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ABSTRACT

New era has unlocked exciting possibilities for extending Large Language Models
(LLMs) to tackle 3D vision-language tasks. However, most existing 3D Multimodal
LLMs (MLLMs) rely on holistic 3D scene information or specifically designated
regions for 3D vision-language tasks, failing to capture multi-level location-based
information. Addressing these concerns, we present Spatial 3D-LLM, a 3D MLLM
specifically designed to enhance spatial perception and reasoning for 3D vision-
language tasks by enriching the spatial embeddings of 3D scenes. Spatial 3D-LLM
incorporates an LLM backbone and a meticulously designed progressive spatial
awareness scheme that captures spatial information as the perception field expands,
generating location-enriched 3D scene embeddings that serve as visual prompt.
Additionally, we introduce two novel tasks, namely 3D object distance measure-
ment and 3D layout editing, and construct a 3D instruction dataset MODEL, to
inspire more profound 3D spatial perception capabilities. Experimental results
demonstrate that Spatial 3D-LLM achieves state-of-the-art performance across
a wide range of 3D vision-language tasks, revealing the improvements stemmed
from our progressive spatial awareness scheme of mining more profound spatial
information and the proposed dataset.

1 INTRODUCTION

In recent years, Vision-Language Models (VLMs)(Hong et al., 2023; Liu et al., 2024; Zhang et al.,
2024; Wang et al., 2024) have rapidly advanced, with 2D Multimodal Large Language Models
(MLLMs) demonstrating remarkable capabilities in understanding complex visual scenes(Li et al.,
2022; Han et al., 2023). Concurrently, much success of developing 3D MLLMs has been achieved
on 3D scene understanding(Hong et al., 2023; Guo et al., 2023; Wang et al., 2023). 3D spatial
awareness encompasses the perception of spatial states, including locations and distances, as well
as spatial reasoning and generation derived from this perception, such as embodied planning and
spatial layout editing. While diving into 3D world, 3D spatial awareness is one of the keys for 3D
MLLMs to perform downstream tasks, such as robotics(Gao et al., 2024), virtual and augmented
reality(Konenkov et al., 2024) and interior design(Yang et al., 2024b).

To enable VLMs to perceive and comprehend the 3D world, most existing 3D MLLM architectures
incorporate a 3D vision encoder to extract 3D features and align them with an LLM(Hong et al., 2023;
Wang et al., 2023; Guo et al., 2023; Li et al., 2024). However, current methods(Chen et al., 2023b;
Huang et al., 2023; 2024) primarily focus on object attributes, overlooking strategies for precise 3D
location perception. Approaches like Hong et al. (2023), Zhu et al. (2024) and Chen et al. (2024b)
utilize the Q-former(Li et al., 2022) module to extract instruction-related information from 3D scene
embeddings to form 3D MLLM input. The extracted input embeddings are too correlated with the
instructions to fully capture the spatial concepts of 3D scenes. Existing works (Wang et al., 2023;
Hong et al., 2023; Li et al., 2024; Chen et al., 2024b) still lack effective perception of 3D spatial
relations and precise location generation, which is a fundamental capability for spatial reasoning and
generation tasks. In 3D scenes, spatial information naturally exists at different levels, including that
of individual objects, object groupings, and entire architectures etc. Consequently, the majority of
existing 3D MLLMs depend on holistic 3D scene information or specifically designated regions for
3D vision-language(3D VL) tasks, failing to capture multi-level location-based information.
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Scene Graph

3D Dense Caption

Object Detection
Where are the positions of all objects?

Begin by outlining the appearance of the object at
location <loc>198, 171, 47, 7, 96, 81</loc>, then
proceed to illustrate its spatial orientation within
the scene alongside other objects.

There are brwon wooden cabinets. Placed
on the side of the kitchen.

Embodied Planing

Open the kitchen cabinets.

SQA3D

Right.

I am sitting on the long side of a
table and I am facing a kitchen
counter. Where do I turn to look
at the TV?

I want to organize the office
supplies. I have done these things:
1. go to the kitchen cabinets. What
should I do next?

Scene Description

Describe the scene.

Next  to  a  slim  wooden  table,  the  flat-screen
television  is  mounted  on the wall;  Positioned
closer to  the  TV,  a glossy  wooden  cabinet  is
located; Adjacent to the TV, a cylindrical trash
can is placed; In proximity to  ...

Visual Grounding

Are there any objects fitting the description of "a
large painting is hanging on the wall, near a brown,
wooden chair next to the trash can"? If so, kindly
provide the IDs and locations for those objects.

<loc>133, 80, 57, 27, 22, 96</loc>;
<loc>99, 109, 57, 17, 15, 96</loc>

Layout Editing(3D Object Placement)

Add a chair with size w:27, h:22, l:96 to the
current indoor scene, and please output the
center coordinates of the object.

'133, 88, 57'

Layout Editing(3D Object Movement)
Based on the provided description, "this is a brown
cabinet, it sets along the wall, right next to a window."
Move the object that closely matches this description
forward by 3 units, and then describe its new location.

Object A is described as: "There is a set of bottom
kitchen cabinets in ..." Object B is described as: "You
are looking for a chair on the side of the table ......

Object A is a kitchen_cabinets located at <loc>198, 171,
47, 7, 96, 81</loc>. Object B is a chair located at <loc>
141, 110, 58, 21, 16, 96</loc>. The spatial distance from
Object A to Object B on the x-axis is 57 units, on the 
y-axis is 61 units, and on the z-axis is 11 units.

3D Object Distance Measurement

It is a cabinet located at <loc>209, 61, 160, 27, 32,
153</loc>. Its location after moving forward by 3
units is <loc>209, 64, 160, 27, 32, 153</loc>.

Chair

Cabinet Trash can TV

WindowTable

be
hi
nd

left

behindfront
fron

t

front

Please generate a scene graph for this scene.

Visual Referents

Figure 1: High-level overview of Spatial 3D-LLM. It is a 3D MLLM dedicated to improving the
capabilities of 3D spatial perception and reasoning by enriching the spatial embeddings of 3D scenes,
performing well on various 3D vision-language tasks.

Considering spatial intelligence from the perspective of tasks and datasets, several works(Cheng et al.,
2024; Chen et al., 2024a; Cai et al., 2024) have improved image-based spatial reasoning capabilities
by generating large-scale spatially-aware training data. They hypothesize that VLMs’ limited spatial
reasoning capability is due to the lack of 3D spatial knowledge in training data(Cheng et al., 2024;
Chen et al., 2024a). Those generated question answering datasets are mainly related to estimating
object pair relationships and metric measurements. Existing 3D instruction following datasets(Li
et al., 2023; Yang et al., 2024a; Lyu et al., 2024) support a variety of spatial tasks, including visual
question answering, visual grounding, and spatial relationships estimation. However, these datasets
mainly concentrate on perceiving coarse-grained and abstract object relationships while leaving
fine-grained measurement unexplored. Moreover, they typically focus on local object interactions,
neglecting the utilization of commonsense knowledge of object-scene spatial information.

In light of the mentioned deficiencies in existing 3D instruction datasets, we propose two novel
tasks, namely 3D object distance measurement and 3D layout editing in 3D scenes, to evaluate
the spatial perception capabilities of 3D MLLMs. We construct a 3D instruction dataset called
Measure Object Distance and Layout Editing (MODLE) that is furnished with 263K vision-language
annotations specifically targeted towards these tasks. Inferring precise distances between objects
enhances fine-grained spatial perception, while performing object placement and movement in a 3D
scene fosters a deeper understanding of object-scene spatial information, accumulating commonsense
knowledge for downstream tasks. The agent will gain wider and deeper spatial awareness and be
better equipped to interact within complex 3D environments. By successfully completing these two
tasks, the spatial intelligence of the agents can be significantly enhanced.

Given the aforementioned concerns regarding the inadequate exploitation of spatial information in
existing 3D MLLMs, we propose Spatial 3D-LLM, a 3D MLLM aimed at improving capabilities
of spatial perception and reasoning for 3D VL tasks by enriching the spatial embeddings of 3D
scenes, as depicted in Figure 1. Spatial 3D-LLM incorporates a frozen 3D scene encoder, an LLM
backbone, and a meticulously designed progressive spatial awareness scheme that includes intra-
referent clustering and abstraction, inter-referent message passing, and contextual referent-scene
interactions. This spatial awareness visual referent evolution begins with relation-based clustering. It
then continues with inter-referent message passing to model spatial distribution based on the distances
between different referents. Finally, it encompasses broader contextual information by considering the
interactions between referents and the surrounding environment. This stepwise scheme progressively
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captures spatial information as the perception field expands, injecting location-enriched spatial
knowledge into the 3D scene embeddings. These enhanced embeddings serve as visual prompt for
end-to-end instruction tuning, eliminating the need for task-specific optimizations. Additionally, by
applying our progressive spatial awareness scheme and our proposed dataset MODEL, the LLM
could capture both fine-grained spatial information and commonsense knowledge. This further
strengthens spatial awareness and improves overall task performance.

In summary, our contributions are as follows:

• We propose two novel location-related tasks in 3D scenes, namely 3D object distance measurement
and 3D layout editing. We construct MODLE, a 3D instruction dataset furnished with 263K
vision-language annotations towards these tasks. Fine-grained spatial perception and commonsense
knowledge of object-scene spatial relationships can be significantly enhanced through the tasks.

• We present Spatial 3D-LLM, a 3D MLLM that improves 3D spatial perception and reasoning
capabilities by enriching the spatial embeddings of 3D scenes. Spatial 3D-LLM features a progres-
sive spatial awareness scheme that captures spatial information as the perception field expands,
injecting location-enriched spatial knowledge into the 3D scene embeddings.

• Experimental results demonstrate that our method achieves state-of-the-art performance across
diverse 3D VL tasks, especially those concerning locations and spatial relationships. This reveals the
effectiveness of our progressive spatial awareness scheme for mining enhanced spatial information
and the usage of commonsense knowledge derived from the MODEL dataset.

2 RELATED WORK

2.1 SPATIAL INTELLIGENCE IN 3D VISION-LANGUAGE TASKS

Diverse 3D VL tasks pose disparate demands on a model’s capability of spatial perception and
reasoning within 3D environments. For instance, 3D Visual Question Answering (3D-VQA) (Azuma
et al., 2022; Ye et al., 2021; Zhao et al., 2022; Ma et al., 2022) primarily rely on understanding the
holistic scene to provide answers or descriptions, without delving deeply into object-to-object spatial
configurations. 3D Visual Grounding(3D-VG) (Achlioptas et al., 2020; Chen et al., 2020) and 3D
Object Detection (Qi et al., 2019; Lin et al., 2013) demand precise spatial localization, focusing on
identifying and locating specific objects or regions within the 3D space. Additionally, 3D Dense
Captioning (Chen et al., 2023a; 2021) involves generating detailed descriptions for various regions
or objects in a 3D scene, requiring a strong grasp of how objects are positioned and interact within
their spatial context.

Existing 3D VL tasks primarily focus on perceiving coarse-grained and abstract object relationships,
coupled with concentrating on local object interactions. Our newly proposed tasks, namely 3D object
distance measurement and 3D layout editing, enhance fine-grained spatial perception and accumulate
commonsense knowledge for downstream tasks, advancing the capability of spatial intelligence.

2.2 SPATIAL LEARNING IN 3D MULTIMODAL LLMS

Recent advancements in 3D MLLMs(Hong et al., 2023; Li et al., 2024; Chen et al., 2023b; Huang et al.,
2023; Chen et al., 2024b) have explored a variety of spatial learning paradigms. These architectures
typically comprise 3D vision perceptrons, projectors, and LLM backbones. 3DLLM(Hong et al.,
2023) introduced location special tokens to better capture 3D spatial information, enabling models
to output 3D coordinates. LL3DA(Chen et al., 2024b) used clicks and boxes as visual prompts to
interact with 3D embeddings and generate spatial queries. SpatialRGPT(Cheng et al., 2024) enhanced
region-level spatial reasoning in VLMs by improving regional information representation and spatial
knowledge acquisition. Chat-3D v2(Huang et al., 2023) segmented scenes into objects, mapped
each with an index, and used special tokens to capture 3D attributes and spatial relations. Grounded
3DLLM(Chen et al., 2024d) introduced special noun phrase tokens to reference 3D scenes and let
models process 3D-textual data sequences. Most existing 3D MLLMs rely on holistic 3D scene
information or specifically designated regions, missing multi-level location-based information.

Distinguished from current approaches, our method explores a progressive spatial awareness scheme
that incorporates intra-referent clustering and abstraction, inter-referent message passing, and contex-
tual referent-scene interactions, injecting richer spatial knowledge into the 3D scene embeddings.
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Table 1: Statistic results of our proposed MODLE dataset. [BOX] represents the 3D bounding
box of an object, and [DIS] represents the distance value between objects.

Tasks #3D Scan #Language Object-level Text Instructions Output Type
Train Val

3D Object Distance Measurement 0.7K 171K 2K Multi <obj caption> [BOX], [DIS]
3D Object Movement 0.7K 36K 9K Single <obj caption> [BOX]
3D Object Placement 0.69K 34K 9K Single <obj caption> [BOX]

3 DATASETS

We propose 3D object distance measurement and 3D layout editing tasks for improving 3D spatial
perception capabilities of our Sptial 3D-LLM, and accumulating commonsense knowledge for
downstream tasks. Hence, we construct a visual language instruction dataset for these two tasks,
namely MODLE. Statistics for the datasets are provided in Table 1, with relevant evaluation metrics
and examples are shown in Appendix A.

3.1 3D OBJECT DISTANCE MEASUREMENT TASK

This task focuses on inferring 3D spatial distance between two objects within 3D scenes. We create
173K text-location pairs. Questions are made with manually defined templates, generating synthetic
data by filling in object descriptions sourced from ScanRefer(Chen et al., 2020) dataset. Answers are
derived from the actual 3D bounding box coordinates of the objects. We introduce Interaction Tokens
to distinguish between coordinate information and distance values in the output. Coordinates are put
within <loc></loc> tokens, and distances are marked with <gap></gap> tokens.

3.2 3D LAYOUT EDITING TASK

This task demands the model have 3D layout editing capabilities. We design two subtasks: object
movement and placement. Unlike the 3D-VG task that grounds an object in the scene, 3D layout
editing requires a precise understanding of 3D spatial positions for predicting new object positions.

For the object movement task, the model is required to relocate an object in the scene based on its
description and an editing instruction. We define a template including the object description and
movement instructions to construct the dataset with 45K text-location pairs. The object descriptions
come from the ScanRefer dataset, and the movement instructions are randomly generated. In the
object placement task, the model needs to understand the holistic scene and accurately place an object
of a specified size within the scene layout. We created 33K sub-scenes from the ScanNet(Dai et al.,
2017) dataset, each with 3 to 8 objects. During training and evaluation, we randomly mask one object
from each sub-scene and require the model to predict a reasonable spatial position.

4 METHODOLOGY

We propose Spatial 3D-LLM, a 3D MLLM for comprehensive 3D scene understanding, 3D visual
grounding, 3D spatial measurement, and 3D scene layout editing. The main pipeline of Spatial
3D-LLM is illustrated in Figure 2. Spatial 3D-LLM incorporates a frozen 3D scene encoder, an
LLM backbone, and a meticulously designed progressive spatial awareness scheme that includes
intra-referent clustering and abstraction, inter-referent message passing, and contextual referent-scene
interactions. Next, we will explain the details of each part.

4.1 SCENE ENCODER

To handle the point clouds in the 3D scene, we utilize PointNet++ (Qi et al., 2017) as our scene
encoder, which employs a hierarchical neural network to convert the unordered point set into an
unordered set of point features. To represent the input 3D scene, the scene encoder outputs 1,024
point tokens, Fenc = [penc, fenc] ∈ R1,024×(3+256), containing scene features fenc for 256 dimensions
and coordinates penc for 3 dimensions.

4
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Large Language Model ( Vicuna 7B )

3D Scene

Progressive Spatial Awareness Scheme

Instruction Encoder

Tokenizer

Add a chair with size w:27, h:22, l:96  to the current
indoor scene, and please output the center coordinates
of the object.

Our CenterScene Encoder
Lpsc Lcenter

Other Center

×N

FFN Cluster&
Abstraction

Intra-Referent

GCN

Inter-Referent

Refine Location

Contextual
Interactions

Cross-Attention

Self-Attention

132, 32, 150

GT Center

Lcenter

Visual Referents

Figure 2: The model architecture of Spatial 3D-LLM. It includes a frozen 3D scene encoder, an
LLM backbone, and a meticulously designed progressive spatial awareness scheme that incorporates
intra-referent clustering and abstraction, inter-referent message passing, and contextual referent-scene
interactions, generating location-enriched 3D scene embeddings that serve as visual prompt.

4.2 PROGRESSIVE SPATIAL AWARENESS SCHEME

Considering that the majority of existing 3D MLLMs struggle to effectively capture multi-level
location-based information, we propose Progressive Spatial Awareness Scheme that encompasses
intra-referent clustering and abstraction, inter-referent message passing, and contextual referent-scene
interaction. This approach aims to enhance spatial information retrieval as the perception field
expands, thereby infusing location-enriched spatial knowledge into the 3D scene embeddings.

4.2.1 INTRA-REFERENT

To capture point-to-point relational information within the scene, we propose the Intra-referent
module, which comprises Feedforward Neural Network (FFN) layers and a Cluster&Abstraction
module. Specifically, we sample 256 points from the encoded set of 1024 scene points using Farthest
Point Sampling (FPS), resulting in seed points Fseed = [pseed, fseed] ∈ R256×(3+256), following
VoteNet(Qi et al., 2019). Next, 3D spatial offset ∆pvote is predicted from the seed point feature
fseed by means of FFN layers. With the aim of adjusting seed point location to align with the centers
of object, as indicated by:

pvr = pseed + FFN(fseed) = pseed +∆pvote

we aggregate local information from Fseed for pvr with a Cluster & Abstraction module, to form the
visual referent reprention, as Fvr = [pvr, fvr]. For each visual referent location pvr, its neighboring
points are grouped to form local regions, and the features of these regions from fenc are abstracted
by pooling, mapping the set of points to a feature vector, as visual referent embedding fvr:

fvr = Pooling(Cluster[pvr, fenc])

This process generates visual referent representation Fvr = [pvr, fvr] ∈ R256×(3+256), which encapsu-
lates the internal point-to-point relationships within the local region.

4.2.2 INTER-REFERENT

We contend that relying solely on the feature information from local region is insufficient for
adequately representing 3D scenes. Consequently, we propose the Inter-Referent module, which
employs a Graph Convolutional Network (GCN) model for message propagation to facilitate the
modeling of global spatial distribution among visual referents, particularly focusing on the implicit
relationships between these referents within the scene.

5
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In this approach, we model the graph nodes using fvr, with edges defined based on the distances
between visual referents locations pvr. The forward propagation for each layer of the GCN can be
expressed as follows: H(l+1) = σ

(
AH(l)W (l)

)
, where H(l) represents the node embeddings at

layer l, A is the adjacency matrix capturing the spatial connections between nodes, W (l) is the weight
matrix of the GCN layer, and σ is the activation function.

By iteratively training the GCN, we learn an enhanced representation for each visual referent that
captures both its local features and the global spatial context from its neighboring visual referents. The
output of the layers of GCN is a refined visual referent representation Fvr = [pvr, fvr] ∈ R256×(3+256),
which is obtained through inter-referent message passing.

4.2.3 CONTEXTUAL INTERACTIONS

To achieve contextual interactions among visual referents and the global scene, we introduce the
Context Interactions module, which employs multiple blocks of self-attention, cross-attention, and
Refine-Location Module to obtain spatially aware representations of referents. In detail, visual
referent representation processed by Inter-referent Module Fvr and the scene features fenc undergo self-
attention and cross-attention layers. The updated Fvr can be claimed as a scene-aware visual referent
representation, effectively incorporating object-specific features and spatial positional information,
thereby enhancing its comprehensiveness and achieving spatial scene awareness.

Refine-Location Module. To further improve the precision of visual referent location predictions,
we introduce the Refine-Location Module, designed to refine the spatial positioning of referents by
minimizing the relative distance to their ground truth coordinates.

This module comprises multiple layers of FFN that learn positional offsets to adjust the locations of
visual referents, aligning them more closely with the object’s coordinate center. We define a visual
referent’s ground truth location as the centroid of the nearest object. Consequently, supervision
derives from these ground truth locations, aiming to minimize both center distance and pairwise
distance between predicted and actual visual referent pairs, quantified through center loss (Lcenter)
and the pairwise spatial constraint loss (Lpsc) which are computed as:

Lcenter =
1

M

M∑
i=1

∥q(i)vr − q
(i)
gt ∥2, Lpsc =

1

N

N∑
i=1,j=1

∥k(ij)vr − k
(ij)
gt ∥2,

where M is the number of visual referent, N is the number of visual referent pairs, q(i)vr and q
(i)
gt are

denoted as the coordinates of the predicted and ground truth visual referent, k(ij)vr is the predicted
distance of visual referent pairs (i, j), k(ij)gt is the corresponding ground truth distance. This loss
penalizes the Euclidean distance between the predicted and ground truth distance, encouraging the
model to predict more accurate visual referent locations.

By using a progressive visual referent evolution approach that enhances the perception field with
spatial information, learned 3D scene embeddings effectively capture location-enriched spatial
knowledge. This allows our model to excel in spatial position perception and improve its ability for
spatial understanding and reasoning in 3D vision-language tasks.

4.3 SPATIAL 3D-LLM TRAINING

For representing 3D point coordinates occuring the text, following 3D-VLA(Zhen et al., 2024) and
LL3DA(Chen et al., 2024b), we normalize the point cloud coordinates into discrete unsigned integers
within the range [0-255]. This representation is distinguished by special token <loc></loc>,
which help differentiate the spatial coordinates from other data.

To integrate the visual prompt, denoted as Fvisual, which contains both visual referent features
fvr and location representation pvr into the large language model (LLM). We introduce a trainable
projector consist multi-layers of FFN to align Fvisual = [fvr, pvr] as Visual Prompt within the
language space of LLM, allowing the model to process 3D spatial information alongside natural
language input.

6
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We use the instruction tuning paradigm for training our Spatial 3D-LLM. With VL understanding and
VL grounding tasks consist of the training dataset, we get the loss, denoted as LLLM, is computed
based on the model’s performance on these tasks. In addition to LLLM, we also introduce Lpsc,Lcenter
to get more precise coordinates generation and understanding. Thus, the overall optimization objective
is the sum of these two losses:

Ltotal = LLLM + α1Lpsc + α2Lcenter,

where LLLM is the loss associated with the instruction tuning tasks for our based LLM, α1 and
α2 are weighting factors. By optimizing this combined loss, Spatial 3D-LLM learns both precise
spatial information through the spatial loss and instruction-following capabilities via our based LLM
instruction tuning loss.

5 EXPERIMENTS

5.1 DATASETS AND IMPLEMENTATION DETAILS

Datasets. To evaluate the performance of our model, we require 3D scene point clouds along
with a visual-language task dataset. For the 3D scene input, we utilize ScanNet(Dai et al., 2017),
a real 3D indoor scene dataset that includes 1,201 training scenes and 312 testing scenes. For
visual-language data, we incorporate Scan2Cap(Chen et al., 2021), ScanQA(Azuma et al., 2022),
SQA3D(Ma et al., 2022), and embodiedQA(Hong et al., 2023) from 3D-LLM for training and
evaluation of visual-language understanding tasks. Additionally, we use ScanRefer(Chen et al., 2020)
and Multi3DRefer(Zhang et al., 2023) for single- and multi-object grounding, and leverage proposed
distance measurements, object movement, and object placement tasks for precise spatial position
perception and generation.

Implementation Details. We initialize the weights of the 3D scene encoder using the pre-trained
Vote2Cap-DETR(Chen et al., 2024c). The large language model utilizes the pre-trained Vicuna-
7B and implement LoRA for instruction-tuning. During the training process, we jointly train the
progressive spatial awareness scheme and the LoRA parameters across all task datasets. We employ
AdamW as the optimizer, with a learning rate between 10−4 and 10−7 and a weight decay of 0.1. All
experiments are conducted on eight A100 GPUs within one day.

5.2 COMPARISON WITH SOTA MODELS

To evaluate the capabilities of our model, we present the evaluation results on two types of tasks:
3D vision-language understanding tasks and 3D vision-language grounding tasks. The qualitative
results are shown in Figure 3. It is worth noting that all tasks were trained together during the training
process, and for each evaluation task, the evaluation metrics come from the same model weight.

5.2.1 3D VISION-LANGUAGE UNDERSTANDING

We assess the model’s ability to understand 3D scenes through the Scan2Cap, ScanQA and SQA3D
tasks, with Table 2 reporting the explicit performance on each task. We categorize the existing
methods into three groups: task-specific models tailored for downstream tasks; task-specific fine-
tuned approaches that involve pretraining a unified 3D backbone followed by subsequent fine-tuning
for specific tasks; and generalist models capable of comprehending a range of 3D vision-language
tasks.

Analysis Table 2 shows that our method surpasses most methods in terms of CIDEr(Vedantam
et al., 2015), BLEU-4(Papineni et al., 2002), METEOR(Banerjee & Lavie, 2005), and ROUGE(Lin,
2004) across all three tasks. For example, in the Scan2Cap task, which requires a model to localize
and generate descriptive captions for any object in a 3D scene. In the Scan2Cap task, which involves
localizing and generating descriptive captions for objects in 3D scenes, our method achieves a
significantly higher CIDEr score, reflecting its ability to generate more accurate and contextually
relevant captions. Similarly, in the ScanQA task, which tests the model’s ability to answer questions
with more semantic diversity about 3D scenes, our method shows notable improvements across
all metrics, particularly in CIDEr and BLEU-4. Furthermore, in the SQA3D task, which involves

7
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Table 2: Quantitative comparison with SOTA models on 3D VL understanding tasks. “C” stands
for “CIDEr”, “B-4” for “BLEU-4”, “M” for “METEOR”, “R” for “ROUGE”, and “EM@1” for top-1
exact match. The n-gram metrics for Scan2Cap are governed by IoU@0.5. † indicates answering
questions via prompting GPT-3 with the generated scene caption.

Scan2Cap ScanQA SQA3D

C B-4 M R C B-4 M R EM@1

Task-specific models
Scan2Cap(Chen et al., 2021) 35.2 22.4 21.4 43.5 - - - - 41.0†
Vote2Cap-DETR(Chen et al., 2023a) 61.8 34.5 26.2 54.4 - - - - -
ScanRefer+MCAN(Chen et al., 2020) - - - - 55.4 7.9 11.5 30.0 -
ScanQA(Azuma et al., 2022) - - - - 64.9 10.1 13.1 33.3 47.2

Task-specific fine-tuned
3D-VisTA(Zhu et al., 2023) 66.9 34.0 27.1 54.3 69.6 10.4 13.9 35.7 48.5
3D-LLM (FlanT5)(Hong et al., 2023) - - - - 69.4 12.0 14.5 35.7
Chat-3D v2(Huang et al., 2023) - - - - 77.1 7.3 16.1 40.1 -
LL3DA(Chen et al., 2024b) 65.2 36.8 26.0 55.1 76.8 13.5 15.9 37.3

Generalist models
LL3DA(Chen et al., 2024b) 63.0 36.0 25.7 54.7 75.7 13.3 15.4 37.0 -
Grounded 3D-LLM(Chen et al., 2024d) 70.6 35.5 - - 72.7 13.4 - - -
Spatial 3D-LLM (Ours) 72.2 34.6 23.1 54.3 82.5 13.9 16.8 39.1 46.2

Table 3: Quantitative comparison with SOTA models on 3D VL grounding tasks. [BOX] indicates
models that output 3D bounding boxes, while [ID] indicates models that output individual object IDs.
ReGround3D 3D-LLM refers to the reproduced 3D-LLM results from the ReGround3D model.

Output Type ScanRefer Grd. Multi3DRef Grd.

Acc@0.25 Acc@0.5 F1@0.25 F1@0.5

ScanRefer(Chen et al., 2020) [BOX] 37.3 24.3 - -
M3DRef-CLIP(Zhang et al., 2023) [BOX] 51.9 44.7 42.8 38.4
LLM-Grounder(Yang et al., 2023) [BOX] 17.1 5.3 - -
Chat-3D v2(Huang et al., 2023) [ID] 35.9 30.4 - -
ReGround3D 3D-LLM(Zhu et al., 2024) [BOX] 33.1 28.7 - -
Grounded 3D-LLM(Chen et al., 2024d) [ID] 47.9 44.1 45.2 40.6

Spatial 3D-LLM (Ours) [BOX] 44.3 37.2 48.3 41.2

answering situated questions in complex 3D environments, Spatial 3D-LLM once again excels,
showcasing its robustness in understanding both spatial and linguistic nuances. Overall, our method
consistently surpasses other models in key performance metrics, demonstrating its advanced spatial
reasoning capabilities and comprehensive understanding of 3D scenes.

5.2.2 3D VISION-LANGUAGE GROUNDING

Table 3 presents a quantitative comparison between our method and several SOTA models
on 3D vision-language grounding tasks, evaluated on the ScanRefer(Chen et al., 2020) and
Multi3DRef(Zhang et al., 2023) benchmarks. We report the evaluation metrics of Acc@0.25 and
Acc@0.5 for visual grounding on ScanRefer, and F1@0.25 and F1@0.5 for multi-object visual
grounding on Multi3DRef.

Analysis Table 3 shows that our method demonstrates competitive performance across both tasks.
Specifically, in the ScanRefer visual grounding task, our approach achieves the Acc@0.25 score
of 44.3% and Acc@0.5 of 37.2%, closely matching the performance of Grounded 3D-LLM and
outperforming other several baselines. In the Multi3DRef visual grounding task, our model achieves
the F1@0.5 score of 41.2% and F1@0.25 score of 48.3%, which outperforms than other baselines
such as ReGround3D and Grounded 3D-LLM.

These results demonstrate the effectiveness of our method, particularly in multi-object grounding
scenarios. While our model slightly lags behind the top-performing models in terms of overall
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Table 4: Ablation studies of different tasks. U refer to train on 3D VL understanding tasks, G refer
to training on 3D VL grounded tasks, and O refer to training on our proposed task.

Scan2Cap Multi3DRef Grd Movement Placement Measurement

C B-4 F1@0.25 F1@0.5 Acc@0.5 Acc@0.5 X/Y/Z-mARE@0.5

Ours (U only) 62.9 30.4 - - - - -
Ours (G only) - - 44.6 38.3 - - -
Ours (U + G) 67.7 32.1 47.2 39.8 - - -
Ours (G + O) - - 45.4 38.6 37.6 63.2 2.3/1.7/3.4
Ours (U + G + O) 72.2 34.6 48.3 41.2 40.3 66.4 2.0/1.4/2.4

accuracy in the ScanRefer task, it excels in the Multi3DRef task, showing its strength in handling
complex spatial relationships across multiple objects. The consistent performance across different
metrics highlights the robustness and versatility of our approach in 3D Vision-Language grounding
tasks. Notably, our model directly outputs precise 3D bounding boxes for object localization, offering
a significant advantage over similar previous SOTA methods like ReGround3D 3D-LLM.

5.3 ABLATION STUDIES

To further evaluate the effectiveness of the joint training of the 3D VL understanding task and the
3D VL grounding task, as well as the implementation of progressive spatial awareness scheme in
enhancing the performance of our Spatial 3D-LLM, we evaluate our model on both existing tasks
and proposed benchmark and conduct ablation studies.

Analysis of ablation studies on different tasks.

Table 4 demonstrates the performance across different training setups: 3D VL understanding (U),
3D VL grounding (G), and our proposed task (O). Training on all tasks (U + G + O) yields the best
overall performance. For Scan2Cap task, it slightly improves BLEU-4 while maintaining a strong
CIDEr score. In the Multi3DRef task, (U + G + O) outperforms G-only with higher score of F1@0.25
and F1@0.5. Similarly, for object movement and placement tasks, (U + G + O) achieves higher
accuracy compared to G-only. Finally, for the 3D object distance measurement task, (U + G + O)
significantly reduces the mean absolute relative error, demonstrating the importance of combining
all tasks for effective spatial reasoning. Overall, these findings emphasize the importance of joint
training in improving 3D scene understanding and spatial perception.

Analysis of ablation studies of different components.

Table 5 presents the results of ablation studies on key components: Intra-Referent(C1), Inter-
Referent(C2) and Contextual Interactions(C3). Our model (C1 + C2) outperforms C1 alone, demon-
strating the effectiveness of the Inter-Referent Module(C2). This is attributed to its ability to learn
the implicit relationships between visual referents. Our full model (C1 + C2 + C3) consistently
outperforms both the C1 model and the (C1 + C2) model, demonstrating the effectiveness of the
Contextual Interaction module (C3) in learning referent-scene interactions. In Scan2Cap, it achieves
the highest CIDEr and BLEU-4 scores. Similarly, for Multi3DRef, our model outperforms the C1 and
C2 variants. The full model also shows superior performance in object editing tasks, achieving higher
accuracy in both movement and placement tasks. For the measurement task, our model demonstrates
lower mean absolute relative error (X/Y/Z-mARE) compared to the alternatives, emphasizing the
contribution of each component to spatial understanding. Furthermore, our proposed progressive spa-
tial awareness scheme has a significant impact on performance, providing superior feature extraction
that supports complex spatial reasoning.

5.4 LIMITATION

The key limitation of our Spatial 3D-LLM is the sophisticated computational processes at the core of
our framework, such as the Progressive Spatial Awareness Scheme requires significant computational
resources. This intensity may limit the model’s applicability in real-time applications, especially
in environments with limited computing power. To address this, advancements in both hardware
and software technologies are necessary. We believe that enhancing the computational power of
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Table 5: Ablation studies of different components.C1 represents Intra-Referent module, C2
represents Inter-Referent module, and C3 represents Contextual Interactions module.

C1 C2 C3 Scan2Cap Multi3DRef Grd Movement Placement Meassurment

C B-4 F1@0.25 F1@0.5 Acc@0.5 Acc@0.5 X/Y/Z-mARE@0.5

✓ 52.1 32.5 30.4 15.9 31.7 46.8 7.5/8.7/7.2
✓ ✓ 67.1 33.3 43.4 37.0 34.2 59.7 2.6/2.1/4.5
✓ ✓ ✓ 72.2 34.6 48.3 41.2 40.3 66.4 2.0/1.4/2.4

Yes, and there's also a chair
near the couch. It seems like
a comfo-rtable spot to relax.

Wow, this room is quite
spacious. It has a couch in the
center and two coffee tables
on either side.

3D Embodied Dialogue3D Embodied Planning

I want to organize the office
supp-lies. I have done these
things: 1. go to the kitchen
cabinets. what should I do
next?

arrange the chairs around
the tables.

3D Scene Description

Describe this 3D scene.

This room is a spacious and well-furnished area. The walls are sturdy and surround the room, providing a sense of security
and privacy. Along one wall, there is a comfortable couch where you can relax and unwind. Adjacent to the couch is a
stylish end table, perfect for placing drinks or other small items. In the center of the room, there is a cozy armchair,
inviting you to sit and enjoy the ambiance. On the opposite side of the room, there is a TV mounted on the wall, providing
entertainment for those quiet moments. Nearby, there is a radiator, ensuring that the room stays warm and cozy. Overall,
this room offers a pleasant and inviting space for relaxation and socializing.

QA

What type of counter is below two
windows?

Kitchen counter.

How many chairs are at the end of
the table?

2 chairs.

SQA3D

black

I browse the bookshelf and there
are two chairs behind me. What
color is the backpack on the couch
to my right?

3D Dense Caption

Describe the appearance of the object at
location 199, 133, 81, 20, 19, 52, then
elaborate on its posit-ioning relative to other
objects in the scene.

This is a black chair. It is to
the right of another chair.

Layout Eidting (3D Object Placement)

Add a monitor with size w:10, h:18, l:49 to
the current indoor scene, and please output
the center coordinates of the object.

139, 106, 98

Layout Eidting (3D Object Movement)

Based on the provided description, \"the table has
pieces of literature atop it, it is to the immediate
right of another table.\" Move the object that
closely matches this descrip-tion to the right by 29
units, and then describe its new location.

It is a table located at 186, 179, 47, 57, 10,
75. The new location after moving 29 units
to the right is 215, 179, 47, 57, 10, 75.

3D Object Distance Measurement

Object A is described as: \"There is a shelf on the
northeastern corner of the room, and it is on top of
a table on the right side of the middle of the room.
The shelf is shaped like a black rectangular cube.\"
Object B is described as: \"This is a small gray
pillow that is crumpled up. It is in the corner of a
black couch, near a wooden door.\" Please provide
the distance between object A and object B.

Object A is a shelf located at 29, 34, 81, 37, 13, 53.
Object B is a pillow located at 220, 232, 48, 47, 25,
21. The spatial distance from Object A to Object B
on the x-axis is 191 units, on the y-axis is 198 units,
and on the z-axis is 33 units.

Visual Grounding

According to the given description, \"the table is
next to the printer, the table is brown and
square.\" Please provide the location of the object
that closely matches this description.

It is localized at 216, 106, 46, 27,
31, 74.

Figure 3: Qualitative Results. We provide several visualization results on various 3D vision and
language tasks.

terminal equipment and employing model quantization techniques could potentially mitigate some of
the barriers to the practical implementation of Spatial 3D-LLM.

6 CONCLUSION

In this paper, we have presented Spatial 3D-LLM, a multi-modal LLM for 3D scene understanding
and spatial perception, which could fully exploit the spatial information within 3D scenes. By
carefully designing a progressive spatial awareness scheme within our framework, Spatial 3D-LLM
achieves superior performance across a spectrum of 3D VL tasks. Moreover, two novel tasks including
3D object distance measurement and layout editing are proposed to enhance fine-grained spatial
perception and commonsense knowledge. The experimental results verify our Spatial 3D-LLM’s
capability in 3D scene understanding and spatial perception. Our future work includes expanding
the diversity of the training datasets to encompass more complex and varied 3D scenes, which
would enhance the model’s generalizability. Additionally, we aim to investigate methods to improve
real-time performance without compromising accuracy for practical applications such as robotics and
augmented reality.
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A APPENDIX

A.1 DATASET CASES

The case of 3D object distance measurement task

• Scene: scene0011_00
• Question: "Object A is described as: ’There is a set of bottom kitchen cabinets in the room.

It has a microwave in the middle of it.’ Object B is described as: ’You are looking for a chair
on the side of the table facing the ovens. It will be the chair near the rail.’ Please provide
the distance between Object A and Object B."
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• Answer: "Object A is a kitchen_cabinets located at <loc>198, 171, 47, 7,
96, 81</loc>. Object B is a chair located at <loc>141, 110, 58, 21,
16, 96</loc>. The spatial distance from Object A to Object B on the x-axis is
<gap>57</gap> units, on the y-axis is <gap>61</gap> units, and on the z-axis is
<gap>11</gap> units."

The cases of 3D layout editing task

• Object Movement - Scene: scene0011_00
• Question: "Based on the provided description, ’this is a brown cabinet, it sets along the

wall, right next to a window.’ Move the object that closely matches this description forward
by 110 units, and then describe its new location."

• Answer: "It is a cabinet located at <loc>209, 61, 160, 27, 32, 153</loc>.
Its location after moving forward by 110 units is <loc>209, 171, 160, 27, 32,
153</loc>."

• Object Placement - Scene: scene0011_00
• Question: "Add a chair with size w:27, h:22, l:96 to the current indoor scene, and please

output the center coordinates of the object."

• Answer: "133, 80, 57"

A.2 EVALUATION METRICS OF OUR CONSTRUCTED TASKS

3D object distance measurement task To assess the accuracy of distance predictions, we draw
inspiration from the evaluation of 3D-VG, focusing on the localization accuracy of Objects A and
B. We follow the approach used in Chen et al. (2010), employing absolute relative error (ARE)
to evaluate distance prediction accuracy. Our primary metric, mARE@kIOU, measures the mean
absolute relative error for predictions on the X, Y, and Z axes, providing a detailed assessment of the
model’s spatial reasoning capabilities.

3D layout editing task To evaluate the accuracy of object editing in the scene, we follow the
metrics used in the 3D-VG task, calculating the Intersection over Union (IoU) between the predicted
bounding box and the ground truth to assess the rationality of the predicted positions.
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