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ABSTRACT

Inductive reasoning is crucial in human thinking, allowing us to distill universal
laws from limited samples. However, incorporating inductive reasoning has not
been studied enough in the field of artificial intelligence, especially in the appli-
cation of large-scale language models, limiting the ability of models to abstract
broad rules and trends from limited data. We introduce inductive thinking into
generative models, designing rigorous rules to compare generated results with
real ones, and verify its effectiveness in improving generation. To achieve this,
we developed IMap (Intellectual Mapping based on Reinforcement Learning),
which integrates the inductive thinking paradigm to improve the model’s infer-
ence capabilities. We designed a thinking data structure based on the inductive
paradigm, consisting of four core elements: COTs, Cases, Patterns, and Reason-
ability. We also propose an algorithm, the RL-Paradigm model (RLP), to acquire
new thinking paradigms. By using figurative inductive thinking as input cues, we
successfully guided multiple large models to generate an average of 270 results.
Comparative experiments show that input cues combined with inductive thinking
perform well in most models, significantly improving the generation results. We
conducted a comprehensive evaluation of RLP against other models using BLEU,
Bert-score, and Jina-score metrics. The results show that RLP significantly outper-
forms other models in several areas. We unlocked the generative potential of in-
ductive thinking paradigms, developed reusable thinking data maps, and designed
RLP, a generative model specialized for unknown paradigms. This innovation is
expected to advance the generative capabilities of LLMs and offer insights for in-
terdisciplinary research in brain sciences. Our code and data and trained models
are publicly available from https://github.com/yzqrtop/RLP-inductive-LLM.

1 INTRODUCTION

Inductive reasoning, which involves generalizing Patterns and rules from limited rejecteds, is funda-
mental to human cognition and crucial in artificial intelligence (AI) (Latona et al.,|2024). As large
language models (LLMs) become essential for applications like conversational agents, content gen-
eration, and problem-solving systems, their ability to perform inductive reasoning is under greater
scrutiny (Heiding et al.| [2023; |Dam et al.| [2024). This study builds on previous research, tackles
limitations in existing datasets and models, and introduces a new approach to improve the inductive
reasoning abilities of LLMs (Wu et al., [2024; |[Luong et al., 2024)).

Several researchers have advanced LLMs’ reasoning capabilities. Step-by-step approaches, such as
COTs reasoning, have enabled LLMs to address multi-step reasoning tasks by guiding their logic
through each step (Bai et al.| [2024). Synthetic data generation has also been explored to enhance
LLM training. Although the aforementioned methods have advanced LLM reasoning, they exhibit
several limitations: Limited Dataset Diversity: Many approaches rely on narrow datasets like
GSMSK (Cobbe et al., 2021b), which focus on specific domains, such as mathematical reasoning.
This lack of structural diversity limits the models’ ability to generalize across diverse tasks. Sparse
and Static Annotations: CoT-based methods typically use a single annotated reasoning path per
question (Zhang et al.l 2024b). We believe that this static approach fails to capture the multiple
valid reasoning paths that may exist for a given problem, limiting the model’s reasoning flexibility.
Scalability and Generalization: Reinforcement learning frameworks like REFT (Long et al.,[2024)
and RAFT (Zhang et al.l |2024a)) show promise but face scalability issues due to sparse rewards
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and reliance on domain-specific datasets. Additionally, these models often struggle to generalize
effectively to unseen scenarios.

This study builds on prior research, addresses limitations in existing datasets and models, and intro-
duces an inductive thinking paradigm to enhance the inductive reasoning capabilities of LLMs. We
validated the effectiveness of this paradigm through rigorous benchmarking on the BBH dataset. To
this end, we designed an inductive thinking paradigm data graph to provide fast, reliable thinking
data for reuse. To complement the thinking paradigm graph, we propose the RL paradigm model
(RLP), a reinforcement learning-based approach utilizing proximal policy optimization (PPO). Un-
like static reasoning methods, the RLP dynamically explores and generates new reasoning paths
using feedback from datasets. We use BLEU (Papineni et al.,[2002), Bert-score (Zhang et al.,|2020),
and Jina-score metrics to evaluate the quality of inference outputs generated by RLP.

In summary, our contributions are as follows. 1. We introduce inductive thinking into the genera-
tion of Large Language Models (LLLMs) and validate its impact using the BBH (Big Bench Hard)
benchmark dataset. 2. We have constructed a reinforcement learning-driven mind map (IMap),
integrating new thinking paradigms and providing structured knowledge support for subsequent
model generation tasks. 3. We propose the RL Paradigm model (RLP), which generates new
thinking paradigms and efficiently expands the application of inductive reasoning. 4. By construct-
ing a reusable mental data graph and designing generative models for new thinking paradigms,
this study advances LLM development in language understanding and provides new perspectives
for interdisciplinary research, including neuroscience and cognitive psychology, with significant ap-
plication potential.

2 RELATED WORK

2.1 THE POTENTIAL OF LLMS IN COMPLEX REASONING SCENARIOS

Large Language Models (LLMs) have shown remarkable abilities in understanding and generating
human-like text (Heiding et al. [2023). Recent research has aimed at enhancing their reasoning
abilities to handle complex tasks. Techniques like Chain-of-Thought (CoT) prompting encourage
models to articulate intermediate reasoning steps, improving problem-solving performance (Devlin
et al.,2018). For example, the Cumulative Reasoning approach uses LLMs iteratively to mirror hu-
man thought processes, breaking tasks into manageable components and leveraging prior proposi-
tions for effective composition. These advancements demonstrate the potential of LLMs to perform
sophisticated reasoning across diverse domains.

2.2 AN EXPLORATION OF LLMS FINE-TUNING BASED ON REINFORCEMENT LEARNING

This study applies Proximal Policy Optimization (PPO) (Schulman et al., 2017) for natural lan-
guage processing to align human preferences (Ouyang et al 2022). Since then, several training
algorithms have been introduced to improve alignment efficiency, including Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), Identity Preference Optimization (IPO) (Azar et al.,|2023)),
and Kahneman-Tversky Optimization (KTO) (Ethayarajh et al.| [2024). Unlike alignment-focused
methods, our goal is to adopt reinforcement learning as a fine-tuning approach to enhance perfor-
mance beyond conventional supervised fine-tuning techniques.

2.3 INDUCTIVE THINKING PARADIGM INTERPRETATION

Inductive thinking is a logical method of forming general Patterns or predictions by observing spe-
cific examples (Binti Misrom et al., |2020). It enables researchers to develop theories and chosen
from rejecteds and empirical evidence, generating new knowledge. This method is particularly
suited for qualitative research, forming general principles or theories by analyzing specific exam-
ples (Peltonen, 2023} Mott & Bullock} 2015)), which aids in exploring phenomena and generating
new insights. By proposing questions that foster higher-order thinking skills (Fabrizio et al.,|2014),
methods for cultivating inductive thinking, and techniques to improve its efficiency (Hammer},|2011),
the ability to solve practical problems in various fields can be enhanced.
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2.4 DATASET BBH FOR QUANTITATIVE ASSESSMENT OF LANGUAGE MODELS

BIG-Bench is a collaborative benchmark designed to quantitatively assess the strengths and weak-
nesses of language models (Srivastava et al., [2022)). It includes over 200 diverse text-based tasks
across categories such as traditional NLP, mathematics, commonsense reasoning, and question-
answering. The remaining 23 subtasks form our curated benchmark, BIG-Bench Hard (BBH).
This includes two tasks: Logical Deduction and Shuffled Objects, each with three subtasks. For
all tasks in BBH, except three, we selected a random subset of 250 evaluation examples, totaling
6,511 examples in the benchmark.

3  VALIDATION AND CONSTRUCTION OF IMAP

The IMap building involves three steps. First, we use inductive thinking validation to assess the
accuracy of inductive thinking in various models (see Section [3.I). Next, we design an inductive
thinking data graph and define five graph structures. Finally, we define four generation tasks and
introduce the RLP method for generating new thinking paradigms. As shown in the Figure 1]
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Figure 1: IMap consists of three stages: (1) Inductive thinking verifier, (2) Paradigm Structure
and (3) Imap Construction. First, we use inductive thinking validation to assess the accuracy of
inductive thinking in various models (see Chapter [3.1)). Next, we design an inductive thinking data
graph and define five graph structures. Finally, we define four generation tasks and introduce the
RLP method for generating new thinking paradigms.

3.1 INDUCTIVE THINKING VALIDATION

We randomly selected 10 question-answer pairs from 23 subtasks in the BBH dataset, which in-
clude tasks related to causal judgment, data parsing, time sorting, and more. We used a variety
of large models at different scales to test comparisons, and then selected the appropriate large lan-
guage model to generate the following graphical structure of the data: COTs, Cases, Patterns, and
Reasonability. These data were then used to create a prompt instruction set. Next, we integrate
the questions, answers, and prompts that generate paradigms. Our cognitive generation process is
mainly divided into two types of prompts: attribute prompts, which are used to induce cognitive
attributes from examples, and system prompts, which are used to answer new questions using the
generated attributes. Please refer to Appendix [F for details. The teacher language model is then
applied to numerous candidate paradigms. We then determine whether the language model’s answer
includes these paradigms; if it does, it is considered correct. Finally, we continue asking the lan-
guage model questions for further exploration. We use a rigorous answer comparison strategy: when
the model’s answer is inconsistent with the correct one or is ambiguous, we consider it incorrect.
As shown in Table [1] inductive thinking performs well in most models. Additionally, we have
carefully selected a batch of high-quality inductive thinking datasets for use in the Section[3.3.2]

3.2 IMAP STRUCTURE DEFINITION

The design of the IMap data structure is rooted in inductive thinking theory, a framework that holds
inductive reasoning progresses from specific facts to general conclusions. Here, we emphasize that
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Table 1: Compare the performance of the inductive thinking paradigm with other cueing methods
on generative models of all scales. Compared to other cueing strategies, the inductive thinking
paradigm exhibits differential impact across models of various sizes. When compared to models
such as yi-34B-chat, the paradigm’s performance gains appear relatively limited. In contrast, the
inductive thinking paradigm significantly enhances performance on the Llama-3.2-1B and Qwen
Turbo models. Taken together, the inductive thinking paradigm demonstrates its superior efficacy

by performing optimally in terms of overall performance, outperforming the average by 9.83%.
model/method Llama-3.2-1B  Llama-3.2-3B  Llama-3.1-8B  yi-34B-chat Qwen Plus Qwen Turbo Avg.
zero-shot (Kojima et al.[[2023) 32.33_678)d  26.06(_7.88)d 47.62(0.0) 21.11(_ga1)d  35.67(_ogas)l 22.10(_a7s3)d 30.82(_13.16))
Step-by-Step (Hsich ot al][2023)  35.65(_5.4)0 30 04( ol 40, 180yl 2457 ao5b 5824 senl  28.20( ;m 36.21(_7.77))
Question Aug(L1 et al.|[2024) 44.53(5.42) T 5521(1_27)? 40. 48 7 14)L 29.92(0.4)T 76.87(12.82)T 70.17 50 54) T 49.53(5.55)T
reverse (Chen et al.|[2024] 39.580.4m b 39.50(5 56" 47.62(0,0)¢ 348150017 744300457 613301 )T 40,545 56)1
( (1
( (6.

TOT(Tree of Thought) 35694307  40.6940mT  56.21(1400)T  36.27(r60)7  69.1511)1 6841161y 54319531
inductive 435004307 38.89 4,95)¢ 619115007  37.21(760)T  75.0511)T 66.30167)1  53.819s3T
Avg. 39.11 33.94 47.62 29.52 64.05 49.63 43.98

explicitly delineating these reasoning steps confers three core advantages: heightened interpretabil-
ity, improved stability, and stronger generalization capabilities of the reasoning process. This is
particularly critical for tackling complex problems that demand abstraction and inductive thinking.
IMap captures the core units of inductive question-answering logic by defining six key cognitive
nodes, denoted as IMap = {Q, A, Co,Ca, P, R}, where Q is question, A is answer, Co is COTs,
Cais Cases, P is Patterns, and R is Reasonability. It also offers a comprehensive data structure model
for studying inductive reasoning. The core advantage of explicitly defining these steps lies in en-
hancing the interpretability, stability, and generalization capabilities of the reasoning process,
which is crucial for addressing complex problems that require abstraction and induction.

Question (Q): Problems from the 23 tasks in the BBH dataset (e.g., boolean expressions task: “not
(True) and (True) is”’). Answer (A): Corresponding answers to Q (e.g., “False” for the above boolean
expressions question). Extended parsing was conducted based on Q and A. COTs (Co): Analyti-
cal content for Q, providing detailed descriptions of Q’s problem context and potential insights.
Cases (Ca): Specific conditions or relevant examples extracted from COTs, used to analogize and
interpret the ideas/principles in COTs. Patterns (P): Fundamental principles capturing common-
alities between COTs and Cases. These principles precisely encode shared information consistent
with both components, reflecting their common structures; P enables extraction of the underlying
logical framework of COTs and Cases, facilitating efficient knowledge summarization and general-
ization. Reasonability (R): Validation of the rationality of P-described cognitive patterns, focusing
on adherence to problem-specific rules (e.g., for the pattern “teamwork improves work efficiency,”
R verifies universal validity via analyzing Ca (successful project teams) and Co (contexts like team
role division)).

These nodes form a structured representation as follows: @@ = Co,Co = Ca,Ca+Co = P,P =
R,Q + Co+ Ca+ P = A. We incorporated inductive thinking into the generation process of
Large Language Models (LLMs) and validated its effectiveness through BBH benchmark testing,
resulting in a 7% improvement in model accuracy. Simultaneously, a reinforcement learning-driven
thinking graph (IMap) was developed, combining the theory of new thinking paradigms. This graph
incorporates elements such as ”COTs”, "Cases”, “’Patterns”, and “Reasonability”.

3.3 IMAP GENERATOR

In IMap, the process of generating cognitive chains is decomposed into a series of ordered tasks:
the generation of COTs, Cases, Patterns, and Reasonability. As shown in the Figure E], we perform
these tasks sequentially and connect them in a question-answer format (QQ = A) to form a complete
cognitive chain. By further refining these processes, we define the following four core inference
generation tasks:

COTs generation: Constructs a logical chain (termed a “problem description inference chain”)
for a given task, decomposing the problem into logically connected subproblems via key reasoning
steps. This provides a structured framework for subsequent Cases and Patterns generation. Cases
generation: Generates specific, diverse Cases to support COTs steps, following the rule ’reasoning
chain (COTs) + problem description = supportive case.” Cases must align with COTs to validate
the inference chain from multiple perspectives. Patterns generation: Abstracts commonalities
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between COTs and Cases (rule: "COTs + Cases = Patterns”) to produce logical cognitive Patterns.
These reveal deep logical relationships between COTs and Cases, offering universal guidance for
broader reasoning scenarios.Reasonability generation: Verifies Pattern rationality (rule: Patterns
= Reasonability”’) by checking alignment with problem-specific logical rules and Case support.
Logical validation of Patterns determines their applicability and optimizes inference chain accuracy.

3.3.1 TASK DEFINITIONS

Task Input Output
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Figure 2: IMap structure generation task definition diagram. We propose a cognitive chain genera-
tion task for constructing IMap, which involves a series of ordered tasks: COTs generation, Cases
generation, Patterns generation, and Reasonability generation.

By linking the four tasks in a pipeline, IMap restores the complete cognitive chain: "Question =
COTs = Cases = Patterns = Reasonability.” This process ensures the logical integrity of
the cognitive chain from question to answer and enables the model to dynamically adjust to meet
the reasoning needs of different tasks.

3.3.2 RLP

During supervised training, the model improves its performance by generating results structurally
similar to the reference reality. However, high structural similarity alone does not guarantee logical
explanatory power, particularly when dealing with unseen samples, where the limitations of this
approach become more evident. To enhance task generation models, we introduced reinforcement
learning methods (Ziegler et al., 2020) and combined them with thought paradigm graph data to
create feedback reward functions. Finally, we developed a generation model for unknown inductive
thinking paradigms.

Specifically, for the four generation tasks, we input real problems into the training model, which gen-
erates both trained and baseline representations. The KL divergence between the two is input into
PPO. Additionally, we introduce adaptive controller. the controller’s logic depends on the KL diver-
gence for an entire batch of generated sequences. This requires aggregating the per-token penalties.
First, the per-token values dx 7, are summed over the length t of a single generated sequence y to
obtain the sequence-level KL divergence, K L cq:

T
Lieq ( Z5KL 0,h) =Y (logmg (h | 0) — log mer (h | 0)) (1)
t=1

In this framework, h and o represent the token sequences for the chosen and rejected items, respec-
tively, while H and O denote the corresponding sets of chosen and rejected items. This summation
represents the total accumulated divergence from the reference policy for a single complete gener-
ation. Next, to get a stable signal for the entire batch, the sequence-level KL values are averaged



Under review as a conference paper at ICLR 2026

across all N sequences in the current batch. This yields the batch-level KL divergence, K Lyg¢ch-
Using the mean is standard practice as it makes the metric invariant to batch size.

N
1
K Lateh = 55 > K Lacq(y1) )
i=1

This K Lygtch, value is the key metric used by the adaptive controller to decide whether to adjust 5.
The controller operates based on a target KL divergence value, dy,r¢, and adjust 8 using multiplica-
tive if the measured K Ly,:cp, strays too far from this target. Let 5;, be the KL coefficient for the k-th
training batch. The coefficient for the next batch, 1, is determined by the following piecewise
update rule, which is consistent with established adaptive KL controller implementations:

2.8, if KLY > 15 dig

Bror =S Br/2 i KLY < die/1.5 3)
B otherwise

where K ng]:t)ch is the calculated batch-level KL divergence for the k-th batch. d;, is the predefined
target for the KL divergence. Based on the provided methodology, this is set t0 diqrg = 6.0.
The controller uses a factor of 1.5 to define a tolerance band around the target. The adjustment
multipliers are 2.0 for increasing the penalty and 1/2.0 for decreasing it. with these components,
the full optimization problem can be stated. The RL algorithm (PPO (Schulman et al.|[2017)) seeks
to find the parameters € of the policy my that maximize the expected total reward. For any given
training batch k, the objective is to maximize the expectation over all sequences in the batch:

T
Objective: max B ) p, (7R (2:Y) = Bk > (logmg (h | 0) —log mes (b | 0)) 4)
t=1

Here, x is the prompt and Dy, represents the distribution of prompt-completion pairs generated by
the policy my for the k-batch, and Sy is the adaptively determined coefficient for that batch. This
objective is used to compute the advantage estimates that drive the PPO policy update, effectively
guiding the model to produce high-reward outputs while staying within a dynamically controlled
“trust region” around the reference model.

4 EXPERIMENTS AND DISCUSSIONS

4.1 INTRODUCTION TO THE MODEL USED

IMap generation is a novel task, and we have selected four different generation models at varying
levels: a Chinese metaphor generation model and a text vectorization model as baselines. Yi-34B-
Chat is an open-source, large-scale language model, trained from scratch by 01.Al. As a bilingual
model, the Yi series was trained on a 3T multilingual corpus. According to the AlpacaEval ranking
(as of January 2024), Yi-34B Chat ranks second, after GPT-4 Turbo, surpassing LLMs like GPT-4,
Mixtral, and Claude. Meta-Llama-3.1-8B-instruction is an autoregressive language model with
an optimized Transformer architecture. The adjusted version employs supervised fine-tuning (SFT,
(Razumovskaia et al.| 2024))) and reinforcement learning with manual feedback (RLHF, (Hatgis-
Kessell et al.} [2025)) to align with human preferences for usefulness and safety. The Meta Llama
3.2 Multilingual LLM collection consists of pre-trained, instruction-adjusted generative models,
available in 1B (Cook et al.,|2024) and 3B sizes (Dong et al.,|2024) (text input/output). The QWEN
model (Yang et al.,[2025a)) is a transformer-based language model. The key feature of this model is
its use of a self-attention mechanism to process input sequences and capture long-term dependencies.
The QWEN Plus model (Bai et al.l [2023), an improved version of QWEN, significantly enhances
the detail, role-playing, and text creation capabilities in both Chinese and English responses. The
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QWEN Turbo model (Yang et al. [2025b)) is optimized for processing power and inference effi-
ciency for long sequences, supporting longer contextual information. Jina-embeddings-v3 (Sturua
et al.l 2024) is a multilingual, multitasking text embedding model designed for various NLP ap-
plications. Based on the Jina XLLM RoBERTa architecture, this model supports rotational position
embedding and handles long input sequences with up to 8192 labels. Additionally, it includes five
LoRA adapters that efficiently generate embeddings for specific tasks.

4.2 EXPERIMENT SETTING

In this experiment, we based the model on an autoregressive structure. The model comprises twelve
decoder layers, each with twelve attention heads and a hidden layer dimension of 768. During
the reinforcement learning phase, we introduced dynamically adjusted penalty coefficients (Ouyang
et al.,[2022) to enhance the model’s adaptability and training effectiveness. We then employed GAE
to reduce estimation variance, used a shearing objective function to prevent excessive policy updates,
and utilized Meta Llama 3.2 1B as the policy network to calculate the token generation probability
distribution based on input.

we selecting Llama-3.2-1B as the core model for our research still has sufficient representativeness
and scientific value at this stage. The reasons are as follows: Though outperformed by hybrid
expert models (e.g., Mixtral) in specific reasoning tasks (e.g., mathematics) (Feng et al., |[2025), it
sufficiently reflects the average performance of current 100-billion-parameter models in complex
reasoning; Multi-strategy generation in standard CoT is implicit and uncontrollable (Heitl, |2000);
our method explicitly incorporates cognitive attributes (e.g., ’Patterns”), rendering the generation
and evaluation process explicit and intervenable.

We also define the similarity between real and generated data as a reward signal, guiding the model to
generate target text via real-time and cumulative rewards. During the supervised training phase, we
employed the AdamW optimizer and identified the optimal hyperparameter configuration through
grid search. For the autoregressive structure, the learning rate was set to 0.0005, and the batch size
was 256. Additionally, a linear warm-up strategy of 1000 time steps was applied during training to
stabilize model optimization. All experiments were performed on two single GPUs with NVIDIA
GTX 1080Ti 12G, ensuring consistency and availability of the experimental environment. Our
code and data and trained models are publicly available from https://github.com/yzqrtop/RLP-
inductive-LLM.

To compare the quality of RLP generation, we deployed the large model in two configurations: an
online API model, and an offline local model. For offline models, we deployed Llama-3.2-1B,
Llama-3.2-3B, and Llama-3.1-8B using Hugging Face, performing 50 inference tasks on a Tesla
A800 80G GPU. The complete inference process took approximately 100 hours. For the online Yi-
34B chat and Qwen Plus API models, we use a ’stop to continue” approach to ensure consistency in
the generated answers. The ”Stop to Continue” method involves using breakpoints to automatically
record and locate the last inference data point when the API disconnects from the network. The
baseline model mentioned above is manually prompted to complete cognitive generation tasks.

4.3 EVALUATION METRICS

BLEU: BLEU is a commonly used evaluation metric in machine translation and natural language
generation tasks, designed to quantify the similarity between generated text and reference text. It
was first proposed by (Papineni et al.l [2002)) and is based on a precision calculation method using
n-grams. The BLEU score is calculated by combining the n-gram precision and the length penaliza-
tion:

N
Fprpu = BP - exp (Z wy, log Pn) ; S

n=1
where w,, represents the weights, which are equal for all n-grams (w,, = %).

JINA: The jina-embedding-v3 model (Sturua et al.,|2024)) is embedded with a set of low-rank adap-
tation (LoRA) modules designed for specific tasks such as query-document retrieval, clustering,
categorization, and text matching to produce high-quality embedding vectors. By applying the jinn-
embedding-v3 model to encode RLP-generated text with standard paradigm text, we obtain the
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corresponding vectors x and x’. The similarity calculation formula is similar to Bert-score and will
not be described here.

Bert: Bert is a bi-directional encoder representation based on Transformer, where ’bi-directional’
indicates that the model processes a word in such a way that it can utilize both the information of
the preceding word and the following word. We introduce the Bert-score (Zhang et al., [2020), an
automatic evaluation metric for text generation.

4.4 EXPERIMENT RESULTS AND DISCUSSIONS

4.4.1 BASE ASSESSMENT

we validated the inductive thinking paradigm approach by comparing the task responses across dif-
ferent prompts in the dataset. The experiment shows that the model using the inductive thinking
paradigm achieved an accuracy of 53.81%, nearly 23.01% higher than the ZERO-SHOT approach.
Furthermore, we organized high-quality inductive paradigm data from the process, cleaned it, and
constructed a data map based on the thinking paradigm, IMap, aimed at providing reusable, high-
quality data. IMap contains approximately 3200 COTs, 5200 Cases, 3100 Patterns, and 3100 ratio-
nality assessment items.

Figure 3| summarizes the performance of model generation on the BBH dataset for four different
task types. Specifically, the similarity metrics between model-generated thought structures and gold
standard structures. On several metrics, the RLP model scored an average of 20.81%, which is
higher than the other compared models. In addition, the RLP model scores nearly 5% higher when
using LLama-1B as the training model, further validating the potential for future improvements in
the IMap-based thinking paradigm generation model.

[Re

2001 19.96 bert-score

20,07 20.06 bleu-score

HH jina-score

Figure 3: A Comparison of RLP Performance with Other Generative Models on Four Generative
Tasks. The figure details the similarity scores between the thought structures generated by each
model and the actual thought structures.

Additionally, we implemented the RLP model for new thinking paradigm generation and evaluated
its effectiveness by comparing it with other models using metrics such as Jina-score, BLEU-score,
and Bert-score. As shown in Figure @] RLP performs exceptionally well in the generation task
on the BBH dataset, achieving a result of 22.3%, which is slightly higher than that of the other
compared models. Specifically, we averaged the similarity results of the four generative tasks on
the BBH dataset to obtain scorel, and then averaged the results of these tasks for each model to
obtain the final score. Overall, RLP performs well. In the future, we will continue to enhance the
generative capabilities of this model by incorporating a richer corpus.

4.4.2 ENHANCING TASK DIVERSITY AND CROSS-TASK GENERALIZATION ASSESSMENT

To more strongly demonstrate that our proposed method, we have conducted zero-shot generaliza-
tion capability assessments of RLP on multiple brand-new, BBH-style-disparate, widely recognized
reasoning capability benchmarks. Based on widespread practice in academia, we have selected
the following representative datasets: MATH (High-school level competition problems)
2021), GSM8K (Grade School Math Word Problems) (Cobbe et al., [2021a), Hungarian HS
finals (Hungarian High School Mathematics Competition Questions, HHS) (Paster| 2023). our pre-
liminary experimental results show:

We present performance data of models on three mathematical benchmarks (pass@1). According
to Tablem The basemodel scores 10.5% on MATH, 15.2% on GSM8K, and 27.8% on Hungarian
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Figure 4: A Comparative Analysis of the Performance of RLP and Other Generative Models under
Multiple Evaluation Metrics.

Table 2: Enhancing task diversity and cross-task generalization assessment

Model MATH (pass@1) GSMSK (pass@1) HHS (pass@1) Model-Avg.
Llama-3.2-1B (COOk et 31720244 10.5(,3'22)¢ 15~2(—3.87)], 27~8(—0.65)¢ 17.83
Llama-3.2-3B (Dong et al.|[2024)  14.29 47)¢ 18.9(—0.17)1 27.9(~0.55)) 20.33
Llama-3.2-8B (GUO et al., 2024' 15'8(2«07)T 23'6<4~52)T 28'5(0405)T 22.63

RLP (0ur)-Base-Llama-3.2-1B 14'4(0467>T 18.6(,0}47)1« 29'6(1415)T 20.86
Task-Avg. 13.73 19.08 28.45 -

HS finals. Our RLP model shows top MATH (Hendrycks et al.l [2021)(14.4%) and Hungarian HS
finals (29.6%) performance (18.6% for GSM8K). In short, the RLP model’s trained results are close
to those of the 8B model.

To more comprehensively evaluate the generalization ability and practical application value of the
RLP method, we have expanded the scope of our experiments to the highly specialized and accuracy-
demanding fields of medicine and law. To this end, we have introduced two additional authoritative
benchmark datasets. We randomly chose 200 entries for each dataset as the validation set. The
results of the experiment are as Table 3]

Table 3: Evaluate in expanding the field

Dataset Task Type ILama-3.2-1B  RLP (our) probability gap standard deviation T-Value(p < 0.05)
BBH Multi Task 43.50% 48.50% 5.00% 0.45% t(22) =592
PubMedQA (Jin et al.|[2019) Biomedical Inference  67.50% 73.50% 6.00% 0.90% t(10) =3.85
LegalBench (Guha et al.[[2022)  legal reasoning 42.00% 50.50% 8.50% 1.20% t(15) =4.76

To evaluate cross-field generalization, we compared RLP (our model) and Llama-3.2-1B on three
datasets. RLP outperformed Llama-3.2-1B across all domains: 48.50% vs. 43.50% (BBH, multi-
task, +5.00%), 73.50% vs. 67.50% (PubMedQA (Jin et al., 2019)), biomedical inference, +6.00%),
and 50.50% vs. 42.00% (LegalBench (Guha et al., [2022), legal reasoning, +8.50%). All differences
are statistically significant (p <0.05), confirming RLP’s stronger cross-field generalization.
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A BBH EVOLUTION

The origins of the BBH dataset can be traced back to this point, and its evolution is shown in detail
in the Table E} Specifically, in (Srivastava et al., [2022), the BIG-Bench organizers assessed task
performance using various language model families, including GPT-3 (Brown et al., [2020), Gopher
(Rae et al.l [2021), PaLM (Chowdhery et al., 2023), and both internal dense and sparse Google
models. Additionally, a team of raters manually solved each task and compared the solutions against
golden labels, establishing human-rater baselines. Although human-rater scores do not represent
the entire population, they reflect the empirical difficulty of each task and provide insight into its
potential challenge for language models. The filtering criteria resulted in 78 clean tasks, mostly
multiple-choice or exact-match.

Table 4: Filtering criteria used to create the BIG-Bench Hard (BBH) subset.
Tasks  Criteria
209 All BIG-Bench tasks
187 After filtering out tasks with more than three subtasks
130 After filtering out tasks with fewer than 103 examples (3 for few-shot, 100 for evaluation)

85 After filtering out tasks without human-rater baselines
78 After filtering out tasks that do not use multiple-choice or exact match as the evaluation metric
36 Clean multiple-choice or exact match tasks

23 Remaining tasks = BIG-Bench Hard (BBH)

B TEMPLATE FOR ASSEMBLING CUES FROM INDUCTIVE MAPPING
ELEMENTS

The inductive mapping elements are assembled into the cues and the resultant. Figure5]is generated
as follows.
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Patterns generates a prompt for tasks

<system prompt>

- Profile: You are an experienced logic analyst and problem solver with a strong
background in logic and psychology, who specializes in breaking down complex
problems into actionable steps and guiding users step-by-step through the process of
thinking and problem solving.

<system prompt/>
<examples>

- Example 1: Analysis: This is a typical right triangle problem that can be solved
using the Pythagorean Theorem.

Example: According to the Pythagorean Theorem, the length of the hypotenuse
is \(\sqrt{3"2 + 472} = 5\).

Pattern: For right triangle problems, determine the right and hypotenuse sides,
then use the Pythagorean Theorem to solve.

<examples/>
<objective>

- Workflow:Based on the problem analysis and problem-related examples, summarize
the solution patterns and refine the general solution strategies to help users apply them
in similar problems.

<objective/>
#Initialization#

In the first conversation, please directly output the following: Hello, I am your logic
analysis and problem solving expert. Please tell me your specific problem analysis
and problem-related examples, and I will generate the specific solution pattern.

Figure 5: Template for assembling cues from inductive mapping elements

C HINTS FOR THE VALIDATION PROCESS

Hints for the validation process The prompts used to assemble the elements of the inductive thinking
paradigm to answer the questions are shown in Figure [6|below.

D PARAMETERS FOR API UTILIZATION

During the data collection process, we used the GPT API. We read the terms of service4 and followed
the usage policy. We give the parameter details of the GPT-API used in data collection in Table 5]
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# role

You are a diligent and talented scholar with an
endless thirst for knowledge, always able to
stand out in complex academic fields, leading the
way with outstanding achievements and profound
insights.

# example
{case}

# patterns
{patterns}

# content
Question: {question}

# generator
Based on the above, answer the questions in
"content".
I
answerl answer2 answer3

Figure 6: Assembling a template of prompts that the elements of the Inductive Thinking Paradigm
use to answer questions

Table 5: Parameters for api utilization

Parameter EE VE C Sc Sy

n 1 3 3 3 1

best-of 1 3 3 3 2

model gwen plus qgwen plus qwen plus qwen plus gwen plus
temperature 0.9 0.9 0.9 1 0.9
max-tokens 128k 128k 128k 128k 128k
top-p 1 1 1 1 1
frequency-penalty 0 0 0 0 0
presence-penalty 0 0 0 0 0

E MORE EXPERIMENTS

we conducted a new supplementary experiment to directly compare our inductive paradigm with
an advanced reasoning method based on ToT on the Llama-3.2-1B model. We drew inspiration
from the reinforcement learning training approach described in the paper “Training Large Language
Models for Reasoning through Reverse Curriculum Reinforcement Learning” and combined it with
the core mechanisms of ToT to construct a ToT reasoning agent as our baseline for comparison. We
evaluated our model on all 23 subtasks of the Large Language Model Behavior Benchmark (Big-
Bench Hard, BBH). For each subtask, we randomly selected 100 question-answer pairs for testing
and calculated the accuracy rate. The detailed comparison results are shown in the Table[6]
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Table 6: ToT vs Inductive Paradigm

BBH Subtask Inductive Paradigm (%) ToT (%) Inductive vs. ToT
Boolean Expressions 42 35 +7
Causal Judgement 34 34 +0
Date Understanding 54 63 -9
Disambiguation QA 42 42 +0
Dyck Languages 33 25 +8
Formal Fallacies 45 51 -6
Geometric Shapes 46 32 +14
Goal Step Wikihow 54 54 +0
Logical Deduction (3 objects) 57 48 +9
Logical Deduction (5 objects) 35 35 +0
Logical Deduction (7 objects) 25 25 +0
Movie Recommendation 24 14 +10
Salient Translation Error Detection 35 27 +8
Multistep Arithmetic (2 steps) 40 55 -15
Navigate 55 46 +9
Object Counting 36 43 -7
Penguin in a Table 47 34 +13
Reasoning about Colored Objects 35 48 -13
Ruin Names 58 58 +0
Snarks 24 35 -11
Sports Understanding 57 43 +14
Temporal Sequences 48 48 +0
Tracking Shuffled Objects 27 34 -7
Avg. 41.43% 40.39% +1.04%

F EXAMPLES OF THINKING PARADIGM PROMPTS

Our baseline model’s cognitive generation process is mainly divided into two types of prompts:
attribute prompts, which are used to induce cognitive attributes from examples, and system prompts,
which are used to answer new questions using the generated attributes.

Attribute Prompts: 1. Pattern Summarization Prompt, this prompt aims to enable the model to
summarize general problem-solving patterns or strategies from multiple successful problem-solving
examples.

<system prompt>

profile information...

<system prompt/>

<examples>

examples...

<examples/>

<objective>

summarize the solution patterns and refine the
<objective>

#Initialization#

In the first conversation, please directly output the following:...

The prompt template structure is similar to the pattern prompt structure, so it will not be described
in detail here. 2. Chain of Thought Generation Prompt. 3. Diversified case generation prompt.
4. Reasonability Assessment Prompt. System Prompts: Attribute-Assembled Q& A Prompt. This

prompt template is shown in Figure[7] [8] 0] [I0]

G EXAMPLES OF IMAP

The IMap example is shown in Figure [IT] Figure [I2] Figure [I[3] The following is a truncated
example, other more experimental results and related content in the zip file output directory.
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H ImpPACT ON THE FIELD

This study has significant implications for both cognitive neuroscience and metaphorical under-
standing in artificial intelligence.

In artificial intelligence model inference, our proposed thinking dataset, based on the inductive
paradigm and including elements such as context, examples, Patterns, and validation, offers a frame-
work for constructing high-quality training data. This dataset design method better reflects inference
logic in model training and promotes progress in data structure design within the artificial intelli-
gence industry. The RLP model automatically generates new thinking paradigms based on reasoning
tasks, offering flexible model generation capabilities for complex tasks. This innovation expands the
scope of artificial intelligence applications in inductive reasoning and knowledge generation, espe-
cially in solving undefined problems and open-ended tasks.

In neuroscience and cognitive psychology, we developed a quantitative tool for structured thinking
processes in neuroscience and cognitive psychology by constructing a mind map (IMap) and an new
thinking paradigm generation model. This tool aids in studying the diversity of human thinking Pat-
terns and enhancing reasoning abilities through training. Our research findings not only promote the
simulation of human cognitive mechanisms by artificial intelligence but also provide new methods
for neuroscience to test and validate cognitive theories. This mutual promotion will further deepen
interdisciplinary research between artificial intelligence and neuroscience. Our ability to generate
new thinking paradigms may be used in neuroscience to study creative thinking, abnormal think-
ing Patterns (e.g., cognitive processes in psychiatric patients), and provide theoretical support and
technological pathways for cognitive training and educational tool design.

I LIMITATION

In this work, we introduced IMap, a mapping structure based on an inductive thinking paradigm,
which aims to enhance inductive reasoning in Al and to facilitate advances in brain science. How-
ever, we recognize several limitations in our work.

First, while the effectiveness of inductive thinking was validated using the BBH benchmark dataset,
its coverage may be limited and may not fully represent all real-world language contexts and task
types. Second, the complex reliability assessment process makes the construction time-consuming
and hinders rapid iterative updates. We are also developing an automated extraction framework to
assist in the creation of structured mind maps. Third, the model’s interpretability is limited. The
internal reinforcement learning mechanism remains a ’black box’, and we hope future research will
address this issue. Fourth, while this research provides new perspectives and methods for interdis-
ciplinary fields like neuroscience and cognitive psychology, it only establishes an initial connection
and does not yet explore the deep integration between these disciplines.
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COTs generates a prompt for tasks

<system prompt>

- Profile: You are a veteran logic analyst and problem solver with a strong
background in logic and psychology who specializes in breaking down complex
problems into actionable steps and guiding users through the process of thinking and
problem solving.

<system prompt>
<examples>
Example 1: Problem: “How can I improve my team's productivity?”
1. Core goal: Improve the overall efficiency of the team.
2. Break down the sub-problems:
- Does the team member's ability to work match the task requirements?
3. Analysis and solution:

- For the problem of matching work ability, competency assessment and
training programs can be carried out.

4. Comprehensive strategy: Develop a comprehensive team optimization plan,
including competency enhancement, communication improvement and process
optimization.

<examples/>
<objective>

- Goals: Help users break down complex problems step by step, analyze each key
point of the problem, provide a clear thinking path, and finally find an effective
solution.

- Constrains: Your analysis should be based on logic and facts, avoiding subjective
assumptions and ensuring that each step of the analysis has a clear basis and logical
relationship.

<objective/>
#Initialization

In the first conversation, please directly output the following: Hello, I am your logical
analysis and problem solving expert. I'm your logic analysis and problem solving
expert. I'll help you break down complex problems step-by-step. Please tell me the
specific problem you are facing and we will analyze and solve it together.

Figure 7: COTs generates a prompt fortasks
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Cases generates a prompt for tasks

<system prompt>

- Profile: You are an experienced logic analyst and problem solver with a strong
background in logic and psychology, who specializes in breaking down complex
problems into actionable steps and guiding users step-by-step through the process of
thinking and problem solving.

<system prompt>
<examples>
- Example 1: Question: How to improve team communication?

Example: In a project team, misunderstandings often arise between members due
to unclear information. By introducing regular communication meetings and clear
standards for delivering information, the team's communication efficiency has
improved significantly.

<examples/>
<objective>

- Goals: Generate concrete examples to help users better understand the problem and
find a solution.

- Constrains: The analysis process should follow the basic principles of logic to
ensure that the examples are closely related to the problem and are representative and
instructive.

- OutputFormat: Textual description of the problem analysis process, combined with
concrete examples.

<objective/>
#Initialization#

In the first conversation, please output the following directly: Hello, I am your Logic
Analysis and Problem Solving Specialist. Please tell me the specific problem you are
having and I will generate specific examples.

Figure 8: Cases generates a prompt for tasks
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Patterns generates a prompt for tasks

<system prompt>

- Profile: You are an experienced logic analyst and problem solver with a strong
background in logic and psychology, who specializes in breaking down complex
problems into actionable steps and guiding users step-by-step through the process of
thinking and problem solving.

<system prompt/>
<examples>

- Example 1: Analysis: This is a typical right triangle problem that can be solved
using the Pythagorean Theorem.

Example: According to the Pythagorean Theorem, the length of the hypotenuse
1 \(\sqrt{372 + 472} =5\).

Pattern: For right triangle problems, determine the right and hypotenuse sides,
then use the Pythagorean Theorem to solve.

<examples/>
<objective>

- Workflow:Based on the problem analysis and problem-related examples, summarize
the solution patterns and refine the general solution strategies to help users apply them
in similar problems.

<objective/>
#Initialization#

In the first conversation, please directly output the following: Hello, I am your logic
analysis and problem solving expert. Please tell me your specific problem analysis
and problem-related examples, and I will generate the specific solution pattern.

Figure 9: Patterns generates a prompt for tasks
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Reasonability generates a prompts for tasks

<system prompt

- Profile: You are a veteran logic analyst and problem solver with a strong
background in logic and psychology who specializes in breaking down complex
problems into actionable steps and guiding users through the process of thinking and
problem solving.

- Skills: You have strong logical reasoning, problem-solving skills, critical thinking
skills, and the ability to express yourself clearly to help users look at problems from
multiple perspectives and find the best solutions.

<system prompt
<examples

- Example 1: For a quadratic equation, first shift the terms, then simplify, and finally
solve for the unknown.

Verification procedure: Assume that the equation 2x +3 =7

- Shift the term: move the constant term 3 to the right side of the equal sign to get
2x=17-3.

- Simplify: Calculate the value on the right side of the equal sign to get 2x = 4.
- Solving for the unknown: divide both sides of the equation by 2 to get x =2

Conclusion: The pattern is correct and the equation is successfully solved by
moving the terms, simplifying and solving for the unknown.

<examples/>
<objective

- Goals: Verify that the user's proposed solution pattern is correct, and provide
specific verification procedures and conclusions.

- OutputFormat: Detailed description of the validation process in text form, including
the specific operation of each step and the reasoning basis, and finally give a clear
conclusion.

<objective/>
#Initialization#

In the first conversation, please directly output the following: Hello, I am your logic
analysis and problem solving expert. Please let me know your problem solving model
and [ will generate specific validation results.

Figure 10: Reasonability generates a prompts for tasks
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{

"question": "Sort the following words alphabetically: List: syndrome
therefrom",

"answer": "syndrome therefrom",

"COTs": "Need to sort the given list of words alphabetically. \n\n Given list of
words: \n- syndrome'\n- therefrom Commonality analysis: \n\n\n Verify that the
generalized conclusions are in accordance with common sense or known
patterns \n\n Verify conclusions: \n- We can use common sorting algorithms
(e.g., bubble sort, selective sort, etc.) to verify the above patterns.",

"Cases": "Case 1: \n- List of words: apple, banana\n- After sorting: apple,
banana\n\nCase 2: \n- List of words: zebra, antn- After sorting: ant,
zebra\n\nCase 3: \n- List of words: dog, cat\n- After sorting: cat, dog \n\nCase 4:
\n- List of words: orange, orange'\n- Sorted by: orange, orange\n\n",

"Patterns": "1. Initial Comparison: In each case, we first compare the initial
letters of the words. If the mitial letters are the same, we continue to compare
the next letter until we find a different letter. \n2. duplicate words: when dealing
with duplicate words (as m Case 4 and Case 5), they remain mn their original
order. \n\nCase Comparison: \n.",

"Reasonability": "These algorithms compare letters i alphabetical order
when dealing with sequences of letters. \n- The conclusion is consistent with
common sense and known sorting rules. \n\n Applied to a specific problem ‘n\n
Applied to a given list of words: \n\nl. Compare \"syndrome\" and
\"therefrom\":\n - The first letters are different: s (syndrome) and t (therefrom).
\n - Since s comes before t in the alphabet, \"syndrome\" should come before
\"therefrom\". \n\nFnal sorting result: \n- syndrome'\n- therefrom'\n'n By
following the above steps, we can conclude that the given list of words
alphabetical order results in \"syndrome\" and \"therefrom",

}

Figure 11: IMap Structure Example 1

22



Under review as a conference paper at ICLR 2026

{

"question": "Question: Vina tells the truth. Helene says Vina lies. Kandi says
Helene tells the truth. Jamey says Kandi lies. Ka says Jamey lies. Does Ka tell
the truth? Ka says Jamey lies",

"answer": "No",

"COTs": " First, we need to understand the statements and logical
relationships in the question. \n\nl. Vina tells the truth. \n2. Helene says that
Vina 1s lying. \n3. Kandi says Helene is telling the truth. Jamey says Kandi is
lying. Ka says Jamey 1s lying. \n\nWe need to determine if Ka 1s telling the
truth. ‘n",

"Cases": "1. Vina 1s telling the truth:\n - If Vina 1s telling the truth, then
Helene's words are false. \n\n2. Helene says Vina is lying: \n - If Helene is
telling the truth, then Vina 1s lying. But under the first condition, Vina is telling
the truth, so Helene must be lying. \n\n3. Kandi says Helene is telling the truth:
\n - If Kandi s telling the truth, then Helene must also be telling the truth. But
according to the second condition, Helene 1s lymg, therefore Kandi is also lying.
\n\n4. Jamey says that Kandi is lying:\n - If Jamey is telling the truth, then Kandi
1s indeed lying. This is consistent with the third condition, so Jamey is telling the
truth. \n\n5. Ka says Jamey 1s lying: \n - If Ka 1s telling the truth, then Jamey
must be lying. But according to the fourth condition, Jamey 1s telling the truth,
therefore Ka must be lying. \n\n Horizontal Comparison and Reasonmg \n'\n We
start with the known conditions: \n\n- Vina is telling the truth. \n- Helene is
telling a lie (because Vina is telling the truth). \n- Kandi told a lie (because
Helene told a lie). \n- Jamey told the truth (because Kandi told a lie). \n- Ka 1s
telling lies (because Jamey 1s telling lies). \n",

"Patterns": " Each person's words are the opposite of what the previous person
said. \n- This pattern suggests that each person's words are alternately true and
false.",

"Reasonability": "Based on the above reasoning, Ka 1s telling a falsehood.
This 1s consistent with the pattern we deduced that everyone alternates between
telling the truth and telling a lie. Therefore, Ka 1s telling a lie. \n\n Conclusion
\n\nKa is telling a lie. This conclusion is consistent with the pattern we have
derived and 1s the result of sound reasoning based on the known conditions in
the problem."

}

Figure 12: IMap Structure Example 2
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{

"question™: "Alice, Bob, and Claire are friends and avid readers who
occasionally trade books. At the start of the semester, they each buy one new
book. At the start of the semester, they each buy one new book: Alice gets
Frankenstein, Bob gets Catch-22, and Claire gets Ulysses.\nAs the semester
proceeds, they start trading around the new books. First, Bob and Alice swap
books. Then, Alice and Claire swap books. Finally, Claire and Bob swap books.
At the end of the semester, Alice has\nOptions:\n(A) Frankenstein'\n(B)
Frankenstein\n(B) Catch-22\n(C) Ulysses",

"answer": "(C) Ulysses",

"COTs": " First, we need to specify the books that Alice, Bob, and Claire
have at each stage. \n\nl. initial state: \n - Alice: Frankenstemn'\n - Bob:
Catch-22\n - Claire: Ulysses\n\n2. first trade: Bob and Alice exchange books. \n
- Alice: Catch-22 (from Bob)\n - Bob: Frankenstein (from Alice)\n - Claire:
Ulysses\n'\n3. 2nd transaction: Alice and Claire exchange books. \n - Alice:
Ulysses (from Clawre)\n - Claire: Catch-22 (from Alice)\n - Bob:
Frankenstemn\n\n4. 3rd transaction: Claire and Bob exchange books. \n - Claire:
Frankenstein (received from Bob)\n - Bob: Ulysses (received from Claire)'n -
Alice: Ulysses\n\n",

"Cases": "\n- Initial state: Alice has Frankenstein, Bob has Catch-22. and
Claire has Ulysses.\n- After the first swap: Alice has Catch-22. Bob has
Frankenstein, and Claire has Ulysses.\n- After the second swap: Alice has
Ulysses, Claire has Catch-22. and Bob has Frankenstein. \n- After the third
exchange: Alice has Ulysses, Bob has Ulysses, and Claire has Frankenstein. \n\n
Horizontal Comparison and Generalization \n\n Through the above exchange
process, we can observe the following patterns:\n\n1. Change in the attribution
of books after each exchange:\n - After the first exchange, Alice changed from
owning Frankenstein to owning Catch-22.\n - After the second exchange, Alice
changed from owning Catch-22 to owning Ulysses.\n - After the third exchange,
Alice stays the same from owning Ulysses (because the exchange between Bob
and Claire does not affect Alice). \n\n2. final ownership of books: ‘n - Alice
ends up owning Ulysses. \n - Bob ends up owning Ulysses. \n - Claire ends up
owning Frankenstein. \n\n Verify mductive conclusions \n\n"

"Patterns": "Based on the above reasoning and induction, we conclude that the
book Alice ends up owning after all the transactions are completed 1s Ulysses.",

"Reasonability": "Answer Verification\n\n- Option A: Frankenstein\n- Option
B: Catch-22\n- Option C: Ulysses\n\nThe final answer 1s that Alice ends up
owning Ulysses at the end of the semester."

}

Figure 13: IMap Structure Example 3
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{

"question": "Today, Susan went to the restaurant. Between what tunes could
they have gone?\nWe know that:\nSusan woke up at 11am.\nlLisa saw Susan
taking photos near the Leaning Tower of Pisa from 11lam to 1pm.\nWilliam saw
Susan buying cookies at a bakery from 1pm to 3pm. photos near the Leaning
Tower of Pisa from 11lam to 1pm.\nWilliam saw Susan buying cookies at a
bakery from 1pm to 3pm.\nJennifer saw Susan working at the office from 3pm
to 6pm. office from 3pm to 6pm.\nJason saw Susan walking towards the Statue
of Liberty from 6pm to 7pm.\nAshley saw Susan waiting at the airport from
7pm to 9pm.\nThe restaurant was closed after 10pm. nThe restaurant was closed
after 10pm.\nBetween what tunes could Susan have gone to the
restaurant?\nOptions:\n(A) 6pm to 7pm'n(B) 9pm to 10pm\n(C) 11am to
1pm'n(D) 7pm to 9pm",

"answer": "(B)",

"COTs": "Determine the range of times that Susan goes to the restaurant. \n-
It is known when Susan goes from morning to evening during the day. \n\n",

"Cases": "Known conditions:\nl. Susan wakes up at 11am. \n2. Lisa sees
Susan taking pictures near the Leaning Tower of Pisa between 1lam and 1pm.
\n3. William sees Susan buying cookies at the bakery between 1PM and 3PM.
\n4. Jennifer saw Susan working at the office between 3pm and 6pm. \n5. Jason
saw Susan walking towards the Statue of Liberty between 6PM and 7PM. \n6.
Ashley saw Susan waiting at the airport between 7pm and 9pm. \n7. The
restaurant closed after 10PM. \n\n Comparative Analysis of Activity Times \n\n
Compare the activities for each time period: \nl. 11am - 1pm: Susan takes
pictures near the Leaning Tower of Pisa (seen by Lisa). \n2. 1pm - 3pm: Susan
buying cookies at the bakery (seen by William). \n3. 3pm - 6pm: Susan working
in the office (seen by Jennifer). \n4. 6pm - 7pm: Susan walking towards the
Statue of Liberty (seen by Jason). \n5. 7pm - 9pm: Susan is waiting at the
airport, so it 1s unlikely that she will go to the restaurant at this time of day. \n\n
Possible Time Period Verification \n\n The only possible time period is 9pm -
10pm because the restaurant was still open during this time and Susan was not
seen participating mn other activities.",

"Patterns": "Conclusion\n\nSusan's likely time period for going to the
restaurant 1s:\n'\n(B) 9pm to 10pm",

"Reasonability": "Verification: \n- This time period 1s during the restaurant's
business hours (before 10pm). \n- Susan was not seen participating in other
activities during this time. \n\n- Therefore, option (B) 9pm to 10pm is the most
reasonable answer."

}

Figure 14: IMap Structure Example 4

25



	Introduction
	Related Work
	The Potential Of LLMs In Complex Reasoning Scenarios
	An Exploration Of LLMs Fine-Tuning Based On Reinforcement Learning
	Inductive Thinking Paradigm Interpretation
	Dataset BBH For Quantitative Assessment Of Language Models

	Validation And Construction Of IMAP
	Inductive Thinking Validation
	IMap Structure Definition
	IMap Generator
	Task Definitions
	RLP


	Experiments And discussions
	Introduction to the Model Used
	Experiment Setting
	Evaluation Metrics
	Experiment Results And Discussions
	Base assessment
	Enhancing task diversity and cross-task generalization assessment


	BBH Evolution
	Template For Assembling Cues From Inductive Mapping Elements
	Hints For The Validation Process
	Parameters For API Utilization
	More Experiments
	Examples Of Thinking Paradigm Prompts
	Examples Of IMap
	Impact On The Field
	Limitation

