
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOLON-OF-THOUGHT: IMPROVING ROBUSTNESS
IN LARGE LANGUAGE MODELS VIA STRUCTURED
FRAMEWORK

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) excel in language comprehension and genera-
tion tasks but frequently face challenges in scenarios demanding rigorous logical
reasoning or strict adherence to problem conditions. In such reasoning, errors
propagate through intermediate steps, hallucinatory outputs violate key problem
conditions, and complex problems are often handled in a simplistic, chain-like
manner. We propose Holon-of-Thought (HoT), a structured reasoning framework.
HoT explicitly extracts problem conditions and enforces their adherence. It dy-
namically decomposes complex problems into verifiable subtasks and solves them
through a four-stage pipeline: condition extraction, path exploration, adaptive de-
composition, and aggregation. The experimental results show that HoT improves
the accuracy of the inference and enhances the robustness. This establishes a new
paradigm for reliable LLM-based reasoning in mathematics and logic.

1 INTRODUCTION

The rapid advancement of Large Language Models (LLMs) has driven a transformative shift in
artificial intelligence. LLMs now demonstrate strong capabilities in natural language processing,
knowledge retrieval, and complex task automation Brown et al. (2020); Naveed et al. (2023). How-
ever, despite their impressive breadth of capabilities, LLMs often falter when tasked with rigorous
reasoning Wei et al. (2022); Wang et al. (2024a).

This brittleness stems from their training paradigm: LLMs learn statistical correlations rather than
formal logic, making them prone to errors when faced with problems requiring deductive certainty or
strict condition satisfaction Brown et al. (2020); Bender et al. (2021). This shortcoming is especially
evident in scenarios requiring strict adherence to logical conditions or precision-oriented decision-
making. For example, in mathematical proof generation or engineering design verification, where a
single misstep invalidates the entire solution, LLMs often produce outputs that are locally plausible
but globally inconsistent First et al. (2023); Lu et al. (2024).

In addition, their output often contains hallucinations, which are associated with the neglect of prob-
lem conditions or facts Ji et al. (2023); Huang et al. (2025); Zhang et al. (2025). These errors reduce
the reliability of LLMs in high-stakes applications, where factual inaccuracies can lead to severe
consequences Thirunavukarasu et al. (2023); Dahl et al. (2024); Niu et al. (2024). Hallucinations
typically arise when models fill knowledge gaps with statistically plausible but unsubstantiated con-
tent Huang et al. (2025); Tonmoy et al. (2024).

To address these issues, a variety of reasoning-enhancement strategies have been proposed. Among
them, Chain-of-Thought (CoT) Wei et al. (2022) prompting has emerged as a widely used approach
that encourages models to explicitly enumerate intermediate steps during reasoning. By external-
izing the reasoning process, CoT provides a window into the model’s “thinking”, aiding both per-
formance and interpretability Kojima et al. (2022). Although CoT improves performance on many
multistep problems, it still exhibits brittleness: it can overlook hard conditions, generate invalid in-
termediate steps Wang et al. (2023); Arcuschin et al. (2025). This underscores the need for more
structured, condition-aware reasoning frameworks to achieve robust and interpretable reasoning.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

For the sake of robust and interpretable reasoning, we propose Holon-of-Thought (HoT). HoT is a
structured reasoning framework with a four-stage pipeline of condition extraction, path exploration,
adaptive decomposition, and aggregation, explicitly enforcing condition adherence and dynamically
decomposing problems into verifiable subtasks. The focus on exploration and condition satisfaction
reflects the strategies used in combinatorial optimization and automated planning.

This approach draws on classical condition satisfaction systems and modern adaptive computation
techniques, balancing thoroughness with efficiency Graves (2017). HoT’s architecture is designed to
be model-agnostic, operating purely through prompt engineering or lightweight API calls, ensuring
wide applicability without retraining overhead.

HoT innovates by explicitly extracting and enforcing both explicit and implicit problem conditions,
generating and scoring multiple high-level solution paths to select the optimal one, adaptively de-
composing complex problems into isolated verifiable subtasks based on complexity, and aggregating
sub-solutions while ensuring global condition adherence. These innovations offer three key advan-
tages: (1) robust reasoning through explicit condition prioritization, reducing error propagation; (2)
improved interpretability through structured, auditable reasoning traces; and (3) computational ef-
ficiency through selective reasoning, enabled by pruning—generating multiple candidate methods
and retaining only the optimal one, thus avoiding wasteful exploration of dead ends.

Our work underscores that achieving robust reasoning in LLMs requires condition-aware architec-
tural designs that prioritize structure, precision, and verifiability. HoT exemplifies this principle
by promoting a disciplined approach to reasoning. The structured methodology enables LLMs to
reason more conservatively and avoid compounding errors, especially in tasks where correctness is
tightly coupled with condition satisfaction. By combining selective exploration with rigorous syn-
thesis, HoT provides a scalable blueprint for deploying LLMs in engineering applications where
reliability and interpretability are paramount.

2 RELATED WORK

Prompt-based reasoning aims to unlock the complex capabilities of LLMs without expensive fine-
tuning. The paradigm was pioneered by CoT prompting, which generates intermediate steps to trace
a sequential reasoning process Wei et al. (2022). This concept was extended by methods like Tree
of Thoughts Yao et al. (2023a) and Graph of Thoughts Besta et al. (2024), which explore non-linear
reasoning paths using more expressive tree and graph structures, respectively, to manage complex
problem solving. In contrast, HoT differentiates itself by integrating upfront condition extraction
and adaptive decomposition into its path exploration.

The field has since expanded rapidly, with research exploring numerous avenues to enhance LLM’s
reasoning. Many efforts have focused on iterative refinement, where models critique and improve
their own outputs, such as Self-Refine Madaan et al. (2023), Step-Back Zheng et al. (2024) and
System 2 Attention Weston & Sukhbaatar (2023). Other approaches incorporate external formalisms
to add rigor. For example, Logical Thoughts Zhao et al. (2023) integrates symbolic logic, while
other methods use structured formats like symbolic expressions, tables, or executable code to offload
computation and enforce syntactic correctness Hu et al. (2024); Wang et al. (2024b); Puerto et al.
(2024); Gao et al. (2023). These methods demonstrate the diverse strategies being investigated to
make LLM’s reasoning more powerful and reliable. In contrast to these iterative or formalism-based
techniques, HoT focuses on grounding reasoning in extracted conditions and dynamically adapting
the problem structure. HoT offers a framework that complements these methods by emphasizing
condition enforcement without repeated critiques or extensive external tools.

A significant challenge is ensuring the robustness of generated reasoning, as standard CoT is of-
ten susceptible to process errors or hallucinations. To address this, Self-Consistency Wang et al.
(2023) and LLM-Blender Jiang et al. (2023) mitigate errors via multitrajectory consensus, though
this brute-force approach incurs high computational costs. EchoPrompt Mekala et al. (2024) seeks
efficiency by distilling divergent rationales into a unified path but risks reinforcing errors if initial
paths are flawed. This reveals a core tension: aggregating diverse paths for robustness can be either
computationally expensive or risk converging on an incorrect solution. Some technologies avoid
this problem by using prompt words. For example, “specify constraints pattern” Moundas et al.
(2024) was proposed to process constraints and reduce noise interference, but this method only op-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Aggre-
gate

Question

Module1: Condition Extraction

Conditions

Explicit Conditions:
Conditions that app-
ear in the question.

Implicit Conditions:
Conditions obtained 
by rules such as defi-
nitions or theorems.

Module2: Tree Explorer

Path1: 
step1
step2
……

Path3: 
step1
step2
……

Path2: 
step1
step2
……

GeneratePaths

ConditionExtraction

Score

Score1！
Reason: …

Score2！
Reason: …

Score3！
Reason: …

Best!

Module3: Adaptive Domain Decomposition Module4: Resolution and Aggregation

True

Subquestion 1: 
-Path: the best path (path3)
-Conditions: both Explicit and Implicit 
-Decomposition Domain: D1

Subquestion 2: 
-Path: the best path (path3)
-Conditions: both Explicit and Implicit 
-Decomposition Domain: D2

Subquestion k: 
-Path: the best path (path3)
-Conditions: both Explicit and Implicit 
-Decomposition Domain: Dk

Resolution 1: 
-Answer 1: Solved in D1
-Process 1: Refer to the best 
path

Resolution 2: 
-Answer 2: Solved in D2
-Process 2: Refer to the best 
path

Resolution k: 
-Answer k: Solved in Dk
-Process k: Refer to the best 
path

Decompose

Solve

Final
Answer 

NeedDecomposition

Original Question: 
-Path: the best path (path3)
-Conditions: both Explicit and Implicit 

False
Resolution: 
-Answer
-Process: Refer to the best path

extract Final
Answer 

Figure 1: HoT Framework. It includes four modules: Condition Extraction, Tree Explorer, Adap-
tive Domain Decomposition, and Resolution and Aggregation. Condition Extraction identifies both
explicit and implicit conditions from the original problem. Tree Explorer generates three poten-
tial solution paths and selects the one with the highest score as the basis for subsequent reasoning.
Adaptive Domain Decomposition determines whether the problem should be decomposed, based on
its complexity and the extracted conditions. If decomposition is necessary (as illustrated in the top
half of the diagram), the problem is split into sub-problems. Resolution and Aggregation then solves
each sub-problem individually and combines their results to generate the final answer. If decompo-
sition is not needed (as shown in the bottom half), Resolution and Aggregation directly solves the
original problem and outputs the final result.

erates at the level of data annotation and ignores the crucial role of implicit conditions in reasoning.
Contrastive Chain-of-Thought Prompting Chia et al. (2023) provides both positive and negative ex-
emplar reasoning chains to guide the model away from common mistakes, improving reasoning
quality in a structured way. Contrastive Denoising with Noisy Chain-of-Thought Zhou et al. (2024)
constructs noisy-rationale scenarios and learns to denoise rationales by contrasting noisy and clean
ones. Chain-of-Defensive-Thought Wang et al. (2025) uses structured, defensive reasoning exem-
plars to enhance robustness. These methods improve robustness but often at the cost of flexibility,
computational efficiency, or general applicability.

Another critical research direction tackles the rigidity of linear reasoning through two intertwined
strategies: problem decomposition and process adaptability. For decomposition, methods like
Thread-of-Thought (ThoT) Zhou et al. (2023) segment complex inputs, while architectural innova-
tions like Layer-of-Thoughts (LoT) Fungwacharakorn et al. (2024) impose predefined hierarchies.
However, their static nature limits effectiveness: ThoT relies on brittle fixed segmentation heuris-
tics, and LoT’s rigid schemas may misalign with task logic. Other methods focus more on process
adaptability. For instance, Buffer of Thoughts (BoT) Yang et al. (2024) uses memory to reuse prior
reasoning segments but prioritizes past solutions over adapting structure for novel tasks. Recur-
sive Decomposition of Logical Thought (RDoLT) Qasim et al. (2025) recursively decomposes tasks
with scoring and knowledge propagation but faces scalability limits due to computational overhead.
Instance-Adaptive Prompting (IAP) Yuan et al. (2024) adapts the prompt based on input complexity,
but this only tunes the starting point, leaving the subsequent single-path reasoning flow unchanged.
This highlights the need for a framework that can dynamically structure its reasoning process, flexi-
bly decomposing the problem as needed, and does not require too much computational resources.

3 METHODOLOGY

We design the HoT framework to significantly enhance the reasoning robustness of LLMs by explic-
itly extracting problem conditions and systematically exploring the solution space. HoT guides the
model toward logically grounded reasoning paths and mitigates error propagation across complex
problem decompositions. As shown in Figure1, the HoT framework contains four modules: Condi-
tion Extraction, Tree Explorer, Adaptive Domain Decomposition, Resolution and Aggregation.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Q: Solve these questions <Subquestion 1>, <Subquestion 2>, 
<Subquestion 3> step by step.
A: Resolution 1: 
-Answer 1: 28
-Process 1: The possible root sets whose product is 33 are {3,11} 
and {−3,−11}. Their sums are 14 and −14, respectively. This leads 
to |an−1|=|−2×(±14)|=28. Other pairs like {1,33} yield larger sums.
Resolution 2: 
-Answer 1: 14
-Process 1: The product of the roots must be −33.
{−1,3,11} has a sum of 13, giving |an−1|=26.
{1,−3,11} has a sum of 9, giving |an−1|=18.
{1,3,−11} has a sum of −7, giving |an−1|=|−2×(−7)|=14.
Resolution 3: 
-Answer 1: 16
-Process 1: The product must be 33. To keep the sum small, pairs 
of opposites are used. The set {1,−1,3,−11} has distinct roots, a 
product of 33, and a sum of 1−1+3−11=−8. |an−1|=|-2×(−8)|=16.
Q: Aggregate these resolutions for the original problem. The 
solution MUST directly answer the original question as stated. 
Reject solutions that violate any conditions.
A: Final Answer: 

14

Question: Suppose the polynomial f(x)=anxn+an−1xn−1

+...+a1x+a0has integer coefficients, and its roots are 
distinct integers. Given that an=2 and a0=66, what   
is the least possible value of an-1?
Q: Analyze this problem and extract conditions:
1. Identify explicit conditions directly stated in 
the problem;
2. Derive implicit conditions (e.g., denominators ≠ 0, 
square roots ≥ 0, log arguments > 0, length > 0).
A: Explicit conditions:an=2, a0=66;The roots are 
distinct integers.
Implicit conditions: r1r2∙∙∙rn=a0/an*(-1)n;  ∑ri=−an−1/an

Q: Generate 3 distinct solution methods for:
<Suppose the polynomial f(x)=... what is the least 
possible value of an-1?>
Score each path and explain why.
A: Path1:Pair roots to minimize|∑ri|, then constrain 
product; Path2:Model sum |∑ri| as function, then  
Apply Lagrange multipliers; Path3:Enumerate root  
sets with product ±33, then Compute sums, finally 
Derive an−1

Path1 gets 75 for scales poorly with n; Path2 gets 
70 for roots violate continuity; Path3 gets 85 for  
rigorous. Choose Path3.

Q: Based the method and steps,  determine if this solution  
requires decomposition.
A: True. Reason: This process inherently involves multiple 
cases based on the possible combinations of roots that 
satisfy the given conditions.
Q: Based the method and steps,  determine if this solution  
requires classification.
(The method needs decomposition, hence the follow-up   
question)
Q: Based on the above analysis, decompose the question 
into a number of subquestions and provided:
- Comprehensive case descriptions
- Precise mathematical conditions for each case
- Clear boundary conditions
A: Subquestion 1: 
-Path: Path3 (Enumerate root  sets with product ±33...)
-Conditions: an=2, a0=66... 
-Decomposition Domain: the number of roots is 2.
Subquestion 2: 
-Path: Path3 
-Conditions: an=2, a0=66... 
-Decomposition Domain: the number of roots is 3.
Subquestion 3: 
-Path: Path3
-Conditions: an=2, a0=66... 
-Decomposition Domain: the number of roots is 4.

Figure 2: Example of HoT Prompting in Solving a Complex Math Problem. This figure corresponds
one-to-one with Figure 1, illustrating the practical execution of each module and flow in the HoT
framework. It demonstrates the application of the HoT framework to a polynomial root problem. It
shows the decomposition of the original problem into subproblems based on the number of roots,
the resolution of each subproblem using the selected optimal path (Path 3), and the aggregation of
results to derive the final answer. This example validates HoT’s effectiveness in handling multi-case
mathematical reasoning through structured decomposition and verification.

3.1 CONDITION EXTRACTION

HoT utilizes Condition Extractor module to transform raw question statements into a structured
representation by identifying explicit and implicit conditions. This module acts as the “grounding
phase,” forcing the LLM to explicitly articulate the rules and boundaries governing the problem
before attempting solutions, addressing a common failure mode where models overlook implicit
conditions. It structures the conditions and transforms the fuzzy input into a computable framework,
helping prevent failure in subsequent steps due to missing information. Its output acts as a shared,
immutable condition set referenced throughout the HoT pipeline.

In our definition, conditions C are divided into explicit conditions Ce and implicit conditions Ci.
Ce are directly parsed from mathematical formulations or logical statements, while Ci are derivable
through mathematical or contextual rules or common sense knowledge relevant to the domain (e.g.,
“ages must be positive integers”, “a triangle’s angles sum to 180 degrees”).

Given a question Q, we get Ce and Ci:
ConditionExtractionLLM(Q)→ (Ce, Ci) (1)

For example, given the question Q: “What is the sum of the three digit cubes that are the cubes of
either squares or cubes?” We can distill the explicit conditions, “The cubes must be of numbers that
are either squares or cubes themselves”, and the implicit conditions, “The three-digit cubes range
from 100 to 999, so the cube roots must be integers between 5 and 9 inclusive, because 43=64 (too
small) and 103=1000 (too large)”. The distillation of these conditions will directly guide subsequent
work.

3.2 TREE EXPLORER

HoT uses Tree Explorer module to determine a path to solve the question. Tree Explorer module
firstly generates a set of viable solution paths, P = {π1, π2, ..., πN}:

GeneratePathsLLM(Q, Ce, Ci)→ P (2)
Each path πi represents a high-level strategy, detailing the proposed method and concrete implemen-
tation steps. This is not a search through intermediate steps, but a generation of complete, end-to-
end strategies. By generating multiple paths, the model explores a diverse range of question-solving
paradigms before committing to a single approach.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Once multiple paths are proposed, the next phase involves a rigorous evaluation to select the most
promising one.

3.2.1 PATH SCORING

Each path πi is systematically evaluated by LLM based on a predefined set of criteria, such as
anticipated accuracy, operational feasibility, and computational complexity. The model assigns a
Heuristic score, si ∈ [0, 100] to each path, resulting in a set of scored tuples:

Pscored = {(πi, si) | si = ScoreLLM(πi, Q, Ce, Ci)} (3)

3.2.2 OPTIMAL PATH SELECTION

The path with the highest score is selected as the optimal strategy, π∗.

π∗ = argmax
πi∈P

si (4)

Optimal Path Selection is a decisive step that dictates the entire subsequent execution flow.

Tree Explorer introduces a critical self-reflection step, enabling the model to deliberate on the quality
of its own plans before execution. Also, Tree Explorer provides a classification basis for Adaptive
Domain Decomposition.

3.3 ADAPTIVE DOMAIN DECOMPOSITION

Adaptive Domain Decomposition module determines the final execution strategy by assessing the
question’s complexity relative to the chosen path π∗. It decides whether a divide-and-conquer ap-
proach is necessary.

First, the framework performs a binary classification to determine if the question domain should be
partitioned:

DecomposeF lag = NeedDecompositionLLM(π∗)

∈ {True,False} (5)

When DecomposeF lag is True, HoT partitions the problem into logically isolated subproblems
Qsub = {Q1, Q2, ..., Qk}. This decomposition strategically splits the feasible domain defined by
Ce and Ci, aligning subproblem boundaries with critical decision points in π∗. Each subproblem
inherits relevant conditions and operates in semantically isolated containers—ensuring errors in one
subdomain cannot propagate to others. This approach transforms complex combinatorial, multi-
case, or recursive problems into parallelizable verification tasks while maintaining strict condition
adherence.

Qsub = DecomposeLLM(Q, π∗, Ce, Ci) (6)
When DecomposeF lag is False, the problem does not need to be decomposed and can be solved
directly into the next Module (see Direct Resolution for Resolution and Aggregation).

3.4 RESOLUTION AND AGGREGATION

Resolution and Aggregation module executes the plan established in Adaptive Domain Decompo-
sition module. The reasoning process follows one of two pathways based on the outcome of the
adaptive decomposition. This bifurcation ensures computational efficiency for simple problems
while maintaining rigorous error isolation for complex ones, adapting dynamically to the problem’s
needs.

• Direct Resolution: when DecomposeF lag is False, the question is considered monolithic.
The model applies the chosen strategy π∗ to solve the original question Q in a single, direct
pass while ensuring the solution satisfies Ce and Ci. This path is typical for problems with
short reasoning chains or those where decomposition would introduce unnecessary over-
head (e.g., single-step arithmetic, straightforward logical inferences). The final solution is
obtained as:

A = SolveLLM(Q, π∗, Ce, Ci) (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Hierarchical Resolution: when DecomposeF lag is True, the model engages in a multi-step
hierarchical process. First, it independently resolves each subquestion Qi ∈ Qsub using
the logic of π∗, yielding a set of sub-answers Asub = {A1, A2, ..., Ak}, while ensuring all
solutions strictly adhere to Ce and Ci. Each subquestion is solved in isolation, preventing
error propagation between subproblems. For instance, in a problem requiring case analysis
(e.g., “Solve for x where x² + bx + c = 0, considering discriminant cases”), each subproblem
corresponds to a distinct case (D>0, D=0, D<0), and solving one case incorrectly does
not affect others. For the answer to each subquestion, there is the following relationship
equation:

Ai = SolveLLM(Qi, π
∗, Ce, Ci), ∀Qi ∈ Qsub (8)

Next, these partial solutions are synthesized. The model aggregates the information from
Asub to construct a single, coherent, and comprehensive final solution and confirm that the
aggregated answer satisfies all conditions, Ce and Ci, directly answers the original question
Q. Aggregation rules are problem-specific. For summation problems, it might involve sim-
ple addition; for case analysis, logical combination; for condition satisfaction, intersection
of valid solutions.

A = AggregateLLM(Asub, Q, Ce, Ci) (9)

Figure1 illustrates this dynamic pipeline, highlighting how conditional execution optimizes the
trade-off between thoroughness (for complex tasks) and efficiency (for simpler ones). Algorithm1
shows the HoT reasoning process in a formal description. Figure2 illustrates an example of solving
a complex math problem using HoT framework. Here, since DecomposeF lag is True, the problem
undergoes decomposition and aggregation, and the correct answer is obtained.

This conditional execution allows HoT to dynamically adapt its strategy, applying a more robust,
multi-step reasoning process only when necessary, thereby optimizing for both accuracy and effi-
ciency. Finally, the resulting answer A is formatted for the end-user.

4 EXPERIMENTS

To rigorously evaluate the proposed HoT, we conducted a comprehensive set of experiments de-
signed to assess its performance, generalizability, robustness, and the contribution of its core com-
ponents. Our evaluation demonstrates that HoT achieves superior accuracy on a diverse suite of
mathematical (GSM8K, ASDiv, SVAMP) and logical (OpenBookQA, Strategy) reasoning bench-
marks. We further show that these performance gains are model-agnostic, enhancing the capabilities
of multiple underlying LLMs. Critically, through quantitative stability metrics, we found that HoT
not only provides more accurate results but does so with significantly greater consistency and lower
variance than baseline methods. Finally, a detailed ablation study confirmed that each module of
HoT is integral to its success, with its structured approach of identifying conditions, decomposing
problems, and exploring solution paths being fundamental to its effectiveness.

4.1 EXPERIMENTAL SETUP

4.1.1 DATASETS.

We evaluate HoT with two types of datasets, Math: GSM8K Cobbe et al. (2021), ASDiv Miao et al.
(2021), SVAMP Patel et al. (2021), and Logic: OpenBookQA Mihaylov et al. (2018), StrategyQA
Geva et al. (2021). These datasets share common characteristics: a certain depth of thought and the
need to synthesize knowledge and reasoning. For each dataset we take the first 200 examples of the
test set.

4.1.2 MODELS.

We use Qwen2.5:7b-instruct Qwen et al. (2025) as the backbone model for our main experiments
due to its superior semantic comprehension and execution capabilities. We also use DeepSeek-V3
DeepSeek-AI et al. (2025) to test the effectiveness of HoT and complete robustness testing via API.
All the experiments on Qwen2.5:7b-instruct are run on an 1x NVIDIA A100 GPU server. The
temperature hyperparameter T of models is set to 0.3.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1.3 BASELINES.

Our baselines include: CoT Wei et al. (2022), Random-CoT Fu et al. (2022), CoT with Self-
Consistency (CoT-SC) Wang et al. (2023), ReAct Yao et al. (2023b), instance-adaptive prompting
strategy (IAP) Yuan et al. (2024) and AoT Teng et al. (2025). For CoT-SC, we set the number of
paths n = 5. For ReAct, we designed similarly styled prompts for each dataset as examples. For IAP,
we adopt the Majority Vote strategy as our approach. Accuracy is the average value of the results of
3 runs, and detailed reproduction settings are provided in Appendix A.6.

4.1.4 METRICS.

We adopt both standard and newly designed metrics to evaluate different reasoning methods. In
the main experiments and model comparison studies, we report the average accuracy over three in-
dependent runs. For robustness testing, we design two complementary metrics based on repeated
testing: (1) Total Variance (TV), and (2) Instance Variance Mean (IVM). These metrics are de-
fined in a general form to allow application across various experimental settings. Then we introduce
how to obtain the two metrics.

Let each method be tested over M independent runs. Each run consists of N problems. The total
runs are grouped into B problem blocks, and each problem block contains N problems. Each
problem block is evaluated R times. Thus, the total number of runs is M = R×B.

Let A(r)
b denote the accuracy of the model on the b-th problem block in its r-th repetition, where

b ∈ {1, 2, . . . , B}, and r ∈ {1, 2, . . . , R}. The mapping from the pair (b, r) to the global run index
i is given by i = (b− 1)×R+ r.

Let A(i) denote the accuracy of the i-th run (where i ∈ {1, 2, . . . ,M} and the mapping from (b, r)
to i is mentioned above). Then:

TV = Var(A(1), A(2), . . . , A(M))

For each block b, we compute the variance of the accuracy values across the R repetitions:

Vb = Var(A
(1)
b , A

(2)
b , . . . , A

(R)
b ).

IVM is then defined as the average variance across all B problem blocks:

IVM =
1

B

B∑
b=1

Vb

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

4.2.1 MAIN RESULTS.

As shown in Table1, HoT achieves excellent performance across all datasets. On SVAMP, it achieves
91.6% accuracy (+0.4% over AoT); on OpenBookQA, it reaches 91.5% accuracy (+3.9% over CoT-
SC). HoT * is derived from voting among CoT, HoT, and HoT without Tree Explorer (Module 2),
with HoT’s answer as the tiebreaker. HoT * further improves performance: 92.2% on GSM8K
(+2.0% over AoT) and 92.2% on average (+1.2% over HoT). Result show that HoT is able to
improve the accuracy of LLM reasoning whether solving mathematical or logical problems. With
more computational resources, HoT can continue to improve LLMs’ inference ability.

4.2.2 REASONING MODELS COMPARISON RESULTS.

We evaluate the effectiveness of the proposed HoT framework across two representative reason-
ing benchmarks (GSM8K and OpenBookQA) , using two LLMs with different parameter scales:
Qwen2.5:7b-Instruct and DeepSeek-V3. Table2 shows that, HoT consistently improves perfor-
mance across datasets. For Qwen2.5:7b-instruct, HoT boosts accuracy from 81.6% to 86.3% on
GSM8K (+4.7%) and from 83.9% to 91.5% on OpenBookQA (+7.6%). For DeepSeek-V3, per-
formance improves from 91.3% to 97.0% on GSM8K (+5.7%) and from 94.5% to 96.7% on Open-
BookQA (+2.2%). The larger relative gains for Qwen2.5:7b-instruct suggest that HoT is particularly

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Methods GSM8K ASDiv SVAMP OpenBookQA StrategyQA Avg.
CoT 81.8 93.2 86.1 83.9 84.8 86.0
Random-CoT 82.6 94.1 88.3 82.5 87.3 87.0
CoT-SC (n=5) 85.1 94.4 90.8 87.6 88.0 89.2
ReAct 84.1 94.7 90.9 87.1 85.1 88.4
IAP 80.5 91.1 87.2 75.3 88.8 84.6
AoT 90.2 97.2 91.2 84.9 86.5 90.0
HoT (Ours) 86.3 97.2 91.6 91.5 88.1 91.0
HoT * (Ours) 92.2 97.7 93.8 88.3 89.3 92.2

Table 1: Performance Comparison of Reasoning Methods Across Datasets (%). This table compares
the accuracy of HoT and HoT * with baseline methods (CoT, Random-CoT, CoT-SC, ReAct, IAP)
on five math and logic reasoning datasets. The experiment was conducted on the Qwen2.5:7b-
instruct model. Results show HoT achieves a high average accuracy (91.0%) and HoT * further sets
a new state-of-the-art (92.2%), confirming their superiority in mathematical and logical reasoning
tasks.

Methods GSM8K OpenBookQA Avg.
Qwen2.5:7b-instruct CoT 81.6 83.9 82.8

HoT 86.3 91.5 88.9
DeepSeek-V3 CoT 91.3 94.5 92.9

HoT 97.0 96.7 96.9

Table 2: HoT’s Performance Across Different LLM Backbones (%). This table evaluates HoT’s
effectiveness on two LLMs (Qwen2.5:7b-instruct and DeepSeek-V3). Evaluations are conducted
on GSM8K (mathematics) and OpenBookQA (logic). Results indicate HoT consistently improves
reasoning accuracy for both LLMs, demonstrating its model-agnostic ability to enhance reasoning
in both small and large parameter LLMs.

valuable for improving the reasoning capabilities of smaller LLMs, while the consistent performance
boosts for DeepSeek-V3 demonstrate that strong models can also benefit from HoT’s structured res-
olution. These results highlight HoT’s general effectiveness across LLM’s scales and task types.

4.2.3 ROBUSTNESS TESTING.

Robustness testing is performed using Total Variance (TV) and Instance Variance Mean (IVM) met-
rics on 300 runs with parameters M=300, N=10, B=100 and R=3, comparing the stability of HoT
with CoT. We selected GSM8K as the dataset. CoT serves as the baseline with a Total Variance
(TV) of 144.5 and an Instance Variance Mean (IVM) of 34.7. CoT-SC shows a higher TV of 155.0
(+7.27%) but a lower IVM of 22.7 (-34.58%). In contrast, HoT achieves a lower TV of 98.0 (-
32.18%) and an IVM of 19.1 (-44.96%). Visual analysis in Figure3 further confirms that HoT
exhibits substantially improved stability in inference results. TV quantifies global variability across
multiple problem blocks. HoT’s lower TV indicates stronger robustness regardless of input distri-
bution. IVM measures robustness by averaging variance in accuracy across repeated trials on the
same problem blocks. The reduction in IVM highlights HoT’s ability to produce consistent results
for identical problems, alleviating the unstable output that often troubles unstructured and unreliable
reasoning methods. For comparisons of the remaining datasets, see the Appendix A.2.

4.2.4 ABLATION STUDY.

Ablation Studies have proved the effectiveness of each module. As shown in Table3, when HoT
removes Module1 and does not explicitly mention the conditions in any of the subsequent treat-
ments, there is the most significant drop in performance; when HoT removes Module2 and does
not explore methods and paths, there is a slight drop in performance; when HoT removes Mod-

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6

23

52

88
93

38

7
17

35

64

110

67

0
8

27

94

110

61

0

20

40

60

80

100

120

50 60 70 80 90 100
N

um
 o

f T
es

ts
Accuracy

Distribution of Accuracy on 300 tests (GSM8K)

CoT CoT-SC HoT

50 60 70 80 90 100
Accuracy

Figure 3: Robustness Comparison Between CoT, CoT-SC and HoT on the GSM8K Dataset. This
figure presents the distribution of accuracy across 300 test runs for CoT, CoT-SC and HoT meth-
ods. The experiment was conducted on the Qwen2.5:7b-instruct model. It visually demonstrates
that HoT exhibits significantly lower variance in inference results compared to CoT and CoT-SC,
confirming HoT’s superior stability and consistency in repeated reasoning tasks.

Methods GSM8K OpenBookQA
HoT (Full) 86.3 91.5
HoT (w/o Module1) 82.2 89.5
HoT (w/o Module2) 85.5 89.7
HoT (w/o Module3, 4) 82.7 91.2

Table 3: Ablation Study on HoT Core Components (%). This table assesses the contribution of
each HoT module by removing them individually. Results show removing Module 1 (Condition
Extraction) causes the largest performance drop (4.1% on GSM8K, 2.0% on OpenBookQA), while
removing other modules leads to smaller declines. This confirms that all modules are integral to
HoT’s success, with condition extraction being critical for maintaining reasoning accuracy.

ule3, 4 and does not conduct problem decomposition and aggregation, there is also a slight drop in
performance. Without condition extraction and maintenance, the model sometimes ignores impor-
tant information when reasoning, leading to biased results. Without the exploration of methods and
paths, the model has a more inadequate understanding of the problem and lacks an understanding
of the big picture. Decomposing and aggregating the problem can reduce the complexity of the
demand solution problem. Since subproblems often require only linear reasoning (without the need
to consider multiple scenarios in parallel), this allows for different treatments in different situations
without contaminating each other, further improving the robustness of the solution.

5 CONCLUSION

HoT represents a pivotal advance in enabling reliable, condition-aware reasoning in LLMs. It in-
tegrates explicit condition extraction, strategic planning, adaptive decomposition, and structured
aggregation into a cohesive prompt-based framework, directly addressing core limitations of exist-
ing methods—including error propagation, poor interpretability, and weak condition satisfaction.
Experiments validate HoT’s effectiveness: it boosts performance across diverse LLMs, and demon-
strates greater robustness. Its structured reasoning traces enhance auditability, making it ideal for
high-stakes fields like engineering and decision support.

HoT’s success underscores a key insight: advancing LLM reasoning requires reimagining the pro-
cess, not just scaling models or data. Future work will extend HoT to dynamic/uncertain conditions,
integrate external subproblem verifiers, and apply it to real-world engineering tasks. Automating
decomposition heuristics (tailored to problem and condition structure) is another promising direc-
tion. By providing a blueprint for structured, condition-aware reasoning, HoT lays the groundwork
for more trustworthy LLMs in rigorous domains.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Iván Arcuschin, Jett Janiak, Robert Krzyzanowski, Senthooran Rajamanoharan, Neel Nanda, and
Arthur Conmy. Chain-of-thought reasoning in the wild is not always faithful, 2025. URL https:
//arxiv.org/abs/2503.08679.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the
dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency, pp. 610–623, 2021.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gian-
inazzi, Joanna Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of
thoughts: Solving elaborate problems with large language models. In Proceedings of the AAAI
conference on artificial intelligence, volume 38, pp. 17682–17690, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Yew Ken Chia, Guizhen Chen, Luu Anh Tuan, Soujanya Poria, and Lidong Bing. Contrastive chain-
of-thought prompting, 2023. URL https://arxiv.org/abs/2311.09277.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E Ho. Large legal fictions: Profiling legal
hallucinations in large language models. Journal of Legal Analysis, 16(1):64–93, 2024.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao,
Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue
Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xi-
aokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang
Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui
Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying
Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu,
Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F.
Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao,
Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report, 2025. URL
https://arxiv.org/abs/2412.19437.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy Brun. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of the 31st ACM Joint European Software

10

https://arxiv.org/abs/2503.08679
https://arxiv.org/abs/2503.08679
https://arxiv.org/abs/2311.09277
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2412.19437


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 1229–
1241, 2023.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and Tushar Khot. Complexity-based prompting
for multi-step reasoning. arXiv preprint arXiv:2210.00720, 2022.

Wachara Fungwacharakorn, Nguyen Ha Thanh, May Myo Zin, and Ken Satoh. Layer-of-thoughts
prompting (lot): Leveraging llm-based retrieval with constraint hierarchies, 2024. URL https:
//arxiv.org/abs/2410.12153.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions of
the Association for Computational Linguistics, 9:346–361, 2021.

Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL https://
arxiv.org/abs/1603.08983.

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song, Wai Lam, and Yue Zhang. Chain-of-
symbol prompting for spatial reasoning in large language models. In First Conference on Lan-
guage Modeling, 2024.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1–55, 2025.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. ACM
computing surveys, 55(12):1–38, 2023.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion, 2023. URL https://arxiv.org/abs/2306.
02561.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Minghai Lu, Benjamin Delaware, and Tianyi Zhang. Proof automation with large language models.
In Proceedings of the 39th IEEE/ACM International Conference on Automated Software Engi-
neering, pp. 1509–1520, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

Rajasekhar Reddy Mekala, Yasaman Razeghi, and Sameer Singh. Echoprompt: Instructing the
model to rephrase queries for improved in-context learning, 2024. URL https://arxiv.
org/abs/2309.10687.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
english math word problem solvers, 2021. URL https://arxiv.org/abs/2106.15772.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018. URL https://arxiv.
org/abs/1809.02789.

Max Moundas, Jules White, and Douglas C Schmidt. Prompt patterns for structured data extraction
from unstructured text. In Proceedings of the 31st Pattern Languages of Programming (PLoP)
Conference (Columbia River Gorge, WA), 2024.

11

https://arxiv.org/abs/2410.12153
https://arxiv.org/abs/2410.12153
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2306.02561
https://arxiv.org/abs/2309.10687
https://arxiv.org/abs/2309.10687
https://arxiv.org/abs/2106.15772
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Humza Naveed, Asad Ullah Khan, Shi Qiu, Muhammad Saqib, Saeed Anwar, Muhammad Usman,
Naveed Akhtar, Nick Barnes, and Ajmal Mian. A comprehensive overview of large language
models. ACM Transactions on Intelligent Systems and Technology, 2023.

Mengjia Niu, Hao Li, Jie Shi, Hamed Haddadi, and Fan Mo. Mitigating hallucinations in
large language models via self-refinement-enhanced knowledge retrieval, 2024. URL https:
//arxiv.org/abs/2405.06545.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems?, 2021. URL https://arxiv.org/abs/2103.07191.

Haritz Puerto, Martin Tutek, Somak Aditya, Xiaodan Zhu, and Iryna Gurevych. Code prompting
elicits conditional reasoning abilities in text+code llms, 2024. URL https://arxiv.org/
abs/2401.10065.

Kaleem Ullah Qasim, Jiashu Zhang, Tariq Alsahfi, and Ateeq Ur Rehman Butt. Recursive decompo-
sition of logical thoughts: Framework for superior reasoning and knowledge propagation in large
language models, 2025. URL https://arxiv.org/abs/2501.02026.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

Fengwei Teng, Zhaoyang Yu, Quan Shi, Jiayi Zhang, Chenglin Wu, and Yuyu Luo. Atom of thoughts
for markov llm test-time scaling, 2025. URL https://arxiv.org/abs/2502.12018.

Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan, Laura Gutierrez,
Ting Fang Tan, and Daniel Shu Wei Ting. Large language models in medicine. Nature medicine,
29(8):1930–1940, 2023.

SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das.
A comprehensive survey of hallucination mitigation techniques in large language models. arXiv
preprint arXiv:2401.01313, 6, 2024.

Wenxiao Wang, Parsa Hosseini, and Soheil Feizi. Chain-of-defensive-thought: Structured reasoning
elicits robustness in large language models against reference corruption, 2025. URL https:
//arxiv.org/abs/2504.20769.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Yuxia Wang, Minghan Wang, Muhammad Arslan Manzoor, Fei Liu, Georgi Georgiev, Rocktim Jyoti
Das, and Preslav Nakov. Factuality of large language models: A survey, 2024a. URL https:
//arxiv.org/abs/2402.02420.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng Wang,
Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, et al. Chain-of-table: Evolving
tables in the reasoning chain for table understanding. arXiv preprint arXiv:2401.04398, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Weston and Sainbayar Sukhbaatar. System 2 attention (is something you might need too),
2023. URL https://arxiv.org/abs/2311.11829.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
Advances in Neural Information Processing Systems, 37:113519–113544, 2024.

12

https://arxiv.org/abs/2405.06545
https://arxiv.org/abs/2405.06545
https://arxiv.org/abs/2103.07191
https://arxiv.org/abs/2401.10065
https://arxiv.org/abs/2401.10065
https://arxiv.org/abs/2501.02026
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2502.12018
https://arxiv.org/abs/2504.20769
https://arxiv.org/abs/2504.20769
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2402.02420
https://arxiv.org/abs/2402.02420
https://arxiv.org/abs/2311.11829


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in neural information processing systems, 36:11809–11822, 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023b.

Xiaosong Yuan, Chen Shen, Shaotian Yan, Xiaofeng Zhang, Liang Xie, Wenxiao Wang, Renchu
Guan, Ying Wang, and Jieping Ye. Instance-adaptive zero-shot chain-of-thought prompting. Ad-
vances in Neural Information Processing Systems, 37:125469–125486, 2024.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang, Enbo Zhao,
Yu Zhang, Yulong Chen, et al. Siren’s song in the ai ocean: A survey on hallucination in large
language models. Computational Linguistics, pp. 1–45, 2025.

Xufeng Zhao, Mengdi Li, Wenhao Lu, Cornelius Weber, Jae Hee Lee, Kun Chu, and Stefan Wermter.
Enhancing zero-shot chain-of-thought reasoning in large language models through logic. arXiv
preprint arXiv:2309.13339, 2023.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models,
2024. URL https://arxiv.org/abs/2310.06117.

Yucheng Zhou, Xiubo Geng, Tao Shen, Chongyang Tao, Guodong Long, Jian-Guang Lou, and
Jianbing Shen. Thread of thought unraveling chaotic contexts, 2023. URL https://arxiv.
org/abs/2311.08734.

Zhanke Zhou, Rong Tao, Jianing Zhu, Yiwen Luo, Zengmao Wang, and Bo Han. Can language
models perform robust reasoning in chain-of-thought prompting with noisy rationales? Advances
in Neural Information Processing Systems, 37:123846–123910, 2024.

A APPENDIX

A.1 EXAMPLE OF HOT REASONING PROCESS

A.1.1 QUESTION

Suppose the polynomial

f(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x+ a0

has integer coefficients, and its roots are distinct integers.

Given that an = 2 and a0 = 66, what is the least possible value of |an−1|?

A.1.2 SOLUTION

Since f(x) has integer coefficients, the Integer Root Theorem tells us that all integer roots of f(x)
must divide the constant term 66 = 2 · 3 · 11. Thus, the possible integer roots of f(x) are

±1, ±2, ±3, ±6, ±11, ±22, ±33, ±66.

Moreover, since we know that all roots of f(x) are integers, we know that all roots of f(x) appear
in the list above.

Now we apply Vieta’s formulas. The product of the roots of f(x) is (−1)n · a0

an
, which is 33 or−33.

Also, the sum of the roots is −an−1

an
= −an−1

2 . Thus, in order to minimize |an−1|, we should make
the absolute value of the sum of the roots as small as possible, working under the constraint that the
product of the roots must be 33 or −33.

We now consider two cases.

13

https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2311.08734
https://arxiv.org/abs/2311.08734


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Case 1 is that one of 33,−33 is a root, in which case the only other possible roots are ±1. In this
case, the absolute value of the sum of the roots is at least 32.

The alternative, Case 2, is that one of 11,−11 is a root and one of 3,−3 is a root. Again, the only
other possible roots are ±1, so the absolute value of the sum of the roots is at least 11− 3− 1 = 7,
which is better than the result of Case 1. If the absolute value of the sum of the roots is 7, then
|an−1| = 7|an| = 7 · 2 = 14.

Therefore, we have shown that |an−1| ≥ 14, and we can check that equality is achieved by

f(x) = 2(x+ 11)(x− 3)(x− 1)

= 2x3 + 14x2 − 82x+ 66,

which has integer coefficients and integer roots. So the least possible value of |an−1| is 14 .

A.1.3 IO (INPUT/OUTPUT) METHOD

According to Vieta’s formulas, the product of the roots r1, r2, . . . , rn is related to the coefficients
by the formula (−1)nr1r2 · · · rn = a0

an
= 66

2 = 33. The coefficient an−1 is given by an−1 =

−an
∑n

i=1 ri = −2
∑n

i=1 ri. To minimize |an−1|, we must minimize the absolute value of the sum
of the roots. We need to find a set of distinct integer roots whose product is±33. The integer factors
of 33 are ±1,±3,±11,±33.

To make the sum of the roots as close to zero as possible, we should select roots that cancel each
other out. Consider the set of four distinct integer roots {1,−1, 3,−11}. The product of these roots
is (1)(−1)(3)(−11) = 33. For this set of roots, the sum is 1 + (−1) + 3 + (−11) = −8. This
corresponds to a value of an−1 = −2× (−8) = 16. Therefore, the least possible value of |an−1| is
16 .

A.1.4 HOT METHOD

CONDITION EXTRACTION

The first module of the process focuses on meticulously extracting and defining all constraints from
the problem statement. The explicit constraints are that the polynomial f(x) has integer coeffi-
cients, its roots are distinct integers, the leading coefficient is an = 2, and the constant term is
a0 = 66.

From these, several implicit constraints are derived. The relationship between coefficients and roots
is governed by Vieta’s formulas. This leads to two critical deductions:

• The product of the roots, adjusted for the leading coefficient, is fixed. Specifically,
(−1)n

∏n
i=1 ri =

a0

an
= 66

2 = 33. This means the product of the n distinct integer roots
must be either 33 (if n is even) or −33 (if n is odd).

• The coefficient an−1 is directly proportional to the sum of the roots: an−1 =
−an

∑n
i=1 ri = −2

∑n
i=1 ri.

The ultimate goal is to find the minimum possible value of |an−1|, which translates to finding a set
of distinct integer roots that satisfies the product constraint while making the absolute value of their
sum as small as possible.

TREE EXPLORER

The second module explores various potential strategies for solving the problem. Three primary
methods were identified and scored based on their perceived effectiveness and rigor:

• Algebraic Approach (Score: 85): This method, deemed the most promising, involves a
systematic application of Vieta’s formulas. The core idea is to enumerate all possible sets
of distinct integer roots whose product is ±33, calculate the sum for each set, determine
the corresponding |an−1|, and identify the minimum value. Its strength lies in its direct and
exhaustive nature.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Combinatorial Optimization (Score: 75): This approach frames the problem as mini-
mizing the absolute sum of a set of integers under the constraint that their product is fixed.
While conceptually sound, it was considered slightly less direct than the algebraic approach
because it focuses more on the optimization aspect rather than a structured enumeration
based on the factors of 33.

• Analytical Approach (Score: 70): This method proposed using calculus to treat an−1 as a
function of the roots and find its minimum. This was rated the lowest because the problem’s
domain consists of discrete integers, making continuous calculus methods difficult and
impractical to apply directly without significant adaptation.

The algebraic approach was selected as the most direct and reliable path to the solution.

ADAPTIVE DOMAIN DECOMPOSITION

The third module takes the chosen algebraic approach and breaks the problem down into a series of
smaller, manageable subproblems or cases. The primary decomposition is based on the number of
distinct integer roots, n. Since the product of the roots must be±33, and 33 = 3×11, the number of
roots is not predetermined but must be at least two. The analysis was therefore structured to check
cases for different values of n.

The subproblems identified were:

• Case n = 2 (Two roots): The product of the roots, r1r2, must be 33. All pairs of distinct
integers with this product are examined.

• Case n = 3 (Three roots): The product of the roots, r1r2r3, must be −33. All unique
triplets of distinct integers with this product are investigated.

• Case n = 4 (Four roots): The product, r1r2r3r4, must be 33. All quartets of distinct
integers satisfying this are considered.

• Cases n > 4: These cases are also considered, but it’s reasoned that adding more roots,
especially pairs like (1,−1), is the most efficient way to increase n while controlling the
sum.

SUBPROBLEM RESOLUTION AND AGGREGATION

The final module involves solving each subproblem defined in the previous stage and then aggregat-
ing the results to find the overall minimum value.

• Solving for n=2: The possible root sets whose product is 33 are {3, 11} and {−3,−11}.
Their sums are 14 and −14, respectively. This leads to |an−1| = | − 2 × (±14)| = 28.
Other pairs like {1, 33} yield larger sums.

• Solving for n=3: The product of the roots must be −33. The system systematically ex-
plores combinations:

– {−1, 3, 11} has a sum of 13, giving |an−1| = 26.
– {1,−3, 11} has a sum of 9, giving |an−1| = 18.
– {1, 3,−11} has a sum of −7, giving |an−1| = | − 2× (−7)| = 14.
– {−1,−3, 11} has a product of 33, not −33, so it’s invalid for n = 3.

• Solving for n=4: The product must be 33. To keep the sum small, pairs of opposites are
used. The set {1,−1, 3,−11} has distinct roots, a product of 33, and a sum of 1− 1 + 3−
11 = −8. This yields |an−1| = | − 2× (−8)| = 16.

• Aggregation and Final Answer: The results from all valid cases are compared:
– For n=2, the minimum |an−1| is 28.
– For n=3, the minimum |an−1| is 14.
– For n=4, the minimum |an−1| is 16.

The overall minimum value found across all examined cases is 14. This occurs for the set of three
distinct integer roots {1, 3,−11}. The reasoning correctly accounts for the parity of n affecting the
sign of the root product, a detail the other methods missed, leading them to incorrect conclusions.
Final Answer: 14

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 HoT Reasoning Algorithm
Input: Initial question Q
Output: Final answer A

1: Ce, Ci ← ConditionExtractionLLM(Q)
//Extract explicit/implicit conditions

2: P ← GeneratePathsLLM(Q, Ce, Ci)
//Generate solution paths

3: π∗ ← argmax
πi∈P

ScoreLLM(πi)

//Select optimal path
4: DecomposeF lag ← NeedDecompositionLLM(π∗)
5: if DecomposeF lag == True then
6: Qsub ← DecomposeLLM(Q, π∗, Ce, Ci)

//Domain decomposition
7: Asub ← ∅
8: for Qi ∈ Qsub do
9: Ai ← SolveLLM(Qi, π

∗, Ce, Ci)
10: Asub ← Asub ∪ {Ai}
11: end for
12: A← AggregateLLM(Asub, Q, Ce, Ci)
13: else
14: A← SolveLLM(Q, π∗, Ce, Ci)

//Direct resolution
15: end if
16: return A

4
7

33

46

2
6

32

50

0
3

19

68

0

10

20

30

40

50

60

70

80

70 80 90 100

N
um

 o
f T

es
ts

Accuracy

Distribution of Accuracy on 90 tests (ASDiv)

CoT CoT-SC HoT

70 80 90 100
Accuracy

Figure 4: Robustness Comparison Between CoT, CoT-SC and HoT on the ASDiv Dataset. This
figure presents the distribution of accuracy across 90 test runs for CoT, CoT-SC and HoT methods.
The experiment was conducted on the Qwen2.5:7b-instruct model.

A.2 COMPLETE ROBUSTNESS TESTING

A.2.1 ROBUSTNESS TESTING ON ASDIV DATASET

Robustness testing on ASDiv Dataset is performed on 90 runs with parameters M=90, N=10, B=30
and R=3. CoT showes a TV of 64.8 and an IVM of 9.3. CoT-SC showes a TV of 51.4 (-20.68%)
and an IVM of 7.9 (-15.05%). HoT achieves lower variance with a TV of 26.7 (-58.80%) and an
IVM of 8.6 (-7.73%). Figure4 illustrates the trend.

A.2.2 ROBUSTNESS TESTING ON SVAMP DATASET

Robustness testing on SVAMP Dataset is performed on 90 runs with parameters M=90, N=10, B=30
and R=3. CoT showes a TV of 117.1 and an IVM of 17.0. CoT-SC showes a TV of 82.7 (-29.38%)
and an IVM of 14.8 (-12.94%). HoT achieves lower variance with a TV of 79.8 (-31.85%) and an
IVM of 15.6 (-8.24%). Figure5 illustrates the trend.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1
3

8

25

34

19

0 0
4

22

27

37

0 0

8
6

40
36

0

5

10

15

20

25

30

35

40

45

50 60 70 80 90 100

N
um

 o
f T

es
ts

Accuracy

Distribution of Accuracy on 90 tests (SVAMP)

CoT CoT-SC HoT

50 60 70 80 90 100
Accuracy

Figure 5: Robustness Comparison Between CoT, CoT-SC and HoT on the SVAMP Dataset. This
figure presents the distribution of accuracy across 90 test runs for CoT, CoT-SC and HoT methods.
The experiment was conducted on the Qwen2.5:7b-instruct model.

3 5

17

50
55

20

2 4
9

34

65

36

0 0
3

28

62
57

0

10

20

30

40

50

60

70

50 60 70 80 90 100

N
um

 o
f T

es
ts

Accuracy

Distribution of Accuracy on 150 tests (OpenBookQA)

CoT CoT-SC HoT

50 60 70 80 90 100
Accuracy

Figure 6: Robustness Comparison Between CoT, CoT-SC and HoT on the OpenBookQA Dataset.
This figure presents the distribution of accuracy across 150 test runs for CoT, CoT-SC and HoT
methods. The experiment was conducted on the Qwen2.5:7b-instruct model.

A.2.3 ROBUSTNESS TESTING ON OPENBOOKQA DATASET

Robustness testing on OpenBookQA Dataset is performed on 150 runs with parameters M=150,
N=10, B=50 and R=3. CoT showes a TV of 117.2 and an IVM of 16.0. CoT-SC showes a TV
of 110.2 (-5.97%) and an IVM of 14.7 (-8.13%). HoT achieves lower variance with a TV of 62.3
(-46.84%) and an IVM of 10.2 (-36.25%). Figure6 illustrates the trend.

A.2.4 ROBUSTNESS TESTING ON STRATEGYQA DATASET

Robustness testing on StrategyQA Dataset is performed on 300 runs with parameters M=300, N=10,
B=100 and R=3. CoT showes a TV of 124.3 and an IVM of 32.2. CoT-SC showes a TV of 103.8 (-
16.49%) and an IVM of 20.7 (-35.71%). HoT achieves lower variance with a TV of 87.2 (-29.85%)
and an IVM of 18.2 (-43.48%). Figure7 illustrates the trend.

A.3 COST ANALYSIS

This section quantifies the trade-off between performance and efficiency of HoT and its variant,
compared to baseline reasoning methods. The cost analysis utilized the results from Table1 and
the corresponding average resource consumption values calculated for each individual question. To
address large disparities in token consumption across methods, the token count is visualized on a
log10 scale. This ensures clear separation of data points

Figure8 presents the relationship between accuracy and computational resource consumption for
HoT, HoT *, and six baseline methods (CoT, Random-CoT, CoT-SC, ReAct, IAP, AoT). HoT

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1

14

47

70

114

54

1 6

28

61

124

80

0
6

16

80

124

74

0

20

40

60

80

100

120

140

50 60 70 80 90 100

N
um

 o
f T

es
ts

Accuracy

Distribution of Accuracy on 300 tests (StrategyQA)

CoT CoT-SC HoT

50 60 70 80 90 100
Accuracy

Figure 7: Robustness Comparison Between CoT, CoT-SC and HoT on the StrategyQA Dataset. This
figure presents the distribution of accuracy across 300 test runs for CoT, CoT-SC and HoT methods.
The experiment was conducted on the Qwen2.5:7b-instruct model.

78

80

82

84

86

88

90

92

94

2.40 2.90 3.40 3.90 4.40

Ac
cu

ra
cy

 (%
)

Tokens in log10 scale

Performance on GSM8K

CoT
Random-CoT
CoT-SC
ReAct
IAP
AoT
HoT
HoT *

Figure 8: Accuracy vs. Computational Resource Consumption (Total Token Count in log10 Scale)
Across Reasoning Methods

strikes a balance between accuracy and efficiency, aligning with the growth trend observed in most
baseline methods. Meanwhile, HoT * demonstrates excellent performance by significantly boosting
accuracy while increasing computational resource consumption.

A.4 PROMPTS OF HOT IN MATHEMATICS

In this section, we introduce prompts for each module of HoT in Mathematics (GSM8K).

A.4.1 CONDITION EXTRACTION

1 async def _condition_extraction(self, question: str) -> Dict[str, Any]:
2 prompt = f"""
3 You are a world-class mathematician and mathematical logician.
4 You are intelligent, rigorous, and cautious.
5 You always reason step by step, consider all relevant conditions.
6 You think in terms of structure, symmetry, and mathematical

principles, and never skip important logical steps.
7 You aim to find a complete and correct solution, not just an

answer.
8 You THINK CLEARLY, STRUCTURALLY, AND DEEPLY.
9 Analyze this math problem and extract ALL conditions:

10 problem:{question}
11 Notice:
12 1. Identify explicit conditions (directly stated in the problem)
13 2. Derive implicit conditions (e.g., denominators > 0, square

roots > 0, log arguments > 0)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

14 3. Determine domain restrictions based on mathematical principles
15 4. Identify range limitations from problem context
16 5. Extract physical meaning conditions (e.g., length > 0,

probability in [0,1])
17 Output JSON format:
18 {{
19 "explicit": ["condition1", "condition2"],
20 "implicit": ["condition1", "condition2"],
21 "notes": "Additional analysis notes"
22 }}
23 """
24 for attempt in range(self.config.max_retries):
25 try:
26 response = await self.llm.generate(prompt, response_format="

json_object")
27 data = json.loads(response)
28 if not isinstance(data, dict):
29 continue
30 conditions = {
31 "explicit": data.get("explicit", []),
32 "implicit": data.get("implicit", []),
33 "notes": data.get("notes", "")
34 }
35 if not (conditions["explicit"] or conditions["implicit"]):
36 continue
37 return conditions
38 except (json.JSONDecodeError, AttributeError) as e:
39 continue
40 return {
41 "explicit": ["Default explicit condition"],
42 "implicit": ["Default implicit condition"],
43 "notes": "Fallback conditions"
44 }

Listing 1: Condition Extraction Prompt in Mathematics

A.4.2 TREE EXPLORER

1 async def _tree_explorer(self, question: str) -> List[Dict[str, Any]]:
2 prompt = f"""
3 You are a world-class mathematician and mathematical logician.
4 You are intelligent, rigorous, and cautious.
5 You always reason step by step, consider all relevant conditions.
6 You think in terms of structure, symmetry, and mathematical

principles, and never skip important logical steps.
7 You aim to find a complete and correct solution, not just an

answer.
8 You THINK CLEARLY, STRUCTURALLY, AND DEEPLY.
9 Generate 3 distinct solution methods for:

10 {question}
11 Notice:
12 1. Employ different theoretical frameworks (algebraic, geometric,

analytical, etc.)
13 2. Approach from fundamentally different perspectives
14 3. Vary implementation techniques significantly
15 4. Consider both conventional and innovative methods
16 5. Steps can be retained as ideas only, without exact

calculations
17 6. Pay attention to the mathematical expressions in the questions

and understand them correctly
18 7. examine carefully the subject matter
19 For each method, provide:
20 - Clear description of the mathematical approach
21 - Step-by-step implementation plan

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

22 - Effectiveness score (0-100) based on:
23 * Mathematical rigor
24 * Computational feasibility
25 * Logical completeness
26 * Efficiency
27

28 Output JSON format:
29 {{
30 "methods": [
31 {{
32 "description": "Method description",
33 "steps": ["step1", "step2"],
34 "score": 0-100,
35 "score_reason": "Scoring justification"
36 }}
37 ]
38 }}
39 """
40

41 for attempt in range(self.config.max_retries):
42 try:
43 response = await self.llm.generate(prompt, response_format="

json_object")
44 response = response.strip()
45 data = json.loads(response)
46 if not isinstance(data, dict) or "methods" not in data:
47 raise ValueError("Invalid structure: missing ’methods’

key")
48 methods = data["methods"]
49 if len(methods) != 3:
50 raise ValueError(f"Expected 3 methods, got {len(methods)}

")
51 required_keys = {"description", "steps", "score", "

score_reason"}
52 for method in methods:
53 if not all(k in method for k in required_keys):
54 raise ValueError("Missing required keys in method")
55 if not isinstance(method["steps"], list):
56 raise ValueError("Steps must be a list")
57 return sorted(methods, key=lambda x: -x["score"])
58 except (json.JSONDecodeError, ValueError, KeyError) as e:
59 if attempt == self.config.max_retries - 1:
60 return []
61 continue
62 return []

Listing 2: Tree Explorer Prompt in Mathematics

A.4.3 ADAPTIVE DOMAIN DECOMPOSITION

1 async def _adaptive_domain_decomposition(self, method: str, steps: List[
str]) -> Dict[str, Any]:

2 prompt = f"""
3 You are a world-class mathematician and mathematical logician.
4 You are intelligent, rigorous, and cautious.
5 You always reason step by step, consider all relevant conditions.
6 You think in terms of structure, symmetry, and mathematical

principles, and never skip important logical steps.
7 You aim to find a complete and correct solution, not just an

answer.
8 You THINK CLEARLY, STRUCTURALLY, AND DEEPLY.
9 Determine if this solution requires classification:

10 Method: {method}
11 Steps: {steps}

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

12 Notice:
13 1. Identify parameter dependencies requiring discussion
14 2. Detect interval-specific elements (absolute values, piecewise

functions)
15 3. Recognize domain-specific computation requirements
16 4. Flag multiple solution sets needing verification
17 5. Pay attention to the mathematical expressions in the questions

and understand them correctly
18 6. examine carefully the subject matter
19 If classification needed, provide:
20 - Comprehensive case descriptions
21 - Precise mathematical conditions for each case
22 - Clear boundary conditions
23 Output JSON format:
24 {{
25 "need_classify": true/false,
26 "reason": "Classification rationale",
27 "cases": [
28 {{
29 "description": "Case description",
30 "conditions": {{"parameter": "value_range"}}
31 }}
32 ]
33 }}
34 """
35 response = await self.llm.generate(prompt, response_format="

json_object")
36 try:
37 data = json.loads(response)
38 return {
39 "need_classify": data.get("need_classify", False),
40 "reason": data.get("reason", ""),
41 "cases": data.get("cases", [])
42 }
43 except json.JSONDecodeError:
44 return {"need_classify": False, "reason": "Parse failed", "cases"

: []}

Listing 3: Adaptive Domain Decomposition Prompt in Mathematics

A.4.4 SUBQUESTION RESOLUTION AND AGGREGATION

1 async def _resolution(self, node_id: str) -> Optional[Dict[str, Any]]:
2 node = self.nodes[node_id]
3 root_node = self.nodes[node.path[0]] if node.path else node
4 original_question = root_node.method.get("description", "Original

problem")
5

6 prompt = f"""
7 You are a world-class mathematician and mathematical logician.
8 You are intelligent, rigorous, and cautious.
9 You always reason step by step, consider all relevant conditions.

10 You think in terms of structure, symmetry, and mathematical
principles, and never skip important logical steps.

11 You aim to find a complete and correct solution, not just an
answer.

12 You THINK CLEARLY, STRUCTURALLY, AND DEEPLY.
13 You are a meticulous mathematical problem solver executing this

solution:
14

15 Original Problem: {original_question}
16 Steps: {node.steps}
17 conditions: {node.conditions}
18

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

19 As an executor, you must:
20 - Explicitly verify all conditions
21 - Show complete mathematical reasoning
22 - Include standalone line: "Final Answer: \\boxed{{answer}}"
23 - Ensure your answer directly responds to the question asked
24 - The final answer should be one exact number
25 - Not all conditions can serve as the conditions for solving

problems. We should answer according to the problems
26 """
27 response = await self.llm.generate(prompt)
28 answer = self._extract_answer(response)
29 if answer:
30 node.answer = answer
31 node.state = "solved"
32 return {
33 "node_id": node_id,
34 "response": response,
35 "answer": answer
36 }
37 return None
38

39 async def _aggregation(self, solutions: List[Dict[str, Any]]) -> str:
40 if not solutions:
41 return "No valid solutions found"
42 original_question = None
43 for sol in solutions:
44 node = self.nodes[sol["node_id"]]
45 if hasattr(node, ’original_question’):
46 original_question = node.original_question
47 break
48 if original_question is None:
49 first_node = self.nodes[solutions[0]["node_id"]]
50 path = first_node.path
51 if path:
52 root_node_id = path[0]
53 root_node = self.nodes.get(root_node_id)
54 if root_node:
55 original_question = root_node.method.get("description", "

Original problem")
56 if original_question is None:
57 original_question = "Original problem (reconstructed from context

)"
58 if solutions[0]["response"]:
59 match = re.search(r’Original Problem[:\s]*(.+?)\nSteps:’,

solutions[0]["response"])
60 if match:
61 original_question = match.group(1).strip()
62 if len(solutions) == 1:
63 return solutions[0]["answer"]
64 unique_answers = {sol["answer"] for sol in solutions}
65 if len(unique_answers) == 1:
66 return solutions[0]["answer"]
67 solutions_text = "\n\n".join(
68 f"Solution {i+1} (Node: {sol[’node_id’]}):\n"
69 f"Answer: {sol[’answer’]}\n"
70 f"Approach: {self.nodes[sol[’node_id’]].method[’description’]}\n"
71 f"conditions: {self.nodes[sol[’node_id’]].conditions}\n"
72 f"Reasoning Excerpt:\n{sol[’response’][:300]}...\n"
73 for i, sol in enumerate(solutions)
74 )
75 prompt = f"""
76 You are a world-class mathematician and mathematical logician.
77 You are intelligent, rigorous, and cautious.
78 You always reason step by step, consider all relevant conditions.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

79 You think in terms of structure, symmetry, and mathematical
principles, and never skip important logical steps.

80 You aim to find a complete and correct solution, not just an
answer.

81 You THINK CLEARLY, STRUCTURALLY, AND DEEPLY.
82 Synthesize these solutions for the original problem:
83 Original Problem: {original_question}
84 Proposed Solutions:
85 {solutions_text}
86 As an analyst, you must:
87 1. FIRST verify which solution(s) correctly answer the original

question
88 2. Compare mathematical consistency with the original problem

statement
89 3. Evaluate which approach best satisfies all conditions
90 4. Combine elements from multiple solutions ONLY if

mathematically valid
91 5. Provide clear justification for your selection
92 6. Mark final answer with \\boxed{{}}
93 7. Include standalone line: "Aggregated Answer: answer"
94 Critical Analysis Guidelines:
95 - The solution MUST directly answer the original question as

stated
96 - Prioritize mathematical correctness over elegance
97 - Reject solutions that violate any explicit conditions
98 - Verify all intermediate calculations are sound
99 - Ensure the final answer format matches what the problem

requires
100 """
101 response = await self.llm.generate(prompt)
102 return self._extract_answer(response) or "Aggregation failed"

Listing 4: Subquestion Resolution and Aggregation Prompt in Mathematics

A.5 PROMPTS OF HOT IN LOGIC

In this section, we introduce prompts for each module of HoT in Logic (OpenBookQA).

A.5.1 CONDITION EXTRACTION

1 async def _condition_extraction(self, question: str, options: Dict[str,
str]) -> Dict[str, Any]:

2 prompt = f"""
3 You are a top expert in formal logic, critical thinking, and

argument analysis.
4 You are precise, rational, and skeptical.
5 You always examine each statement carefully, identify premises

and conclusions, and evaluate logical validity step by step.
6 You avoid unwarranted assumptions, think in terms of logical

consequences, and eliminate invalid options with sound
reasoning.

7 You aim to reach conclusions based only on evidence and logic.
8 You THINK SLOWLY, CAREFULLY, AND LOGICALLY.
9 Analyze this question and extract key conditions:

10

11 Question: {question}
12 Options:
13 A. {options[’A’]}
14 B. {options[’B’]}
15 C. {options[’C’]}
16 D. {options[’D’]}
17

18 Identify:
19 1. Explicit conditions (directly stated)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

20 2. Implicit conditions (logical implications)
21 3. Key terms and their relationships
22 4. Spatial/temporal relationships if present
23 5. Any conditional statements
24

25 Output JSON format:
26 {{
27 "explicit": ["list", "of", "conditions"],
28 "implicit": ["list", "of", "conditions"],
29 "key_terms": ["term1", "term2"],
30 "notes": "Analysis summary"
31 }}
32 """
33 for attempt in range(self.config.max_retries):
34 try:
35 response = await self.llm.generate(prompt, response_format="

json_object")
36 return json.loads(response)
37 except:
38 continue
39 return {
40 "explicit": [],
41 "implicit": [],
42 "key_terms": [],
43 "notes": "Failed to extract conditions"
44 }

Listing 5: Condition Extraction Prompt in Logic

A.5.2 TREE EXPLORER

1 async def _tree_explorer(self, question: str, options: Dict[str, str]) ->
List[Dict]:

2 options_text = "\n".join([f"{k}. {v}" for k, v in options.items()])
3 prompt = f"""
4 You are a top expert in formal logic, critical thinking, and

argument analysis.
5 You are precise, rational, and skeptical.
6 You always examine each statement carefully, identify premises

and conclusions, and evaluate logical validity step by step.
7 You avoid unwarranted assumptions, think in terms of logical

consequences, and eliminate invalid options with sound
reasoning.

8 You aim to reach conclusions based only on evidence and logic.
9 You THINK SLOWLY, CAREFULLY, AND LOGICALLY.

10 Generate 3 distinct solution approaches for this question:
11 Question: {question}
12 Options:
13 {options_text}
14 For each approach, provide:
15 - Clear description of the reasoning strategy
16 - Key steps to implement the approach
17 - Confidence score (0-100) based on:
18 * Logical soundness
19 * Coverage of options
20 * Appropriate use of deductive/inductive reasoning
21 * Clarity of reasoning steps
22 Output JSON format:
23 {{
24 "methods": [
25 {{
26 "description": "Approach description",
27 "steps": ["step1", "step2"],
28 "score": 0-100,

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

29 "score_reason": "Scoring justification"
30 }}
31 ]
32 }}
33 """
34 for attempt in range(self.config.max_retries):
35 try:
36 response = await self.llm.generate(prompt, response_format="

json_object")
37 response = response.strip()
38 if response.startswith("‘‘‘json"):
39 response = response[7:-3].strip()
40 elif response.startswith("‘‘‘"):
41 response = response[3:-3].strip()
42 data = json.loads(response)
43 if not isinstance(data, dict) or "methods" not in data:
44 raise ValueError("Invalid structure: missing ’methods’

key")
45 methods = data["methods"]
46 if len(methods) < 2:
47 raise ValueError(f"Expected at least 2 methods, got {len(

methods)}")
48 required_keys = {"description", "steps", "score", "

score_reason"}
49 for method in methods:
50 if not all(k in method for k in required_keys):
51 raise ValueError("Missing required keys in method")
52 if not isinstance(method["steps"], list):
53 raise ValueError("Steps must be a list")
54 return sorted(methods, key=lambda x: -x["score"])
55 except (json.JSONDecodeError, ValueError, KeyError) as e:
56 if attempt == self.config.max_retries - 1:
57 return []
58 continue
59 return []

Listing 6: Tree Explorer Prompt in Logic

A.5.3 ADAPTIVE DOMAIN DECOMPOSITION

1 async def _adaptive_domain_decomposition(self, method: str, question: str
, options: Dict[str, str]) -> Dict[str, Any]:

2 options_text = "\n".join([f"{k}. {v}" for k, v in options.items()])
3 prompt = f"""
4 You are a top expert in formal logic, critical thinking, and

argument analysis.
5 You are precise, rational, and skeptical.
6 You always examine each statement carefully, identify premises

and conclusions, and evaluate logical validity step by step.
7 You avoid unwarranted assumptions, think in terms of logical

consequences, and eliminate invalid options with sound
reasoning.

8 You aim to reach conclusions based only on evidence and logic.
9 You THINK SLOWLY, CAREFULLY, AND LOGICALLY.

10 Determine if this solution approach requires case classification:
11 Solution Approach: {method}
12 Question: {question}
13 Options:
14 {options_text}
15 Consider:
16 1. Does the question contain multiple scenarios or cases?
17 2. Are there conditional statements that create distinct

possibilities?
18 3. Do the options represent different logical paths?

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

19 4. Would different initial assumptions lead to different
solutions?

20 If classification needed, provide:
21 - Comprehensive case descriptions
22 - Precise conditions for each case
23 - Expected outcomes
24 Output JSON format:
25 {{
26 "need_classify": true/false,
27 "reason": "Classification rationale",
28 "cases": [
29 {{
30 "description": "Case description",
31 "conditions": {{"parameter": "value_range"}}
32 }}
33 ]
34 }}
35 """
36 try:
37 response = await self.llm.generate(prompt, response_format="

json_object")
38 data = json.loads(response)
39 return data
40 except:
41 return {
42 "need_classify": False,
43 "reason": "Analysis failed",
44 "cases": []
45 }

Listing 7: Adaptive Domain Decomposition Prompt in Logic

A.5.4 SUBQUESTION RESOLUTION AND AGGREGATION

1 async def _resolution(self, node_id: str) -> Optional[Dict[str, Any]]:
2 node = self.nodes[node_id]
3 context = f"Question: {node.question}\nOptions:\n"
4 for opt, text in node.options.items():
5 context += f"{opt}. {text}\n"
6 context += f"\nSolution Approach: {node.method[’description’]}\n"
7 context += f"conditions: {json.dumps(node.conditions, indent=2)}\n"
8 prompt = f"""
9 You are a top expert in formal logic, critical thinking, and

argument analysis.
10 You are precise, rational, and skeptical.
11 You always examine each statement carefully, identify premises

and conclusions, and evaluate logical validity step by step.
12 You avoid unwarranted assumptions, think in terms of logical

consequences, and eliminate invalid options with sound
reasoning.

13 You aim to reach conclusions based only on evidence and logic.
14 You THINK SLOWLY, CAREFULLY, AND LOGICALLY.
15 Solve this question using the specified approach:
16 {context}
17 Reasoning Steps:
18 1. Strictly follow the provided approach: {node.method[’

description’]}
19 2. Execute each step: {’, ’.join(node.method[’steps’])}
20 3. Consider all conditions
21 4. Evaluate each option systematically
22 5. Provide clear justification for inclusion/exclusion
23 6. Select the best answer
24 Output Requirements:
25 - End your response with: "Final Answer: [OPTION]"

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

26 - Use \boxed{{[OPTION]}} to denote your answer
27 - Your answer must be A, B, C, or D
28 """
29 response = await self.llm.generate(prompt)
30 answer = self._extract_answer(response)
31 if answer:
32 node.answer = answer
33 node.state = "solved"
34 return {
35 "node_id": node_id,
36 "response": response,
37 "answer": answer
38 }
39 return None
40

41 async def _aggregation(self, solutions: List[Dict[str, Any]]) -> str:
42 if not solutions:
43 return "X" # Invalid answer
44 if len(solutions) == 1:
45 return solutions[0]["answer"]
46 answers = [s["answer"] for s in solutions]
47 if len(set(answers)) == 1:
48 return answers[0]
49 solutions_text = ""
50 for i, sol in enumerate(solutions):
51 node = self.nodes[sol["node_id"]]
52 solutions_text += f"\n\nSolution {i+1} (Node {sol[’node_id’]}):"
53 solutions_text += f"\nApproach: {node.method[’description’]}"
54 solutions_text += f"\nconditions: {json.dumps(node.conditions,

indent=2)}"
55 solutions_text += f"\nAnswer: {sol[’answer’]}"
56 solutions_text += f"\nReasoning Excerpt:\n{sol[’response’][:]}...

"
57

58 prompt = f"""
59 You are a top expert in formal logic, critical thinking, and

argument analysis.
60 You are precise, rational, and skeptical.
61 You always examine each statement carefully, identify premises

and conclusions, and evaluate logical validity step by step.
62 You avoid unwarranted assumptions, think in terms of logical

consequences, and eliminate invalid options with sound
reasoning.

63 You aim to reach conclusions based only on evidence and logic.
64 You THINK SLOWLY, CAREFULLY, AND LOGICALLY.
65 Synthesize these approaches:
66

67 {solutions_text}
68

69 Instructions:
70 1. Analyze all solutions and their approaches
71 2. Identify the most reliable reasoning
72 3. Verify consistency with conditions
73 4. Select the best overall answer
74 5. Output format: \boxed{{[ANSWER]}}
75 """
76 response = await self.llm.generate(prompt)
77 return self._extract_answer(response) or "X"

Listing 8: Subquestion Resolution and Aggregation Prompt in Logic

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

A.6 IMPLEMENTATION DETAILS

A.6.1 REACT

We adopt a few-shot ReAct-style prompting strategy inspired by the ReAct framework. While the
original ReAct framework combines language model reasoning with external tool-use, our imple-
mentation simplifies this structure by eliminating actual API calls or tool integration. Instead, we
simulate both reasoning (Thought) and acting (Action) steps purely within natural language,
forming a lightweight and deployable version suitable for standard API-based model access.

Comparison with Original ReAct The original ReAct framework relies on dynamic tool use:
the model emits an Action, receives an Observation, and continues reasoning based on this
feedback loop. This mechanism enhances performance on tasks requiring retrieval or real-time
computation.

In contrast, our ReAct-style prompting:

• Requires no tool infrastructure or external observation integration.

• Can be used directly with closed-source APIs, enabling plug-and-play reasoning for both
mathematical and commonsense questions.

• Emphasizes interpretability through explicit intermediate reasoning chains and simulated
actions.

Thus, our method trades the dynamism of tool interaction for broad compatibility and simplicity,
enabling structured reasoning with minimal implementation overhead. This makes it well-suited as
a practical baseline for both mathematical and logical benchmarks.

Original Format:

Question: The natural language query to be solved.
Thought: Intermediate steps expressed as natural language reasoning.
Action (optional): If needed, simulate tool-use as internal calculation.
Final Answer: Explicit, boxed or stated final response.

Example 1 (GSM8K-style Arithmetic Reasoning):

Question: Farmer Brown has 20 animals on his farm, all either chickens or cows.
They have a total of 70 legs altogether. How many of the animals are chickens?
Thought: Let C be the number of chickens. Then the number of cows is 20−C.
Chickens have 2 legs, cows have 4. So total legs = 2C + 4(20− C) = 70.
Thought: Simplify the equation: 2C+80−4C = 70⇒ −2C = −10⇒ C = 5.
Final Answer: 5

Example 2 (OpenBookQA-style Commonsense Reasoning)

Question: Some animals use a liquid coming from their skin to adjust to
Choices: A) cold B) water C) heat D) humidity
Thought: Many animals sweat to regulate their body temperature when it is hot.
Sweat is a liquid that comes from the skin.
Final Answer: C

A.6.2 INSTANCE-ADAPTIVE PROMPTING (IAP)

We implement the IAP strategy with two variants: Majority Vote (IAP-mv) and Sequential Substi-
tution (IAP-ss). The implementation builds upon the Qwen2.5:7b-instruct language model accessed
via the Ollama API. Following the methodology, we employ nine distinct prompt templates:

1 candidates = [
2 """Let’s think step by step."""

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

3 """First,"""
4 """The answer is after the proof."""
5 """Before we dive into the answer,"""
6 """Let’s solve this problem by splitting it into steps."""
7 """Let’s think about this logically."""
8 """It’s a beautiful day."""
9 """Don’t think. Just feel."""

10 """By the fact that the earth is round,"""
11 ]

Listing 9: IAP Prompt Candidates

For each prompt-question pair, we compute a composite saliency score:

S = λ1Iqp + λ2Iqr + λ3Ipr (10)

where:

• Iqp: Question-to-prompt information flow
• Iqr: Question-to-rationale information flow
• Ipr: Prompt-to-rationale information flow
• λ1 = 0.4, λ2 = 0.4, λ3 = 0.2: Weighting parameters (summing to 1)

A.6.3 MAJORITY VOTE (IAP-MV)

1. Generate responses using all nine prompts
2. Select top-3 responses by composite saliency score S

3. Apply majority voting on the extracted answers
4. Return the most frequent answer among top responses

A.6.4 SEQUENTIAL SUBSTITUTION (IAP-SS)

1. Iterate through prompts in predefined order
2. For each prompt:

(a) Generate response and compute S

(b) If S ≥ θ (threshold = 5.5× 10−6), return answer
3. If no prompt meets threshold, return last generated answer

A.7 USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policy on the disclosure of Large Language Models (LLMs),
we detail our use of LLMs in the preparation of this paper. LLMs were employed in a supportive
capacity only, and their contributions were limited to non-core aspects of the work. All scientific
content, including the conceptualization of the Holon-of-Thought (HoT) framework, methodology
design, experimental setup, data analysis, and conclusions, was entirely developed by the human
authors.

We used LLMs (specifically GPT-4) to aid in polishing the writing of the manuscript. LLMs were
prompted to suggest improvements to sentence structure, clarity, and grammatical accuracy in drafts
of sections such as the abstract, introduction, related work, and methodology. For example, we
provided raw paragraphs and asked the model to rephrase for conciseness while preserving the
original meaning.

LLMs were also used for retrieval and discovery purposes to identify potential related methods and
literature. LLMs assisted in generating lists of potential citations by summarizing search queries
related to “robustness in LLM reasoning” or “prompt-based decomposition techniques.” This accel-
erated the discovery process, allowing us to quickly identify key works.

29


	Introduction
	Related Work
	Methodology
	Condition Extraction
	Tree Explorer
	Path Scoring
	Optimal Path Selection

	Adaptive Domain Decomposition
	Resolution and Aggregation

	Experiments
	Experimental Setup
	Datasets.
	Models.
	Baselines.
	Metrics.

	Experimental Results and Analysis
	Main Results.
	Reasoning Models Comparison Results.
	Robustness testing.
	Ablation Study.


	Conclusion
	Appendix
	Example of HoT Reasoning Process
	Question
	Solution
	IO (Input/Output) Method
	HoT Method

	Complete Robustness Testing
	Robustness testing on ASDiv Dataset
	Robustness testing on SVAMP Dataset
	Robustness testing on OpenBookQA Dataset
	Robustness testing on StrategyQA Dataset

	Cost Analysis
	Prompts of HoT in Mathematics
	Condition Extraction
	Tree Explorer
	Adaptive Domain Decomposition
	Subquestion Resolution and Aggregation

	Prompts of HoT in Logic
	Condition Extraction
	Tree Explorer
	Adaptive Domain Decomposition
	Subquestion Resolution and Aggregation

	Implementation Details
	ReAct
	Instance-Adaptive Prompting (IAP)
	Majority Vote (IAP-mv)
	Sequential Substitution (IAP-ss)

	Use of Large Language Models


