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Abstract

Recent advances in video generation have enabled high-fidelity video synthesis
from user provided prompts. However, existing models and benchmarks fail to
capture the complexity and requirements of professional video generation. Towards
that goal, we introduce Stable Cinemetrics, a structured evaluation framework that
formalizes filmmaking controls into four disentangled, hierarchical taxonomies:
Setup, Event, Lighting, and Camera. Together, these taxonomies define 76 fine-
grained control nodes grounded in industry practices. Using these taxonomies,
we construct a benchmark of prompts aligned with professional use cases and
develop an automated pipeline for prompt categorization and question generation,
enabling independent evaluation of each control dimension. We conduct a large-
scale human study spanning 10+ models and 20K videos, annotated by a pool
of 80+ film professionals. Our analysis, both coarse and fine-grained reveal that
even the strongest current models exhibit significant gaps, particularly in Events
and Camera-related controls. To enable scalable evaluation, we train an automatic
evaluator, a vision-language model aligned with expert annotations that outperforms
existing zero-shot baselines. SCINE is the first approach to situate professional
video generation within the landscape of video generative models, introducing
taxonomies centered around cinematic controls and supporting them with structured
evaluation pipelines and detailed analyses to guide future research.

1 Introduction

The field of video generative models has made significant progress in recent years [37]], drawing
substantial interest from both academia and industry. This can be evidenced by the growing number
of benchmarks [25) 132} 2| [35]), datasets [41} 58], and both open- [3, 15614} 165] and closed- [6} 54} 36]
source models that have collectively driven the field forward. The foundational nature of these models
makes them useful for several downstream tasks, including video editing [26], 3D generation [55] and
robotics [[69]. This widespread adoption of video generative models underpins the growing assertion
that they represent a revolution for professional video generation.

Generative vision offers tremendous potential for media creation, but a fundamental question remains:
how can we shift generative video from casual, exploratory synthesis to a medium that supports
professional-grade, controllable cinematic outputs? The important distinction between casual and
professional generative video lies in the critical gap of cinematic control [7]]: while today’s models
can generate videos of "an astronaut riding a horse", professional creation necessitates granular
control over cinematic elements such as the framing of the shot, position of the key light, and even
whether the astronaut smiles before or after the horse gallops away - a truly professional video
generation system must put every one of those cinematic choices back in the creator’s hands. The
need for this exact control over every cinematic element, from the timing of a smile to the quality of
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Figure 1: Stable Cinemetrics introduces structured taxonomies grounded in the controls required
for professional video generation. These taxonomies form the foundation of our prompt based
benchmark that mirrors real-world shot creation, progressing from scriptwriting to on-screen visuals.
Every control element in a prompt is automatically categorized back to the taxonomy, enabling
the generation of isolated evaluation questions for independent investigation into each element.
This supports large scale human evaluation enabling both coarse and fine-grained insights into the
capabilities of current models for professional video generation. To drive scalable annotations, we
develop our own VLMs that outperform existing models in alignment with human judgements.

light, is the very reason filmmakers shoot multiple takes, selecting only the frames where everything
comes together to tell the story most effectively [10].

In this work, we investigate the intersection of video generative models and the nuanced control
mechanisms associated with professional video production. Despite rapid advancements in video
generative modeling, the field still lacks both a clear definition of essential cinematic controls and
standardized evaluation protocols for benchmarking progress at this crucial intersection. To bridge this
gap, we present SCINE (Stable Cinemetrics) - an evaluation suite specifically designed to characterize
this intersection, enabling us to directly address the question: "Are Current Video Generative Models
Ready for Professional Use?"

The core focus of SCINE is to develop a taxonomy, at the intersection of generative vision and
professional video generation, built on the principles of control and specificity [4} 28 43]]. These
principles are important in film-making, as every decision carries cinematic meaning; a low angle
conveys power while low-key lighting evokes drama. SCINE captures these principles by orga-
nizing control knobs into four cinematic pillars - Setup, Events, Lighting, and Camera - enabling
the evaluation of video generative models along the same axes that a professional would. This
disentanglement also allows evaluation around personalization: which aligns with the collaborative
nature of real productions, in comparison to the monolithic nature of current video generation models.
Our taxonomy is hierarchical, branching from coarse cinematic concepts to leaf-level controls that
naturally map onto computer vision concepts such as object semantics and scene geometry [49].

Leveraging our taxonomy, we generate two prompt types: story-driven and visual exposition, to mirror
professional workflows. Story-driven prompts act as mini-screenplays [[17], specifying characters,
dialogue, actions, and emotions. We enrich these with visual exposition cues, by sampling control
nodes from our taxonomy, emulating the transition from script to shot in filmmaking [46]. Sampling
control nodes allows automated (a) prompt categorization: mapping each control element to the
taxonomy, and (b) generation of targeted evaluation questions for each element, allowing disentagled
evaluation of each cinematic control. The structured nature of our taxonomy supports scalable
human annotation: we evaluate 10+ models across 20K generated videos with feedback from 80+
professionals. This enables analysis across control dimensions where we observe substantial variance
in performance across taxonomy pillars, even for top-performing models such as WAN-14B and
Minimax. Our taxonomy facilitates both coarse insights, showing that models struggle most with



Events and Camera and fine-grained comparisons, such as better performance on shot size over
camera framing, and on natural over artificial lighting. To support automatic evaluation of fine-
grained cinematic controls in generated videos, we train a vision-language model (VLM) that aligns
with the large-scale human annotations. Our model outperforms existing baselines, achieving an
overall accuracy of 72.36% with human annotators. An overview of SCINE, outlining its contributions
is shown in Figure[]

2 Related Work

Video Generative Models and Evaluations. Video generative models can broadly be classified
into two categories based on their input conditioning: image-to-video (I2V) and text-to-video (T2V).
While 12V approaches such as Stable Video Diffusion (SVD) [3] have been widely adopted by the
community, the focus of our work is to evaluate T2V models for professional use. We choose text as
an input modality, since it is an effective and free-form way of describing the controls defined in our
taxonomy. The Sora Preview [6] served as a catalyst for a wave of T2V model releases across the
closed [54} [11] and open-source communities. State of the art open-source models include Wan [56],
HunyuanVideo [14] and StepVideo [12]. Several T2V evaluation benchmarks have also emerged,
with VBench [25] 67] gaining broad adoption. VBench evaluates T2V models by developing text
prompts that evaluate generated videos across dimensions such as temporal flickering, aesthetic
quality and, motion smoothness, while employing automatic metrics. Additional T2V benchmarks
include - VideoPhy [2], which evaluates physical plausibility by measuring adherence of generated
videos to real-world physics, and T2V-CompBench [48]], which studies compositional consistency
[23] in video generation. Prior work lacks the shot-level structure and cinematic detail needed for
professional control; motivating our taxonomy and benchmark to capture the nuanced elements of
industry-standard filmmaking. Existing benchmarks lack cinematic depth; for example, a prompt
such as "A man is walking" from VBench-2 [67] omits key details like character appearance or camera
movement; all essential to setup a cinematic shot. Existing benchmarks are static, relying on fixed
prompt sets that limit extensibility. In contrast, SCINE’s taxonomy-guided prompt generation enables
future-proof evaluation, allowing prompt complexity to scale with model capabilities.

Structured Video Generation and Shot-Level Control. MovieNet [24] provides large-scale movie
annotations including scene boundaries, cinematic styles, and character metadata. Storyboard-driven
approaches like VDS [44] and VAST [66] generate structured video via intermediate pose/layout
representations. Multi-shot generation has been addressed through systems like VideoGen-of-Thought
[68] and MovieAgent [62], which use hierarchical reasoning to plan and synthesize sequences.
However, these efforts overlook the fine-grained structure of a single shot which is core unit of
cinematic composition. They often emphasize isolated factors, without modeling the full set of
interdependent creative controls. In contrast, SCINE introduces a unified taxonomy that captures the
complete spectrum of shot-level cinematic elements.

3 Stable Cinemetrics

The subsequent sections detail our proposed tax-
onomy (Section[3.1)), and its underlying design
principles. Next, we develop our benchmark
comprising of prompts designed for professional
use (Section 3.2). Section [3.3] describes how
prompt categorization and question generation
are performed, enabling large-scale evaluations
of video generative models for professional use.
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Figure 2: Setup, Camera and Lighting Taxonomies that structure the visual elements of a shot.

Artist. The central guiding question in our taxonomy development was: "What controls do profes-
sionals require when setting up a shot?".

A shot is the atomic unit of filmmaking; an uninterrupted sequence without cuts in which cinematic
meaning emerges from the coordination of multiple cinematic choices. The average shot length (ASL)
in feature films is 5-10 seconds [8], which closely aligns with the temporal limits of current video
generation models. This duration is not a limitation; it is a compact canvas where rich and enough
narrative and visual complexity can unfold. A single shot entails numerous controls to convey intent,
emotion, and story. This motivates our decision to design the taxonomy at the shot level, where fine-
grained control is paramount. Control is the key distinction between casual and professional video
creation. In casual settings, users often accept model outputs with minimal intervention, delegating
the key creative decisions to the model. In contrast, professional use demands precise, deliberate
control at every stage of the generative process. In fact, pixel-level control is common in film-making
[29, |61]], underscoring the importance of fine-grained adjustments in achieving the desired visual
effect. Professionals such as cinematographers and directors are primarily responsible for defining
a shot’s creative intent. While filmmaking is collaborative, these roles offer a practical abstraction
for modeling control. A key insight is that, despite overlap, they are sufficiently disentangled to
support distinct control dimensions: screenwriters rarely specify lighting or camera movement, and
production designers are typically not associated with emotional tone or narrative pacing. These
factors motivate the development of our 4 control pillars, each contributing to the composition of a
shot. Our taxonomies are structured as hierarchical trees, where leaf nodes correspond to the most
granular control parameters, each associated with a set of values. We describe each pillar below:

Setup. Setup (Figure encompasses all visible elements within the frame. We organize it into
three top-level groups: (1) Scene aggregates environmental controls, including Texture, Geometry,
and Set Design. Texture covers aspects such as contrast and color palette, which govern
the surface feel of the shot. Geometry captures dominant shapes and the spatial arrangement
of elements within the scene. Set Design comprises Props and their attributes; the Backdrop,
which establishes the macro context of the set; and Environment, which defines micro-level elements
contributing to the "feel" of the shot. (2) Subjects refer to the focal characters within a shot,
defined by attributes such as costumes and accessories. (3) Text Generation refers to on-screen
typography such as titles or lettering, designed to appear as integrated graphical elements. Each node
in Setup has cinematic meaning: a dawn (Time of Day) setup combined with mist (Elements) can
suggest danger, while a clean (Organization), symmetrical hallway (Balance) conveys order.



Table 1: Structured prompt upsampling with SCINE taxonomies. We show how control nodes
from our taxonomies enable the generation of visually expressive (SCINE Visuals) prompts from
narrative scripts (SCINE Scripts). The table also demonstrates how a single script can yield multiple
visual interpretations, enabled by our taxonomy guided prompt generation pipeline. This aligns with
filmmaking principles, where a script can be visually realized in diverse ways depending on the
creative choices made by the filmmakers.

Baseline script: A man serves dinner to his family.

Taxonomy Branch

Baseline choice — narrative impact

Alternative choice — narrative impact

Depth of Field | Shallow — isolates food/serving hand, ro- | Deep — every family member equally sharp,
(Camera) mantic warmth ensemble clarity

Camera  Movement | Static tripod + gentle dolly-in — calm focus | Handheld tracking — urgency, energetic fam-
(Camera) on gesture; subtle emphasis ily chaos

Lighting  Source | Warm tungsten practicals — cozy, inviting | Cool morning daylight through windows —
(Lighting) domestic glow brisk freshness and emotional distance

Backdrop / Time of
Day (Setup)

Evening interior — nostalgic comfort,
winding-down mood

Bright morning interior — optimism and up-
beat tempo

Props (Setup)

Earth-tone wooden utensils — homely

Silver cutlery — formal, upscale

Upsampled prompt: A man serves dinner to his family with shallow depth of field on a static tripod with a gentle
dolly-in, under warm tungsten interior lighting in the evening, in a cozy earth-tone kitchen with wooden utensils.

Lighting. “Lighting is the key to turning amateur footage into professional stories and presentation” -
Jay Holben [21]]. Motivated by this principle, we define the following groups for Lighting (Figure [2b)):
(1) Source, the origin of illumination within the shot; (2) Color Temperature, which controls
the warmth of the light; (3) Lighting Conditions, preset configurations describing scene-wide
illumination; (4) Effects, visual outcomes resulting from light interacting with the scene; (5)
Position, the spatial relation of the light source to the subject; and (6) Advanced Controls such
as flickering modulation and the use of color gels to adjust lighting hue. Each control knob
corresponds to distinct cinematic expressions: a shot with only a back light (Position) evokes
mystery, while hard shadows are often used to amplify tension.

Camera. The camera taxonomy (Figure encompasses all camera-related control dimensions
involved in a shot. We organize these into 4 high-level groups: (1) Intrinsics: optical and exposure
parameters governing the light captured by the camera; (2) Extrinsics: position and orientation of
the camera relative to the subject; (3) Trajectory: motion of the camera and the supporting gear that
enables it; and (4) Creative Intent: compositional choices that shape the narrative or emotional
tone of a shot. Prior works have primarily focused on camera motion control [[19, [22]]; however,
we show that a much broader range of camera parameters can be independently manipulated while
setting up a shot. Each parameter has tangible cinematic impact; for example, a shallow depth of
field can isolate the subject from the background to direct emotional focus while, an insert framing
spotlights narrative details with precision.

Events. Events (Figure [3)) encodes the narrative substance of a shot, namely the depicted actions,
emotions, and dialogues - which are further decomposed into dependent nodes for fine-grained
control. These dependent nodes represent attributes that cannot exist independently of their parent
categories; for instance, these nodes can specify the type of interaction or the delivery mode of a
dialogue. Emotions may appear explicitly (visible tears) or implicitly (a clenched jaw), while
actions can be stand-alone or interactive. The Portrayed As category captures aspects such as:
Temporal, which refers to the unfolding pattern of the event (e.g., laughter erupting simultaneously
vs. sequentially), and Contextual, which indicates whether the event occurs in the foreground
or background. Advanced Controls refines pacing and the story structure of the shot, such as
a turning point or climax. While recent works [59, [16]] evaluate T2V models on sequential event
generation, we show that, from a professional standpoint, Events encompass a much broader and
richer evaluative space.

The taxonomies define a total of 76 leaf-level controls that can be independently adjusted when
crafting a shot. We structure our taxonomies as hierarchical trees to enable disentanglement and
multi-level abstraction of cinematic controls. Attributes within each branch are highly correlated,
while branches remain independent, ensuring, for example, adjusting Depth of Field does not
affect Camera Movement. The tree structure naturally supports multi-level abstraction, aligning with
how filmmakers conceptualize scenes, starting from high-level intent and refining toward specific
implementation. For example, a directive such as “set a tense alley at night” can be decomposed



into an EXT Setting, a cool Color Temperature and a Deep Depth of Field. This structure
also allows easier scalability; adding a new detail like floating ember sparks, fits cleanly under
(Environment - Elements) without disrupting the rest of the taxonomy. An alternate structure such
as a flat, linear list would not support such extensibility.

Developing the taxonomy is a non-trivial task. This required multiple iterations with experts since
professionals interpret and prioritize controls differently. Furthermore, shot creation is a multi-stage
process, starting from script-writing to setup design to camera blocking, making unification under a
single structured framework challenging. While some taxonomies [40] focus only on filmmaking
aspects, they lack structure and are not aligned with generative modeling. Our goal instead was to
impose structure, and develope a taxonomy that bridges professional filmmaking and generative video
models. Details of each control node and their corresponding values are provided in Appendix [A.T]

3.2 Designing Prompts for Professional Use

The taxonomies form the foundation for con-
structing prompts tailored to professional use.
Our core approach in creating prompts involves P
sampling values from the control nodes and
creating prompts that reflect realistic cinematic
intent. Mirroring the filmmaking process, we
first generate narrative scripts and then inject { 3
visual elements into these scripts : 3. Ao X !3. :, -~

Scripts. These prompts, referred to as SCINE-
Scripts, contain the narrative content of individ-
ual shots. We collaborate with a professional
screenwriter to create seed prompts that meet M
strict constraints: a single shot, under 10 sec- #2(
onds, with no reliance on off-screen elements.

These seed prompts, along with sampled nodes
from the Events taxonomy are provided as input Figure 4: t-SNE visualization showing substan-
to a LLM, for prompt generation. We use the tial overlap between ground truth screenplays and
Events taxonomy for these prompts because it prompts in SCINE Scripts, in comparison to exist-
directly encodes narrative beats i.e., what hap- ing prompt based benchmarks such as VBench-2.0
pens in a shot. It covers nodes such as physical

dynamics (actions) and verbal interactions (dialogues), which are crucial to the story conveyed in
a shot. To ensure prompt diversity, we vary parameters across multiple LLM invocations, sampling
emotions from Plutchik’s model [42], alternating actions, dialogue structures, genres, and subject
composition. We use LLMs, as prior work [39] [50] have shown their effectiveness in screenplay gen-
eration. t-SNE visualization (Figure @) of SCINE-Scripts embeddings [57] shows substantial overlap
with ground-truth screenplays [43]], whereas prompts from VBench-2.0 [67]] and MovieGenBench
[11]] exhibit minimal overlap.

@ Original Screenplays

® SCINE

® MovieGenBench
VBench 2.0

Visual Exposition. We refer to these set of prompts as SCINE-Visuals, which enrich SCINE-Scripts
with visual elements from the Camera, Lighting, and Setup taxonomies. In contrast to Events, these
taxonomies offer fine-grained control over the visual style and composition of a shot. For each base
prompt in SCINE-Scripts, we sample values from one or more control nodes and inject them to
expand the prompt with structured visual specifications. SCINE-Visuals highlight a key advantage of
our taxonomy: structured prompt upsampling. Unlike existing prompt upsampling techniques that
delegate all creative decisions to the LLM, our method constrains generation within the taxonomy,
enabling more controlled and interpretable prompt expansion. Table[I|provides a breakdown of how
SCINE-Scripts is subsequently upsampled via the taxonomy to generate SCINE-Visuals.

3.3 Category and Question Generation

Next, we extract categories and generate questions for each prompt. Categories link prompts back to
the taxonomy, allowing fine-grained evaluations across different levels of abstraction; a single prompt
can map to multiple categories across different taxonomies. For each category, we generate targeted
questions that are shown to human annotators during video evaluations. These questions are specific
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consistently struggle at Comedy. yields the strongest performance.

Figure 5: Overall results on SCINE Scripts and Visuals.

in nature and target only a single control node, enabling its isolated evaluation. Unlike high-level
prompt adherence questions, which lack fine-grained attribution, our framework supports per-control
annotations. A minimal example is shown below :

Prompt: A tight close-up focuses on a fireplace, its embers flickering brightly.

¢ Category : Lighting — Advanced Controls — Motion | Question : Does the scene exhibit dynamic flickering
effects in its lighting that align with the description?

* Category : Camera — Creative Intent — Shot Size | Question : Does the video include a tight close-up shot
that captures the detailed framing?

Additional details are presented in Appendix [A-3]

4 Are current Video Generative Models Ready for Professional Use?

We now evaluate state of the art text-to-video (T2V) models against the professional standards defined
in our taxonomy pillars. Our analysis reveals both strengths and persistent challenges of current
models, offering an overview of how current models align with professional quality expectations.

4.1 Experimental Setup

Prompts. The SCINE benchmark comprises two prompt categories, Scripts and Visuals, each
aligned with distinct professional roles (Table[2). The Visuals prompts are created by systematically
upsampling Scripts using our taxonomies leading to a total of 2,089 prompts. We categorize prompts
by difficulty: we create basic prompts by limiting the number of sampled control nodes, while in
advanced prompts, we do not impose any restriction.

Models. We evaluate 13 state-of-the-art T2V models, both open-source (WAN 1B/14B [56], Hunyuan-
Video [14], Step Video [12]], CogVideoX 5B [65]], LTX-Video [18]], Pyramid Flow [27]], Easy Animate
5.1 [63]], Mochi [52]), VChitect-2.0 [15] and closed source (Minimax [38]], Luma Ray 2 [30], Pika
2.2 [31]]). Our goal is to assess each model’s suitability for role-specific professional tasks, like
evaluating narrative fidelity from a screenwriter’s perspective. Unless otherwise noted, we use default
sampling parameters and maintain a consistent seed per prompt, across models for fair comparison.

Human Annotation Setup. To ensure Taple 2: The SCINE benchmark includes prompts tai-
high-quality evaluation, we work with a Jored to professional roles, where each prompt is paired

pool of 84 expert annotators with an av-  with multiple, fine grained evaluation questions.
erage of 6.5 years of experience in film

production, across roles such as cinematog-  pugeq Role Target Taxonomies o *Of  Ave. Questions per
raphers, film editors, screenwriters, visual Prompts Prompt

communication designers, and directors.
Annotators were shown a prompt along

SCINE-Scripts
Screenwriters Events 1133 2.57+£0.98

SCINE-Visuals

with two generated video samples. For  Cinematographers Camera, Lighting 355 5.42 +4.47
each pI‘Ol’Ilpt, they were presented with tax- Production Designers ~ Setup 298 4.00 £3.35
Directors All 303 10.48 +5.07

onomy derived evaluation categories and




corresponding questions. Each video was rated independently on a 1-5 scale, where 1 indicated com-
plete misalignment with the category and 5 indicated a perfect match. Although the evaluation was
non-comparative, our UX ablation studies showed that displaying two videos side by side improved
annotator calibration, especially when selecting middle range scores. To promote consistency and
reduce subjectivity, we developed a comprehensive annotation guide covering each control node in the
taxonomy. We collect 3 votes for every video-question pair across 13,457 unique questions, collecting
a total of 248,536 pairwise annotations. We observe an intra-class correlation coefficient (ICC) [51]]
of 80.4% for the 1-5 ratings at the model-pair level, and 95.5% when the models are considered
individually. Further, we conduct Wilcoxon signed-rank tests [60] across 45 model pairs where we
observe statistically significant preferences in 37 of them, which highlights that the annotators agree
on model preferences.

4.2 Results and Analysis

SCINE Scripts We first evaluate models on narrative event generation, i.e. the story di-
mension of a shot. Figure [5a] compares model performance across different genres, focus-
ing on the accuracy and coherence of generated events. Minimax and WAN-14B emerge as
the overall top performers, while LTX-Video consistently underperforms. We observe that
models generally perform better on the Biography genre, whereas Comedy proves challeng-
ing. In Figure [6] we zoom into sub-categories within Events — Types. Minimax leads in
nearly all categories, showing the largest margins in Dialogues and Change in Environment,
but falls short in Advanced Controls, where

WAN-14B outperforms. Further, models are bet- — Miimex — Wan 148 — Hunyuan — Luma Ray 2 — Wan 18 — Pka22 — Mochi

ter at stand-alone actions compared to interac- 35 Emotons e

tive actions and portray implicit emotions better
than explicit ones. Within Event Types, Actions
exhibit lowest variance across models. Perfor-
mance on Causal and Sequential events is highly
correlated (p = 0.94), as is performance on
Concurrent and Overlapping events (p = 0.86)
across models. Despite variation across models,
all show limitations in multiple Event aspects,
highlighting opportunities for improvement.

Event Types Interaction E/r::::;sm Types
Figure 6: Fine-grained evaluation on Events. Mod-
. ) els handle environmental changes well but struggle
SCINE Visuals Figure[5bdemonstrates over- jith dialogues and shot pacing. Standalone actions

all results on SCINE Visuals. Consistent with  gutperform interactive, and implicit emotions are
the pair-wise rankings in Figure[I, WAN-14B  easier than explicit.

and Minimax emerge as top performers across

all pillars. We find that current models struggle most with Events and Camera, while elements
of Setup and Lighting are comparatively easier to capture. Only the top three models- WAN-14B,
WAN-1B, and Minimax - reliably depict Events, with a substantial performance gap from the rest.
While Camera scores are low across the board, the narrow spread suggests that all models face similar
limitations. Lighting shows the most consistent performance, with most models achieving relatively
high scores whereas Setup yields the highest absolute scores for the top-performing models.

Cinematographer. We evaluate this role by cre-
ating prompts that inject control nodes from the
Camera and Lighting taxonomy. Within Cam-
era, Extrinsics and Trajectory have the lowest
average performance and the narrowest inter-
model spread. For Lighting, the primary bottle-
neck is Lighting Position. We further present -
results, split by prompt difficulty in Figure [7] i promps Advanced pompts
Across all models, performance degrades on ad-
vanced prompts, indicating that under conditions
resembling professional workflows where cin-
ematographers have a large amount of control,
current models struggle. The biggest perfor-
mance drops occur in Lighting Source, Color Temperature, and Creative Intent. Lighting Position and

Creative Intent 3 o Trajectory

Figure 7: Split results on basic vs. advanced
prompts for Camera and Lighting. All models
show performance drops on advanced prompts,
with the largest decline in Lighting Source.
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Figure 8: Fine-grained results on Setup across Subjects and Set Design.

[ Director [ Standalone

Lighting Setup Camera
N 3 + ) N o n Q ) S 3 + o
& & & o &Qs o & « S {@Q & & & o &(\s
o & & & & & & & o @ & &
S

Figure 9: Director results: Joint specification of all controls, mirroring real-world shot creation leads
to a performance drop on all models, compared to evaluation in a standalone manner.

Advanced Controls show the smallest performance drops, but remain the weakest categories overall,
highlighting persistent challenges regardless of prompt complexity. Hunyuan and WAN-1B exhibit
consistent performance across complexity levels.

Production Designer. Models perform strongest on the Setup pillar; within Sefup, models achieve
comparable performance on Subject and Scene generation, but show a drop in Text Generation.
In Subjects (Figure [8a), model performances largely vary, with the highest scores for Hair and
Accessories, and the weakest in Personality and Make-up. In Set Design (Figure [8b)), performance
trends follow the order: Backdrop >Props >Environment. Within Props, models perform well in
Material but struggle at generating intricate Patterns. For Environment, current limitations lie in
adhering to a coherent Style and Backgrounds, whereas better performance is seen in organizing
Space within a frame.

Director. Prompts targeting this role differ from prior categories as they evaluate models across all
taxonomies simultaneously. Model performance declines on average when all controls are defined
jointly (Figure ). The largest performance drop is observed in Camera, followed by Setup and
Lighting. Wan 14B is the only model to show improved performance on Director prompts for
Lighting and Setup, compared to its Standalone results.

Our evaluation identifies a three-tier hierarchy among current T2V models: Minimax and WAN-14B
at the top, followed by Luma Ray 2, Hunyuan, and WAN-1B, with the remaining models forming the
third tier. While overall performance varies, most models struggle with the fine-grained elements
critical to professional video generation. For example, atomic events are handled reasonably well, but
models falter on concurrent and causal events, which demand deeper temporal reasoning. Similarly,
high-level cues like lighting conditions are better captured than nuanced aspects like precise light
positioning. In summary, even top performing models exhibit substantial room for improvement
across all dimensions of our taxonomy. No model achieves consistently strong performance across
all aspects of shot composition, underscoring the challenge of aligning generative video models with
professional standards. Additional results and analysis are presented in Appendix[A.2}



5 Scalable Evaluation of Professional Videos

In the previous section, we evaluated video generative models using expert annotations across 76
control nodes defined by our taxonomy. While human evaluation remains the gold standard, it is
costly and difficult to scale, and defining reliable automatic metrics for each control node is non-trivial.
Recent advances in vision-language models (VLMs) [[13} 133} [1]] offer a scalable alternative, showing
strong performance in video understanding tasks. In this section, we leverage these models to perform
automatic evaluation of professional video generation.

Zero-shot VLM Evaluations. The rise of multimodal VLMs has enabled progress on vision-language
tasks, including video understanding, making them natural candidates for evaluating professional
video generation. We use expert annotations as ground truth and measure VLM alignment by prompt-
ing models with a video, its associated prompt, and a specific question tied to a taxonomy node, asking
for a 1-5 rating similar to our user study. We explicitly instruct the VLM to ignore factors unrelated
to the specified category when evaluating the video. We determine VLM preferences by indepen-
dently scoring each video and selecting the higher-scoring one. This design mitigates hallucination
and order-sensitivity issues commonly observed when prompting with both videos simultaneously.
We use Qwen2.5-VL-Instruct models due to their Accuracy of Zero-shot VLMs and Ours across Different Video Models
strong video understanding capabilities. To study =~ | = owersvr =5 oumsvian = quezsiira £ o 08)
the effect of model scale, we evaluate 3 sizes: 7, 32

and 72B. Figure [I0|shows that increasing model
size does not yield significant improvements in
alignment with human judgment. Our results re-
veal overall poor agreement, consistent with prior
findings [20} 64] that highlight the need for fine-
tuning on in-distribution, human-labeled data.

Human Preference Accuracy (%)

Hunyuan Luma Ray 2 Minimax Wan 148 Wan 18

Aligning Human and VLM ratings. We adopt Video Models
Qwen-2.5-VL-7B [53] as the base model for fine-

tuning; our training and validation dataset consist o1yt alignment with human annotations across
of 44,062 and 12,763 samples, respectively. We  |i4eq generation models, outperforming base-

aggregate annotator scores (3/video pair) into bi-  Jines. most notably on WAN-14B.
nary preferences, excluding ties. Videos are pre- ’

processed at 2 fps at their native resolution. Each sample consists of a prompt, two videos, and a
binary label. The trained model acts as a classifier; we modify the model architecture to output a
scalar score using a linear projection over the final layer’s last token. The model takes as input a
single video, its prompt, and the evaluation question as input. For training, we use the Bradley—Terry
objective [15] due to its sample efficiency over regression [34]]. The model is trained for 1 epoch
with a batch size of 8 and learning rate 6e-5. Similar to zero-shot evaluation, we compute pairwise
preference accuracy against the average of the annotators as the target metric. Our fine-tuned model
achieves an overall accuracy of 72.36%, outperforming all zero-shot VLM baselines. This represents
an absolute improvement of ~20%, over the baseline 7B model. Our model (Figure@]) shows con-
sistent performance across videos generated by different models, highlighting its ability to generalize
across different video qualities. Additional VLM results are presented in Appendix

Figure 10: Our trained VLM shows consis-

6 Conclusion and Future Work

Stable Cinemetrics probes at the intersection of professional video generation and generative video
models, grounding prompts, evaluations, and analysis in our structured taxonomies. Our findings
reveal where current state-of-the-art models perform well, and where substantial improvements are
needed. Our prompt suite offers a strong testbed for future video generative models and can be
easily extended as models improve, owing to the flexibility of our taxonomy. We envision several
extensions of our work; while our current focus is on evaluation, the taxonomy can also support
analyzing video datasets for cinematic diversity or serve as a structure for video captioning. While
today’s text-to-video models are not yet usable in a fully zero-shot capacity, our findings identify the
main challenging pillars for professional filmmaking, illuminating the need for potential solutions
like fine-tuning and customization that can bring these models closer to real production use. We hope
SCINE encourages deeper exploration at the intersection of filmmaking and video generative models,
fostering closer collaboration between artists and models.
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8 Limitations

Although our taxonomy was developed in consultation with domain experts, it is limited by the scope
of our collaborator network. Filmmaking terminology and interpretive nuance vary across regions and
cultures, greater expert diversity would enable broader incorporation of global cinematic controls into
the taxonomy. Some taxonomy nodes (e.g., Color Temperature, ISO) were abstracted for evaluation,
as we found it difficult for annotators to consistently perceive fine-grained values (such as 2000K or
ISO 800). Prompt generation is based on LL.Ms, whose proprietary nature and potential biases can
influence the language and structure of the prompts. Our zero-shot VLM evaluations were bounded
by compute and data resources, limiting the scale and scope of the experiments.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately capture the paper’s contribution and
scope by clearly stating the claims made and outlining primary contributions.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the limitations of our current work.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not present theoretical results, assumptions, or proofs. Instead,
it proposes a taxonomy for professional movie elements and provides statistical analysis on
how current state-of-the-art text-to-video (T2V) models perform across different pillars of
the taxonomy.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: The paper provides all necessary information to reproduce the main experi-
mental results. Details for creating the taxonomy are available in Section[3] The setup for
VLM evaluation is described in Section[3l

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: We will release our proposed taxonomy upon acceptance.
Guidelines:

e The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides all necessary information to reproduce the main experi-
mental results. Details for creating the taxonomy are available in Section[3] The setup for
VLM evaluation is described in Section [l

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistically significant annotator agreements within the annotators.
Additional details are present in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or

figures symmetric error bars that would yield results that are out of range (e.g. negative

error rates).

If error bars are reported in tables or plots, The authors should explain in the text how

they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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9.

10.

11.

Answer: [Yes]
Justification: Yes, we report these numbers in the Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: The paper complies with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Yes, we report the impacts of our current work in the Supplementary.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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12.

13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not anticipate any high risk misuse of our current work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite and credit papers that introduce the pre-trained models we train on, as

well as the LLM used for generating prompts, and the metrics we use to compare across
models.

Guidelines:
* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will release our taxonomy which is well documented.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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14.

15.

16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We discuss the full text of instructions given to participants and include
screenshots in the Supplementary.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The user study involves participants score/rank videos generated with a pre-
determined list of prompts and quetions in the professional pillars. As such, we believe the
study does not pose any risk or harm to participants.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We provide information on using LLMs in helping us creating prompt set and
questions in Section [3.2]and
Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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A.1 Taxonomy Details

We provide additional details on control nodes and their associated values in the taxonomies. Some
nodes accept open-ended values, for example, a range of stand-alone actions. To simplify evaluation,
we abstract certain values that can be fine-grained in future works. For instance, we group Aperture
into wide/medium/narrow, though exact f-stop values can also be studied in the future. Similarly,
color palette is treated as a discrete value in our current work, but can be decomposed into hue,
brightness, and saturation. Table [3] - [6] details the control nodes and their values of the Camera,

Lighting, Setup and Events Taxonomies, respectively.

Table 3: Camera Taxonomy Control Nodes and Values

Name Description Potential Values
Lens Size Defines the focal length and field of view of the camera | Standard, Fisheye, Wide, Medium, Long
lens. Lens, Telephoto
Depth of Field | Controls the range of focus in the image, affecting subject | Deep, Shallow, Soft, Rack, Split Diopter,
isolation. Tilt Shift
Aperture The camera lens opening that controls the amount of light | Wide, Medium, Narrow
propagated through the camera.
Shutter Speed | The duration for which the camera sensor is exposed to | Slow, Medium, Fast
light.
1SO Sensitivity of the camera sensor to light. Low, Medium, High
Angle Defines the camera’s viewpoint in relation to the subject. | Low, High, Aerial, Overhead, Dutch, Eye-
level, Shoulder, Hip, Knee, Ground, Con-
tinuous Values
Static A fixed camera position without any movement. -
2D Camera movements restricted to horizontal or vertical | Pan left, Pan right, Tilt up, Tilt down, Zoom
axes. in, Zoom out
3D Camera movements that incorporate spatial depth and | Push In, Pull Out, Dolly Zoom, Camera
multi-axis motion. Roll, Tracking, Trucking, Arc, Crane
Gear Specifies the support systems and stabilization equipment | Handheld, Tripod, Pedestal, Cranes, Over-
used to facilitate camera movement. head Rigs, Dolly, Stabilizer, Snorricam,
Vehicle Mount, Drones, Motion Control,
Steadicam
Shot Size Determines how much of the subject and surroundings are | Establishing, = Master, Wide, Full,
visible in the frame. Medium-Full, Medium, Medium—Close-
up, Close-up, Extreme Close-up
Framing Placements and composition of subjects within the frame. | Single, Two Shot, Crowd, OTS, PoV, Insert
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Table 4: Lighting Taxonomy Control Nodes and Values

Name Description Potential Values
Natural Light Natural sources of light, such as sunlight, moonlight, or | Sunlight, Moonlight, Firelight
firelight.
Artificial/Practicals Light | Man-made light sources that illuminate the scene. LED, HMI, Tungsten, Fluorescent, HID
Color Temperature Defines the hue of the light, typically measured in Kelvin, | Warm, Cool, Cold
affecting the scene’s mood.
Lighting Conditions Describes various lighting scenarios or ambient conditions | Candlelight, Golden Hour, White Fluores-
present in a scene. cent, Clear Daylight, Overcast
Soft Shadows Subtle and diffused shadows resulting from indirect or | Diffused Light, High Key Lighting, Reflec-
scattered light. tors
Hard Shadows Sharp, well-defined shadows generated by a direct light | Direct Light, Low Key Lighting
source.
Reflection The effect of light bouncing off surfaces to create a reflec- | -
tive appearance.
Lighting Position Specifies the placement or direction of the light source | Back Light, Fill Light, Top Light, Side
relative to the subject. Light, Key Light
Motion Dynamic changes or movement in the lighting effect. Flickering, Pulsing
Color Gels Colored filters applied to lights to modify or enhance the | -
color of the illumination.
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Figure 11: Model performance on Events across temporal portryal of Actions. Atomic actions
are handled well, whereas models struggle with causal and overlapping Events.

A.2 Additional Results and Analysis
A.2.1 Events

Figure[IT|shows Events performance across 13 models and 6 Temporal portrayal of Actions. Models
handle atomic and concurrent actions well, but struggle with causal, overlapping, and cyclic events.
Figure[12]shows Events performance across 13 models and 12 genres. Biography and Adventure are
strongest whereas Comedy and Horror are the weakest. Minimax leads in 6/12 genres, Luma Ray 2
tops Action and Drama, and WAN-14B is the most consistent, with the lowest standard deviation.

Figure[T3|shows performance of 10 open-source models across 19 emotion classes. Models perform
best on remorse and ecstasy, but fare poorly on aggressiveness and rage. As shown in Figure [T4}
dialogue performance is weaker in comparison to Emotions and Actions. Models particularly struggle
with multi-turn dialogues or when non-verbal reactions follow. Since T2V models do not generate
audio, we evaluate whether the correct character delivers the line and/or with appropriate visual
expression. Most models fail to localize the speaker, often attributing a single dialogue to multiple
characters.
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Figure 12: Model performance on Events across genres. Across 13 models and 12 genres, portrayal
of Events in Biography and Adventure are the strongest, while Comedy and Horror are the weakest.
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Figure 13: Model performance on Emotions. Among 10 models and 19 emotions, Remorse is best
portrayed, while Aggressiveness is the weakest.
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Figure 14: Model performance on Dialogues. Compared to Actions and Emotions, models struggle
at Dialogues. Within Dialogues, performance drop is seen during multi-turn conversations.
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Figure 15: Model performances across Lighting Source. Strobes and Sunlight emerge strongest,
whereas HMI and Fluorescent are points of weaknesses.
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Figure 16: Model performances across Camera Angles. The Dutch angle poses a common
challenge to all current video generative models
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Table 5: Setup Taxonomy Control Nodes and Values

Name Description Potential Values

Contrast Determines the difference between light and dark areas to | Low, High
enhance visual impact.

Blur Introduces softness to parts of the image to guide focus or | Gaussian, Radial, Motion
create mood.

Noise Adds random variations in brightness or color, mimicking | Gaussian, Salt and Pepper, Poisson
film grain or digital sensor noise.

Film Grain Emulates the granular texture of traditional film photogra- | -

phy for a classic look.

Color Palette

Defines the overall range and harmony of colors in the
scene, influencing its mood.

Open Set

Lines Directional elements that guide the viewer’s gaze within | Horizontal, Vertical, Diagonal
the shot.
Regular Shapes Structured, geometric forms such as squares, circles, and | Square, Circle, Triangle

triangles that add order to the design.

Natural Shapes

Unstructured shapes that naturally emerge in the scene,
without any geometric constraints.

Water-like, Cloud-like

Frame Balance

Refers to the distribution of visual weight across the com-
position, ensuring a harmonious layout.

Rule of Thirds, Symmetry, Right Heavy,
Left Heavy

Positional Accuracy

The absolute position of an object or a subject in a scene.

Open Set

Relative Positioning

The relative positioning of an object in relationship to
other objects in the scene.

Open Set

Depth Controls the perception of distance between elements, | Deep, Flat, Limited, Ambiguous
enhancing the three-dimensional feel of the scene.
Setting Defines if the scene is happening indoors or outdoors. INT/EXT
Time of Day The time of day the scene is set in. DAY, NIGHT, MORNING, EVENING,
DAWN, DUSK, LATE NIGHT, MIDDAY,
SUNRISE, SUNSET, AFTERNOON
Location The specific place or setting of the scene. Open Set
Negative Space Defines if there a lot of empty space. -
Positive Defines how the space is occupied in the environment. Clean, Cluttered
Mood The emotional atmosphere or feeling created by the envi- | Open Set
ronment.
Scale The relative size or extent of the environment. Open Set
Style The artistic or visual style of the backdrop. Open Set
Background The part of the scene that is behind the main subject and | Open Set
does not need to be exactly described.
Elements The natural or artificial components of the backdrop. Rain, Snow, Fog, Wind, Thunder, Smoke,

Dust, Ash, Fire

Prop Description A general description of the prop. Open Set
Prop Class The category or type of the prop. Open Set
Prop Material The substance(s) the prop is made of. Wood, Glass, Gold, Paper, Plastic

Prop Pattern

The design on the prop.

Grid, Checker, Stripes, Zigzag, Dots,
Bricks, Metal, Hexagons

Prop Utility

The purpose or function of the prop, whether it just exists
in the scene or will it be used by the subject.

Decorative, Functional

Subject Class The category or type of the subjects. Open Set

Subject Accessories | Items worn or carried by the subjects that enhance their | Open Set
appearance or functionality.

Subject Costume The clothing worn by the subjects, especially for a perfor- | Open Set
mance or to create a specific character.

Subject Hair The style and appearance of the subjects’ hair. Open Set

Subject Makeup Cosmetics applied to the subjects’ face or body to enhance | Open Set
or alter their appearance.

Subject Pose The position or stance of the subjects, especially for a | Open Set
photograph or portrait.

Subject Silhouette The outline or shape of the subjects against a light back- | Open Set
ground.

Subject Proportions | The relative size and scale of the subjects’ body parts or | Open Set
features.

Text Generation The process of creating written content to be displayed on | Open Set

the video.

A.2.2 Camera and Lighting

On Lighting Source (Figure[I3)), Sunlight, Strobes, and Firelight are handled more reliably, while
HMI, Fluorescent, and Tungsten lighting show lower performance. As shown in Figure[T6] Aerial and
Knee level camera angles are depicted better, while the Dutch and Shoulder-level angles show lower
performance. On Shot Sizes (Figure [I7), Medium-Wide and Master shots have stronger performance
in comparison to Full and Extreme Close-Up shots.
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Table 6: Events Taxonomy Control Nodes and Values

interaction

Name Description Potential Values
Standalone Actions If the action is stand-alone Open Set
Interactive Actions If the action involves subject-subject or object-subject | Open Set

Temporal (Actions)

How actions unfold across time.

Atomic, Concurrent, Sequential, Causal,
Overlapping, Cyclic, Reverse

Foreground (Actions)

Describes if the action is taking place in the foreground

Local, Global, Focal

Background (Actions)

Describes if the is taking place in the background

Uncertainty

The probabilistic nature of the action outcome

Probabilistic, Deterministic, Mixed

Implicit Emotions

Emotions that are suggested or implied rather than directly
stated.

Open Set

Explicit Emotions

Emotions that are clearly and directly shown or stated
within the scene.

Open Set

Temporal (Emotions)

How emotions evolve across time.

Atomic, Concurrent, Sequential, Overlap-
ping, Causal

Foreground (Emotions)

Describes if the emotion is taking place in the foreground

Local, Global, Focal

Background (Emotions)

Describes if the emotion is taking place in the background

Type of Dialogue Delivery

How the dialogue is delivered

Dash, Ellipsis, Monologue

Foreground (Emotions)

Describes if the dialogue is being spoken in the foreground

Background (Emotions)

Describes if the the dialogue is being spoken the back-
ground

Local, Global, Focal

Change in Environment

Change of environment or occurrences within a shot

Open Set

Story Structure

Key narrative elements that shape the scene’s progression.

Turning Point, Climax, Foreshadowing,
Conflict

Pace How fast the events are happening in a shot Slow, Fast
Regularity How regularly the events are happening in a shot Regular, Irregular
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Figure 17: Model performances across Camera Shot Size. Models perform well on Master and
Establishing shots and struggle at medium-wide and extreme-close-up shots.

A.2.3 Setup

For the Setup taxonomy, we also analyze performance at the value level. In Balance (Figure[I8),
models handle rule of thirds framing more effectively but struggle with symmetrical compositions.
For Time of Day (Figure [I9), among 11 categories, Sunrise and Morning are portrayed well, while
Afternoon remains challenging.
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3 Right Heavy [ Rule Of Thirds [ Symmetry

Figure 18: Between different frame compositions, models are better at Rule of Thirds but struggle at
maintaining Symmetry.
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Figure 19: Across Time of Day setups, Sunrise shots are handled better, while Afternoon remains
more challenging for models.
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Figure 20: 1. Prompt Generation Pipeline SCINE Scripts are created by passing seed prompts and
sampled Events taxonomy nodes to an LLM, forming the narrative component of our benchmark.
SCINE Visuals are then generated through structured upsampling, where nodes from the Camera,
Lighting, and Setup taxonomies are sampled and injected into each SCINE Script to create prompts
that capture visual exposition. 2. Automatic Categorization and Question Generation Given a
SCINE prompt and taxonomy, we categorize each taxonomy element present in the prompt and
generate a corresponding guestion to enable isolated evaluation of each control node.

Table 7: A working example of a prompt with its corresponding categories and questions. Each
question targets a single control node from the taxonomy, enabling human annotators to perform
fine-grained, independent evaluations per node.

Prompt

Final Category

Question

In a stark white laboratory illuminated by
cool LEDs casting clinical precision, a
scientist carefully drops a single blue

chemical into a beaker, the camera framing

an intimate close-up as soft depth of field
blurs the sterile environment behind. A
back light carves a subtle halo around the

glassware moments before the liquid erupts

into bright green, intensified by a strategic
neon-tinted color gel that makes the
reaction glow like bottled lightning.

Camera — Creative Intent — Shot
Size

Camera — Intrinsics — Depth of
Field

Lighting — Sources —
Artificial/Practicals Light

Lighting — Color Temperature

Lighting — Lighting Position

Lighting — Advanced Controls —
Color Gels

Does the generated video clearly exhibit a
well-executed close-up shot that captures
the subject with the intended intimacy and
detail?

Does the video effectively showcase a soft
depth of field that isolates the subject while
smoothly blurring the background?

Is the effect of artificial LED source clearly
visible and does it emulate the clinical, cool
lighting effect as described in the scene?
Does the video convey a cool color
temperature in its lighting setup that
reinforces the clinical precision suggested
in the prompt?

Is a back lighting effect evident in the
video, such that it effectively carves a halo
or outline around the subject as described?
Does the video incorporate a neon-tinted
color gel effect that intensifies the lighting
during the chemical reaction as detailed in
the prompt?

A.3 Details on Prompt Generation

The overall evaluation pipeline, depicting prompt generation, categorization and question generation,

is presented in Figure 20

Table[/|presents an example of a prompt and the corresponding categories and generated questions.

Below, we show an example of the instruction given to an LLM to upsample a SCINE-Script into
SCINE-Visuals by incorporating control nodes from the Camera and Lighting taxonomies.
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SCINE Scripts - Cinematographer

System Prompt :

You are a world-class cinematographer known for your visionary storytelling, mastery of
light, and camera. You have decades of experience working on award-winning films across
genres, collaborating with top directors and production teams. Your insights blend
technical expertise with artistic sensibility. When describing scenes or advising on
visual storytelling, you use cinematic terminology with clarity and inspiration. Think
like Roger Deakins, Emmanuel Lubezki, and Greig Fraser—your visual choices always
elevate the emotional tone and narrative arc of a project.

User Prompt :

GOAL

You will be given a prompt and 2 taxonomies that define camera and 1lighting
controls commonly used by cinematic professionals. Your objective is to enrich
the given prompt by sampling relevant nodes from both the taxonomies. As a
cinematographer, your role is to "shoot” this scene using the best possible cinematic
expression, utilizing the camera and lighting control options provided in the taxonomy.

PROMPT: {prompt}

MOST IMPORTANT INFORMATION

1. Only Use Nodes from the Provided Taxonomies : - You must never introduce nodes
that are not present in the given taxonomies. - While the values within each node
can be flexible—allowing for creativity and imagination grounded in your professional
experience. For example, the node "Color Gel” is defined, but has no values. It is
upto you to define these values. - The structure must strictly adhere to the nodes
defined in the taxonomy. Think expansively within the bounds of each node, but never
go beyond them.

2. Preserve the Original Prompt Content : - Do NOT remove or add any of the original
content from the input prompt. - Your only task is to enrich the prompt by layering
in camera and lighting related information. The core semantics and narrative of the
prompt must remain entirely intact.

3. Do NOT include the path through which you sample the nodes in the prompt. That is,
do NOT add the paths from the taxonomy using ’->’.

GUIDELINES 1. Input Prompt - The input prompt describes a single continuous
event, intended to occur within one uninterrupted shot. Therefore, do not include any
cuts or multiple camera setups. Assume this is a one-shot sequence.

2. Each node in the taxonomies contains: - Description: A definition of what the node
represents.

- Example: An example of how the node may appear in a prompt.

- Values: A non-exhaustive list of possible values for the node. Some notation: a.
OPEN SET - Indicates the node supports a wide range of possible values.

b. [] - Indicates the node may have multiple values, which are not predefined and
should be selected based on your reasoning and cinematic knowledge.

3. Enriched Prompt - Your enriched version will serve as input to a text-to-video
model. It must be fluent, natural, and interpretable by the model, while incorporating
cinematic elements effectively.

CAMERA TAXONOMY The Camera Taxonomy defines elements related to the camera’s
intrinsics, extrinsics, and its cinematic use : {camera_taxonomy}

LIGHTING TAXONOMY The Lighting taxonomy broadly defines all elements of lighting,
including source, position of lighting, along with its effects such as shadows and
reflections, along with color temperature, lighting motion such as flickering etc
{lighting_taxonomy?}

When incorporating lighting into your enriched prompt, remember that a cinematographer
can shape the look and feel of a shot by selectively illuminating different depth planes
of the scene. Lighting can be applied to the foreground, mid-ground, background, and
the subject itself—either individually or in combination. Your choices should support
the emotional tone, visual focus, and narrative intent of the shot.

Below, we show an example of the instruction given to an LLM to categorize and generate evaluation
questions for an input prompt using the Camera taxonomy.
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Camera Categorization and Question Generation

GOAL
You are an expert prompt evaluator. Your task is to analyze a video generation prompt
and categorize it based on a predefined taxonomy.

PROMPT: {prompt}

Available Categories (with Examples)

The category presented to you is that of Camera. The Camera taxonomy broadly defines
everything related to the camera - the intrinsics, the extrinsics and the cinematic
use of camera. {camera_taxonomy}

Notes about the Taxonomy

Each node in the taxonomy contains :

1. Description : Definition of what that node represents.

2. Example : An example of the presence of a node in the form of a prompt.

3. Values : A non-exhaustive list of values of these nodes. Values are a list of
values that this node can have. Some nomenclature :

a. OPEN SET indicates that this node contains a large number of values.

b. [] indicates that this node may have multiple values, but are not defined explicitly
and it is upto your reasoning and knowledge.

Examples of Categorization

1. Static Medium-Close-Up of David’s face showing quiet devastation. Quick Push In as
tears well up in his eyes. Shot with a medium ISO to capture the dim apartment lighting.

Static - Camera -> Trajectory -> Camera Movement -> Static
Push In - Camera -> Trajectory -> Camera Movement -> 3D
Medium-Close up - Camera -> Creative Intent -> Shot Size
Medium ISO - Camera -> Intrinsics -> Exposure -> ISO

2. Wide shot of a bustling city street at night. The neon lights of the shops and
restaurants cast a colorful glow on the wet pavement. People walk by, their faces
illuminated by the bright signs. The camera pans up to reveal the towering skyscrapers
that loom overhead, their windows reflecting the city lights.

Wide shot - Camera -> Creative Intent -> Shot Size
Pans Up - Camera -> Trajectory -> Camera Movement -> 2D

TASK
Analyze the given prompt and return the following structured output in a valid JSON
format:

Words: Extract important keywords or key phrases from the prompt using the following
guidance:

- Identify named entities related to a camera in professional use as you would in NER
(Named Entity Recognition).

- Extract noun phrases or descriptive terms that relate to a camera.

- Prefer multi-word expressions where meaningful related to a camera.

- Avoid generic or uninformative words like “a”, “video”, “the”, etc.

Categories: For each word or phrase, assign the most appropriate category from the
taxonomy. A dictionary of relevant categories from the taxonomy.

- For each relevant category, assign a score between ‘@¢ and ‘1¢ representing how
strongly the prompt matches the category.

- Provide a reason for each score, referring to the words or phrases extracted and how
they relate to the category.

- Generate a question that helps a human evaluator determine whether this category is
visually present in the generated video. Use your reasoning to guide the question. The
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Table 8: Lexical Diversity of SCINE Scripts. Compared to existing prompt-based benchmarks,
SCINE-Scripts demonstrate higher lexical diversity across multiple metrics.

Benchmark TTR 1 Distinct Bi-Grams 1T Jaccard Distance T
VBench [25] 0.1489 0.4605 0.9384
MovieGenBench [[11] 0.1660 0.5311 0.9285
EvalCrafter [35] 0.2270 0.6038 0.9413
T2V-CompBench [48] 0.1435 0.4781 0.9350
SCINE Scripts 0.1760 0.6177 0.9445

evaluator will use this question to rate the video on a scale from 1 (not at all) to 5
(strongly represented).

- The generated question should evaluate quality, consistency and presence of the node
in the video.

Important Guidelines:

- The camera information should be explicitly mentioned in the prompt. Do NOT imply,
assume or derive anything. Only consider a word or a phrase a match, if it is
explicitly mentioned in the prompt.

- Each prompt can have multiple nodes of the Camera taxonomy. You should capture all
of the nodes in the prompt and map it back to the taxonomy.

- You must always traverse from the root node, which is Camera in this case. That is,
the ’category’ should always start as (Camera -> ..)

- You will never create a node that is not in the taxonomy. These nodes can have
multiple values, as previously explained and you are expected to be imaginative about
the values. But the nodes, should always come from the given taxonomy.

- Since the taxonomy is of Camera, we do not care about objects, subjects, lighting,
events, actions or emotions. Your sole focus should be about camera terms that are
present in the prompt in accordance with the taxonomy. You will NOT ask any question
related to objects, subjects, lighting, events, actions or emotions.

Table [8| compares SCINE-Scripts with existing prompt-based video generation benchmarks. We
compute token level metrics: Type-Token Ratio (TTR), Distinct Bi-Grams, and average pairwise
Jaccard Distance, and find that SCINE-Scripts exhibits strong lexical diversity.

A.4 Distribution of Taxonomy Categories in SCINE Prompts

Figures and[23]show the distribution of activated nodes in SCINE Visuals, aggregated at the
node level, across the roles of Cinematographer, Production Designer, and Director, respectively. As
shown, our prompts cover a broad distribution of nodes across all the taxonomies.

A.5 Annotation Details

Figure [24] shows the annotation interface used by human annotators during evaluation. We also
present the distribution of annotators’ years of experience in film production in Figure [25] While
annotations for cinematic controls can be subjective, especially given the large number of control
nodes, we try our best to mitigate this by providing clear rating guidelines to annotators for each
control node. Table[9] presents a minimal example of the rating guidelines shared with the annotators.
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Activation Frequency of Taxonomy Nodes at Level 1 Activation Frequency of Taxonomy Nodes at Level 2

Camera -> Intrinsics
Camera -> Trajectory
Camera -> Creative Intent
Lighting > Sources
Camera -> Extrnsics
Lighting -> Lighting Position
Lighting -> Color Temperature
Lighting -> Advanced Controls
Lighting > Lighting Conditions
Lighting - Lighting Effects
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Camera -> Trajectory -> Camera Hovement Camera -> Trajectory -> Camera Movement -> 3D
Camera > Intrinsics > Exposure

Camera -> Creative Intent -> Shot Size Camera > Intrinsics -> Exposure - Aperture
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Camera -> Intrinsics -> Lens Size Camera > Intrinsics -> Exposure - 1O
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Camera - Extrinsics -> Angle Camera > Trajectory - Camera Movement -> 20

ighting -> Sources -> Natural Light Camera -> Intrinsics -> Exposure -> Shutter Speed
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Lighting - Advanced Controls - Motion Camera > Trajectory > Camera Movement - Static
Camera > Creative Intent -> Framing
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Lighting -> Lighting Effects -> Shadows
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Figure 21: Node activations in Camera and Lighting taxonomies for the Cinematographer role in
SCINE Visuals.
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Setup = Scene -» Set Design == Backdrop Setup -> Scene -> Set Design -> Backdrop > Setting
Setup > Scene > Set Design -> Backdrop > Time of Day
Setup > Scene > Set Design -> Props Setup -> Scene > Set Design -> Backdrop -> Location
Setup -> Scene -> Geometry > Frame -> Lines
Setup > Scene - Set Design -> Environment: Setup > Scene -> Set Design -> Environment > Elements
Setup > Scene = Geometry > Frame Setup -> Scene -> Geometry -> Space -> Depth
Setup -> Scene -> Set Design -> Props -> Class
Setup > Scene > Texture -> Color Palette Setup > Scene > Geometry -> Frame - Balance
Setup - Scene - Set Design -> Environment - Organization
Setup > Scene > Texture > Contrast Setup -> Scene > Set Design -> Props -> Description
Setup > Scene -> Set Design -> Props -> Material
Setup - Scene -> Geometry -> Space Setup - Scene > Geometry > Frame - Shapes
Setup -> Scene -> Texture > Film Grain Setup > Scene > Set Design -> Props -> Pattemn
Setup -> Scene -> Set Design > Environment > Style
Setup > Scene > Texture -> Blur Setup -> Scene -> Geomelry -> Space -> Spatial Locations
Setup -> Scene -> Set Design -> Environment -> Background
Setup -> Scene -> Texture -> Noise Setup > Scene -> Set Design -> Environment -> Mood
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Figure 22: Node activations in Setup taxonomy for the Production Designer role in SCINE Visuals.
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Figure 23: Node activations in All taxonomies for the Director role in SCINE Visuals.

Video A

Video B

Prompt

On a city rooftop at night, music pulses as people dance under string lights. Other guests stand in small groups near the railing,
talking and admiring the glittering city view, while a bartender mixes drinks behind a portable bar.

Events - Types - Change in Environment
Does the video clearly depict pulsating music as a dynamic environmental element that
contributes to the overall atmosphere?

1.Score A (select1) *
1.Score B (select1) *
Events - Types - Actions

Does the video effectively show people dancing with lively, coordinated movements
that capture the intended energy of the scene?

1.Score A (select 1) *
- F :
1.Score B (select1) *

1 2

Figure 24: User Interface used by annotators to perform evaluations.
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Figure 25: Distribution of the years of film production experience amongst human annotators in our
evaluation setup.

Table 9: Examples of rating guidelines provided to human annotators for different control nodes,
across all taxonomies.

‘What to Look For

72l
()
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=
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Dimension

Camera is at or above eye level, not low angle at all.
Slight upward tilt, but still feels neutral.

Below subject, mild upward view, light impact.

Clear low angle, subject looks larger or imposing.
Strong low angle, subject dominates, towering presence.

Low Angle

No action or one action is present.

Actions are isolated or unrelated.

Timing is off, they start or end awkwardly.

Some overlap, but hard to follow.

Fluid overlap, actions feel natural and dynamic together.

Overlapping Actions

N W= WU W=

—

Light clearly comes from front or side, no rim light or background

separation.

Some edge lighting, but not consistent or strong, subject may still blend

into background.

3 Back light is partially visible, outline is hinted but not clear on full
subject.

4 Back light is clearly present, rim light separates subject from back-
ground.

5 Strong back light effect, glowing edges around hair or shoulders. Sub-

ject clearly pops against the background. Perfect match.

[\

Back Light Position

Composition is clearly asymmetrical.

Some repeating elements, but no visual mirror.

Partial symmetry or mirrored clutter that’s not clean.

Almost perfect symmetry, small inconsistencies exist.

Clear and precise symmetry, mirrored subjects, reflections, or centered
framing. Strong and intentional.

Symmetrical Frame Balance

(O, B SRS I S
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A.6 Statistical test:

Pairwise t-tests show that the vast majority of model comparisons in our human evaluation, across all
taxonomies are statistically significant at the 5% level (p <0.05). Figure (26]-[28) presents the t-test
results of Events, Lighting and Camera, and Setup, respectively.

[ Row model is better than Column model (p < 0.05) [ Row model is better than Column model (p < 0.05)

CogVideo 5B CogVideo 5B

[ Row model is worse than Column model (p < 0.05) [l Row model is worse than Column model (p < 0.05)

Easy Animate 5.1 [ Not statistically significant (p = 0.05) Easy Animate 5.1 z [ Not statistically significant (p = 0.05)
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&
(a) Pairwise t-tests across models on emotions (b) Pairwise t-tests across models on dialogues

- Row model is better than Column model (p < 0.05)
CogVideo 5B

- Row model is worse than Column model (p < 0.05)
Easy Animate 5.1

|:| Not statistically significant (p = 0.05)
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Wan 18 22775678

(c) Pairwise t-tests across models on actions

Figure 26: Statistical comparison matrices for Events: Emotions, Dialogue, and Actions.
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(e) Pairwise t-tests across models on Trajectory

Figure 27: Statistical comparison matrices for Camera and Lighting
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Figure 28: Statistical comparison matrices for Setup
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Table 10: Top 10 nodes where the VLM shows the strongest performance. Score indicates the
accuracy of the VLM’s choice with the most common preference among human annotators.

Node Score
Setup— Scene—Set Design— Environment—Mood 0.88
Events—Adv.Controls—Rhythm—Pace 0.82
Setup—Scene— Set Design— Environment— Style 0.82
Setup—Scene— Set Design— Props— Utility 0.80
Events—Types—Emotions—Exp.Types—Explicit 0.79
Setup—Scene— Geometry—Frame—Shapes—Regular 0.78
Lighting—Lighting Effects—Shadows— Soft 0.76
Setup—Scene—Geometry—Space— Spatial Loc.—Rel.Pos. 0.75
Events—Types— Actions—Int.Types— Standalone 0.75
Events—Types—Emotions—Exp.Types—Explicit 0.75

Table 11: Bottom 10 nodes where the VLM shows the weakest performance. Score indicates the
accuracy of the VLM’s choice with the most common preference among human annotators.

Node Score
Setup— Subjects—Makeup 0.33
Setup—Scene— Set Design—Environment— Background 0.33
Events—Types— Actions—Portrayed as—Contextual —+Background 0.46
Setup—Subjects— Accessories 0.53
Lighting—Lighting Effects—Reflection 0.55
Setup— Scene— Texture— Color Palette 0.55
Camera— Intrinsics—Exposure— Shutter Speed 0.57
Lighting— Adv.Controls—Color Gels 0.57
Setup—Scene— Texture— Blur 0.57
Lighting—Color Temperature 0.58

A.7 Additional VLM results

Node-specific results of VLM evaluator Table[I0]and [IT]list the set of nodes on which our VLM
evaluator has the strongest and weakest performance, respectively.

Comparison with Closed Source Models We extend our validation to closed-source, flagship SOTA
models. Specifically, we evaluate two recent models from the Gemini family with distinct purposes:
Gemini-2.0-Flash, optimized for fast inference, and Gemini-2.5-Pro-Preview-05-06, optimized for
complex reasoning. We use the same human-aligned preference accuracy metric as with open-
source models. Due to the lack of public details on model sizes, we cannot draw conclusions about
scaling effects. However, Gemini-2.5-Pro consistently outperforms open-source models, including
QwenVL-2.5-72B, across all categories. Notably, as shown in Figure[29] our 7B model outperforms
Gemini-Flash across all categories and performs competitively with Gemini-2.5-Pro. This highlights
the strength and scalability of our approach for professional video evaluation.

Reliability in VLMs A reliable VLM-as-a-Judge should produce consistent scores when given the
same video, prompt, and focus aspect. In this analysis, we evaluate the raw scores generated by
VLMs rather than preference rankings, and measure their stability under Best-of-5 sampling. Since
VLMs are probabilistic, we evaluate reliability via the standard deviation of scores across runs. We
use temperature=0 to sample to make ensure that the highest probability is selected at each sampling
step. We exclude our model from this analysis, as its architecture includes a dedicated value head,
unlike zero-shot VLMs that produce rewards as text. Our results show that Qwen-2.5VL-3B exhibits
a high variance, making it unreliable under repeated sampling. In contrast, the flagship models and
the strongest open-source model, QwenVL-2.5-72B, demonstrate high reliability, with consistently
low variance (Table|12).
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Figure 29: Preference Accuracy of open and closed-sourced VLMSs in rating videos generated for
Professional Use

Table 12: Measuring VLM Reliability across best-of-5 sampling

Model | Standard-Deviation | | Krippendorff-alpha 1
Qwen2.5-VL-3B 2.34 0.36
Qwen2.5-VL-7B 0.37 0.84
Qwen2.5-VL-32B 0.47 0.65
Qwen2.5-VL-72B 0.23 0.95
Gemini2.5-Flash 0.20 0.90
Gemini2.5-Pro 0.14 0.95

Table 13: Average scores across taxonomy categories on recently released video generative models.

Model Camera Events Lighting Setup Overall Avg.
Veo 3 Fast 3.686 3.382 3.974 4.078 3.780
Wan 2.2 14B 3.584 3.060 4.009 4.114 3.692
Wan 2.1 14B 3.239 2.821 3.827 3.975 3.466
Wan 2.2 5B 3.194 2.705 3.838 3.913 3.412
Wan 2.1 1B 3.240 2.579 3.698 3.742 3.315

A.8 Additional Results on Recent Models

We also perform small-scale evaluations on recently released models, specifically Veo 3 (Fast) [9]
and the Wan 2.2 family of models. Results are presented in Table T3]

A.9 Broader Impact

We hope SCINE encourages the generative Al and computer vision communities to engage more
deeply with the elements required to produce a professional cinematic shot. While our taxonomy is
currently used for evaluation, it also offers a structured foundation for broader tasks such as captioning,
creating control aware video datasets, and guiding model training toward explicit cinematic intent.
We also envision that our fine-grained control nodes can drive new directions in open computer
vision problems, such as estimating camera intrinsics from video, inferring lighting position, and
understanding frame compositionality. In conclusion, we see our taxonomy as a first step toward
systematically understanding cinematic controls in generative models, and we are hopeful it will be
meaningfully adopted and extended across both generative Al and filmmaking communities.
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