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ABSTRACT

Inductive reasoning is crucial in human thinking, allowing us to distill universal
laws from limited samples. However, incorporating inductive reasoning has not
been studied enough in the field of artificial intelligence, especially in the appli-
cation of large-scale language models, limiting the ability of models to abstract
broad rules and trends from limited data. We introduce inductive thinking into
generative models, designing rigorous rules to compare generated results with
real ones, and verify its effectiveness in improving generation. To achieve this,
we developed IMap (Intellectual Mapping based on Reinforcement Learning),
which integrates the inductive thinking paradigm to improve the model’s infer-
ence capabilities. We designed a thinking data structure based on the inductive
paradigm, consisting of four core elements: COTs, Cases, Patterns, and Reason-
ability. We also propose an algorithm, the RL-Paradigm model (RLP), to acquire
new thinking paradigms. By using figurative inductive thinking as input cues, we
successfully guided multiple large models to generate an average of 270 results.
Comparative experiments show that input cues combined with inductive thinking
perform well in most models, significantly improving the generation results. We
conducted a comprehensive evaluation of RLP against other models using BLEU,
Bert-score, and Jina-score metrics. The results show that RLP significantly outper-
forms other models in several areas. We unlocked the generative potential of in-
ductive thinking paradigms, developed reusable thinking data maps, and designed
RLP, a generative model specialized for unknown paradigms. This innovation is
expected to advance the generative capabilities of LLMs and offer insights for in-
terdisciplinary research in brain sciences. Our code and data and trained models
are publicly available from https://github.com/yzqrtop/RLP-inductive-LLM.

1 INTRODUCTION

Inductive reasoning, which involves generalizing Patterns and rules from limited rejecteds, is funda-
mental to human cognition and crucial in artificial intelligence (AI) (Latona et al., 2024). As large
language models (LLMs) become essential for applications like conversational agents, content gen-
eration, and problem-solving systems, their ability to perform inductive reasoning is under greater
scrutiny (Heiding et al., 2023; Dam et al., 2024). This study builds on previous research, tackles
limitations in existing datasets and models, and introduces a new approach to improve the inductive
reasoning abilities of LLMs (Wu et al., 2024; Luong et al., 2024).

Several researchers have advanced LLMs’ reasoning capabilities. Step-by-step approaches, such as
COTs reasoning, have enabled LLMs to address multi-step reasoning tasks by guiding their logic
through each step (Bai et al., 2024). Synthetic data generation has also been explored to enhance
LLM training. Although the aforementioned methods have advanced LLM reasoning, they exhibit
several limitations: Limited Dataset Diversity: Many approaches rely on narrow datasets like
GSM8K (Cobbe et al., 2021b), which focus on specific domains, such as mathematical reasoning.
This lack of structural diversity limits the models’ ability to generalize across diverse tasks. Sparse
and Static Annotations: CoT-based methods typically use a single annotated reasoning path per
question (Zhang et al., 2024b). We believe that this static approach fails to capture the multiple
valid reasoning paths that may exist for a given problem, limiting the model’s reasoning flexibility.
Scalability and Generalization: Reinforcement learning frameworks like REFT (Long et al., 2024)
and RAFT (Zhang et al., 2024a) show promise but face scalability issues due to sparse rewards
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and reliance on domain-specific datasets. Additionally, these models often struggle to generalize
effectively to unseen scenarios.

This study builds on prior research, addresses limitations in existing datasets and models, and intro-
duces an inductive thinking paradigm to enhance the inductive reasoning capabilities of LLMs. We
validated the effectiveness of this paradigm through rigorous benchmarking on the BBH dataset. To
this end, we designed an inductive thinking paradigm data graph to provide fast, reliable thinking
data for reuse. To complement the thinking paradigm graph, we propose the RL paradigm model
(RLP), a reinforcement learning-based approach utilizing proximal policy optimization (PPO). Un-
like static reasoning methods, the RLP dynamically explores and generates new reasoning paths
using feedback from datasets. We use BLEU (Papineni et al., 2002), Bert-score (Zhang et al., 2020),
and Jina-score metrics to evaluate the quality of inference outputs generated by RLP.

In summary, our contributions are as follows. 1. We introduce inductive thinking into the genera-
tion of Large Language Models (LLMs) and validate its impact using the BBH (Big Bench Hard)
benchmark dataset. 2. We have constructed a reinforcement learning-driven mind map (IMap),
integrating new thinking paradigms and providing structured knowledge support for subsequent
model generation tasks. 3. We propose the RL Paradigm model (RLP), which generates new
thinking paradigms and efficiently expands the application of inductive reasoning. 4. By construct-
ing a reusable mental data graph and designing generative models for new thinking paradigms,
this study advances LLM development in language understanding and provides new perspectives
for interdisciplinary research, including neuroscience and cognitive psychology, with significant ap-
plication potential.

2 RELATED WORK

2.1 THE POTENTIAL OF LLMS IN COMPLEX REASONING SCENARIOS

Large Language Models (LLMs) have shown remarkable abilities in understanding and generating
human-like text (Heiding et al., 2023). Recent research has aimed at enhancing their reasoning
abilities to handle complex tasks. Techniques like Chain-of-Thought (CoT) prompting encourage
models to articulate intermediate reasoning steps, improving problem-solving performance (Devlin
et al., 2018). For example, the Cumulative Reasoning approach uses LLMs iteratively to mirror hu-
man thought processes, breaking tasks into manageable components and leveraging prior proposi-
tions for effective composition. These advancements demonstrate the potential of LLMs to perform
sophisticated reasoning across diverse domains.

2.2 AN EXPLORATION OF LLMS FINE-TUNING BASED ON REINFORCEMENT LEARNING

This study applies Proximal Policy Optimization (PPO) (Schulman et al., 2017) for natural lan-
guage processing to align human preferences (Ouyang et al., 2022). Since then, several training
algorithms have been introduced to improve alignment efficiency, including Direct Preference Opti-
mization (DPO) (Rafailov et al., 2024), Identity Preference Optimization (IPO) (Azar et al., 2023),
and Kahneman-Tversky Optimization (KTO) (Ethayarajh et al., 2024). Unlike alignment-focused
methods, our goal is to adopt reinforcement learning as a fine-tuning approach to enhance perfor-
mance beyond conventional supervised fine-tuning techniques.

2.3 INDUCTIVE THINKING PARADIGM INTERPRETATION

Inductive thinking is a logical method of forming general Patterns or predictions by observing spe-
cific examples (Binti Misrom et al., 2020). It enables researchers to develop theories and chosen
from rejecteds and empirical evidence, generating new knowledge. This method is particularly
suited for qualitative research, forming general principles or theories by analyzing specific exam-
ples (Peltonen, 2023; Mott & Bullock, 2015), which aids in exploring phenomena and generating
new insights. By proposing questions that foster higher-order thinking skills (Fabrizio et al., 2014),
methods for cultivating inductive thinking, and techniques to improve its efficiency (Hammer, 2011),
the ability to solve practical problems in various fields can be enhanced.
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2.4 DATASET BBH FOR QUANTITATIVE ASSESSMENT OF LANGUAGE MODELS

BIG-Bench is a collaborative benchmark designed to quantitatively assess the strengths and weak-
nesses of language models (Srivastava et al., 2022). It includes over 200 diverse text-based tasks
across categories such as traditional NLP, mathematics, commonsense reasoning, and question-
answering. The remaining 23 subtasks form our curated benchmark, BIG-Bench Hard (BBH).
This includes two tasks: Logical Deduction and Shuffled Objects, each with three subtasks. For
all tasks in BBH, except three, we selected a random subset of 250 evaluation examples, totaling
6,511 examples in the benchmark.

3 VALIDATION AND CONSTRUCTION OF IMAP

The IMap building involves three steps. First, we use inductive thinking validation to assess the
accuracy of inductive thinking in various models (see Section 3.1). Next, we design an inductive
thinking data graph and define five graph structures. Finally, we define four generation tasks and
introduce the RLP method for generating new thinking paradigms. As shown in the Figure 1.

Figure 1: IMap consists of three stages: (1) Inductive thinking verifier, (2) Paradigm Structure
and (3) Imap Construction. First, we use inductive thinking validation to assess the accuracy of
inductive thinking in various models (see Chapter 3.1). Next, we design an inductive thinking data
graph and define five graph structures. Finally, we define four generation tasks and introduce the
RLP method for generating new thinking paradigms.

3.1 INDUCTIVE THINKING VALIDATION

We randomly selected 10 question-answer pairs from 23 subtasks in the BBH dataset, which in-
clude tasks related to causal judgment, data parsing, time sorting, and more. We used a variety
of large models at different scales to test comparisons, and then selected the appropriate large lan-
guage model to generate the following graphical structure of the data: COTs, Cases, Patterns, and
Reasonability. These data were then used to create a prompt instruction set. Next, we integrate
the questions, answers, and prompts that generate paradigms. Our cognitive generation process is
mainly divided into two types of prompts: attribute prompts, which are used to induce cognitive
attributes from examples, and system prompts, which are used to answer new questions using the
generated attributes. Please refer to Appendix F for details. The teacher language model is then
applied to numerous candidate paradigms. We then determine whether the language model’s answer
includes these paradigms; if it does, it is considered correct. Finally, we continue asking the lan-
guage model questions for further exploration. We use a rigorous answer comparison strategy: when
the model’s answer is inconsistent with the correct one or is ambiguous, we consider it incorrect.
As shown in Table 1, inductive thinking performs well in most models. Additionally, we have
carefully selected a batch of high-quality inductive thinking datasets for use in the Section 3.3.2.

3.2 IMAP STRUCTURE DEFINITION

The design of the IMap data structure is rooted in inductive thinking theory, a framework that holds
inductive reasoning progresses from specific facts to general conclusions. Here, we emphasize that
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Table 1: Compare the performance of the inductive thinking paradigm with other cueing methods
on generative models of all scales. Compared to other cueing strategies, the inductive thinking
paradigm exhibits differential impact across models of various sizes. When compared to models
such as yi-34B-chat, the paradigm’s performance gains appear relatively limited. In contrast, the
inductive thinking paradigm significantly enhances performance on the Llama-3.2-1B and Qwen
Turbo models. Taken together, the inductive thinking paradigm demonstrates its superior efficacy
by performing optimally in terms of overall performance, outperforming the average by 9.83%.

model/method Llama-3.2-1B Llama-3.2-3B Llama-3.1-8B yi-34B-chat Qwen Plus Qwen Turbo Avg.
zero-shot (Kojima et al., 2023) 32.33(−6.78)↓ 26.06(−7.88)↓ 47.62(0.0)↓ 21.11(−8.41)↓ 35.67(−28.38)↓ 22.10(−27.53)↓ 30.82(−13.16)↓
Step-by-Step (Hsieh et al., 2023) 35.65(−3.46)↓ 30.04(−3.9)↓ 40.48(−7.14)↓ 24.57(−4.95)↓ 58.24(−5.81)↓ 28.29(−21.34)↓ 36.21(−7.77)↓
Question Aug(Li et al., 2024) 44.53(5.42)↑ 35.21(1.27)↑ 40.48(−7.14)↓ 29.92(0.4)↑ 76.87(12.82)↑ 70.17(20.54)↑ 49.53(5.55)↑
reverse (Chen et al., 2024) 39.58(0.47)↓ 39.50(5.56)↑ 47.62(0.0)↑ 34.81(5.29)↑ 74.43(10.38)↑ 61.33(11.7)↑ 49.54(5.56)↑
TOT(Tree of Thought) 35.69(4.39)↑ 40.69(4.95)↑ 56.21(14.29)↑ 36.27(7.69)↑ 69.15(11)↑ 68.41(16.7)↑ 54.31(9.83)↑
inductive 43.50(4.39)↑ 38.89(4.95)↑ 61.91(14.29)↑ 37.21(7.69)↑ 75.05(11)↑ 66.30(16.7)↑ 53.81(9.83)↑
Avg. 39.11 33.94 47.62 29.52 64.05 49.63 43.98

explicitly delineating these reasoning steps confers three core advantages: heightened interpretabil-
ity, improved stability, and stronger generalization capabilities of the reasoning process. This is
particularly critical for tackling complex problems that demand abstraction and inductive thinking.
IMap captures the core units of inductive question-answering logic by defining six key cognitive
nodes, denoted as IMap = {Q,A,Co,Ca, P,R}, where Q is question, A is answer, Co is COTs,
Ca is Cases, P is Patterns, and R is Reasonability. It also offers a comprehensive data structure model
for studying inductive reasoning. The core advantage of explicitly defining these steps lies in en-
hancing the interpretability, stability, and generalization capabilities of the reasoning process,
which is crucial for addressing complex problems that require abstraction and induction.

Question (Q): Problems from the 23 tasks in the BBH dataset (e.g., boolean expressions task: ”not
(True) and (True) is”). Answer (A): Corresponding answers to Q (e.g., ”False” for the above boolean
expressions question). Extended parsing was conducted based on Q and A. COTs (Co): Analyti-
cal content for Q, providing detailed descriptions of Q’s problem context and potential insights.
Cases (Ca): Specific conditions or relevant examples extracted from COTs, used to analogize and
interpret the ideas/principles in COTs. Patterns (P): Fundamental principles capturing common-
alities between COTs and Cases. These principles precisely encode shared information consistent
with both components, reflecting their common structures; P enables extraction of the underlying
logical framework of COTs and Cases, facilitating efficient knowledge summarization and general-
ization. Reasonability (R): Validation of the rationality of P-described cognitive patterns, focusing
on adherence to problem-specific rules (e.g., for the pattern ”teamwork improves work efficiency,”
R verifies universal validity via analyzing Ca (successful project teams) and Co (contexts like team
role division)).

These nodes form a structured representation as follows: Q ⇒ Co,Co ⇒ Ca,Ca+Co ⇒ P, P ⇒
R,Q + Co + Ca + P ⇒ A. We incorporated inductive thinking into the generation process of
Large Language Models (LLMs) and validated its effectiveness through BBH benchmark testing,
resulting in a 7% improvement in model accuracy. Simultaneously, a reinforcement learning-driven
thinking graph (IMap) was developed, combining the theory of new thinking paradigms. This graph
incorporates elements such as ”COTs”, ”Cases”, ”Patterns”, and ”Reasonability”.

3.3 IMAP GENERATOR

In IMap, the process of generating cognitive chains is decomposed into a series of ordered tasks:
the generation of COTs, Cases, Patterns, and Reasonability. As shown in the Figure 2, we perform
these tasks sequentially and connect them in a question-answer format (Q ⇒ A) to form a complete
cognitive chain. By further refining these processes, we define the following four core inference
generation tasks:

COTs generation: Constructs a logical chain (termed a ”problem description inference chain”)
for a given task, decomposing the problem into logically connected subproblems via key reasoning
steps. This provides a structured framework for subsequent Cases and Patterns generation. Cases
generation: Generates specific, diverse Cases to support COTs steps, following the rule ”reasoning
chain (COTs) + problem description ⇒ supportive case.” Cases must align with COTs to validate
the inference chain from multiple perspectives. Patterns generation: Abstracts commonalities
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between COTs and Cases (rule: ”COTs + Cases ⇒ Patterns”) to produce logical cognitive Patterns.
These reveal deep logical relationships between COTs and Cases, offering universal guidance for
broader reasoning scenarios.Reasonability generation: Verifies Pattern rationality (rule: ”Patterns
⇒ Reasonability”) by checking alignment with problem-specific logical rules and Case support.
Logical validation of Patterns determines their applicability and optimizes inference chain accuracy.

3.3.1 TASK DEFINITIONS

Figure 2: IMap structure generation task definition diagram. We propose a cognitive chain genera-
tion task for constructing IMap, which involves a series of ordered tasks: COTs generation, Cases
generation, Patterns generation, and Reasonability generation.

By linking the four tasks in a pipeline, IMap restores the complete cognitive chain: ”Question ⇒
COTs ⇒ Cases ⇒ Patterns ⇒ Reasonability.” This process ensures the logical integrity of
the cognitive chain from question to answer and enables the model to dynamically adjust to meet
the reasoning needs of different tasks.

3.3.2 RLP

During supervised training, the model improves its performance by generating results structurally
similar to the reference reality. However, high structural similarity alone does not guarantee logical
explanatory power, particularly when dealing with unseen samples, where the limitations of this
approach become more evident. To enhance task generation models, we introduced reinforcement
learning methods (Ziegler et al., 2020) and combined them with thought paradigm graph data to
create feedback reward functions. Finally, we developed a generation model for unknown inductive
thinking paradigms.

Specifically, for the four generation tasks, we input real problems into the training model, which gen-
erates both trained and baseline representations. The KL divergence between the two is input into
PPO. Additionally, we introduce adaptive controller. the controller’s logic depends on the KL diver-
gence for an entire batch of generated sequences. This requires aggregating the per-token penalties.
First, the per-token values δKL are summed over the length t of a single generated sequence y to
obtain the sequence-level KL divergence, KLseq:

KLseq (y) =

T∑
t=1

δKL (o, h) =

T∑
t=1

(log πθ (h | o)− log πref (h | o)) (1)

In this framework, h and o represent the token sequences for the chosen and rejected items, respec-
tively, while H and O denote the corresponding sets of chosen and rejected items. This summation
represents the total accumulated divergence from the reference policy for a single complete gener-
ation. Next, to get a stable signal for the entire batch, the sequence-level KL values are averaged
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across all N sequences in the current batch. This yields the batch-level KL divergence, KLbatch.
Using the mean is standard practice as it makes the metric invariant to batch size.

KLbatch =
1

N

N∑
i=1

KLseq(yi) (2)

This KLbatch value is the key metric used by the adaptive controller to decide whether to adjust β.
The controller operates based on a target KL divergence value, dtarg, and adjust β using multiplica-
tive if the measured KLbatch strays too far from this target. Let βk be the KL coefficient for the k-th
training batch. The coefficient for the next batch, βk+1, is determined by the following piecewise
update rule, which is consistent with established adaptive KL controller implementations:

βk+1 =


2 · βk if KL

(k)
batch > 1.5 · dtarg

βk/2 if KL
(k)
batch < dtarg/1.5

βk otherwise
(3)

where KL
(k)
batch is the calculated batch-level KL divergence for the k-th batch. dtarg is the predefined

target for the KL divergence. Based on the provided methodology, this is set to dtarg = 6.0.
The controller uses a factor of 1.5 to define a tolerance band around the target. The adjustment
multipliers are 2.0 for increasing the penalty and 1/2.0 for decreasing it. with these components,
the full optimization problem can be stated. The RL algorithm (PPO (Schulman et al., 2017)) seeks
to find the parameters θ of the policy πθ that maximize the expected total reward. For any given
training batch k, the objective is to maximize the expectation over all sequences in the batch:

Objective:max
θ

E(x,y)∼Dk

[
rRM (x, y)− βk ·

T∑
t=1

(log πθ (h | o)− log πref (h | o))

]
(4)

Here, x is the prompt and Dk represents the distribution of prompt-completion pairs generated by
the policy πθ for the k-batch, and βk is the adaptively determined coefficient for that batch. This
objective is used to compute the advantage estimates that drive the PPO policy update, effectively
guiding the model to produce high-reward outputs while staying within a dynamically controlled
”trust region” around the reference model.

4 EXPERIMENTS AND DISCUSSIONS

4.1 INTRODUCTION TO THE MODEL USED

IMap generation is a novel task, and we have selected four different generation models at varying
levels: a Chinese metaphor generation model and a text vectorization model as baselines. Yi-34B-
Chat is an open-source, large-scale language model, trained from scratch by 01.AI. As a bilingual
model, the Yi series was trained on a 3T multilingual corpus. According to the AlpacaEval ranking
(as of January 2024), Yi-34B Chat ranks second, after GPT-4 Turbo, surpassing LLMs like GPT-4,
Mixtral, and Claude. Meta-Llama-3.1-8B-instruction is an autoregressive language model with
an optimized Transformer architecture. The adjusted version employs supervised fine-tuning (SFT,
(Razumovskaia et al., 2024)) and reinforcement learning with manual feedback (RLHF, (Hatgis-
Kessell et al., 2025)) to align with human preferences for usefulness and safety. The Meta Llama
3.2 Multilingual LLM collection consists of pre-trained, instruction-adjusted generative models,
available in 1B (Cook et al., 2024) and 3B sizes (Dong et al., 2024) (text input/output). The QWEN
model (Yang et al., 2025a) is a transformer-based language model. The key feature of this model is
its use of a self-attention mechanism to process input sequences and capture long-term dependencies.
The QWEN Plus model (Bai et al., 2023), an improved version of QWEN, significantly enhances
the detail, role-playing, and text creation capabilities in both Chinese and English responses. The
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QWEN Turbo model (Yang et al., 2025b) is optimized for processing power and inference effi-
ciency for long sequences, supporting longer contextual information. Jina-embeddings-v3 (Sturua
et al., 2024) is a multilingual, multitasking text embedding model designed for various NLP ap-
plications. Based on the Jina XLM RoBERTa architecture, this model supports rotational position
embedding and handles long input sequences with up to 8192 labels. Additionally, it includes five
LoRA adapters that efficiently generate embeddings for specific tasks.

4.2 EXPERIMENT SETTING

In this experiment, we based the model on an autoregressive structure. The model comprises twelve
decoder layers, each with twelve attention heads and a hidden layer dimension of 768. During
the reinforcement learning phase, we introduced dynamically adjusted penalty coefficients (Ouyang
et al., 2022) to enhance the model’s adaptability and training effectiveness. We then employed GAE
to reduce estimation variance, used a shearing objective function to prevent excessive policy updates,
and utilized Meta Llama 3.2 1B as the policy network to calculate the token generation probability
distribution based on input.

we selecting Llama-3.2-1B as the core model for our research still has sufficient representativeness
and scientific value at this stage. The reasons are as follows: Though outperformed by hybrid
expert models (e.g., Mixtral) in specific reasoning tasks (e.g., mathematics) (Feng et al., 2025), it
sufficiently reflects the average performance of current 100-billion-parameter models in complex
reasoning; Multi-strategy generation in standard CoT is implicit and uncontrollable (Heit, 2000);
our method explicitly incorporates cognitive attributes (e.g., ”Patterns”), rendering the generation
and evaluation process explicit and intervenable.

We also define the similarity between real and generated data as a reward signal, guiding the model to
generate target text via real-time and cumulative rewards. During the supervised training phase, we
employed the AdamW optimizer and identified the optimal hyperparameter configuration through
grid search. For the autoregressive structure, the learning rate was set to 0.0005, and the batch size
was 256. Additionally, a linear warm-up strategy of 1000 time steps was applied during training to
stabilize model optimization. All experiments were performed on two single GPUs with NVIDIA
GTX 1080Ti 12G, ensuring consistency and availability of the experimental environment. Our
code and data and trained models are publicly available from https://github.com/yzqrtop/RLP-
inductive-LLM.

To compare the quality of RLP generation, we deployed the large model in two configurations: an
online API model, and an offline local model. For offline models, we deployed Llama-3.2-1B,
Llama-3.2-3B, and Llama-3.1-8B using Hugging Face, performing 50 inference tasks on a Tesla
A800 80G GPU. The complete inference process took approximately 100 hours. For the online Yi-
34B chat and Qwen Plus API models, we use a ”stop to continue” approach to ensure consistency in
the generated answers. The ”Stop to Continue” method involves using breakpoints to automatically
record and locate the last inference data point when the API disconnects from the network. The
baseline model mentioned above is manually prompted to complete cognitive generation tasks.

4.3 EVALUATION METRICS

BLEU: BLEU is a commonly used evaluation metric in machine translation and natural language
generation tasks, designed to quantify the similarity between generated text and reference text. It
was first proposed by (Papineni et al., 2002) and is based on a precision calculation method using
n-grams. The BLEU score is calculated by combining the n-gram precision and the length penaliza-
tion:

FBLEU = BP · exp

(
N∑

n=1

wn logPn

)
, (5)

where wn represents the weights, which are equal for all n-grams (wn = 1
N ).

JINA: The jina-embedding-v3 model (Sturua et al., 2024) is embedded with a set of low-rank adap-
tation (LoRA) modules designed for specific tasks such as query-document retrieval, clustering,
categorization, and text matching to produce high-quality embedding vectors. By applying the jinn-
embedding-v3 model to encode RLP-generated text with standard paradigm text, we obtain the
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corresponding vectors x and x’. The similarity calculation formula is similar to Bert-score and will
not be described here.

Bert: Bert is a bi-directional encoder representation based on Transformer, where ’bi-directional’
indicates that the model processes a word in such a way that it can utilize both the information of
the preceding word and the following word. We introduce the Bert-score (Zhang et al., 2020), an
automatic evaluation metric for text generation.

4.4 EXPERIMENT RESULTS AND DISCUSSIONS

4.4.1 BASE ASSESSMENT

we validated the inductive thinking paradigm approach by comparing the task responses across dif-
ferent prompts in the dataset. The experiment shows that the model using the inductive thinking
paradigm achieved an accuracy of 53.81%, nearly 23.01% higher than the ZERO-SHOT approach.
Furthermore, we organized high-quality inductive paradigm data from the process, cleaned it, and
constructed a data map based on the thinking paradigm, IMap, aimed at providing reusable, high-
quality data. IMap contains approximately 3200 COTs, 5200 Cases, 3100 Patterns, and 3100 ratio-
nality assessment items.

Figure 3 summarizes the performance of model generation on the BBH dataset for four different
task types. Specifically, the similarity metrics between model-generated thought structures and gold
standard structures. On several metrics, the RLP model scored an average of 20.81%, which is
higher than the other compared models. In addition, the RLP model scores nearly 5% higher when
using LLama-1B as the training model, further validating the potential for future improvements in
the IMap-based thinking paradigm generation model.

Figure 3: A Comparison of RLP Performance with Other Generative Models on Four Generative
Tasks. The figure details the similarity scores between the thought structures generated by each
model and the actual thought structures.

Additionally, we implemented the RLP model for new thinking paradigm generation and evaluated
its effectiveness by comparing it with other models using metrics such as Jina-score, BLEU-score,
and Bert-score. As shown in Figure 4, RLP performs exceptionally well in the generation task
on the BBH dataset, achieving a result of 22.3%, which is slightly higher than that of the other
compared models. Specifically, we averaged the similarity results of the four generative tasks on
the BBH dataset to obtain score1, and then averaged the results of these tasks for each model to
obtain the final score. Overall, RLP performs well. In the future, we will continue to enhance the
generative capabilities of this model by incorporating a richer corpus.

4.4.2 ENHANCING TASK DIVERSITY AND CROSS-TASK GENERALIZATION ASSESSMENT

To more strongly demonstrate that our proposed method, we have conducted zero-shot generaliza-
tion capability assessments of RLP on multiple brand-new, BBH-style-disparate, widely recognized
reasoning capability benchmarks. Based on widespread practice in academia, we have selected
the following representative datasets: MATH (High-school level competition problems) (Hendrycks
et al., 2021), GSM8K (Grade School Math Word Problems) (Cobbe et al., 2021a), Hungarian HS
finals (Hungarian High School Mathematics Competition Questions, HHS) (Paster, 2023). our pre-
liminary experimental results show:

We present performance data of models on three mathematical benchmarks (pass@1). According
to Table 2, The basemodel scores 10.5% on MATH, 15.2% on GSM8K, and 27.8% on Hungarian
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Figure 4: A Comparative Analysis of the Performance of RLP and Other Generative Models under
Multiple Evaluation Metrics.

Table 2: Enhancing task diversity and cross-task generalization assessment
Model MATH (pass@1) GSM8K (pass@1) HHS (pass@1) Model-Avg.
Llama-3.2-1B (Cook et al., 2024) 10.5(−3.22)↓ 15.2(−3.87)↓ 27.8(−0.65)↓ 17.83
Llama-3.2-3B (Dong et al., 2024) 14.2(0.47)↑ 18.9(−0.17)↓ 27.9(−0.55)↓ 20.33
Llama-3.2-8B (Guo et al., 2024) 15.8(2.07)↑ 23.6(4.52)↑ 28.5(0.05)↑ 22.63
RLP (our)-Base-Llama-3.2-1B 14.4(0.67)↑ 18.6(−0.47)↑ 29.6(1.15)↑ 20.86
Task-Avg. 13.73 19.08 28.45 -

HS finals. Our RLP model shows top MATH (Hendrycks et al., 2021)(14.4%) and Hungarian HS
finals (29.6%) performance (18.6% for GSM8K). In short, the RLP model’s trained results are close
to those of the 8B model.

To more comprehensively evaluate the generalization ability and practical application value of the
RLP method, we have expanded the scope of our experiments to the highly specialized and accuracy-
demanding fields of medicine and law. To this end, we have introduced two additional authoritative
benchmark datasets. We randomly chose 200 entries for each dataset as the validation set. The
results of the experiment are as Table 3.

Table 3: Evaluate in expanding the field
Dataset Task Type lLama-3.2-1B RLP (our) probability gap standard deviation T-Value(p < 0.05)
BBH Multi Task 43.50% 48.50% 5.00% 0.45% t(22) = 5.92
PubMedQA (Jin et al., 2019) Biomedical Inference 67.50% 73.50% 6.00% 0.90% t(10) = 3.85
LegalBench (Guha et al., 2022) legal reasoning 42.00% 50.50% 8.50% 1.20% t(15) = 4.76

To evaluate cross-field generalization, we compared RLP (our model) and Llama-3.2-1B on three
datasets. RLP outperformed Llama-3.2-1B across all domains: 48.50% vs. 43.50% (BBH, multi-
task, +5.00%), 73.50% vs. 67.50% (PubMedQA (Jin et al., 2019), biomedical inference, +6.00%),
and 50.50% vs. 42.00% (LegalBench (Guha et al., 2022), legal reasoning, +8.50%). All differences
are statistically significant (p <0.05), confirming RLP’s stronger cross-field generalization.
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A BBH EVOLUTION

The origins of the BBH dataset can be traced back to this point, and its evolution is shown in detail
in the Table 4. Specifically, in (Srivastava et al., 2022), the BIG-Bench organizers assessed task
performance using various language model families, including GPT-3 (Brown et al., 2020), Gopher
(Rae et al., 2021), PaLM (Chowdhery et al., 2023), and both internal dense and sparse Google
models. Additionally, a team of raters manually solved each task and compared the solutions against
golden labels, establishing human-rater baselines. Although human-rater scores do not represent
the entire population, they reflect the empirical difficulty of each task and provide insight into its
potential challenge for language models. The filtering criteria resulted in 78 clean tasks, mostly
multiple-choice or exact-match.

Table 4: Filtering criteria used to create the BIG-Bench Hard (BBH) subset.
Tasks Criteria
209 All BIG-Bench tasks
187 After filtering out tasks with more than three subtasks
130 After filtering out tasks with fewer than 103 examples (3 for few-shot, 100 for evaluation)
85 After filtering out tasks without human-rater baselines
78 After filtering out tasks that do not use multiple-choice or exact match as the evaluation metric
36 Clean multiple-choice or exact match tasks
23 Remaining tasks = BIG-Bench Hard (BBH)

B TEMPLATE FOR ASSEMBLING CUES FROM INDUCTIVE MAPPING
ELEMENTS

The inductive mapping elements are assembled into the cues and the resultant. Figure 5 is generated
as follows.

13

https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2501.15383
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/2403.10131
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2409.09239
https://arxiv.org/abs/1909.08593


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 5: Template for assembling cues from inductive mapping elements

C HINTS FOR THE VALIDATION PROCESS

Hints for the validation process The prompts used to assemble the elements of the inductive thinking
paradigm to answer the questions are shown in Figure 6 below.

D PARAMETERS FOR API UTILIZATION

During the data collection process, we used the GPT API. We read the terms of service4 and followed
the usage policy. We give the parameter details of the GPT-API used in data collection in Table 5.
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Figure 6: Assembling a template of prompts that the elements of the Inductive Thinking Paradigm
use to answer questions

Table 5: Parameters for api utilization
Parameter EE VE C Sc Sy
n 1 3 3 3 1
best-of 1 3 3 3 2
model qwen plus qwen plus qwen plus qwen plus qwen plus
temperature 0.9 0.9 0.9 1 0.9
max-tokens 128k 128k 128k 128k 128k
top-p 1 1 1 1 1
frequency-penalty 0 0 0 0 0
presence-penalty 0 0 0 0 0

E MORE EXPERIMENTS

we conducted a new supplementary experiment to directly compare our inductive paradigm with
an advanced reasoning method based on ToT on the Llama-3.2-1B model. We drew inspiration
from the reinforcement learning training approach described in the paper “Training Large Language
Models for Reasoning through Reverse Curriculum Reinforcement Learning” and combined it with
the core mechanisms of ToT to construct a ToT reasoning agent as our baseline for comparison. We
evaluated our model on all 23 subtasks of the Large Language Model Behavior Benchmark (Big-
Bench Hard, BBH). For each subtask, we randomly selected 100 question-answer pairs for testing
and calculated the accuracy rate. The detailed comparison results are shown in the Table 6.
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Table 6: ToT vs Inductive Paradigm
BBH Subtask Inductive Paradigm (%) ToT (%) Inductive vs. ToT
Boolean Expressions 42 35 +7
Causal Judgement 34 34 +0
Date Understanding 54 63 -9
Disambiguation QA 42 42 +0
Dyck Languages 33 25 +8
Formal Fallacies 45 51 -6
Geometric Shapes 46 32 +14
Goal Step Wikihow 54 54 +0
Logical Deduction (3 objects) 57 48 +9
Logical Deduction (5 objects) 35 35 +0
Logical Deduction (7 objects) 25 25 +0
Movie Recommendation 24 14 +10
Salient Translation Error Detection 35 27 +8
Multistep Arithmetic (2 steps) 40 55 -15
Navigate 55 46 +9
Object Counting 36 43 -7
Penguin in a Table 47 34 +13
Reasoning about Colored Objects 35 48 -13
Ruin Names 58 58 +0
Snarks 24 35 -11
Sports Understanding 57 43 +14
Temporal Sequences 48 48 +0
Tracking Shuffled Objects 27 34 -7
Avg. 41.43% 40.39% +1.04%

F EXAMPLES OF THINKING PARADIGM PROMPTS

Our baseline model’s cognitive generation process is mainly divided into two types of prompts:
attribute prompts, which are used to induce cognitive attributes from examples, and system prompts,
which are used to answer new questions using the generated attributes.

Attribute Prompts: 1. Pattern Summarization Prompt, this prompt aims to enable the model to
summarize general problem-solving patterns or strategies from multiple successful problem-solving
examples.

<system prompt>
profile information...
<system prompt/>
<examples>
examples...
<examples/>
<objective>
summarize the solution patterns and refine the ...
<objective>
#Initialization#
In the first conversation, please directly output the following:...

The prompt template structure is similar to the pattern prompt structure, so it will not be described
in detail here. 2. Chain of Thought Generation Prompt. 3. Diversified case generation prompt.
4. Reasonability Assessment Prompt. System Prompts: Attribute-Assembled Q&A Prompt. This
prompt template is shown in Figure 7, 8, 9, 10.

G EXAMPLES OF IMAP

The IMap example is shown in Figure 11, Figure 12, Figure 13. The following is a truncated
example, other more experimental results and related content in the zip file output directory.
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H IMPACT ON THE FIELD

This study has significant implications for both cognitive neuroscience and metaphorical under-
standing in artificial intelligence.

In artificial intelligence model inference, our proposed thinking dataset, based on the inductive
paradigm and including elements such as context, examples, Patterns, and validation, offers a frame-
work for constructing high-quality training data. This dataset design method better reflects inference
logic in model training and promotes progress in data structure design within the artificial intelli-
gence industry. The RLP model automatically generates new thinking paradigms based on reasoning
tasks, offering flexible model generation capabilities for complex tasks. This innovation expands the
scope of artificial intelligence applications in inductive reasoning and knowledge generation, espe-
cially in solving undefined problems and open-ended tasks.

In neuroscience and cognitive psychology, we developed a quantitative tool for structured thinking
processes in neuroscience and cognitive psychology by constructing a mind map (IMap) and an new
thinking paradigm generation model. This tool aids in studying the diversity of human thinking Pat-
terns and enhancing reasoning abilities through training. Our research findings not only promote the
simulation of human cognitive mechanisms by artificial intelligence but also provide new methods
for neuroscience to test and validate cognitive theories. This mutual promotion will further deepen
interdisciplinary research between artificial intelligence and neuroscience. Our ability to generate
new thinking paradigms may be used in neuroscience to study creative thinking, abnormal think-
ing Patterns (e.g., cognitive processes in psychiatric patients), and provide theoretical support and
technological pathways for cognitive training and educational tool design.

I LIMITATION

In this work, we introduced IMap, a mapping structure based on an inductive thinking paradigm,
which aims to enhance inductive reasoning in AI and to facilitate advances in brain science. How-
ever, we recognize several limitations in our work.

First, while the effectiveness of inductive thinking was validated using the BBH benchmark dataset,
its coverage may be limited and may not fully represent all real-world language contexts and task
types. Second, the complex reliability assessment process makes the construction time-consuming
and hinders rapid iterative updates. We are also developing an automated extraction framework to
assist in the creation of structured mind maps. Third, the model’s interpretability is limited. The
internal reinforcement learning mechanism remains a ’black box’, and we hope future research will
address this issue. Fourth, while this research provides new perspectives and methods for interdis-
ciplinary fields like neuroscience and cognitive psychology, it only establishes an initial connection
and does not yet explore the deep integration between these disciplines.
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Figure 7: COTs generates a prompt fortasks
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Figure 8: Cases generates a prompt for tasks
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Figure 9: Patterns generates a prompt for tasks
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Figure 10: Reasonability generates a prompts for tasks
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Figure 11: IMap Structure Example 1
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Figure 12: IMap Structure Example 2
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Figure 13: IMap Structure Example 3
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Figure 14: IMap Structure Example 4
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