels, as shown in Figure 1 and Tables 1, and 2, which report the mean ECE
scores for each model and across different corruption types, for fixed corruption intensity going
from 0 to 5. The multi image method performs better than the single image with a few exceptions.
This is a natural consequence of using more images to better estimate the corruption level. While the
ensemble method remains overall the best method, the gap to other methods is significantly reduced.

Moreover, we test the OOD detection performance. We evaluate the CIFAR-10 trained models on the
SVHN dataset (Netzer et al., 2011), in addition to MNIST trained models (for these we used rotation
to form the surrogate calibration sets) on Fashion-MNIST (Xiao et al., 2017) and Not-MNIST (Xiao
et al., 2017). Ideally, the models should not be confident when presented with this completely OOD
data. As we can see in Figures 7 and 8, both the single and multi images methods result in methods
that are significantly less confident when compared to the benchmark data (Ovadia et al., 2019).
We can explain the increased performance by looking at the pmax distributions depicted in Figure
3. For the SVHN dataset, the multi image method recalibrated the model based on calibration set
{0, 5}: the dataset shift is correctly captured by the pmax shift and the probabilities are recalibrated
accordingly. By exposing the model to corrupted images at the calibration stage, it now “knows
what it does not know”. We note that instead of requiring class predictions for all classes, our
method only requires pmax values, which is a considerably smaller data set. Moreover, we compile
these values into a histogram with 30 bins, making the added cost of our method negligible.

4 CONCLUSIONS

Increasingly we are asking models trained on a given dataset to perform on out of distribution data.
Our work focused on uncertainty estimates, in particular, an estimate of the probability that our
model classification is correct. In contrast to most deep uncertainty work, we use a purely statistical
approach to reduce the calibration error of deep image classifiers under dataset shift. The approach
is model agnostic, so it can be applied to future models.

Previous work has shown that uncertainty estimates degrade on corrupted data, as measured by the
expected calibration error. The greater the mismatch between training data and test data, the greater
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the degradation of uncertainty estimates. We overcome this limitation introducing a method which
allows a given model to be better calibrated to multiple corruption intensities. Our method works
by no longer requiring that model outputs approximate class probabilities. We add a simple extra
calibration step, and detect the level of corruption of data, which allows the use calibrations tuned
to the corruption level of the data.

Table 1: Comparison on Imagenet of the benchmark implementation (Ovadia et al., 2019) versus our
single and multiple image methods. Numerical values of the means of ECE scores across different
corruptions types, for fixed corruption intensity going from 0 to 5.

Corruption Intensity

Method Test 1 2 3 4 5

Vanilla
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0534
0.0348
0.0208

0.0792
0.0300
0.0282

0.1130
0.0543
0.0459

0.1571
0.0855
0.0533

0.1997
0.1218
0.0733

Temp Scaling
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0187
0.0334
0.0196

0.0323
0.0329
0.0207

0.0523
0.0292
0.0285

0.0835
0.0531
0.0454

0.1237
0.0828
0.0531

0.1649
0.1183
0.0733

Ensemble
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0222
0.0158
0.0221

0.0318
0.0273
0.0138

0.0253
0.0232
0.0181

0.0269
0.0262
0.0291

0.0470
0.0447
0.0301

0.0883
0.0793
0.0411

Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0196
0.0251
0.0161

0.0282
0.0386
0.0179

0.0232
0.0303
0.0314

0.0446
0.0420
0.0441

0.0759
0.0681
0.0755

0.1242
0.1046
0.0775

LL Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0236
0.0233
0.0152

0.0296
0.0280
0.0176

0.0491
0.0232
0.0246

0.0783
0.0442
0.0452

0.1189
0.0752
0.0579

0.1659
0.1160
0.0761

LL SVI
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0454
0.0312
0.0146

0.0571
0.0312
0.0186

0.0824
0.0258
0.0252

0.1153
0.0522
0.0465

0.1547
0.0845
0.0531

0.1937
0.1220
0.0751

Table 2: Comparison on CIFAR-10 of the benchmark implementation Ovadia et al. (2019) versus
our single and multiple image methods. Numerical values of the means ECE scores across different
corruptions types, for fixed corruption intensity going from 0 to 5.

Corruption Intensity

Method Test 1 2 3 4 5

Vanilla
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.1009
0.0423
0.0444

0.1379
0.0590
0.0643

0.1748
0.0776
0.0794

0.2214
0.1098
0.0908

0.2782
0.1485
0.1194

Temp Scaling
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0110
0.0150
0.0134

0.0410
0.0415
0.0468

0.0603
0.0595
0.0672

0.0822
0.0781
0.0839

0.1167
0.1097
0.0925

0.1591
0.1468
0.1225

Ensemble
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0187
0.0141
0.0149

0.0283
0.0277
0.0183

0.0453
0.0458
0.0355

0.0718
0.0703
0.0521

0.1068
0.1005
0.0766

0.1509
0.1427
0.0999

Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0097
0.0127
0.0108

0.0228
0.0257
0.0225

0.0331
0.0339
0.0338

0.0542
0.0531
0.0515

0.0903
0.0868
0.0843

0.1380
0.1319
0.1254

LL Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0494
0.0430
0.0178

0.0999
0.0474
0.0289

0.1452
0.0533
0.0414

0.1971
0.0792
0.0718

0.2584
0.1233
0.1022

0.3338
0.1789
0.1489

SVI
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0224
0.0326
0.0133

0.0542
0.0452
0.0290

0.0853
0.0547
0.0419

0.1216
0.0733
0.0593

0.1698
0.1077
0.0928

0.2251
0.1458
0.1231

LL SVI
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0491
0.0200
0.0100

0.1011
0.0382
0.0312

0.1481
0.0626
0.0599

0.1984
0.0940
0.1002

0.2472
0.1295
0.1255

0.3106
0.1763
0.1642
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Wichmann. Generalisation in humans and deep neural networks. In Advances in neural informa-
tion processing systems, pp. 7538–7550, 2018.

Alex Graves. Practical variational inference for neural networks. In J. Shawe-Taylor, R. S. Zemel,
P. L. Bartlett, F. Pereira, and K. Q. Weinberger (eds.), Advances in Neural Information Processing
Systems 24, pp. 2348–2356. Curran Associates, Inc., 2011.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural
Networks. In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, pp. 1321–1330, 2017.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. Proceedings of the International Conference on Learning Represen-
tations, 2019.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In Proceedings of International Conference on Learning Represen-
tations, 2017.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. Proceedings of the International Conference on Learning Representations, 2019.

Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshmi-
narayanan. AugMix: A simple data processing method to improve robustness and uncertainty.
Proceedings of the International Conference on Learning Representations (ICLR), 2020.

Volodymyr Kuleshov and Percy Liang. Calibrated structured prediction. In Corinna Cortes, Neil D.
Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 28: Annual Conference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec, Canada, pp. 3474–3482, 2015. URL http:
//papers.nips.cc/paper/5658-calibrated-structured-prediction.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Predictive
Uncertainty Estimation using Deep Ensembles. In Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, 4-9 December
2017, Long Beach, CA, USA, pp. 6405–6416, 2017.

Christos Louizos and Max Welling. Structured and efficient variational deep learning with matrix
gaussian posteriors. volume 48 of Proceedings of Machine Learning Research, pp. 1708–1716,
New York, New York, USA, 20–22 Jun 2016. PMLR.

10

http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://yaroslavvb.blogspot.com/2011/09/notmnist-dataset.html
http://proceedings.mlr.press/v48/gal16.html
http://proceedings.mlr.press/v48/gal16.html
http://papers.nips.cc/paper/5658-calibrated-structured-prediction
http://papers.nips.cc/paper/5658-calibrated-structured-prediction


Under review as a conference paper at ICLR 2021

Christos Louizos and Max Welling. Multiplicative normalizing flows for variational bayesian neural
networks. In Proceedings of the 34th International Conference on Machine Learning - Volume
70, ICML’17, pp. 2218–2227, 2017.

Zachary Nado, Shreyas Padhy, D Sculley, Alexander D’Amour, Balaji Lakshminarayanan, and
Jasper Snoek. Evaluating prediction-time batch normalization for robustness under covariate
shift. In ICML 2020 Workshop on Uncertainty and Robustness in Deep Learning, 2020.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf.

Anh Mai Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images. In IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 427–436, 2015. doi: 10.
1109/CVPR.2015.7298640. URL https://doi.org/10.1109/CVPR.2015.7298640.

Adam Oberman, Chris Finlay, Alexander Iannantuono, and Tiago Salvador. Calibrated top-1 uncer-
tainty estimates for classification by score based models. In ICML 2020 Workshop on Uncertainty
and Robustness in Deep Learning, 2020.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua Dillon,
Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty? Evalu-
ating predictive uncertainty under dataset shift. In H. Wallach, H. Larochelle, A. Beygelzimer,
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A ABLATION AND CROSS VALIDATION STUDY

We start by investigating the impact of the choice of corruption for the calibration set. Ideally, the
choice of corruption should be representative of the distribution of corruptions, so a mild corruption
or a very strong corruption would give slightly worse results. At the same time, here we demonstrate
that choosing a different corruption should not significantly degrade the results.

In Figure 9 we perform a cross-validation study over the choice of corruption used to generate the
calibration sets (always leaving it out of the corruptions used at test time). We plot the mean and
variance of the ECE across different validation corruptions types.

For CIFAR-10, both the single and multi image method are robust to the choice of validation cor-
ruption. On ImageNet, the multi image method the improvement is consistent across the validation
corruption chosen except for the dropout method. As for the single image method the calibration
at lower levels of intensity is degraded using certain corruptions, for example the glass blur corrup-
tion. However, this seems to be caused by the strength of the corruption: the accuracy on glass blur
level 1 was roughly half that of clean images. We hypothesize that better results could be obtained
by simply having the corruption strength be proportional to the loss of accuracy, as is the case of
the contrast corruption (see Figure 3) In practice, the choice of corruption for single image method
should be such that the method remains calibrated for in-distribution images.

We investigate as well the impact of adding corrupted images to the calibration sets. In order to do
so, we compare the results of our proposed method and the benchmark from Ovadia et al. (2019)
with the calibration obtained from using a single calibration set with only clean images like the
method proposed in (Oberman et al., 2020). We refer to it as the Top1 binning method. As we can
see in Figure 10, if the classifier is not well-calibrated, e.g., the vanilla or the LL SVI classifiers,
there is a consistent improvement across all corruption intensity levels, with the improvement being
only marginal for ImageNet. Moreover, when the classifier is well-calibrated, Top1 binning does not
improve calibration (e.g. the Temp Scaling classifier) or even decreases it at high levels of corruption
intensity (e.g. Ensemble and Dropout).

Finally, we explore why the method works in practice. Figure 11 shows us that without any cal-
ibration the ECE scores become higher when the mismatch between the pmax distribution of the
training set and the pmax distribution of the test set increases. Here we measure the mismatch in
terms of the pmax means, the same criteria used in the multi image method. These qualitative results
are confirmed by the Pearson’s correlation coefficient. This correlation justifies why detecting the
pmax distribution shit allows us to significantly improve the calibration of the different methods: in
practice our proposed methods perform the recalibration of the model based on the calibration set
whose pmax distribution is closest to the pmax distribution of the test set. Moreover, one notices the
higher the correlation, the bigger the calibration improvement provided by both our single and multi
image methods. For instance, Dropout has the lowest Pearson’s r score and it is also the method
where we notice the least improvement. On the other hand, Vanilla has the largest improvement and
also the highest Pearson’s r score.

B TABLES OF BRIER METRICS

Table 3 and Table 4 report the mean Brier scores for each model and dataset across different cor-
ruption types, for fixed corruption intensity going from 0 to 5. The Brier scores can be computed
directly from the data, without binning. The ranking provided by the Brier scores is quite similar
that provided by the ECE. On ImageNet the only difference is Ensemble at corruption level 1. On
CIFAR-10 there were two ranking differences.

C TABLES OF ECE METRICS ACCROSS DIFFERENT CORRUPTIONS

Table 5 and Table 6 report the ECE scores for the vanilla model across different corruption types and
intensities ranging from 0 to 5 for ImageNet and CIFAR-10, respectively. Contrast is the corruption
used for to form the calibration sets.
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(a) ImageNet
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(b) CIFAR-10
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Figure 9: Figure 1 shows us the mean ECE across different corruptions types, for fixed corruption
intensity going from 0 to 5 when contrast is used in the calibration sets. Here we show how those
means change when different corruptions are used in the calibration set. For CIFAR-10, our pro-
posed methods are robust to the choice of corruption used in the calibration set, while for ImageNet
the choice of the corruption is import, in particular for the single image method.

(a) ImageNet
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(b) CIFAR-10

Figure 10: Comparison of the benchmark implementation (Ovadia et al., 2019), versus our proposed
single and multiple image methods and Top1 binning (Oberman et al., 2020) for CIFAR-10. Mean
Expected Calibration Error (ECE) across different corruptions types, for fixed corruption intensity
going from 0 to 5.
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(a) ImageNet
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(b) CIFAR-10
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Figure 11: ECE (pre-calibration) versus |µtest−µtrain| and corresponding Pearson’s r score, where
µtest,µtrain denote the pmax mean of the test and training set, respectively. Each point in the plot
represents a different corruption at a different level of intensity.

Table 3: Comparison on Imagenet of the benchmark implementation (Ovadia et al., 2019) versus
our single and multiple image methods. Numerical values of the means of the Brier scores across
different corruptions types, for fixed corruption intensity going from 0 to 5.

Corruption Intensity

Method Test 1 2 3 4 5

Vanilla
(Ovadia et al.)
(Single Image)
(Multi Image)

0.1217
0.1225
0.1213

0.1567
0.1545
0.1535

0.1693
0.1621
0.1620

0.1759
0.1621
0.1607

0.1790
0.1567
0.1472

0.1721
0.1417
0.1230

Temp Scaling
(Ovadia et al.)
(Single Image)
(Multi Image)

0.1209
0.1221
0.1214

0.1544
0.1545
0.1536

0.1647
0.1620
0.1619

0.1681
0.1615
0.1603

0.1669
0.1554
0.1467

0.1558
0.1395
0.1225

Ensemble
(Ovadia et al.)
(Single Image)
(Multi Image)

0.1136
0.1135
0.1142

0.1478
0.1476
0.1468

0.1579
0.1579
0.1575

0.1579
0.1581
0.1584

0.1502
0.1504
0.1485

0.1305
0.1303
0.1221

Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.1284
0.1290
0.1289

0.1547
0.1557
0.1544

0.1608
0.1615
0.1617

0.1584
0.1583
0.1594

0.1550
0.1536
0.1537

0.1369
0.1335
0.1224

LL Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.1194
0.1197
0.1195

0.1512
0.1513
0.1506

0.1609
0.1585
0.1586

0.1628
0.1567
0.1568

0.1603
0.1492
0.1437

0.1506
0.1337
0.1186

LL SVI
(Ovadia et al.)
(Single Image)
(Multi Image)

0.1291
0.1278
0.1269

0.1558
0.1526
0.1519

0.1642
0.1559
0.1558

0.1632
0.1486
0.1475

0.1610
0.1390
0.1295

0.1557
0.1266
0.1078
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Table 4: Comparison of CIFAR-10 of the benchmark implementation Ovadia et al. (2019) versus
our single and multiple image methods. Numerical values of means Brier scores across different
corruptions types, for fixed corruption intensity going from 0 to 5.

Corruption Intensity

Method Test 1 2 3 4 5

Vanilla
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0694
0.0644
0.0640

0.1236
0.1061
0.1070

0.1620
0.1352
0.1367

0.1971
0.1600
0.1597

0.2357
0.1848
0.1787

0.2804
0.2120
0.2021

Temp Scaling
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0633
0.0636
0.0634

0.1053
0.1054
0.1066

0.1345
0.1345
0.1364

0.1593
0.1588
0.1597

0.1845
0.1833
0.1766

0.2122
0.2096
0.2007

Ensemble
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0443
0.0442
0.0447

0.0803
0.0803
0.0791

0.1129
0.1135
0.1112

0.1426
0.1433
0.1366

0.1696
0.1697
0.1592

0.2033
0.2026
0.1836

Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0644
0.0647
0.0648

0.0883
0.0885
0.0882

0.1122
0.1123
0.1123

0.1378
0.1376
0.1373

0.1672
0.1668
0.1652

0.2024
0.2014
0.1981

LL Dropout
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0736
0.0735
0.0689

0.1228
0.1060
0.1031

0.1673
0.1357
0.1336

0.2162
0.1679
0.1658

0.2703
0.2005
0.1920

0.3343
0.2370
0.2225

SVI
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0744
0.0765
0.0738

0.1111
0.1081
0.1055

0.1436
0.1349
0.1322

0.1763
0.1610
0.1570

0.2140
0.1890
0.1822

0.2543
0.2173
0.2063

LL SVI
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0704
0.0658
0.0652

0.1238
0.1053
0.1039

0.1710
0.1407
0.1398

0.2176
0.1737
0.1753

0.2611
0.2032
0.2012

0.3139
0.2361
0.2319
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Table 5: Comparison of ImageNet of the benchmark implementation Ovadia et al. (2019) versus our
single and multiple image methods for the vanilla classifier. Numerical values of ECE scores for
different corruptions at different intensity levels going from 0 to 5. The contrast corruption was used
to form the calibration sets.

Corruption Intensity

Corruption Test 1 2 3 4 5

Brightness
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0333
0.0436
0.0209

0.0348
0.0425
0.0225

0.0371
0.0427
0.0106

0.0436
0.0396
0.0059

0.0533
0.0315
0.0073

Defocus Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0417
0.0483
0.0192

0.0494
0.0392
0.0376

0.0628
0.0325
0.0950

0.0862
0.0350
0.0493

0.1026
0.0423
0.0533

Elastic Transform
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0266
0.0576
0.0208

0.0881
0.0183
0.0173

0.0595
0.0257
0.0109

0.1094
0.0306
0.0252

0.2633
0.1745
0.0904

Fog
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0531
0.0324
0.0143

0.0699
0.0211
0.0194

0.0972
0.0302
0.0149

0.1288
0.0497
0.0465

0.1985
0.1139
0.0378

Frost
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0528
0.0308
0.0099

0.0985
0.0252
0.0180

0.1375
0.0578
0.0298

0.1515
0.0699
0.0158

0.1755
0.0935
0.0204

Gaussian Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0311
0.0527
0.0161

0.0464
0.0405
0.0407

0.0750
0.0333
0.0138

0.1206
0.0494
0.0331

0.1708
0.0943
0.0404

Gaussian Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0693
0.0155
0.0262

0.1025
0.0272
0.0472

0.1684
0.0814
0.0804

0.2552
0.1659
0.0780

0.2976
0.2121
0.1436

Glass Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0495
0.0354
0.0105

0.0745
0.0220
0.0123

0.1624
0.0837
0.0184

0.1720
0.0956
0.0372

0.1647
0.0930
0.0379

Impulse Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.1157
0.0337
0.0595

0.1543
0.0666
0.0638

0.1892
0.1002
0.1003

0.2681
0.1783
0.0910

0.3035
0.2171
0.1466

Pixelate
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0640
0.0209
0.0207

0.0684
0.0171
0.0236

0.1042
0.0284
0.0483

0.1371
0.0534
0.0511

0.1367
0.0522
0.0541

Saturate
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0512
0.0311
0.0095

0.0583
0.0264
0.0138

0.0298
0.0494
0.0177

0.0561
0.0299
0.0091

0.1121
0.0327
0.0237

Shot Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0682
0.0190
0.0243

0.1165
0.0353
0.0609

0.1814
0.0931
0.0941

0.2863
0.1971
0.1124

0.3297
0.2420
0.1654

Spatter
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0309
0.0464
0.0136

0.0574
0.0266
0.0099

0.1056
0.0273
0.0196

0.1674
0.0808
0.0804

0.2401
0.1503
0.1536

Speckle Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0587
0.0235
0.0158

0.0804
0.0142
0.0248

0.1702
0.0826
0.0819

0.2294
0.1395
0.1440

0.2863
0.1963
0.1093

Zoom Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0327
0.0382
0.0201

0.0553
0.0303
0.0310

0.0885
0.0274
0.0117

0.1149
0.0467
0.0531

0.1443
0.0678
0.0207

0.1605
0.0807
0.0157
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Table 6: Comparison of CIFAR-10 of the benchmark implementation Ovadia et al. (2019) versus
our single and multiple image methods for the vanilla classifier. Numerical values of ECE scores
for different corruptions at different intensity levels going from 0 to 5. The contrast corruption was
used to form the calibration sets.

Corruption Intensity

Corruption Test 1 2 3 4 5

Brightness
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0465
0.0180
0.0151

0.0482
0.0191
0.0113

0.0541
0.0178
0.0147

0.0596
0.0192
0.0161

0.0697
0.0233
0.0184

Defocus Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0478
0.0150
0.0120

0.0526
0.0177
0.0133

0.0874
0.0193
0.0214

0.1282
0.0348
0.0336

0.2555
0.0919
0.0418

Elastic Transform
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0735
0.0211
0.0168

0.0732
0.0199
0.0144

0.1004
0.0287
0.0282

0.1349
0.0268
0.0314

0.1737
0.0553
0.0648

Fog
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0459
0.0187
0.0123

0.0473
0.0239
0.0133

0.0579
0.0284
0.0142

0.0749
0.0265
0.0140

0.1946
0.0675
0.0787

Frost
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0810
0.0267
0.0282

0.1336
0.0499
0.0623

0.2240
0.1083
0.1211

0.2401
0.1258
0.1354

0.3589
0.2255
0.2423

Gaussian Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0482
0.0145
0.0115

0.0899
0.0183
0.0240

0.1565
0.0436
0.0529

0.2468
0.0904
0.0296

0.3729
0.1910
0.0949

Gaussian Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.1712
0.0627
0.0744

0.2781
0.1349
0.1556

0.3833
0.2253
0.1439

0.4266
0.2632
0.1716

0.4466
0.2786
0.1872

Glass Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.4228
0.2732
0.2936

0.3902
0.2379
0.2593

0.3492
0.2034
0.2234

0.4673
0.3107
0.3323

0.4207
0.2643
0.2868

Impulse Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.1226
0.0475
0.0556

0.2027
0.0906
0.1031

0.2518
0.1197
0.1366

0.3267
0.1663
0.0980

0.3794
0.2073
0.1143

Pixelate
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0653
0.0179
0.0187

0.0975
0.0349
0.0419

0.1331
0.0513
0.0659

0.2836
0.1676
0.1826

0.4390
0.3039
0.3220

Saturate
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0559
0.0245
0.0194

0.0713
0.0216
0.0249

0.0507
0.0170
0.0117

0.0658
0.0267
0.0214

0.0995
0.0296
0.0395

Shot Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.1082
0.0360
0.0433

0.1769
0.0741
0.0811

0.3012
0.1546
0.1759

0.3579
0.2041
0.1232

0.4046
0.2406
0.1510

Spatter
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0726
0.0244
0.0236

0.1052
0.0395
0.0463

0.1253
0.0443
0.0514

0.1193
0.0488
0.0614

0.1828
0.0897
0.1083

Speckle Noise
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.1155
0.0339
0.0475

0.2138
0.0985
0.1109

0.2440
0.1176
0.1337

0.3118
0.1626
0.0930

0.3601
0.1992
0.1102

Zoom Blur
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0817
0.0249
0.0235

0.1022
0.0225
0.0197

0.1374
0.0199
0.0297

0.1765
0.0447
0.0606

0.2387
0.0846
0.0322

Translation
(Ovadia et al.)
(Single Image)
(Multi Image)

0.0475
0.0170
0.0127

0.0554
0.0186
0.0147

0.1240
0.0410
0.0477

0.1410
0.0421
0.0453

0.1224
0.0385
0.0488

0.0540
0.0237
0.0176
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