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Abstract

We study sampling problems associated with potentials that lack smoothness. The poten-
tials can be either convex or non-convex. Departing from the standard smooth setting, the
potentials are only assumed to be weakly smooth or non-smooth, or the summation of mul-
tiple such functions. We develop a sampling algorithm that resembles proximal algorithms
in optimization for this challenging sampling task. Our algorithm is based on a special case
of Gibbs sampling known as the alternating sampling framework (ASF). The key contri-
bution of this work is a practical realization of the ASF based on rejection sampling for
both non-convex and convex potentials that are not necessarily smooth. In almost all the
cases of sampling considered in this work, our proximal sampling algorithm achieves a better
complexity than all existing methods.

1 Introduction

The problem of drawing samples from an unnormalized probability distribution plays an essential role in
data science and scientific computing (Durmus et al., 2018; Clarage et al., 1995; Maximova et al., 2016).
It has been widely used in many areas such as Bayesian inference, Bayesian neural networks, probabilistic
graphical models, biology, and machine learning (Gelman et al., 2013; Kononenko, 1989; Koller & Friedman,
2009; Krauth, 2006; Sites Jr & Marshall, 2003; Durmus et al., 2018). Compared with optimization oriented
methods, sampling has the advantage of being able to quantify the uncertainty and confidence level of the
solution, and often provides more reliable solutions to engineering problems. This advantage comes at the
cost of higher computational cost. It is thus important to develop more efficient sampling algorithms.

In the classical setting of sampling, the potential function f of an unnormalized target distribution
exp(−f(x)) is assumed to be smooth and (strongly) convex. Over the past decades, many sam-
pling algorithms have been developed, including Langevin Monte Carlo (LMC), kinetic Langevin Monte
Carlo (KLMC), Hamiltonian Monte Carlo (HMC), Metropolis-adjusted Langevin algorithm (MALA), etc
(Dalalyan, 2017; Grenander & Miller, 1994; Parisi, 1981; Roberts & Tweedie, 1996; Dalalyan & Riou-Durand,
2020; Bou-Rabee & Hairer, 2013; Roberts & Stramer, 2002; Roberts & Tweedie, 1996; Neal, 2011). Many
of these algorithms are based on some type of discretization of the Langevin diffusion or the underdamped
Langevin diffusion. They resemble the gradient-based algorithms in optimization. These algorithms work
well for (strongly) convex and smooth potentials; many non-asymptotic complexity bounds have been proven.
However, the cases where either the convexity or the smoothness is lacking are much less understood (Chewi
et al., 2021; Chen et al., 2022; Chatterji et al., 2020; Erdogdu & Hosseinzadeh, 2021; Liang & Chen, 2022;
Mou et al., 2019).

In this paper, we consider the challenging task of sampling from potentials that are not smooth and even
not convex. Many sampling problems in real applications fall into this setting. For instance, Bayesian
neural networks are highly non-convex models corresponding to probability densities with multi-modality
(Izmailov et al., 2021). The lack of smoothness is due to the use of activation functions such as ReLU. The
goal of this work is to develop an efficient algorithm with provable guarantees for a class of potentials that
are not smooth. In particular, we consider potential functions that are semi-smooth, defined by (1).

Inspired by the recent line of research that lies in the interface of sampling and optimization, we examine
this sampling task from an optimization perspective. We build on the intuition of proximal algorithms
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for non-smooth optimization problems and develop a proximal algorithm to sample from non-convex and
semi-smooth potentials. Our algorithm is based on the alternating sampling framework (ASF) (Lee et al.,
2021) developed recently to sample from strongly convex potentials. In a nutshell, the ASF is a Gibbs
sampler over a carefully designed augmented distribution of the target one and can thus sample from the
target distribution by sampling from the augmented distribution. The convergence results of ASF have
been recently improved (Chen et al., 2022) to cover non-log-concave distributions that satisfy functional
inequalities such as the Logarithmic Sobolev inequality (LSI) and the Poincaré inequality (PI).

The ASF is an idealized algorithm that is not directly implementable. In each iteration it needs to query the
so-called restricted Gaussian oracle (RGO), which is itself a sampling task from a quadratically regularized
distribution exp(−f(x)− 1

2η‖x−y‖
2) for some given η > 0 and y ∈ Rd. The RGO can be viewed as a sampling

counterpart of the proximal map in optimization. The total complexity of ASF thus depends on that of the
RGO. Except for a few special cases where f has certain structures, the RGO is usually a challenging task.
One key contribution of this work is a practical and efficient algorithm for RGO for potentials that are
neither smooth nor convex. This algorithm extends the recent work Liang & Chen (2022) for convex and
non-smooth potentials. Combining the ASF and our algorithm for RGO, we establish a proximal algorithm
for sampling from (convex or non-convex) semi-smooth potentials.

Our contributions are summarized as follows. i) We develop an efficient sampling scheme of RGO for semi-
smooth potentials which can be either convex or non-convex and bound its complexity with a novel technique.
ii) We combine our RGO scheme and the ASF to develop a sampling algorithm that can sample from both
convex and non-convex semi-smooth potentials. Our algorithm has a better non-asymptotic complexity than
almost all existing methods in the same setting. iii) We further extend our algorithms for potentials that
are the summation of multiple semi-smooth functions. iv) Our results are the first high-accuracy guarantee
for sampling problems with non-convex semi-smooth potentials.

Related works: MCMC sampling from non-convex potentials has been investigated in Raginsky et al.
(2017); Vempala & Wibisono (2019); Wibisono (2019); Chewi et al. (2021); Erdogdu & Hosseinzadeh (2021);
Mou et al. (2022); Luu et al. (2021). There have also been some works on sampling without smoothness
Lehec (2021); Durmus et al. (2019); Chatterji et al. (2020); Chewi et al. (2021); Mou et al. (2019); Shen
et al. (2020); Durmus et al. (2018); Freund et al. (2021); Salim & Richtárik (2020); Bernton (2018); Nguyen
et al. (2021); Liang & Chen (2022).

The literature for the case where the potential function lacks both convexity and smoothness is rather
scarce. In Nguyen et al. (2021); Erdogdu & Hosseinzadeh (2021), the authors analyze the convergence of
LMC for weakly smooth potentials that satisfy a dissipativity condition. The target distribution is assumed
to satisfy some functional inequality. Erdogdu & Hosseinzadeh (2021) also assumes an additional tail growth
condition. The dissipativity condition is removed in Chewi et al. (2021). The results in Nguyen et al. (2021)
are applicable to potentials that are the summation of multiple weakly smooth functions, while those in
Chewi et al. (2021); Erdogdu & Hosseinzadeh (2021) are not. To compare our results with them, we make
the simplification that the initial distance, either in KL or Rényi divergence, to the target distribution is
Õ(d). The results in cases with non-convex potentials are presented in Table 1. It can be seen that our
complexities have better dependence on all the parameters: LSI constant CLSI, PI constant CPI, weakly
smooth coefficients Lα, and dimension d. Moreover, our complexity bounds depend polylogarithmically
on the accuracy ε (thus ε does not appear in the Õ notation) while all the other results have polynomial
dependence on 1/ε. To the best of our knowledge, our results are the first high-accuracy guarantee for
sampling with non-convex semi-smooth potentials.
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Table 1: Complexity bounds for sampling from non-convex potentials.
Source Complexity Assumption Metric

Chewi et al. (2021) Õ
(
C

1+1/α
PI L2/α

α d2+1/α

ε1/α

)
weakly smooth

PI, α > 0
Rényi

this paper (Thm.
3.5)

Õ
(
CPIL

2/(1+α)
α d2

)
semi-smooth PI Rényi

Nguyen et al.
(2021)

Õ

(
C

1+max{1/αi}
LSI

[
nmax{L2

αi
}d

ε

]max{1/αi}
)

αi > 0, composite
semi-smooth, LSI

KL

this paper (Thm.
4.4)

Õ
(
CLSI

∑n
i=1 L

2/(αi+1)
αi d

)
composite

semi-smooth, LSI
KL

this paper (Thm.
4.5)

Õ
(
CPI

∑n
i=1 L

2/(αi+1)
αi d

)
composite

semi-smooth, PI
Rényi

2 Problem formulation and Background

We are interested in sampling from distributions with potentials that are not necessarily smooth. More
specifically, we consider the sampling task with the target distribution ν ∝ exp(−f(x)) where the potential
f satisfies

‖f ′(u)− f ′(v)‖ ≤
n∑
i=1

Lαi‖u− v‖αi , ∀u, v ∈ Rd (1)

for some αi ∈ [0, 1] and Lαi > 0, 1 ≤ i ≤ n. Here f ′ denotes a subgradient of f in the Frechet subdifferential
(see Definition A.1). When n = 1 and α1 = 1, it is well-known that f is a smooth function. When n = 1 and
0 < α1 < 1, f satisfying (1) is known as a weakly smooth function. When n = 1 and α1 = 0, f satisfying (1)
is a non-smooth function. Thus, the cases we consider cover all three cases: smooth, weakly-smooth, and
non-smooth. For ease of reference, we termed a function satisfying the condition (1) a semi-smooth function.
The target distribution ν is assumed to satisfy LSI or PI, but f can be non-convex in general. This type of
distribution has been studied in (Chatterji et al., 2020; Chewi et al., 2021; Nguyen et al., 2021) for MCMC
sampling. One example of such a distribution is ν ∝ exp(−‖A2σ(A1x) − b‖2 − ‖x‖2 − ‖x‖) for some full
rank matrices A1, A2, vector b, and some activation (e.g., ReLU) function σ. This is a Bayesian regression
problem with some prior.

In this work, we aim to develop a proximal algorithm for sampling from non-convex potentials that satisfy
(1). Our method is built on the alternating sampling framework (ASF) introduced in Lee et al. (2021).
Unlike most existing sampling algorithms that require the potential to be smooth, ASF is applicable to
semi-smooth problems. Initialized at x0 ∼ ρX0 , ASF with target distribution πX(x) ∝ exp(−f(x)) and
stepsize η > 0 performs the two alternating steps as follows.

Algorithm 1 Alternating Sampling Framework (Lee et al., 2021)
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η‖xk − y‖
2]

2. Sample xk+1 ∼ πX|Y (x | yk) ∝ exp[−f(x)− 1
2η‖x− yk‖

2]

The ASF is a special instance of the Gibbs sampling (Geman & Geman, 1984) from

π(x, y) ∝ exp
(
−f(x)− 1

2η ‖x− y‖
2
)
. (2)

In Algorithm 1, sampling yk given xk in step 1 is easy since πY |X(y | xk) = N (xk, ηI) is an isotropic Gaussian
distribution. Sampling xk+1 given yk in step 2 is however a highly nontrivial task; it corresponds to the
restricted Gaussian oracle for f Lee et al. (2021), defined as follows.
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Definition 2.1 Given a point y ∈ Rd and stepsize η > 0, the restricted Gaussian oracle (RGO) for f :
Rd → R is a sampling oracle that returns a random sample from a distribution proportional to exp(−f(·)−
‖ · −y‖2/(2η)).

The RGO can be viewed as the sampling counterpart of the proximal map in optimization that is widely
used in proximal algorithms for optimization (Parikh & Boyd, 2014). The ASF is an idealized algorithm;
an efficient implementation of the RGO is crucial to use this framework in practice. For some special cases
of f , the RGO admits a computationally efficient realization (Mou et al., 2019; Shen et al., 2020; Liang &
Chen, 2022). For general f , especially semi-smooth ones considered in this work, it was not clear how to
realize the RGO efficiently.

Under the assumption that the RGO in the ASF can be efficiently realized, the ASF exhibits surprising
convergence properties. It was firstly established in Lee et al. (2021) that, when f is strongly convex,
Algorithm 1 converges linearly. This result is further improved recently in Chen et al. (2022) under various
weaker assumptions on the target distribution πX ∝ exp(−f). We summarize below several convergence
results established in Chen et al. (2022) that will be used.

To this end, for two probability distributions ρ� ν, we denote by

Hν(ρ) :=
∫
ρ log ρ

ν
, χ2

ν(ρ) :=
∫
ρ2

ν
− 1, Rq,ν(ρ) := 1

q − 1 log
∫

ρq

νq−1

the KL divergence, the Chi-squared divergence, and the Rényi divergence, respectively. Note that R2,ν =
log(1 +χ2

ν), R1,ν = Hν , and Rq,ν ≤ Rq′,ν for any 1 ≤ q ≤ q′ <∞ (Rényi, 1961; Vempala & Wibisono, 2019).
We denote by W2 the Wasserstein-2 distance (Villani, 2021).

Recall a probability distribution ν satisfies LSI with constant CLSI > 0 (1/CLSI-LSI) if for every ρ,
Hν(ρ) ≤ CLSI

2 Jν(ρ), where the Fisher information Jν(ρ) is defined as Jν(ρ) = Eρ[‖∇ log ρ
ν ‖

2]. A prob-
ability distribution ν satisfies PI with constant CPI > 0 (1/CPI-PI) if for any smooth bounded function
ψ : Rd → R, we have Eν [(ψ − Eν(ψ))2] ≤ CPIEν [‖∇ψ‖2].

Theorem 2.2 ((Chen et al., 2022, Theorem 3)) Assume that πX ∝ exp(−f) satisfies λ-LSI. For any
initial distribution ρX0 , the k-th iterate ρXk of Algorithm 1 with step size η > 0 satisfies

HπX (ρXk ) ≤ HπX (ρX0 )
(1 + λη)2k .

Theorem 2.3 ((Chen et al., 2022, Theorem 4)) Assume πX ∝ exp(−f) satisfies λ-PI. For any initial
distribution ρX0 , the k-th iterate ρXk of Algorithm 1 with step size η > 0 satisfies

χ2
πX (ρXk ) ≤

χ2
πX (ρX0 )

(1 + λη)2k .

Moreover, for all q ≥ 2,

Rq,πX (ρXk ) ≤
{
Rq,πX (ρX0 )− 2k log(1+λη)

q , if k ≤ q
2 log(1+λη) (Rq,πX (ρX0 )− 1) ,

1/(1 + λη)2(k−k0)/q
, if k ≥ k0 := d q

2 log(1+λη) (Rq,πX (ρX0 )− 1)e .

Theorem 2.4 ((Chen et al., 2022, Theorem 2)) Assume that πX ∝ exp(−f) is log-concave. For any
initial distribution ρX0 , the k-th iterate ρXk of Algorithm 1 with step size η > 0 satisfies

HπX (ρXk ) ≤ W 2
2 (ρX0 , πX)
kη

.

To use the ASF for sampling problems, we need to realize the RGO with efficient implementations. In the
rest of this paper, we develop an efficient algorithm for RGO associated with a potential satisfying (1),
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and then combine it with the ASF to establish a proximal algorithm for sampling. The complexity of the
proximal algorithm can be obtained by combining the above convergence results for ASF and the complexity
results we establish for RGO. The rest of the paper is organized as follows. In Section 3 we consider a special
case of (1) with n = 1, develop an efficient implementation for RGO via rejection sampling, and establish
complexity results for sampling from distributions with non-convex and semi-smooth potentials. In Section 4,
we extend the aforementioned complexity results to the general cases (1). In Section 5, we specialize (1) to
the case where f is convex. In Section 6, we show that various well-known sampling algorithms are indeed
variants of approximate implementations of ASF. In Section 7, we present preliminary computational results
to demonstrate the efficacy of the proximal sampling algorithm. In Section 8, we present some concluding
remarks. Finally, in Appendices A-E, we present technical results and proofs omitted in the paper and
provide a self-contained discussion on solving a subproblem in the proximal sampling algorithm.

3 Proximal sampling for non-convex and semi-smooth potentials

Our main objective in this section is to establish complexity results for sampling from distributions with
non-convex and semi-smooth potentials, i.e., those satisfying (1) with n = 1. The general setting involving
composite potentials is discussed in Section 4.

The bottleneck of Algorithm 1 for sampling from a general distribution exp(−f) is an efficient realization
of the RGO, i.e., step 2 of Algorithm 1. To address this issue, we develop an efficient algorithm for the
corresponding RGO based on rejection sampling. We show that, with a carefully designed proposal and
a sufficiently small η, the expected number of rejection sampling steps to obtain one effective sample in
RGO turns out to be bounded above by a dimension-free constant. The core to achieving such a constant
bound on the expected rejection steps is a novel construction of proposal distribution that does not rely on
the convexity of f and a refined analysis that captures the nature of semi-smooth functions. We utilize a
useful property of semi-smooth functions that they can be approximated by smooth functions to arbitrary
accuracy, at the cost of increasing their smoothness parameters. This is formalized in the following lemma,
of which the proof is postponed to Appendix B. Relevant ideas have been explored in Devolder et al. (2014);
Nesterov (2015) to design universal methods for convex semi-smooth optimization problems.

Lemma 3.1 Assume f is an Lα-α-semi-smooth function, then for δ > 0 and every u, v ∈ Rd

|f(u)− f(v)− 〈f ′(v), u− v〉| ≤ M

2 ‖u− v‖
2 + (1− α)δ

2 , (3)

where

M = L
2

α+1
α

[(α+ 1)δ]
1−α
α+1

. (4)

Our algorithm is inspired by Liang & Chen (2022), which also uses rejection sampling for RGO. The proposal
of rejection sampling used in Liang & Chen (2022) is a Gaussian distribution centered at an (approximate)
minimizer of the regularized potential function. We thus consider the regularized optimization problem

proxηf (y) := argmin x∈Rd
{
fηy (x) := f(x) + 1

2η ‖x− y‖
2
}
, (5)

where y ∈ Rd is given. Departing from the convex setting studied in Liang & Chen (2022), when f is non-
convex and semi-smooth, (5) may not be a convex optimization regardless of the value of η. Nevertheless,
thanks to Lemma 3.1, fηy is close to a strongly convex and smooth function up to some approximation
error, and (5) can still be solved efficiently using convex smooth optimization algorithms such as Nesterov’s
acceleration. We describe a variant of the method in Algorithm 4 in Appendix D. The following proposition
presents a complexity result of Algorithm 4 for finding an approximate stationary point of fηy with a small
η. Its proof is postponed to Appendix B.

Proposition 3.2 Assume η ≤ 1
Md , and let w ∈ Rd be an approximate stationary point of fηy , i.e.,

‖s‖ ≤
√
Md, s = f ′(w) + 1

η
(w − y), (6)
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where M is as in (4). Then, the iteration-complexity to find w with Algorithm 4 is Õ(1).

With this approximate stationary point, we obtain the following key ingredients of our rejection sampling-
based RGO.

Lemma 3.3 Let w∗ ∈ Rd be a stationary point of fηy , i.e.,

f ′(w∗) + 1
η

(w∗ − y) = 0, (7)

and w be an approximate stationary point as in (6). Define

hw1,y(x) := f(w) + 〈f ′(w), x− w〉 − M

2 ‖x− w‖
2 + 1

2η ‖x− y‖
2 − (1− α)δ

2 , (8)

hw
∗

2,y(x) := f(w∗) + 〈f ′(w∗), x− w∗〉+ M

2 ‖x− w
∗‖2 + 1

2η ‖x− y‖
2 + (1− α)δ

2 , (9)

Then, we have for every x ∈ Rd,
hw1,y(x) ≤ fηy (x) ≤ hw

∗

2,y(x). (10)

Proof: Inequalities in (10) directly follow from (3) and the definitions of hw1,y and hw
∗

2,y in (8) and (9),
respectively.

We are now ready to present the rejection sampling algorithm (Algorithm 2) for RGO.

Algorithm 2 RGO Rejection Sampling
1. Compute an approximate solution w satisfying (6) with Algorithm 4
2. Generate sample X ∼ exp(−hw1,y(x))
3. Generate sample U ∼ U [0, 1]
4. If

U ≤
exp(−fηy (X))

exp(−hw1,y(X)) ,

then accept/return X; otherwise, reject X and go to step 2.

By construction, the proposal ∝ exp(−hw1,y(x)) is close to the target πX|Y (x | y) ∝ exp(−fηy (x)) when η
is sufficiently small, and hence the expected number of rejection steps is small. The following proposition
rigorously justifies this intuition.

Proposition 3.4 Assume f is Lα-α-semi-smooth and let fηy be as in (5). Then X generated by Algorithm
2 follows the distribution πX|Y (x | y) ∝ exp

(
−fηy (x)

)
. Moreover, if

η ≤ 1
Md

= [(α+ 1)δ]
1−α
α+1

L
2

α+1
α d

, (11)

then the expected number of rejection steps in Algorithm 2 is at most exp
(

3(1−α)δ
2 + 3

)
.

Proof: It is well-known in rejection sampling X ∼ πX|Y (x|y) and the probability X is accepted is

P

(
U ≤

exp(−fηy (X))
exp(−hw1,y(X))

)
=
∫

exp(−fηy (x))dx∫
exp(−hw1,y(x))dx

.
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Using the above identity, (10), and Lemma A.4, we have

P

(
U ≤

exp(−fηy (X))
exp(−hw1,y(X))

)
≥
∫

exp(−hw∗2,y(x))dx∫
exp(−hw1,y(x))dx

=
(

1− ηM
1 + ηM

)d/2 exp
(

1
2η‖w

∗‖2 − f(w∗) + 〈f ′(w∗), w∗〉 − 1
2η‖y‖

2 − 1−α
2 δ
)

exp
(

1
2η‖w‖2 + η

2(1−ηM)‖s‖2 − f(w) + 1
η 〈w, y − w〉 −

1
2η‖y‖2 + 1−α

2 δ
)

=
(

1− ηM
1 + ηM

)d/2
exp

(
−(1− α)δ − η

2(1− ηM)‖s‖
2
)

exp
(

1
2η ‖w

∗‖2 − 1
2η ‖w‖

2 − f(w∗) + f(w) + 〈f ′(w∗), w∗〉 − 1
η
〈w, y − w〉

)
. (12)

It follows from (3) with (u, v) = (w,w∗) that

−f(w) + f(w∗) + 〈f ′(w∗), w − w∗〉 ≤ M

2 ‖w − w
∗‖2 + (1− α)δ

2 ,

which together with (7) implies that

1
2η ‖w

∗‖2 − 1
2η ‖w‖

2 − f(w∗) + f(w) + 〈f ′(w∗), w∗〉 − 1
η
〈w, y − w〉

= 1
2η ‖w

∗‖2 − 1
2η ‖w‖

2 − f(w∗) + f(w) + 〈f ′(w∗), w∗〉 − 1
η
〈w, ηf ′(w∗) + w∗ − w〉

= 1
2η ‖w − w

∗‖2 − f(w∗) + f(w) + 〈f ′(w∗), w∗ − w〉

≥ 1
2η ‖w − w

∗‖2 − M

2 ‖w − w
∗‖2 − (1− α)δ

2 ≥ − (1− α)δ
2 ,

where the last inequality is due to (11). Plugging the above inequality into (12), we obtain

P

(
U ≤

exp(−fηy (X))
exp(−hw1,y(X))

)
≥
(

1− ηM
1 + ηM

)d/2
exp

(
−3(1− α)δ

2 − η

2(1− ηM)‖s‖
2
)
.

Hence, using the above bound, (11) and (6), we arrive at the following bound on the expected number of
rejection iterations

1
P
(
U ≤ exp(−fηy (X))

exp(−hw1,y(X))

) ≤ (1 + ηM

1− ηM

)d/2
exp

(
3(1− α)δ

2 + η

2(1− ηM)‖s‖
2
)

≤
(

1 + 2ηM
1− ηM

)d/2
exp

(
3(1− α)δ

2 + η‖s‖2
)
≤ (1 + 4ηM)d/2 exp

(
3(1− α)δ

2 + ‖s‖
2

Md

)
≤
(

1 + 4
d

)d/2
exp

(
3(1− α)δ

2 + 1
)
≤ exp

(
3(1− α)δ

2 + 3
)
.

Note δ is a tunable parameter. Choosing a large δ makes M small and η large in view of (4) and (11),
respectively. Such a choice results in a better complexity of ASF but more expected number of rejection
steps in RGO. We set δ = 1 in all our experiments. Combing Proposition (3.4) and the convergence results
of ASF we obtain the following non-asymptotic complexity bound to sample from non-convex semi-smooth
potentials. This complexity bound is better than all existing results when α ∈ [0, 1), see Table 1 for
comparison.
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Theorem 3.5 Assume f is Lα-α-semi-smooth and πX ∝ exp(−f) satisfies PI with constant CPI. With
initial distribution ρX0 and stepsize η � 1/(L

2
α+1
α d), Algorithm 1 using Algorithm 2 as an RGO has the

iteration-complexity bound

Õ
(
CPIL

2
α+1
α d logχ2

πX (ρX0 )
)

(13)

to achieve ε error to the target πX in terms of Chi-squared divergence, and

Õ
(
CPIL

2
α+1
α qdRq,πX (ρX0 )

)
, q ≥ 2 (14)

to achieve ε error in Rényi divergence Rq,πX . Each iteration queries Õ(1) subgradients of f .

Proof: The result is a direct consequence of Theorem 2.3, Proposition 3.2 and Proposition 3.4 with the
choice of stepsize η � 1/(L

2
α+1
α d).

4 Proximal sampling for non-convex composite potentials

This section is devoted to the sampling from distributions with non-convex composite potential f satisfying
(1). Results presented in this section generalize those in Section 3, which are for the setting with n = 1.
Although Section 3 is developed for the simple case where n = 1 in (1), the proof techniques apply to the
general case of (1). Hence, to avoid duplication, we present the following results analogous to those in
Section 3 without giving proofs.

The following lemma is a direct generalization of Lemma 3.1, which shows that functions satisfying (1) can
be approximated by smooth functions up to some controllable approximation errors.

Lemma 4.1 Assume f satisfies (1), then for any δ > 0, we have

|f(u)− f(v)− 〈f ′(v), u− v〉| ≤ Mn

2 ‖u− v‖
2 +

n∑
i=1

(1− αi)δ
2 , ∀u, v ∈ Rd, (15)

where

Mn =
n∑
i=1

L
2

αi+1
αi

[(αi + 1)δ]
1−αi
αi+1

. (16)

The next proposition is a counterpart of Proposition 3.2 and gives the complexity of solving optimization
problem (5) in the context of (1).

Proposition 4.2 Assume η ≤ 1/(Mnd), and let wn ∈ Rd be an approximate stationary point of fηy such
that ‖f ′(wn) + 1

η (wn − y)‖ ≤
√
Mnd. Then, the iteration-complexity to find wn with Algorithm 4 is Õ(1).

The core to the proximal algorithm (Algorithm 1) is an efficient implementation of RGO. We use Algorithm
2 with slight modification as a realization of RGO in the context of (1). First, in step 1 of Algorithm 2, we
use Algorithm 4 to compute wn as in Proposition 4.2 instead of w. Second, in steps 2 and 4 of Algorithm 2,
instead of using hw1,y as in (8), we define hw1,y as follows,

hw1,y(x) = f(w) + 〈f ′(w), x− w〉 − Mn

2 ‖x− w‖
2 + 1

2η ‖x− y‖
2 −

n∑
i=1

(1− αi)δ
2 ,

where Mn is as in (16). The next proposition is a generalization of Proposition 3.4.

Proposition 4.3 Assume f satisfies (1) and let fηy be as in (5). Then X generated by Algorithm 2 with
modification follows the distribution πX|Y (x | y) ∝ exp

(
−fηy (x)

)
. Moreover, if η ≤ 1

Mnd
, then the expected

number of rejection steps in Algorithm 2 is at most exp
(

3
∑n

i=1
(1−αi)δ
2 + 3

)
.

8
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In the rest of this section, we present two results on the complexity of sampling for non-convex composite
potentials where the target distribution satisfies either LSI or PI. Our complexity bounds are better than all
existing results when minαi ∈ [0, 1), see Table 1 for comparison.

Theorem 4.4 Assume f satisfies (1) and πX ∝ exp(−f) satisfies LSI with constant CLSI. With initial

distribution ρX0 and stepsize η � 1/
(∑n

i=1 L
2

αi+1
αi d

)
, Algorithm 1 using the modified Algorithm 2 as an

RGO has the iteration-complexity bound

Õ

(
CLSI

n∑
i=1

L
2

αi+1
αi d

)
(17)

to achieve ε error to πX in KL divergence. Each iteration queries Õ(1) subgradients of f .

Theorem 4.5 Assume f satisfies (1) and πX ∝ exp(−f) satisfies PI with constant CPI. With initial

distribution ρX0 and stepsize η � 1/
(∑n

i=1 L
2

αi+1
αi d

)
, Algorithm 1 using the modified Algorithm 2 as an

RGO has the iteration-complexity bound

Õ

(
CPI

n∑
i=1

L
2

αi+1
αi d logχ2

πX (ρX0 )
)

(18)

to achieve ε error to the target πX in terms of Chi-squared divergence, and

Õ

(
CPI

n∑
i=1

L
2

αi+1
αi qdRq,πX (ρX0 )

)
, q ≥ 2 (19)

to achieve ε error in Rényi divergence Rq,πX . Each iteration queries Õ(1) subgradients of f .

5 Proximal sampling for convex composite potentials

In this section we present a complexity result for sampling from distributions with convex potential f
satisfying (1). We only consider the weakly convex setting here as strongly log-concave distributions satisfy
LSI and are thus covered by Theorem 4.4. The result is a consequence of Theorem 2.4 for log-concave densities
combined with our RGO implementation. In particular, Lemma 4.1 and Propositions 4.2-4.3 apply to this
setting. Hence, using Theorem 2.4 and Propositions 4.2-4.3, we directly obtain the following complexity
result. Note our result is applicable to composite potentials with any number of components while most
existing results are only applicable to composite potentials with at most two components. We also present
an alternative result via a regularization approach in Appendix C.

Theorem 5.1 Assume f satisfies (1) and πX ∝ exp(−f) is log-concave. With initial distribution ρX0 and

stepsize η � 1/
(∑n

i=1 L
2

αi+1
αi d

)
, Algorithm 1 using Algorithm 2 as an RGO has the iteration-complexity

bound

Õ

W 2
2 (ρX0 , πX)

∑n
i=1 L

2
αi+1
αi d

ε


to achieve ε error to the target πX in terms of KL divergence. Each iteration queries Õ(1) subgradients of
f and generates O(1) samples in expectation from standard Gaussian distribution.

6 Approximate implementations of ASF

The implementation of RGO in Algorithm 2 is exact, hence the samples of both RGO and ASF are unbiased.
In contrast, it is shown in Theorem 1 of Wibisono (2019) (resp., Theorem 2 of Vempala & Wibisono (2019))

9
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that the proximal Langevin algorithm (PLA) (resp., LMC) is biased. From the perspective of proximal
sampling, we give an explanation of this fact by showing that PLA and its equivalent method, namely,
proximal Langevin Monte Carlo (PLMC) of Bernton (2018), can be viewed as an instance of ASF whose
implementation of RGO is inexact. A similar explanation for LMC is given in Appendix E.

Assume the potential function f is convex and smooth. Recall that PLMC iteratively generates samples
as follows: given yk ∈ Rd, then the next sample yk+1 takes the form of yk+1 = proxηf (yk) +

√
2ηz where

z ∼ N (0, I). It is easy to verify that the following algorithm gives an equivalent form of PLMC.

Algorithm 3 Proximal Langevin Monte Carlo (Bernton, 2018)
1. Sample xk ∼ exp[− 1

2η‖x− proxηf (yk)‖2]
2. Sample yk+1 ∼ πY |X(y | xk) ∝ exp[− 1

2η‖y − xk‖
2]

Next, we show that PLMC is an approximate implementation of ASF. Similar to ASF, PLMC also alternates
between steps 1 and 2. More specifically, step 2 of PLMC plays the same role as step 1 of ASF, and step
1 of PLMC can be viewed as sampling from the proposal density ∝ exp[−h1(x)] without rejection, where
h1(x) := fηyk(proxηf (yk)) + 1

2η‖x−proxηf (yk)‖2 ≤ fηyk(x). Since fηyk(x) is the potential function of the RGO
in step 2 of ASF. Hence, step 1 of PLMC is an approximate implementation of the RGO. As a result, both
PLMC and PLA are approximate implementations of ASF, and thus they are biased.

7 Computational results

In this section, we present a numerical example to illustrate our result. We consider sampling from a
Gaussian-Laplace mixture

ν(x) = 0.5(2π)−d/2
√

detQ exp(−(x− 1)>Q(x− 1)/2) + 0.5(2d) exp(−‖4x‖1)

where Q = USU>, d = 5, S = diag(14, 15, 16, 17, 18), and U is an arbitrary orthogonal matrix.

Figure 1: Gaussian-Lasso mixture using the proximal sampling algorithm

We run 500, 000 iterations (with 100, 000 burn-in iterations) for both the proximal sampling algorithm and
LMC with η = 1/(Md) where d = 5 and M is as in (4) with (α,Lα) = (1, 27) and δ = 1. Histograms and
trace plots (of the 3-rd coordinate) of the samples generated by both methods are presented in Figures 1
and 2. The average numbers of optimization iterations and rejection sampling iterations in Algorithm 2 are
1.5 and 1.3, respectively. In addition, we also run 2, 500, 000 iterations (with 500, 000 burn-in iterations) for
LMC with η = 1/(5Md). Figure 3 presents the histogram and trace plot for this LMC. The red curves in
histograms are the scaled target density ν(x).

10
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Figure 2: Gaussian-Lasso mixture using LMC

Figure 3: Gaussian-Lasso mixture using LMC with small η

8 Conclusions

In this paper, we develop a novel proximal sampling algorithm for distributions with semi-smooth potentials
and establish complexity-bound results for the proposed method under the assumption that distributions
are log-concave or satisfy LSI or PI. Our proximal algorithm is based on the ASF, which resembles the
proximal point method in optimization. Each iteration of the ASF generates a sample from a regularized
target distribution by querying the RGO, which is itself a challenging algorithmic task due to the lack of
smoothness and possibly convexity. The core to our approach is an efficient realization of the RGO based
on rejection sampling. We develop a novel technique to bound the expected number of rejection steps in
the RGO, which leads to the state-of-the-art complexity results to sample from semi-smooth and possibly
non-convex potentials.
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A Technical results

This section collects the definition of Frechet subdifferential and a few technical results that are useful for
the analysis of RGO in Section 3.

Definition A.1 (Frechet subdifferential) Let f : Rn → R ∪ {∞} be a proper closed function, then the
Frechet subdifferential is defined as

∂̃f(x) =
{
v ∈ Rn : lim inf

y→x

f(y)− f(x)− 〈v, y − x〉
‖y − x‖

≥ 0
}
.

The first result is the well-known Gaussian integral.

Lemma A.2 A useful Gaussian integral: for any η > 0,∫
Rd

exp
(
− 1

2η ‖x‖
2
)

dx = (2πη)d/2.

The following lemma shows that fηy as in (5) is close to a strongly convex and smooth function when η is
small. This result is used in Proposition 3.2.

Lemma A.3 Let fηy := f + 1
2η‖ · −y‖

2 and (fηy )′ := f ′ + 1
η (· − y), then we have for every u, v ∈ Rd,

1
2

(
1
η
−M

)
‖u− v‖2 − (1− α)δ

2 ≤ fηy (u)− fηy (v)− 〈(fηy )′(v), u− v〉

≤ 1
2

(
1
η

+M

)
‖u− v‖2 + (1− α)δ

2 .

Proof: Using the definitions of fηy and (fηy )′, we have

fηy (u)− fηy (v)− 〈(fηy )′(v), u− v〉

=f(u)− f(v)− 〈f ′(v), u− v〉+ 1
2η ‖u− y‖

2 − 1
2η ‖v − y‖

2 − 1
η
〈v − y, u− v〉

=f(u)− f(v)− 〈f ′(v), u− v〉+ 1
2η ‖u− v‖

2.

The lemma now follows from above identity and (3).

The next lemma gives equivalent formulas of
∫

exp(−hw1,y(x))dx and
∫

exp(−hw∗2,y(x))dx that are useful in
Proposition 3.4.

Lemma A.4 Recall w and w∗ are defined in Proposition 3.2 and Lemma 3.3, respectively. Let hw1,y and hw∗2,y
be as in (8) and (9), respectively. Then, we have the following integrals∫

exp(−hw1,y(x))dx =
(

2πη
1− ηM

)d/2
exp (H1(w)) , (20)∫

exp(−hw
∗

2,y(x))dx =
(

2πη
1 + ηM

)d/2
exp (H2(w∗)) , (21)

where

H1(w) = 1
2η ‖w‖

2 + η

2(1− ηM)‖s‖
2 − f(w) + 1

η
〈w, y − w〉 − 1

2η ‖y‖
2 + 1− α

2 δ, (22)

H2(w∗) = 1
2η ‖w

∗‖2 − f(w∗) + 〈f ′(w∗), w∗〉 − 1
2η ‖y‖

2 − 1− α
2 δ. (23)
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Proof: We first rewrite hw1,y and hw∗2,y as follows

hw1,y(x) =f(w) + 〈f ′(w), x− w〉 − M

2 ‖x− w‖
2 + 1

2η ‖x− y‖
2 − (1− α)δ

2

=1− ηM
2η

∥∥∥∥x+ ηM

1− ηM w − 1
1− ηM y + η

1− ηM f ′(w)
∥∥∥∥2

− 1
2η(1− ηM)‖ηMw − y + ηf ′(w)‖2

+ f(w)− 〈f ′(w), w〉 − M

2 ‖w‖
2 + 1

2η ‖y‖
2 − 1− α

2 δ, (24)

and

hw
∗

2,y(x) =f(w∗) + 〈f ′(w∗), x− w∗〉+ M

2 ‖x− w
∗‖2 + 1

2η ‖x− y‖
2 + (1− α)δ

2

=1 + ηM

2η

∥∥∥∥x− ηM

1 + ηM
w∗ − 1

1 + ηM
y + η

1 + ηM
f ′(w∗)

∥∥∥∥2

− 1
2η(1 + ηM)‖ηMw∗ + y − ηf ′(w∗)‖2

+ f(w∗)− 〈f ′(w∗), w∗〉+ M

2 ‖w
∗‖2 + 1

2η ‖y‖
2 + 1− α

2 δ. (25)

It follows from (24) and Lemma A.2 that

∫
exp(−hw1,y(x))dx =

(
2πη

1− ηM

)d/2
exp(Ĥ1(w)), (26)∫

exp(−hw
∗

2,y(x))dx =
(

2πη
1 + ηM

)d/2
exp(Ĥ2(w∗)), (27)

where

Ĥ1(w) = 1
2η(1− ηM)‖ηMw − y + ηf ′(w)‖2 − f(w) + 〈f ′(w), w〉

+ M

2 ‖w‖
2 − 1

2η ‖y‖
2 + 1− α

2 δ,

Ĥ2(w∗) = 1
2η(1 + ηM)‖ηMw∗ + y − ηf ′(w∗)‖2 − f(w∗) + 〈f ′(w∗), w∗〉

− M

2 ‖w
∗‖2 − 1

2η ‖y‖
2 − 1− α

2 δ.

It suffices to show that Ĥ1(w) = H1(w) and Ĥ2(w∗) = H2(w∗) to complete the proof.
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We first verify that Ĥ1(w) = H1(w). Using the definition of Ĥ1(w) above and the definition of s in (6), we
have

Ĥ1(w) = 1
2η(1− ηM)‖ηMw − w + w − y + ηf ′(w)‖2 − f(w) + 〈f ′(w), w〉

+ M

2 ‖w‖
2 − 1

2η ‖y‖
2 + 1− α

2 δ

= 1
2η(1− ηM)‖(ηM − 1)w + ηs‖2 − f(w) + 〈f ′(w), w〉

+ M

2 ‖w‖
2 − 1

2η ‖y‖
2 + 1− α

2 δ

=1− ηM
2η ‖w‖2 + M

2 ‖w‖
2 − 〈w, s〉+ η

2(1− ηM)‖s‖
2 − f(w) + 〈f ′(w), w〉

− 1
2η ‖y‖

2 + 1− α
2 δ

= 1
2η ‖w‖

2 + η

2(1− ηM)‖s‖
2 − f(w) + 1

η
〈w, y − w〉 − 1

2η ‖y‖
2 + 1− α

2 δ.

In view of (22), we verify that Ĥ1(w) = H1(w) and hence (20) is proved.

We next verify that Ĥ2(w∗) = H2(w∗). Using the definition of Ĥ2(w∗) and (7), we have

Ĥ2(w∗) = 1
2η(1 + ηM)‖ηMw∗ + w∗ − w∗ + y − ηf ′(w∗)‖2 − f(w∗) + 〈f ′(w∗), w∗〉

− M

2 ‖w
∗‖2 − 1

2η ‖y‖
2 − 1− α

2 δ

= 1
2η(1 + ηM)‖(ηM + 1)w∗‖2 − M

2 ‖w
∗‖2 − f(w∗) + 〈f ′(w∗), w∗〉

− 1
2η ‖y‖

2 − 1− α
2 δ

= 1
2η ‖w

∗‖2 − f(w∗) + 〈f ′(w∗), w∗〉 − 1
2η ‖y‖

2 − 1− α
2 δ.

In view of (23), we verify that Ĥ2(w∗) = H2(w∗) and hence (21) is proved.

B Missing proofs

B.1 Proof of Lemma 3.1

It follows from the assumption that f is Lα-semi-smooth that for every u, v ∈ Rd,

|f(u)− f(v)− 〈f ′(v), u− v〉| ≤ Lα
α+ 1‖u− v‖

α+1. (28)

Using the Young’s inequality ab ≤ ap/p+ bq/q with

a = Lα

(α+ 1)δ 1−α
2
‖u− v‖α+1, b = δ

1−α
2 , p = 2

α+ 1 , q = 2
1− α,

we obtain
Lα
α+ 1‖u− v‖

α+1 ≤ L
2

α+1
α

2[(α+ 1)δ]
1−α
α+1
‖u− v‖2 + (1− α)δ

2 .

Plugging the above inequality into (28), we have

|f(u)− f(v)− 〈f ′(v), u− v〉| ≤ L
2

α+1
α

2[(α+ 1)δ]
1−α
α+1
‖u− v‖2 + (1− α)δ

2 .
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This inequality and the definition of M in (4) imply (3).

B.2 Proof of Proposition 3.2

It follows from Lemma A.3 that fηy satisfies (37) with

µ = 1
η
−M, L = 1

η
+M, θ = (1− α)δ

2 . (29)

Since η ≤ 1/(Md), it is easy to verify that the assumption on ρ (i.e.,
√
Md in our case) in Proposition D.4

is satisfied. Hence, it follows from Proposition D.4 and (29) that the proposition holds.

C Sampling from regularized convex semi-smooth potentials

This section presents an alternative approach via regularization for sampling in the same setting as in Sec-
tion 5, i.e., f is convex and satisfies (1). More specifically, the alternative complexity result is obtained by first
applying Theorem 2.2 on a regularized convex semi-smooth potential and then specifying the regularization
parameter.

We consider the following regularized potential with some µ > 0,

f̂(·) = f(·) + µ

2 ‖ · −x
0‖2, (30)

which is clearly µ-strongly convex by construction. Hence, exp(−f̂) satisfies µ-LSI and Theorem 2.2 is
applicable. Since f̂ is µ-strongly convex, improved versions of results in Section 4 can be obtained. We omit
the proofs since they can be easily obtained by following similar ideas in the proofs given in Section 3.

Lemma C.1 Assume f is a convex function and satisfies (1), then for δ > 0 and every u, v ∈ Rd, we have

f̂(u)− f̂(v)− 〈f̂ ′(v), u− v〉 ≤ Mn + µ

2 ‖u− v‖2 +
n∑
i=1

(1− αi)δ
2 ,

f̂(u)− f̂(v)− 〈f̂ ′(v), u− v〉 ≥ µ

2 ‖u− v‖
2,

where f̂ and Mn are as in (30) and (16), respectively.

Proposition C.2 Assume η ≤ 1
Mnd

, and let w ∈ Rd be an approximate stationary point of

min
x∈Rd

{
f̂ηy (x) := f̂(x) + 1

2η ‖x− y‖
2
}
, (31)

i.e.,
‖s‖ ≤

√
Mnd, s = f̂ ′(w) + 1

η
(w − y), (32)

where Mn is as in (16). Then, the iteration-complexity to find w by using Algorithm 4 is Õ(1).

Lemma C.3 Let w∗ ∈ Rd be a stationary point of f̂ηy , i.e.,

f̂ ′(w∗) + 1
η

(w∗ − y) = 0.

Define

ĥw1,y(x) := f̂(w) + 〈f̂ ′(w), x− w〉+ µ

2 ‖x− w‖
2 + 1

2η ‖x− y‖
2,

ĥw
∗

2,y(x) := f̂(w∗) + 〈f̂ ′(w∗), x− w∗〉+ Mn + µ

2 ‖x− w∗‖2 + 1
2η ‖x− y‖

2 +
n∑
i=1

(1− αi)δ
2 ,
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where w is as in (32). Then, we have for every x ∈ Rd,

ĥw1,y(x) ≤ f̂ηy (x) ≤ ĥw
∗

2,y(x).

Proposition C.4 Assume f is convex and satisfies (1) and let f̂ηy be as in (31). Then X generated by
Algorithm 2 (with (6), fηy , and hw1,y(x) replaced by (32), f̂ηy , and ĥw1,y(x), respectively) follows the distribution
πX|Y (x | y) ∝ exp

(
−f̂ηy (x)

)
. Moreover, if η ≤ 1

Mnd
, then the expected number of rejection steps in Algorithm

2 is at most exp
(∑n

i=1
(1−αi)δ

2 + 1
)
.

Proposition C.5 Assume f is convex and Lα-semi-smooth and let f̂ be as in (30). With initial distribution

ρX0 and stepsize η � 1/
(∑n

i=1 L
2

αi+1
αi d

)
, Algorithm 1 using Algorithm 2 as an RGO achieves ε error in terms

of KL divergence with respect to exp(−f̂) in

Õ

∑n
i=1 L

2
αi+1
αi d

µ

 (33)

iteration, and each iteration queries Õ(1) subgradient oracle of f and O(1) Gaussian distribution sampling
oracle.

Proof: By construction, f̂ is µ-strongly convex and exp(−f̂) satisfies µ-LSI. Using Theorem 2.2, starting
from initial distribution ρX0 , it takes

1
2µη log HπX (ρX0 )

ε
(34)

iterations for Algorithm 1 to achieve ε error to exp(−f̂) with respect to KL divergence.

By Propositions C.2 and C.4, Algorithm 2 queries Õ(1) subgradient oracle of f and O(1) Gaussian distri-
bution sampling oracle. Complexity (33) then follows by plugging η into (34).

Building upon Proposition C.5 for sampling from exp(−f̂(x)) = exp(−f(x)− µ‖x− x0‖2/2), we establish a
complexity result, in the following theorem, to sample from the original target distribution πX ∝ exp(−f)
by choosing a proper regularization constant µ.

Theorem C.6 Let πX ∝ exp(−f(x)) be the target distribution where f is convex and satisfies (1). Let
x0 ∈ Rd and ε > 0 be given and set

µ = ε√
2
(√
M4 + ‖x0 − xmin‖2

) (35)

where M4 =
∫
Rd ‖x − xmin‖4dπX(x) and xmin ∈ Argmin {f(x) : x ∈ Rd}. With initial distribution ρX0

and stepsize η � 1/
(∑n

i=1 L
2

αi+1
αi d

)
, Algorithm 1 using Algorithm 2 as an RGO for step 1, applied to

ν ∝ exp(−f̂) = exp(−f − µ‖ · −x0‖2/2) has the iteration-complexity bound

Õ

∑n
i=1 L

2
αi+1
αi d

(√
M4 + ‖x0 − xmin‖2)
ε

 (36)

to achieve ε error to πX in terms of total variation.

Proof: Let ρX denote the distribution of the samples generated by Algorithm 1 using Algorithm 2 as an
RGO. Following the proof of Corollary 4.1 of Chatterji et al. (2020), we obtain

‖ρX − πX‖TV ≤ ‖ρX − ν‖TV + ‖ν − πX‖TV
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and

‖πX − ν‖TV ≤
1
2

(∫
Rd

[f(x)− f̂(x)]2dπX(x)
)1/2

= 1
2

(∫
Rd

(µ
2 ‖x− x

0‖2
)2

dπX(x)
)1/2

≤ µ

2

(∫
Rd

(
‖x− xmin‖2 + ‖xmin − x0‖2)2 dπX(x)

)1/2

≤ µ

2

(∫
Rd

(
2‖x− xmin‖4 + 2‖xmin − x0‖4) dπX(x)

)1/2

=
√

2µ
2
(
M4 + ‖xmin − x0‖4)1/2 ≤

√
2µ
2

(√
M4 + ‖x0 − xmin‖2

)
= ε

2
where the last identity is due to the definition of µ in (35). Hence, it suffices to derive the iteration-complexity
bound for Algorithm 1 to achieve ‖ρX − πX‖TV ≤ ε/2, which is (36) in view of Proposition C.5 with µ as in
(35). Note that even though the complexity result in Proposition C.5 is with respect to KL divergence, one
can get the same order of complexity with respect to total variation using Pinsker inequality.

D Solving the optimization problem

In this section, we use Nesterov’s acceleration to establish the iteration-complexity for solving a general
optimization problem that is nearly strongly convex and nearly smooth. This general result is then applied
in Section 3 to find an approximate stationary point of fηy (see Proposition 3.2).

We consider the optimization problem min{g(x) : x ∈ Rd}, where g satisfies
µ

2 ‖u− v‖
2 − θ ≤ g(u)− g(v)− 〈g′(v), u− v〉 ≤ L

2 ‖u− v‖
2 + θ, ∀u, v ∈ Rd, (37)

for some given θ > 0, µ ≥ 0, and L ≥ 0. We use Nesterov’s accelerated gradient method to find a ρ-
approximate stationary point w such that ‖g′(w)‖ ≤ ρ. We also establish the iteration-complexity to obtain
a ρ-approximate stationary point.

Algorithm 4 Accelerated Gradient Method
0. Let an initial point x0, parameters L, µ > 0 be given, and set y0 = x0, A0 = 0, τ0 = 1, and k = 0;
1. Compute

ak =
τk +

√
τ2
k + 4τkLAk
2L , Ak+1 = Ak + ak, (38)

τk+1 = τk + akµ, x̃k = Akyk + akxk
Ak+1

; (39)

2. Compute

yk+1 := argmin
u∈Rd

{
γk(u) + L

2 ‖u− x̃k‖
2
}
, (40)

xk+1 := argmin
u∈Rd

{
akγk(u) + τk

2 ‖u− xk‖
2
}
, (41)

where
γk(u) := g(x̃k) + 〈g′(x̃k), u− x̃k〉+ µ

2 ‖u− x̃k‖
2; (42)

3. Set k ← k + 1 and go to step 1.

Lemma D.1 For every k ≥ 0 and u ∈ Rd, we have

−θ ≤ g(u)− γk(u) ≤ L− µ
2 ‖u− x̃k‖2 + θ. (43)
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Proof: This lemma directly follows from (37) and the definition of γk in (42).

Lemma D.2 For every k ≥ 0, the following statements hold:

a) Ak+1 = La2
k/τk;

b) Ak+1 ≥ 1
L

(
1 +

√
µ

2
√
L

)2k
;

c)
∑k
i=0 Ai+1 ≥ exp(2(k+1)(β−1)/β)−1

L(β2−1) where β = 1 +
√
µ

2
√
L
.

Proof: a) This statement directly follows from (38).

b) It is easy to see from (38), A0 = 0 and τ0 = 1 that A1 = 1/L. Using the definitions of Ak and τk in (38)
and (39), respectively, and the facts that A0 = 0 and τ0 = 1, we easily derive that

τk = τ0 +Akµ = 1 +Akµ. (44)

It follows from (38) that

Ak+1 = Ak + ak = Ak +
τk +

√
τ2
k + 4τkLAk
2L ≥ Ak + τk

2L +
√
τkAk√
L
≥
(√

Ak +
√
τk

2
√
L

)2
.

The above inequality and (44) imply√
Ak+1 ≥

√
Ak +

√
τk

2
√
L

=
√
Ak +

√
1 +Akµ

2
√
L

≥
(

1 +
√
µ

2
√
L

)√
Ak.

This statement now follows from the above relation and the fact that A1 = 1/L.

c) Noting from b) that Ak+1 ≥ β2k/L, which together with the fact x ≥ exp((x − 1)/x) for x ≥ 1, implies
that

k∑
i=0

Ai+1 ≥
1
L

k∑
i=0

β2i = β2(k+1) − 1
L(β2 − 1) ≥

exp(2(k + 1)(β − 1)/β)− 1
L(β2 − 1) .

Lemma D.3 For every k ≥ 0, define

tk(u) = Ak [g(yk)− g(u)] + τk
2 ‖u− xk‖

2, (45)

then for every u ∈ Rd, we have
µ

2Ak+1‖yk+1 − x̃k‖2 ≤ tk(u)− tk+1(u) + 2Ak+1θ. (46)

Proof: Using the fact γk is convex and the definition of x̃k in (39), we have

Akγk(yk) + akγk(u) + τk
2 ‖u− xk‖

2

≥Ak+1γk

(
Akyk + aku

Ak+1

)
+
τkA

2
k+1

2a2
k

∥∥∥∥Akyk + aku

Ak+1
− x̃k

∥∥∥∥2

=Ak+1

[
γk

(
Akyk + aku

Ak+1

)
+ L

2

∥∥∥∥Akyk + aku

Ak+1
− x̃k

∥∥∥∥2
]

≥Ak+1 min
{
γk(u) + L

2 ‖u− x̃k‖
2
}

=Ak+1

[
γk(yk+1) + L

2 ‖yk+1 − x̃k‖2
]
,
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where the first identity is due to (38) and the second identity is due to the definition of yk+1 in (40). It
follows from the second inequality of (43) with u = yk+1 and the above inequality that

Ak+1

[
g(yk+1)− θ + µ

2 ‖yk+1 − x̃k‖2
]

≤ Ak+1

[
γk(yk+1) + L

2 ‖yk+1 − x̃k‖2
]

≤ Akγk(yk) + akγk(xk+1) + τk
2 ‖xk+1 − xk‖2

≤ Akγk(yk) + akγk(u) + τk
2 ‖u− xk‖

2 − τk+1

2 ‖u− xk+1‖2

where the last inequality is due to (41) and the fact that akγk + τk‖ · −xk‖2/2 is τk+1-strongly convex.
Rearranging the terms in the above inequality, we obtain

µ

2Ak+1‖yk+1 − x̃k‖2

≤Akγk(yk) + akγk(u) + τk
2 ‖u− xk‖

2 − τk+1

2 ‖u− xk+1‖2 −Ak+1 [g(yk+1)− θ]

=Ak [g(yk)− g(u)] + τk
2 ‖u− xk‖

2 −Ak+1 [g(yk+1)− g(u)]− τk+1

2 ‖u− xk+1‖2

+Ak [γk(yk)− g(yk)] + ak [γk(u)− g(u)] +Ak+1θ

≤tk(u)− tk+1(u) + 2Ak+1θ

where the identity is due to the fact that Ak+1 = Ak +ak, and the last inequality is due to (45) and the first
inequality of (43).

Proposition D.4 If ρ ≥ 2
√

2(µ + L)
√
θ/
√
µ, then the number of iterations k0 to obtain a ρ-approximate

stationary point of g is at most

k0 :=
2
√
L+√µ
2√µ log

(
(µ+ L)2d2

0
ρ2

2
√
L+√µ
2√µ + 1

)
. (47)

Proof: It follows from the optimality condition of (40) that
g′(x̃k) = (µ+ L)(x̃k − yk+1).

Using the above relation and summing (46) with u = x∗ from k = 0 to k − 1, we have

µ

2(µ+ L)2

k−1∑
i=0

Ai+1‖g′(x̃i)‖2 = µ

2

k−1∑
i=0

Ai+1‖yi+1 − x̃i‖2

≤ t0(x∗) + 2
k−1∑
i=0

Ai+1θ = d2
0

2 + 2
k−1∑
i=0

Ai+1θ,

where the last identity follows from the facts that A0 = 0 and τ0 = 1. The above inequality and the
assumption on ρ imply that

min
0≤i≤k−1

‖g′(x̃i)‖2 ≤ (µ+ L)2

µ

(
d2

0∑k−1
i=0 Ai+1

+ 4θ
)
≤ (µ+ L)2

µ

d2
0∑k−1

i=0 Ai+1
+ ρ2

2 .

In order to show min0≤i≤k−1 ‖g′(x̃i)‖ ≤ ρ, it suffices to show
(µ+ L)2

µ

d2
0∑k−1

i=0 Ai+1
≤ ρ2

2 . (48)

Using Lemma D.2 (c) and the fact that k ≥ k0 where k0 is as in (47), we have
k−1∑
i=0

Ai+1 ≥
exp(2k(β − 1)/β)− 1

L(β2 − 1) ≥ 2(µ+ L)2d2
0

µρ2 ,

and hence (48) is proved.
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E LMC as an approximate implementation of ASF

Following a similar argument as in Section 6, we show that LMC can be viewed as an instance of ASF whose
implementation of RGO is inexact.

Assume f in the target distribution π ∝ exp(−f) is convex and smooth and recall that the iterative step in
LMC can be described as

yk+1 = yk − η∇f(yk) +
√

2ηz, z ∼ N (0, I). (49)

We claim that the following algorithm gives an equivalent form of LMC (49) from the proximal sampling
perspective.

Algorithm 5 Langevin Monte Carlo
1. Sample yk ∼ πY |X(y | xk) ∝ exp[− 1

2η‖xk − y‖
2]

2. Sample xk+1 ∼ exp[− 1
2η‖x− yk + η∇f(yk)‖2]

Indeed, steps 1 and 2 can be equivalently written as

xk+1 = yk − η∇f(yk) +√ηzk, zk ∼ N(0, I),
yk+1 = xk+1 +√ηz′k, z′k ∼ N (0, I),

where yk+1 is the sample from step 1 in the next iteration. Combining the above identities, we have

yk+1 = yk − η∇f(yk) +√η(zk + z′k) d= yk − η∇f(yk) +
√

2ηz, z ∼ N (0, I).

Moreover, LMC and ASF share the same step 1, and step 2 of LMC equivalently generates xk+1 from
exp[−h1(x)] where

h1(x) := f(yk) + 〈∇f(yk), x− yk〉+ 1
2η ‖x− yk‖

2. (50)

Using the definition of h1 in (50) and the convexity of f , we have

h1(x) ≤ f(x) + 1
2η ‖x− yk‖

2 = fηyk(x).

Note that fηyk(x) is the potential function of the RGO in step 2 of ASF. Hence, step 2 of LMC can be
interpreted as an RGO implementation with the proposal density exp[−h1(x)] but without rejection. As a
result, LMC is an approximate implementation of ASF and thus LMC is biased.

It is worth noting that many other sampling algorithms, for example, symmetric Langevin algorithm of
Wibisono (2018) and Metropolis-adjusted proximal gradient Langevin dynamics of Mou et al. (2019), can
also be shown to be approximate implementations of ASF in an analogous way.
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