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Abstract

To establish last-iterate convergence for Counterfactual Regret Minimization (CFR)
algorithms in learning a Nash equilibrium (NE) of extensive-form games (EFGs), re-
cent studies reformulate learning an NE of the original EFG as learning the NEs of a
sequence of (perturbed) regularized EFGs. Hence, proving last-iterate convergence
in solving the original EFG reduces to proving last-iterate convergence in solving
(perturbed) regularized EFGs. However, these studies only establish last-iterate
convergence for Online Mirror Descent (OMD)-based CFR algorithms instead of
Regret Matching (RM)-based CFR algorithms in solving perturbed regularized
EFGs, resulting in a poor empirical convergence rate, as RM-based CFR algorithms
typically outperform OMD-based CFR algorithms. In addition, as solving multi-
ple perturbed regularized EFGs is required, fine-tuning across multiple perturbed
regularized EFGs is infeasible, making parameter-free algorithms highly desirable.
This paper show that CFR+, a classical parameter-free RM-based CFR algorithm,
achieves last-iterate convergence in learning an NE of perturbed regularized EFGs.
This is the first parameter-free last-iterate convergence for RM-based CFR al-
gorithms in perturbed regularized EFGs. Leveraging CFR+ to solve perturbed
regularized EFGs, we get Reward Transformation CFR+ (RTCFR+). Importantly,
we extend prior work on the parameter-free property of CFR+, enhancing its sta-
bility, which is vital for the empirical convergence of RTCFR+. Experiments show
that RTCFR+ exhibits a significantly faster empirical convergence rate than existing
algorithms that achieve theoretical last-iterate convergence. Interestingly, RTCFR+

show performance no worse than average-iterate convergence CFR algorithms. It is
the first last-iterate convergence algorithm to achieve such performance. Our code
is available at https://github.com/menglinjian/NeurIPS-2025-RTCFR.

1 Introduction

Extensive-form games (EFGs) are a foundational model for capturing interactions among mul-
tiple agents and sequential events, which are widely applied in simulating real-world scenarios,
such as medical treatment [Sandholm, 2015], security games [Lisỳ et al., 2016], and recreational
games [Brown and Sandholm, 2019b]. A common goal to address EFGs is to learn a Nash equilibrium
(NE), where no player can unilaterally improve their payoff by deviating from the equilibrium.

† Corresponding authors.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/menglinjian/NeurIPS-2025-RTCFR


Recent research commonly employs regret minimization algorithms [Zhang et al., 2022b] to learn
an NE in EFGs. Among them, Counterfactual Regret Minimization (CFR) algorithms are the most
widely used ones for learning an NE in real-world EFGs [Bowling et al., 2015, Moravčík et al.,
2017, Brown and Sandholm, 2018, 2019b, Pérolat et al., 2022]. They usually use Regret Matching
(RM) algorithms [Hart and Mas-Colell, 2000, Gordon, 2006, Lanctot et al., 2009, Lanctot, 2013,
Tammelin, 2014, Brown and Sandholm, 2019a, Farina et al., 2021, 2023, Xu et al., 2024b] as the
local regularizer, since RM algorithms usually exhibit a faster empirical convergence rate than other
local regret minimizers, such as Online Mirror Descent (OMD) [Nemirovskij and Yudin, 1983]. For
convenience, we refer to the CFR algorithms that employ RM algorithms and OMD algorithms as
local regularizers as RM-based CFR algorithms and OMD-based CFR algorithms, respectively.

However, most regret minimization algorithms, including CFR algorithms, typically only achieve
average-iterate convergence and their strategy profile may diverge or cycle, even in normal-form
games (NFGs) [Bailey and Piliouras, 2018, Mertikopoulos et al., 2018]. Average-iterate convergence
implies that the averaging of strategies is necessary, which increases computational and memory
overhead. Additionally, when strategies are parameterized via function approximation, a new approx-
imation function must be trained to represent the average strategy, resulting in further approximation
errors. Consequently, algorithms with last-iterate convergence to NE, which ensures that the sequence
of strategy profiles converges to the set of NEs, are preferable.

To establish last-iterate convergence for CFR algorithms, recent studies [Pérolat et al., 2021, 2022,
Liu et al., 2023] employ the Reward Transformation (RT) framework, which (i) transforms the task
of learning an NE of the original EFG into learning the NEs of a sequence of (perturbed) regularized
EFGs and (ii) ensures the sequence of the NEs of these (perturbed) regularized EFGs converges to
the set of NEs of the original EFG. Therefore, to ensure last-iterate convergence in learning an NE of
the original EFG, it is sufficient to establish last-iterate convergence in learning an NE of (perturbed)
regularized EFGs. Unfortunately, these studies only establish last-iterate convergence in learning
an NE of (perturbed) regularized EFGs for OMD-based CFR algorithms, incurring a poor empirical
convergence rate to the set of NEs of the original EFG, as illustrated in our experiments.

To improve the empirical convergence rate, we propose Reward Transformation CFR+ (RTCFR+),
utilizing CFR+ [Tammelin, 2014], a classical parameter-free RM-based CFR algorithm, to solve
perturbed regularized EFGs. RTCFR+ is inspired by two observations: (i) RM-based CFR algorithms
(the CFR algorithms that employ RM algorithms as the local regret minimizer) usually outperform
OMD-based CFR algorithms, and (ii) parameter-free algorithms, implying no parameters need to
be tuned [Grand-Clément and Kroer, 2021], are desirable to solve multiple perturbed regularized
EFGs because fine-tuning across all perturbed regularized EFGs is infeasible. Notably, the parameter
in CFR algorithms typically refers to the step sizes. Based on the RT framework, if CFR+ has last-
iterate convergence in learning an NE of perturbed regularized EFGs, then RTCFR+ has last-iterate
convergence in learning an NE of the original EFG. Unfortunately, it remains unknown whether
CFR+ achieves the parameter-free (i.e., holds for any step sizes) last-iterate convergence in learning
an NE of perturbed regularized EFGs. It motivates a key question:

Does CFR+ have parameter-free last-iterate convergence
in learning an NE of perturbed regularized EFGs?

To answer this question, we first provide the non-parameter-free (w.r.t. the step sizes) last-iterate
convergence of CFR+, i.e., for any initial accumulated counterfactual regrets, CFR+ achieves last-
iterate convergence in learning an NE of perturbed regularized EFGs when the step size exceeds
a positive constant. We then extend this non-parameter-free result to establish the parameter-free
result, i.e., CFR+ achieves last-iterate convergence for any initial accumulated counterfactual regrets
and step sizes. Note that our parameter-free result holds for any initial accumulated counterfactual
regrets—not just the zero initialization in previous works [Farina et al., 2021]1—enhancing the
stability of CFR+ [Farina et al., 2023], which is critical for the empirical convergence of RTCFR+ in
solving the original EFG. Without our parameter-free result, RTCFR+ fails to empirically converge
to the set of NEs of the original EFG! To the best of our knowledge, this is the first parameter-free
last-iterate convergence guarantee for RM-based CFR algorithms in learning an NE of perturbed
regularized EFGs. As a consequence, based on the convergences of the RT framework and CFR+,
RTCFR+ achieves last-iterate convergence in learning an NE of the original EFG.

1While Tammelin et al. [2015] establish parameter-free average-iterate convergence of CFR+ under any
initialization, we show both last- and average-iterate convergence. Their proof techniques differ from ours and
the recent RM-based CFR works, which are all based on Farina et al. [2021]. See details in Appendix B.
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Specifically, we propose novel techniques to overcome the challenges in the above two steps of the
proof. First, the primary challenge in proving the non-parameter-free result is that the smoothness of
the instantaneous counterfactual regrets—the key property used in prior works [Liu et al., 2023] to
establish the last-iterate convergence of CFR algorithms—cannot be leveraged, since RM algorithms
update within the cone of the strategy space while the final output lies in the strategy space itself.
To address this, we exploit the fact that an NE represents a best response to others at each infoset in
perturbed EFGs. More specifically, this fact allows a term—related to the accumulated counterfactual
regrets and the utility obtained by deviating from an NE of perturbed EFGs—can be added. It
enables the smoothness of the instantaneous counterfactual regrets to be leveraged, ensuring that
the cumulative squared distance between the iterated strategy profiles and the NE of perturbed
regularized EFGs remains bounded by a constant across all iterations, thereby guaranteeing last-
iterate convergence. Second, the main challenge of proving our parameter-free result is that the
property used in prior proofs of the parameter-free property of CFR+—the strategy sequence produced
by CFR+ remains invariant across different step sizes—holds only when the initial accumulated
counterfactual regrets are zero [Farina et al., 2021]. We address this by leveraging the linearity of the
projection alongside our non-parameter-free convergence result that holds for any initial accumulated
counterfactual regrets. In particular, we use the linearity of projection to show that for any given
initial accumulated counterfactual regrets and step sizes, there exists an alternative choice of these
parameters that yields an identical strategy profile sequence. By then applying our non-parameter-free
result to this alternative setting, we establish that the resulting strategy profile sequence converges to
the set of NEs of perturbed regularized EFGs, thus proving the parameter-free last-iterate convergence.
Notably, We only provide parameter-free last-iterate convergence results for CFR+. In other words,
RTCFR+ is not a parameter-free algorithm.

Experimental results across nine instances from five standard EFG benchmarks—Kuhn Poker, Leduc
Poker, Goofspiel, Liar’s Dice, and Battleship, as well as two heads-up no-limit Texas Hold’em
(HUNL) Subgames—demonstrate that RTCFR+ achieves a significantly faster empirical convergence
rate compared to existing algorithms with theoretical last-iterate convergence guarantees. Interestingly,
RTCFR+ even performs no worse well as average-iterate convergence CFR algorithms. Notably, it is
the first last-iterate convergence algorithm to accomplish this level of performance.

2 Preliminaries

Extensive-form games (EFGs). EFG is a commonly used model for modeling tree-form sequential
decision-making problems. An EFG can be formulated as G = {N ,H, P,A, I, {ui}}. Here, N is
the set of players. H is the set of all possible histories. The set of leaf nodes is denoted by Z . For
each history h ∈ H, the function P (h) represents the player acting at node h, and A(h) denotes
the actions available at node h. To account for private information, the nodes for each player i are
partitioned into a collection Ii, referred to as information sets (infosets). For any infoset I ∈ Ii,
histories h, h′ ∈ I are indistinguishable to player i. Thus, P (I) = P (h), A(I) = A(h),∀h ∈ I . The
notation I denotes I = {Ii|i ∈ N}. We also use Ci(I, a) to denote the set of infosets that belongs
to i and will counter after executing a ∈ A(I) at infoset I ∈ Ii. The notations Amax and Cmax
denote maxI∈I |A(I)| and maxi∈N ,I∈Ii,a∈A(I) Ci(I, a), respectively. For each leaf node z, there is
a pair (u0(z), u1(z)) ∈ [−1, 1] which denotes the payoffs for the min player (player 0) and the max
player (player 1), respectively. We define H as the maximum number of actions taken by all players
along any path from the root to a leaf node. In two-player zero-sum EFGs, u0(z) = −u1(z),∀z ∈ Z .
To illustrate the components of an EFG, we provide an example in Appendix A.

Sequence-form strategy. A sequence is an infoset-action pair (I, a), where I ∈ I is an infoset and
a is an action belonging to A(I). Each sequence identifies a path from the root node to the infoset I ,
selecting the action a along this path. The set of sequences for player i is denoted by Σi. The last
sequence encountered on the path from the root node r to I is denoted by ρI (ρI ∈ Σi). In other
words, ∀i ∈ N , I ∈ Ii, I ∈ Ci(ρI). A sequence-form strategy for player i is a non-negative vector
xi indexed over the set of sequences Σi. For each sequence q = (I, a) ∈ Σi, xi(q) is the probability
that player i reaches the sequence q when following the strategy xi. We formulate the sequence-form
strategy space as a treeplex [Hoda et al., 2010]. Let X i denote the set of sequence-form strategies for
player i. We use xi(I) = [xi(I, a)|a ∈ A(I)] to denote the slice of a given strategy xi corresponding
to sequences belonging to infoset I , where xi(I, a) is value of xi at the sequence (I, a). For each
EFG, there always exists a D such that ∀i ∈ N and xi ∈ X i, ∥xi∥1 ≤ D.
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Nash equilibrium (NE). NE describes a rational behavior where no player can benefit by unilaterally
deviating from the equilibrium. For any player, her strategy is the best response to the strategies of
others. From the sequence-form strategy framework, learning an NE of EFGs is represented by

min
x0∈X 0

max
x1∈X 1

xT
0Ax1, (1)

where A is the payoff matrix. We use X and X ∗ to denote ×i∈NX i and the set of NE, respectively.

Behavioral strategy. This strategy σi is defined on each infoset. For any infoset I ∈ Ii, the
probability for the action a ∈ A(I) is denoted by σi(I, a). We use σi(I) = [σi(I, a)|a ∈ A(I)] ∈
∆|A(I)| to denote the strategy at infoset I , where ∆|A(I)| is a (|A(I)| − 1)-dimension simplex. If
all players follow the strategy profile σ = {σ0, σ1} and reaches infoset I , the reaching probability
is denoted by πσ(I). The probability contribution from player i is represented by πσi (I), while the
contribution from the other players is represented by πσ−i(I), where −i refers to all players except
player i. Notably, ∀i ∈ N , I ∈ Ii, a ∈ A(I),xi ∈ X i, xi(I, a) = πσi (I)σi(I, a), where σi is the
corresponding behavioral strategy of xi.

Perturbed extensive-form games (Perturbed EFGs). This game is a variant of the original EFG.
Specifically, the strategy space of each infoset I ∈ I in a γ-perturbed EFG is a γ-perturbed simplex
∆

|A(I)|
γ , a subset of ∆|A(I)|, rather than the standard simplex ∆|A(I)| used in the original EFG, where

γ > 0 is a constant. Formally, for any σ̂i(I) ∈ ∆
|A(I)|
γ and a ∈ A(I), the constraint γ ≤ σ̂i(I, a) ≤ 1

holds, where i = P (I). For convenience, we denote the set of sequence-form strategies for player i
in the γ-perturbed EFGs as X γ

i . In γ-perturbed EFGs with γ > 0, any behavioral strategy σ̂i, with
σ̂i(I) ∈ ∆

|A(I)|
γ for all i ∈ N and I ∈ Ii, can be uniquely mapped to a sequence-form strategy

x̂i ∈ X γ
i , and vice versa. Specifically, ∀i ∈ N , I ∈ Ii, σ̂i(I) = x̂i(I)/x̂i(ρI) ≥ γ. Notably,

∀i ∈ N , X γ
i is a subset of X i. Similarly, we use the notation X γ and X ∗,γ to denote the joint

strategy space ×i∈NX γ
i and the set of NEs of γ-perturbed EFGs, respectively.

Learning an NE via regret minimization algorithms. For any sequence of strategies x1
i , · · · ,xTi

of of player i, player i’s regret is RTi = maxxi∈X i

∑T
t=1⟨ℓti,xti − xi⟩, where ℓti is the loss for

player i at iteration t. Regret minimization algorithms are algorithms ensuring RTi grows sublinearly.
To learn an NE of EFGs via regret minimization algorithms, we set ℓti = ℓx

t

i with ℓx0 = Ax1

and ℓx1 = −ATx0. If all players follow regret minimization algorithms, then the average strategy
converges to the set of NEs in two-player zero-sum EFGs. In EFGs, there always exists L and P such
that, ∀x,x′ ∈ X , ∥ℓx − ℓx

′∥1 ≤ L∥x− x′∥1 and ∥ℓx∥1 ≤ P , where ℓx = [ℓxi |i ∈ N ], as well as
L > 0 and P > 0 are game-dependent constants.

Counterfactual regret minimization (CFR) framework. This framework [Zinkevich et al., 2007,
Farina et al., 2019] is designed to solve EFGs by decomposing the global regret RTi into local regrets
at each infoset, allowing for independent minimization within each infoset, rather than directly
minimizing global regret. This approach has led to the development of several superhuman Game
AIs [Bowling et al., 2015, Moravčík et al., 2017, Brown and Sandholm, 2018, 2019b, Pérolat et al.,
2022]. Formally, for player i, given the observed loss when all players follow x ∈ X is ℓxi , the CFR
framework computes the counterfactual values at each infoset I ∈ Ii according to

vx
i (I, a) = −ℓxi (I, a) +

∑
I′∈Ci(I,a)

⟨vx
i (I

′), σi(I
′)⟩

where ℓxi (I, a) is the value of ℓxi at the sequence (I, a), vx
i (I

′) = [vx
i (I

′, a′)|a′ ∈ A(I ′)], and σi
represents the behavioral strategy of player i corresponds to xi. Farina et al. [2019] demonstrate that

RTi = max
xi∈X i

T∑
t=1

⟨ℓti,xti − xi⟩ ≤
∑
I∈Ii

max
σi(I)

T∑
t=1

⟨vti(I), σi(I)− σti(I)⟩,

where vti(I) = vxt

i (I) = [vxt

i (I, a)|a ∈ A(I)] and σti is the behavioral strategy of player i
corresponds to xti. It indicates that minimizing the local regret maxσi(I)

∑T
t=1⟨vti(I), σi(I)−σti(I)⟩

at I ∈ Ii contributes to minimizing the global regret RTi .

Blackwell approachability framework. RM algorithms are come from this framework whose core
insight lies in reframing the problem of regret minimization within the orignial strategy space Z as
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regret minimization within cone(Z) = {λz | z ∈ Z, λ ≥ 0} [Blackwell, 1956, Abernethy et al.,
2011, Farina et al., 2021]. Specifically, a regret minimization algorithm is instantiated in cone(Z),
where its output at iteration t is θt. This corresponds to the strategy zt = θt/⟨θt,1⟩ within Z .
Given the loss ℓt at iteration t, the algorithm observes the transformed loss −mt = −⟨ℓt, zt⟩1+ ℓt

and subsequently generates θt+1. The main advantage of this framework is its capacity to develop
parameter-free algorithms. More details are provided below.
Regret Matching+ (RM+). To minimize local regret within each infoset, CFR algorithms commonly
employ local regret minimizers based on RM [Hart and Mas-Colell, 2000, Gordon, 2006, Bowling
et al., 2015, Farina et al., 2021, 2023, Xu et al., 2022, 2024b, Cai et al., 2025], which show strong em-
pirical convergence rate and are typically parameter-free. In this paper, we focus on RM+ [Tammelin,
2014], a variant of RM that typically exhibits a faster empirical convergence rate than vanilla RM.
RM+ is a traditional algorithm grounded in Blackwell approachability framework. It corresponds to
an OMD instantiated in the cone of the simplex [Farina et al., 2021]. Formally, at each iteration t and
infoset I ∈ Ii, RM+ updates the strategy via

θt+1
I ∈ argmin

θI∈R|A(I)|
≥0

{
⟨−mt

i(I),θI⟩+
1

η
Dψ(θI ,θ

t
I)

}
, σt+1

i (I) =
θt+1
I

⟨θt+1
I ,1⟩

,

where i = P (I), η > 0 is the step size, mt
i(I) = −⟨vti(I), σti(I)⟩1 + vti(I) represents the

instantaneous counterfactual regret, andDψ(u,v) = ψ(u)−ψ(v)−⟨∇ψ(v),u−v⟩ is the Bregman
divergence associated with the quadratic regularizer ψ(·) = ∥ · ∥22/2. If θ1

I = 0, for all the step size
η > 0, the output sequence {σ1

i (I), σ
2
i (I), . . . , σ

t
i(I), . . . } remains unchanged [Farina et al., 2021].

Combining RM+ with the CFR framework yields CFR+ [Tammelin, 2014], which is a parameter-free
CFR algorithm and has been used to build superhuman poker AI [Bowling et al., 2015].

3 Problem Statement

To demonstrate the last-iterate convergence of CFR algorithms, Pérolat et al. [2021, 2022], Liu et al.
[2023] employ the RT framework. This framework reformulates the objective of learning an NE for
the original EFG into finding NEs for a series of (perturbed) regularized EFGs, and ensures that the
sequence of NEs of the regularized EFGs converges to the set of NEs of the original EFG. Therefore,
establishing last-iterate convergence in learning an NE of the original EFG reduces to establishing
last-iterate convergence in learning an NE of (perturbed) regularized EFGs. Inspired by Pérolat et al.
[2021], Liu et al. [2023], Abe et al. [2024], we consider the following perturbed regularized EFG:

min
x̂0∈Xγ

0

max
x̂1∈Xγ

1

x̂T
0Ax̂1 + µDψ(x̂0, r0)− µDψ(x̂1, r1), (2)

where γ > 0 and µ > 0 are constants, ψ(·) is the quadratic regularizer, and r = [r0; r1] ∈ X is
the reference strategy profile. The NE of this perturbed regularized EFG is unique and denoted by
x̂∗,γ,µ,r or σ̂∗,γ,µ,r . To ensure the sequence of the NEs of the perturbed regularized EFGs converges
to the set of NEs of the original EFG, a valid approach is to continuously decreasing the value of γ and
updating r to x̂∗,γ,µ,r , according to the studies in Abe et al. [2024], Bernasconi et al. [2024]. Another
approach involves simultaneously reducing the values of γ and µ [Liu et al., 2023, Bernasconi et al.,
2024]. Notably, in the approach where simultaneously reducing the values of γ and µ, updating r to
x̂∗,γ,µ,r is optional. Consequently, achieving the last-iterate convergence for solving Eq. (2) implies
achieving the last-iterate convergence for solving Eq. (1). This paper refrains from investigating the
RT framework and its convergence as these have been thoroughly investigated in other studies [Pérolat
et al., 2021, Liu et al., 2023, Abe et al., 2024, Bernasconi et al., 2024, Wang et al., 2025].

The introduction of perturbation and regularization ensures the smoothness of counterfactual val-
ues and the strong monotonicity, respectively. The smoothness is ∥vσ̂i (I) − vσ̂

′
i (I)∥1 ≤ O(∥x̂ −

x̂′∥1), ∀x̂, x̂′ ∈ X γ , where σ̂ and σ̂′ are the behavioral strategy profiles associated with x̂ and x̂′,
respectively. The strong monotonicity indicates that O(⟨ℓx̂− ℓx̂

′
, x̂− x̂′⟩) ≥ ∥x̂− x̂′∥22, ∀x̂, x̂′ ∈ X γ .

Although some works have investigated the last-iterate convergence of CFR algorithms for solving
perturbed regularized EFGs [Liu et al., 2023], their algorithms do not use RM-based algorithms as the
local regret minimizer. The absence of RM-based algorithms leads to significantly weaker empirical
last-iterate convergence performance than traditional RM-based average-iterate convergence CFR
algorithms, as shown in our experiments. In addition, as solving multiple perturbed regularized EFGs

5



is required, fine-tuning across all perturbed regularized EFGs is infeasible. Consequently, parameter-
free algorithms, implying no parameters need to be tuned [Grand-Clément and Kroer, 2021], are
desirable. Based on these observations, we propose Reward Transformation CFR+ (RTCFR+),
utilizing CFR+ [Tammelin, 2014], a classical parameter-free RM-based CFR algorithm, to solve
perturbed regularized EFGs defined in Eq. (2) (details of RTCFR+ are in Section 4). Unfortunately,
it remains unknown whether CFR+ achieves the parameter-free (i.e., holds for any step sizes)
last-iterate convergence in solving Eq. (2). Thus, our objective is to establish the parameter-free
last-iterate convergence for CFR+ in solving Eq. (2). More discussions about the related works are in
Appendix B.

4 Last-Iterate Convergence of CFR+ in Solving Perturbed Regularized EFGs

Now, we show that CFR+ exhibits last-iterate convergence for solving the perturbed regularized
EFGs defined in Eq. (2). Before introducing the last-iterate convergence of CFR+, we first extend
CFR+ to perturbed EFGs as the original CFR+ algorithm is only designed for the case where γ = 0.
Specifically, we (i) first update the accumulated counterfactual regrets within the original simplex’s
cone while ensuring strategy outputs lie within the perturbed simplex by mixing the non-perturbed
strategy formed by the accumulated counterfactual regrets with the uniform vector, then (ii) compute
the instantaneous counterfactual regrets using the non-perturbed strategy and the counterfactual
values observed through following the output perturbed strategy. This enables the use of the strong
monotonicity to establish last-iterate convergence in learning an NE of the perturbed regularized
EFGs in Eq. (2), as shown in Eq. (6). Formally, the update rule of CFR+ for learning an NE of the
perturbed regularized EFGs in Eq. (2) at iteration t and infoset I ∈ Ii is

θt+1
I ∈ argmin

θI∈R|A(I)|
≥0

{
⟨−m̂t

i(I),θI⟩+
1

η
Dψ(θI ,θ

t
I)

}
, σt+1

i (I) =
θt+1
I

⟨θt+1
I ,1⟩

,

σ̂t+1
i (I) = (1− αI)σt+1

i (I) + γ1, αI = γ|A(I)|,
m̂t
i(I) = v̂ti(I)− ⟨v̂ti(I), σti(I)⟩1,

v̂ti(I, a) = −ℓ̂ti(I, a) +
∑

I′∈Ci(I,a)

⟨v̂ti(I ′), σ̂ti(I ′)⟩,

ℓ̂t0 = Ax̂t1 + µ∇ψ(x̂t0)− µ∇ψ(r0), ℓ̂t1 = −ATx̂t0 + µ∇ψ(x̂t1)− µ∇ψ(r1),

(3)

where η > 0 is the step size and x̂ti(I) = πσ̂
t

i (I)σ̂ti(I). The second line in Eq. (3) mixes the
non-perturbed strategy σ with the uniform vector 1, while the third line constructs the instanta-
neous counterfactual regrets m̂t

I using the non-perturbed strategy σti derived from accumulated
counterfactual regrets θtI and counterfactual values v̂ti obtained from the perturbed strategy σ̂ti .

Theorem 4.1 (Proof is in Appendix D). Assuming all players follow the update rule of CFR+ with
any θ1

I ∈ R|A(I)|
≥0 and η > 0, the strategy profile x̂t converges to the set of NEs of the perturbed

regularized EFGs defined in Eq. (2) with any γ > 0 and µ > 0.

Proof sketch of Theorem 4.1. Our proof consists of two steps. Firstly, we establish the non-
parameter-free last-iterate convergence; that is, for all θ1

I ∈ R|A(I)|
≥0 , the last-iterate convergence

of CFR+ in solving Eq. (2) holds when η exceeds a certain constant. The principal challenge is
that the smoothness of the instantaneous counterfactual regrets cannot be used since RM algorithms
update within the cone of the strategy space, cone(∆A(I)), whereas the final output lies in the strategy
space, ∆A(I). We address this challenge by leveraging the fact that an NE is a best response to other
strategies at each infoset in perturbed EFGs, as shown in the text around Eq. (5) and (6), as well as
Lemma 4.4. Secondly, we derive the parameter-free convergence result, namely, that the last-iterate
convergence of CFR+ holds for all θ1

I ∈ R|A(I)|
≥0 and η > 0. The main challenge here is that the

property used in previous proofs of the parameter-free property—that the strategy sequence produced
by CFR+ is invariant w.r.t. different step sizes η > 0—holds only when θ1

I = 0. We overcome
this by exploiting the linearity of the projection in CFR+ and the fact that our non-parameter-free
last-iterate convergence of CFR+ holds for all θ1

I ∈ R|A(I)|
≥0 , as presented in the second paragraph

following Lemma 4.4. The details of our proof sketch is shown in the following.
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Lemma 4.2 (Adapted from the proof of Lemma 4 in Farina et al. [2021]). Assuming all players
follow the update rule of CFR+, then for any θI ∈ R|A(I)|

≥0 , we have

Dψ(θI ,θ
t+1
I )−Dψ(θI ,θ

t
I) ≤ η⟨m̂t

i(I),θ
t+1
I − θI⟩ −Dψ(θ

t+1
I ,θtI).

By applying Lemma 4.2 with θI = σ∗,µ,γ,r
i (I) = (σ̂∗,µ,γ,r

i (I)− γ1)/(1− αI) ∈ ∆|A(I)|, we get

η⟨m̂t
i(I),σ

∗,µ,γ,r
i (I)−θt+1

I ⟩≤Dψ(σ
∗,µ,γ,r
i (I),θtI)−Dψ(σ

∗,µ,γ,r
i (I),θt+1

I )−Dψ(θ
t+1
I ,θtI). (4)

Also, we define
m̂∗,µ,γ,r
i (I)=v̂∗,µ,γ,r

i (I)−⟨v̂∗,µ,γ,r
i (I),σ∗,µ,γ,r

i (I)⟩1,

v̂∗,µ,γ,r
i (I)=−ℓ̂∗,µ,γ,ri (I,a)+

∑
I′∈Ci(I,a)

⟨v̂∗,µ,γ,r
i (I ′),σ̂∗,µ,γ,r

i (I ′)⟩,

ℓ̂∗,µ,γ,r0 =Ax̂∗,µ,γ,r
1 +µ∇ψ(x̂∗,µ,γ,r

0 )−µ∇ψ(r0), ℓ̂∗,µ,γ,r1 =−ATx̂∗,µ,γ,r
0 +µ∇ψ(x̂∗,µ,γ,r

1 )−µ∇ψ(r1).

Then, adding η⟨−m̂∗,µ,γ,r
i (I),θt+1

I − θtI⟩ to each hand side of Eq. (4), we can get

η⟨m̂t
i(I), σ

∗,µ,γ,r
i (I)− θtI⟩ − η2 ∥m̂t

i(I)− m̂∗,µ,γ,r
i (I)∥22

2

≤Dψ(σ
∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩.
(5)

In OMD algorithms [Sokota et al., 2023], the addition of the term η⟨−m̂∗,µ,γ,r
i (I),θt+1

I − θtI⟩ is
not required to exploit the smoothness of the instantaneous counterfactual regrets. However, this term
is necessary to prove the last-iterate convergence of CFR+. This step is crucial in our proof, and to
the best of our knowledge, no prior work has proposed a similar approach.
Lemma 4.3 (Proof is in Appendix E.1). For any x,x′ ∈ X , ℓ ∈ R|X |, i ∈ N , µ ≥ 0, and γ ≥ 0,

⟨ℓi,xi − x′
i⟩ =

∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σi(I)− σ′
i(I)⟩,

where vσi (I) = [vσi (I, a)|a ∈ A(I)] with vσi (I, a) = −ℓi(I, a) +
∑
I′∈Ci(I,a)

⟨vσi (I ′), σi(I ′)⟩, as
well as σ and σ′ are the behavioral strategy profiles associated with x and x′, respectively.

Combining Eq. (5) with Lemma 4.3, and setting ζI = (1− αI)βI with βI = πσ̂
∗,µ,γ,r

i (I), we have

η

T∑
t=1

∑
i∈N

⟨ℓ̂ti,x̂ti−x̂∗,µ,γ,r
i ⟩−

T∑
t=1

∑
i∈N

∑
I∈Ii

η2 ∥m̂t
i(I)−m̂∗,µ,γ,r

i (I)∥22
2

≤
∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂∗,µ,γ,r
i (I),θ1

I ⟩−Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
.

By using the strong monotonicity (O(
∑T
t=1

∑
i∈N ⟨ℓ̂ti, x̂ti − x̂∗,µ,γ,r

i ⟩) ≥ ∥x̂t − x̂∗,µ,γ,r∥22, as
shown in Lemma D.1) and the smoothness of instantaneous counterfactual regrets ( ∥m̂t

i(I) −
m̂∗,µ,γ,r
i (I)∥22 ≤ O(∥x̂t − x̂∗,µ,γ,r∥22)) (see details in Appendix D), we get

µη

T∑
t=1

∥x̂t − x̂∗,µ,γ,r∥22 −
T∑
t=1

η2C0∥x̂t − x̂∗,µ,γ,r∥22 ≤
∑
i∈N

∑
I∈Ii

ζI

(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )

+ η⟨−m̂∗,µ,γ,r
i (I),θ1

I ⟩ −Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
,

(6)

where C0 = |I|A2
max

(
6(L+ µ)2 + 8(P + 2µD)2(AmaxCmax + 1)2/γ2H

)
. Note that the form of

smoothness we adopt differs from that commonly used in OMD algorithms [Sokota et al., 2023],
where smoothness typically takes the form ∥m̂t

i(I) − m̂t+1
i (I)∥22 ≤ O(∥x̂t − x̂t+1∥) rather than

∥m̂t
i(I) − m̂∗,µ,γ,r

i (I)∥22 ≤ O(∥x̂t − x̂∗,µ,γ,r∥22). This difference also highlights that our proof
approach diverges from the approach used by OMD algorithms. Then, if 0 < η ≤ µ/(2C0), we get

µη

2

T∑
t=1

∥x̂t − x̂∗,µ,γ,r∥22 ≤
∑
i∈N

∑
I∈Ii

ζI

(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )

+ η⟨−m̂∗,µ,γ,r
i (I),θ1

I ⟩ −Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
.
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Lemma 4.4 (Proof is in Appendix E.2). ∀i ∈ N , I ∈ Ii, and θI ∈ R|A(I)|
≥0 , ⟨−m̂∗,µ,γ,r

i (I),θI⟩ ≥ 0.
Lemma 4.4 is from that an NE is a best response to others at each infoset in perturbed EFGs, i.e., ∀σi,
⟨v̂∗,µ,γ,r
i (I),σ̂∗,µ,γ,r

i (I)−σ̂i(I)⟩≥0, where σ̂i(I) = (1−αI)σi(I)+γ1 (details are in Appendix E.2).
By using Lemma 4.4, we get ∀T≥1,

∑T
t=1∥x̂t−x̂∗,µ,γ,r∥22≤O(1), implying that x̂t converges to

x̂∗,µ,γ,r with 0<η≤µ/(2C0).

Farina et al. [2021] show that when θ1
I = 0, for any η > 0, the sequence {x̂1, x̂2, · · · , x̂t, · · · }

remains the same. This implies that x̂t converges to x̂∗,µ,γ,r for any η > 0, showing the parameter-
free property. In this paper, we further show that for any initial θ1

I ∈ R|A(I)|
≥0 and η > 0, x̂t converges

to x̂∗,µ,γ,r (see advantages in discussions). This proof is simple yet novel, with the key insights being
the linearity of the projection in CFR+ and that

∑T
t=1 ∥x̂t − x̂∗,µ,γ,r∥22 ≤ O(1) holds independently

of the value of θ1
I . Specifically, from the linearity of the projection in CFR+, for any accumulated

counterfactual regret sequence {θ1
I ,θ

2
I , . . . ,θ

t
I , . . . } generated by any θ1

I ∈ R|A(I)|
≥0 and η > 0, there

exists a corresponding accumulated counterfactual regret sequence {θ1
I
′
,θ2
I
′
, . . . ,θtI

′
, . . . } generated

by θ1
I
′ and η′ = µ/(2C0), such that the resulting strategy profile sequence {x̂1, x̂2, . . . , x̂t, . . . } are

identical. Additionally, as the condition
∑T
t=1 ∥x̂t − x̂∗,µ,γ,r∥22 ≤ O(1) holds independently of the

value of θ1
I (θ1

I
′). Based on this analysis, we conclude that for any accumulated counterfactual regret

sequence {θ1
I ,θ

2
I , . . . ,θ

t
I , . . . } generated by any θ1

I and η > 0, the corresponding strategy profile
sequence {x̂1, x̂2, . . . , x̂t, . . . } converges to x̂∗,µ,γ,r, which indicates the parameter-free property.

Reward Transformation CFR+ (RTCFR+). RTCFR+ is the RT algorithm that applies CFR+ to
solve perturbed regularized EFGs, whose pseudocode is in Algorithm 1. As analyzed by Abe et al.
[2024], Bernasconi et al. [2024], continuously decreasing γ and updating r to x̂∗,γ,µ,r allows the
sequence of the NEs of the perturbed regularized EFGs to converge to the set of NEs of the original
EFG. Specifically, as shown in Algorithm 1, after Tu iterations, RTCFR+ updates γ and r, with
N ∗Tu representing the total number of iterations. The implementation of RTCFR+ is in Appendix H.

Algorithm 1 RTCFR+

1: Input: N , Tu, µ, γ, r
2: θ1

I ← 0, η ← 1, ∀I ∈ I
3: for each n ∈ [1, 2, · · · , N ] do
4: Build the perturbed regularized

EFGs in Eq. (2) via µ, γ, and r
5: for each t ∈ [1, 2, · · · , Tu] do
6: Obtain x̂t+1 and θt+1

I via the
update rule in Eq. (3)

7: end for
8: γ ← γ ∗ 0.5, r ← x̂Tu+1

9: θ1
I ← θTu+1

I , ∀I ∈ I
10: end for
11: Return x̂Tu+1

For RTCFR+, we do not examine the convergence of the se-
quence of the NEs of the perturbed regularized EFGs to the
set of NEs of the original EFG when the exact x̂∗,γ,µ,r is not
learned but only an approximate x̂∗,γ,µ,r is obtained, as this
problem can be solved by simultaneously decreasing the values
of µ and γ, as mentioned in Section 3. Formally, line 8 of
Algorithm 1 can be modified as: µ←µ×(1−ς),γ←γ×0.5, and
r←x̂Tu+1, where 0<ς<1. When ς is close to 0, e.g., 1e−16,
its effect on the empirical convergence rate of RTCFR+ is min-
imal (Figure 3). Nonetheless, it ensures that the sequence of
NEs for the perturbed regularized EFGs converges to the set of
NEs of the original EFG, even the exact x̂∗,γ,µ,r is not learned.

Discussions. Firstly, to the best of our knowledge, we provide
the first parameter-free last-iterate convergence for RM-based
CFR algorithms in learning an NE of perturbed regularized EFGs. When considering NFGs, the
last-iterate convergence result of CFR+ (RM+) holds even when γ = 0, due to that the smoothness
of counterfactual values and Lemma 4.4 hold in NFGs with any γ ≥ 0. Secondly, we extend the
parameter-free results of CFR+ from Farina et al. [2021], demonstrating that CFR+ converges with
the parameter-free property for any θ1

I ∈ R|A(I)|
≥0 , not just when θ1

I = 0 in Farina et al. [2021].
This new parameter-free result is significant. Specifically, it indicates that after updating γ and r
(line 8 of Algorithm 1), there is no need to reset θ1

I to 0 to get the parameter-free property (line
9 of Algorithm 1). This improves the stability of CFR+, i.e., rapid fluctuations in the strategy
profiles across iterations, since such stability improves as the lower bound of the 1-norm of θtI
increases [Farina et al., 2023] (for CFR+, from the proof of Lemma C.2 of Liu et al. [2022], we get
that ∥θtI∥2 ≤ ∥θ

t+1
I ∥2, and the 1-norm lower bound is related to the 2-norm lower bound). Notably,

as shown in Appendix G, resetting θ1
I to 0 after updating γ and r (line 9 of Algorithm 1 becomes

θ1
I ← 0, ∀I ∈ I) causes RTCFR+ to never converge (Figure 3)! Lastly, our proof approach for

the parameter-free property can be used to show that CFR+’s average-iterate convergence holds for
all θ1

I ∈ R|A(I)|
≥0 and η > 0. As our primary focus is on last-iterate convergence, we discuss the

parameter-free average-iterate convergence in Appendix F rather than the main text.
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Figure 1: Last-iterate convergence rates of different algorithms. In all plots, the x-axis is the number of
iteration, and the y-axis is exploitability, displayed on a logarithmic scale. Liar’s Dice (x) represents
that every player is given a die with x sides. Goofspiel (x) denotes that each player is dealt x cards.
Battleship (x) implies the size of grids is x. The size of the tested games is in Appendix G (Table 2).

5 Experiments

Configurations. We now evaluate the empirical convergence rate of RTCFR+ on five standard EFG
benchmarks: Kuhn Poker, Leduc Poker, Goofspiel, Liar’s Dice, and Battleship, all implemented
using OpenSpiel [Lanctot et al., 2019]. We compare RTCFR+ with classical CFR algorithms, such
as CFR+, PCFR+ [Farina et al., 2021], and DCFR [Brown and Sandholm, 2019a], and those with
theoretical guarantees for last-iterate convergence, including R-NaD [Pérolat et al., 2021, 2022]
and Reg-CFR [Liu et al., 2023]. Additionally, we evaluate traditional last-iterate convergence
algorithms, such as OMWU and OGDA [Wei et al., 2021, Lee et al., 2021]. The algorithm imple-
mentations are based on the open-source LiteEFG code [Liu et al., 2024], which offers a significant
speedup—approximately 100 times faster than OpenSpiel’s default implementation for the same
number of iterations. For RTCFR+, we set the initial values of η, γ, and µ to 1, 1e−10, and 1e−3,
respectively. The number of iterations Tu required to update γ and r, is set to 100. For Reg-CFR, we
use the parameters from the original paper. For R-NaD, we initialize µ = 1e−5 (R-NaD does not
include the parameter γ), set Tu = 1000, and use a learning rate of η = 0.1. For OMWU and OGDA,
we set η to 0.5 and 0.1, respectively. All algorithms employ alternating updates to enhance empirical
convergence rates. Each algorithm is run for 20,000 (N = 20000/Tu) iterations to analyze long-term
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Table 1: Hyperparameters used in RTCFR+ (fine-tuned).

Kuhn Poker Leduc Poker Battleship (3) Liar’s Dice (4) Liar’s Dice (5)
µ 0.1 0.001 0.1 0.01 0.0005
Tu 10 100 50 10 10

Liar’s Dice (6) Goofspiel (4) Goofspiel (5) Goofspiel (6)
µ 0.0001 0.1 0.05 0.005
Tu 500 10 100 50

behavior. The experiments are conducted on a machine equipped with a Xeon(R) Gold 6444Y CPU
and 256 GB of memory. More experimental results including (i) performance of RTCFR+ under
simultaneous decrease of µ and γ, (ii) performance of RTCFR+ under reset accumulated regrets as
0, (iii) comparison with average-iterate convergence CFR algorithms, (iv) performance of RTCFR+

in HUNL Subgames, and (v) performance of RTCFR+ under different hyperparameters, are in
Appendix G.

Results. The experimental results are presented in Figure 1. RTCFR+ demonstrates superior
performance compared to all other tested algorithms except PCFR+. Specifically, RTCFR+ exhibits
the fastest convergence rate across all games when compared to CFR+. In comparison to existing
theoretical last-iterate convergence CFR algorithms, such as Reg-CFR and R-NaD, RTCFR+ is only
surpassed by Reg-CFR during the initial stages in small-scale games like Kuhn Poker and Goofspiel
(4). Similarly, when compared to traditional last-iterate convergence algorithms, RTCFR+ is only
outperformed by OGDA in small-scale games such as Kuhn Poker and Goofspiel (4). Inspired by our
RTCFR+ and the performance of PCFR+, we propose RTPCFR+, which employs PCFR+ to solve
the perturbed regularized EFG defined in Eq. (2) instead of CFR+. For RTPCFR+, we use the same
parameters as RTCFR+. Among RTCFR+, RTPCFR+, and PCFR+, no single algorithm consistently
outperforms the others across all EFGs, as their performance varies depending on the specific EFG.
This variability may be attributed to the fact that RTCFR+ and RTPCFR+ have not been fine-tuned
for individual EFGs. Therefore, we also include a comparison with the fine-tuned RTCFR+, which
is denoted as RTCFR+ (fine-tuned) in Figure 1. Our findings demonstrate that fine-tuning enables
RTCFR+ to outperform all tested algorithms. The parameters used for the fine-tuned RTCFR+ are
presented in Table 1. However, the automatic adjustment of γ, µ, and Tu remains an open problem.
One of our future research directions is to investigate the automotive adjustment of these parameters.

6 Conclusions

We explore the last-iterate convergence of parameter-free RM-based CFR algorithms. We establish
that a classical parameter-free RM-based CFR algorithm, CFR+, achieves last-iterate convergence in
learning an NE of perturbed regularized EFGs. To our knowledge, this is the first parameter-free last-
iterate convergence of RM-based CFR algorithms in perturbed regularized EFGs. Experimental results
show that our proposed algorithm, RTCFR+, exhibits a significantly faster empirical convergence
rate than existing algorithms that achieve theoretical last-iterate convergence.

Limitations. The main limitation of RTCFR+ is its dependency on parameter tuning. Specifically,
RTCFR+ requires careful fine-tuning of parameters µ, γ, and Tu, which prevents it from being a
parameter-free algorithm. Interestingly, when both µ and γ are simultaneously reduced, RTCFR+

achieves last-iterate convergence in learning an NE of the original EFGs, irrespective of the values of
µ, γ, and Tu. These parameters only impact the empirical convergence rate. Therefore, advancing
automated methods to learn optimal values for µ, γ, and Tu represents a promising direction for
future research.
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error
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• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
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• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of the computer where the experiments are conducted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper only investigates the convergence of some algorithms.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper only investigates the convergence of some algorithms.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not release any data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code that we used is cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLM for writing and editing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A An Example of Extensive-Form Games

heads tails

1 -1 -1 1

heads tails

P0

P1 P1

-1 1 1 -1

heads tails

Figure 2: A classical EFG: Matching pennies
games. "P0" and "P1" represents the player 0 and
1, respectively

To illustrate the components of an EFG, we
provide an example using the classic game of
Matching Pennies, as depicted in its game tree
representation in Figure 2. As shown in Sec-
tion 2, an EFG is formally defined by the tuple
G = {N ,H, P,A, I, {ui}}. In this example,
the set of players is N = {0, 1}. The game
commences at the root of the tree, which cor-
responds to the empty history ∅ ∈ H. The
player function P (h) determines who moves
at history h; here, P (∅) = 0, so the player 0
makes the first move. The actions available to
the player 0 at this initial decision node are given
by A(∅) = {heads, tails}.
Once the player 0 chooses an action, the game
transitions to a new history. For instance, if
the player 0 chooses "heads", the new history
becomes (P0:heads). At this stage, the player
function dictates that it is the player 1’s turn to act, i.e., P (P0:heads) = P (P0:tails) = 1. A central
concept in EFGs for modeling games with hidden information is the partition of each player’s decision
nodes into information sets I. In Figure 2, the dashed line connecting the player 1’s two decision
nodes signifies that they belong to the same infoset. This means that when the player 1 makes a
choice, they are unaware of the player 0’s preceding move; the histories (P0:heads) and (P0:tails)
are indistinguishable to the player 1. A formal requirement is that the set of available actions must be
identical for all nodes within an information set, which holds true here as the available actions are
A(P0:heads) = A(P0:tails) = {heads, tails}.
After the player 1 selects an action, the game concludes, reaching a terminal history, also known
as a leaf node z ∈ Z . Each leaf node is associated with a payoff vector that specifies the utility
for each player, (u0(z), u1(z)). For example, if the sequence of actions is (heads, heads), the game
terminates with the payoff vector (1,−1), indicating a gain of 1 for the player 0 and a loss of 1 for
the player 1. Conversely, if the coins do not match, as in the history (heads, tails), the payoff is
(−1, 1). Since for any terminal history z, the payoffs for the player 0 and the player 1 are structured
such that u0(z) = −u1(z), this particular EFG is classified as a two-player, zero-sum game. This
single example effectively demonstrates how an EFG captures the sequential structure, information
constraints, and outcomes of a strategic interaction.

B Related Work

Counterfactual Regret Minimization (CFR) algorithms. CFR algorithms are among the most
widely used methods for solving real-world EFGs [Bowling et al., 2015, Moravčík et al., 2017,
Brown and Sandholm, 2018, 2019b, Pérolat et al., 2022]. The core idea of CFR is to decompose
the problem of regret minimization across the entire game into subproblems within each infoset,
employing a regret minimization algorithm as a local regret minimizer. The vanilla CFR algorithm
was introduced by Zinkevich et al. [2007], which utilize RM [Hart and Mas-Colell, 2000] as the
local regret minimizer. To enhance the performance of CFR, a common approach is to design more
effective local regret minimizers, as the choice of local regret minimizer largely determines the overall
CFR algorithm’s efficiency. Advanced local regret minimizers are typically based on RM, including
RM+ [Tammelin, 2014], Discounted RM (DRM) [Brown and Sandholm, 2019a], and Predictive
RM+ (PRM+) [Farina et al., 2021], which correspond to CFR+ [Tammelin, 2014], Discounted
CFR (DCFR) [Brown and Sandholm, 2019a], and Predictive CFR+ (PCFR+) [Farina et al., 2021],
respectively. However, CFR algorithms typically achieve theoretical convergence to the set of NEs of
EFGs only through the average of iterates, also be called as average-iterate convergence.

Last-iterate convergence results of CFR algorithms. Pérolat et al. [2021] provide the first last-
iterate convergence result for CFR algorithms in learning an NE of EFGs by transforming the task
of learning an NE of the original EFG into finding the NEs of a sequence of regularized EFGs and
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ensuring the sequence of the NEs of these regularized EFGs converges to the set of NEs of the
original EFG. However, their analysis assumes continuous-time feedback, a condition rarely satisfied
in practical scenarios. Subsequently, Liu et al. [2023] presents the first last-iterate convergence
result for CFR under the discrete-time feedback by transforming the task of learning an NE of the
original EFG into finding the NEs of a sequence of perturbed regularized EFGs rather than only
regularized EFGs, since the addition of perturbation introduces the smoothness of counterfactual
values. Nevertheless, both algorithms do not leverage RM algorithms as the local regret minimizer,
leading to a suboptimal empirical last-iterate convergence rate compared to traditional RM-based
CFR algorithms that only achieve average-iterate convergence, as demonstrated in our experiments.

Last-iterate convergence results of RM algorithms. Except this paper, Cai et al. [2025], Meng et al.
[2025] also investigate the last-iterate convergence of RM algorithms. However, their results mainly
focus on non-parameter-free RM algorithms, whereas we considers parameter-free RM algorithms.
Specifically, Cai et al. [2025], Meng et al. [2025] mainly investigate smooth RM+ variants [Farina
et al., 2023]. The lack of the parameter-free property in the results of Cai et al. [2025], Meng et al.
[2025] makes them less applicable when solving real-world games. Although Cai et al. [2025]
investigate RM+ (CFR+ uses RM+ as the local regret minimizer), a parameter-free RM algorithm,
their proof techniques related to RM+ primarily follow our proof techniques. Furthermore, the results
in Cai et al. [2025], Meng et al. [2025] are confined to NFGs, whereas we focus on EFGs.

We establish the first parameter-free last-iterate convergence for RM-based CFR algorithms in learning
an NE of perturbed regularized EFGs. Notably, our parameter-free property holds for any initial
accumulated counterfactual regrets not only the zero initialization in previous works [Farina et al.,
2021]. While CFR+’s parameter-free property in its first theoretical convergence result [Tammelin
et al., 2015] holds for any initial accumulated counterfactual regrets, this result is exclusively limited
to average-iterate convergence. In contrast, our proof technique simultaneously establishes both
parameter-free last-iterate (Theorem 4.1) and average-iterate convergence (Theorem F.1) for CFR+

under any initial accumulated counterfactual regrets2. Notably, the proof techniques employed by
Tammelin et al. [2015] differ fundamentally from those utilized in ours and most recent works on
RM-based CFR algorithms [Farina et al., 2023, Xu et al., 2022, 2024a,b, Zhang et al., 2024]. These
works, including ours, adopt the Blackwell approachability framework (as introduced in Section 2) in
Farina et al. [2021] to prove the convergence of RM-based CFR algorithms, while Tammelin et al.
[2015] use the potential function [Zhang et al., 2022a]. Unfortunately, as previously mentioned,
the parameter-free property in Farina et al. [2021] (even including Farina et al. [2023], Xu et al.
[2022, 2024a,b], Zhang et al. [2024]) holds only under the condition where the initial accumulated
counterfactual regrets are zero. Lastly, experiments show that our algorithm, RTCFR+, substantially
outperform existing algorithms that achieve theoretical last-iterate convergence.

In this paper, we only focus on the last-iterate convergence and do not consider the best-iterate
convergence because it offers limited utility in real-world games [Anagnostides et al., 2024, Wang
et al., 2023]. With the best-iterate convergence, computing the exploitability of each iteration’s
strategy profile is necessary to select an optimal strategy, but this task is typically challenging due
to the vast size of real-world games, such as HUNL, which reaches a size of 10170. In contrast, the
last-iterate convergence circumvents the need to compute exploitability for every iteration; it simply
requires the selection of the strategy from the final iteration.

C Discussion on the Application of RTCFR+ in Large-Scale Games and Its
Integration with Other Technologies

Firstly, RTCFR+ can be directly applied to large-scale games without any modifications. In fact,
the modifications introduced by RTCFR+ over CFR+ are minimal. As demonstrated in our imple-
mentation provided in Appendix F, RTCFR+ requires fewer than 30 additional lines compared to
CFR+ (specifically, lines 33, 40–41, 47–49, 51-55, and 62–66 of the RTCFR+ implementation in
Appendix H). The main limitation of applying RTCFR+ to large-scale games lies in the need to tune
the hyperparameters µ, γ, and Tu, which can vary significantly across different games. Addressing
the dependency on tuning µ, γ, and Tu remains a central direction for future work. It is important to
clarify, however, that this requirement originates from the RT framework itself; all existing algorithms
based on the RT framework require tuning of these parameters.

2Farina et al. [2021] also only establish parameter-free average-iterate convergence.
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Secondly, integrating RTCFR+ with the other technologies requires case-by-case analysis. (i) For
algorithms that solely modify the game tree, such as depth-limited solving [Brown et al., 2018,
2020], impact-recall abstraction [Ganzfried and Sandholm, 2014], action abstraction [Li et al., 2024],
and Vector CFR [Johanson et al., 2012], RTCFR+ can be directly applied since RTCFR+ only
requires execution on the new game tree. This process is straightforward and presents no significant
challenges. (ii) Regarding warm-start [Brown and Sandholm, 2016], while its concept of setting initial
accumulated counterfactual regrets using an efficient initial strategy is insightful, current integration
with RTCFR+ is not feasible. Specifically, the warm-start approach in Brown and Sandholm [2016]
is an enhancement tailored for the original CFR. Formally, the analysis presented on the bottom
left of page four in Brown and Sandholm [2016] demonstrates that the substitute regret is given
by R′T (I, a) = T (v′σ(I, a) − v′σ(I)). This formulation implies that R′T (I, a) can be negative, a
property that does not hold in CFR+ and RTCFR+. (iii) As for sparsification [Farina and Sandholm,
2022], which optimizes the computation of loss gradients (ℓti, the last line of Eq. (3)), RTCFR+ can
seamlessly integrate. This compatibility arises because RTCFR+ solely requires the input of loss
gradients, which then facilitates strategy updates through the update rules defined in the first four
lines of Eq. (3). (iv) The pruning approach in Li and Huang [2025] can be directly integrated with
RTCFR+. Since this pruning approach modifies the game tree before the algorithm execution (e.g.,
"permanently and correctly eliminating sub-optimal branches before the CFR begins"), it aligns with
our earlier statement on game-tree modification approaches. Hence, RTCFR+ can be directly applied.

D Proof of Theorem 4.1

Proof. To prove the last-iterate convergence of CFR+ in learning an NE of perturbed regularized
EFGs defined in Eq. (2), we introduce the following lemmas.

Lemma D.1 (Adapted from Lemma D.4 in Sokota et al. [2023]). For any x ∈ X , µ ≥ 0, and γ ≥ 0,∑
i∈N
⟨ℓxi ,xi − x∗,µ,γ,r

i ⟩ ≥
∑
i∈N
⟨ℓxi − ℓx

∗,µ,γ,r

i ,xi − x∗,µ,γ,r
i ⟩ ≥ µ∥x− x∗,µ,γ,r∥22,

where ℓx0 = Ax1 + µ∇ψ(x0)− µ∇ψ(r0) and ℓx1 = −ATx0 + µ∇ψ(x1)− µ∇ψ(r1).
Lemma D.2 (Proof is in Appendix E.3). For any x ∈ X , i ∈ N , I ∈ Ii, µ ≥ 0, and γ ≥ 0,

∥v̂σi (I)∥2 ≤ ∥v̂σi (I)∥1 ≤ P + 2µD

where v̂σi (I) = [v̂σi (I, a)|a ∈ A(I)], v̂σi (I, a) = −ℓ̂xi +
∑
I′∈Ci(I,a)

⟨v̂σi (I ′), σi(I ′)⟩ with ℓ̂x0 =

Ax1 + µ∇ψ(x0) − µ∇ψ(r0) and ℓ̂x1 = −ATx0 + µ∇ψ(x1) − µ∇ψ(r1), as well as σ is the
behavioral strategy profile associated with x.

Lemma D.3 (Proof is in Appendix E.4). For any x,x′ ∈ X , i ∈ N , I ∈ Ii, µ ≥ 0, and γ ≥ 0,

∥v̂σi (I)− v̂σ
′

i (I)∥2 ≤ 2(L+ µ)2∥x− x′∥21 + 2(P + 2µD)2∥σi − σ′
i∥21,

where v̂σi (I) = [v̂σi (I, a)|a ∈ A(I)], v̂σi (I, a) = −ℓ̂xi +
∑
I′∈Ci(I,a)

⟨v̂σi (I ′), σi(I ′)⟩ with ℓ̂x0 =

Ax1 + µ∇ψ(x0)− µ∇ψ(r0) and ℓ̂x1 = −ATx0 + µ∇ψ(x1)− µ∇ψ(r1), as well as σ and σ′ are
the behavioral strategy profiles associated with x and x′, respectively.

Lemma D.4 (Proof is in Appendix E.5). For any x̂, x̂′ ∈ X γ with γ > 0, i ∈ N , I ∈ Ii, and µ ≥ 0,

∥σ̂i − σ̂′
i∥1 ≤

AmaxCmax + 1

γH
∥x̂i − x̂′

i∥1,

where σ̂ and σ̂′ are the behavioral strategy profiles associated with x̂ and x̂′, respectively.

By substituting θI = σ∗,µ,γ,r
i (I) =

σ̂∗,µ,γ,r
i (I)−γ1

1−αI
into Lemma 4.2, we get

η⟨m̂t
i(I), σ

∗,µ,γ,r
i (I)− θt+1

I ⟩ ≤ Dψ(σ
∗,µ,γ,r
i (I),θtI)−Dψ(σ

∗,µ,γ,r
i (I),θt+1

I )−Dψ(θ
t+1
I ,θtI).

(7)
Adding η⟨−m̂∗,µ,γ,r

i (I),θt+1
I − θtI⟩ to each hand side of Eq. (7), we have

η⟨m̂t
i(I), σ

∗,µ,γ,r
i (I)− θt+1

I ⟩+ η⟨−m̂∗,µ,γ,r
i (I),θt+1

I − θtI⟩
≤Dψ(σ

∗,µ,γ,r
i (I),θtI)−Dψ(σ

∗,µ,γ,r
i (I),θt+1

I ) + η⟨−m̂∗,µ,γ,r
i (I),θt+1

I − θtI⟩ −Dψ(θ
t+1
I ,θtI),
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which implies

η⟨m̂t
i(I), σ

∗,µ,γ,r
i (I)− θtI⟩

≤Dψ(σ
∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩
+ η⟨m̂t

i(I)− m̂∗,µ,γ,r
i (I),θt+1

I − θtI⟩ −Dψ(θ
t+1
I ,θtI)

≤Dψ(σ
∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩

+ η2 ∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
2

+
∥θt+1
I − θtI∥22

2
−Dψ(θ

t+1
I ,θtI)

≤Dψ(σ
∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩

+ η2 ∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
2

,

(8)

where the second inequality comes from that ∀a, b ∈ Rd, ρ > 0, ⟨a, b⟩ ≤ ρ∥a∥22/2 + ∥b∥22/(2ρ) (in
this case, a = m̂t

i(I)− m̂∗,µ,γ,r
i (I), b = θt+1

I − θtI , and ρ = η), and the last inequality is from that
∀a, b ∈ Rd, ∥a− b∥22/2 = ∥b− a∥22/2 = Dψ(a, b) (in this case, a = θt+1

I , and b = θtI ).

Arranging the terms in Eq. (8), we get

η⟨m̂t
i(I), σ

∗,µ,γ,r
i (I)− θtI⟩ − η2

∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
2

≤Dψ(σ
∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩.

According to the definition of m̂t
i(I), we have

⟨m̂t
i(I), σ

∗,µ,γ,r
i (I)− θtI⟩ =⟨v̂ti(I)− ⟨v̂ti(I), σti(I)⟩1, σ

∗,µ,γ,r
i (I)− θtI⟩

=⟨−v̂ti(I), σti(I)− σ
∗,µ,γ,r
i (I)⟩,

where the second equality comes from that

⟨v̂ti(I)− ⟨v̂ti(I), σti(I)⟩1,θtI⟩ = ⟨v̂ti(I)− ⟨v̂ti(I),
θtI
⟨θtI ,1⟩

⟩1,θtI⟩ = 0,

⟨⟨v̂ti(I), σti(I)⟩1, σ
∗,µ,γ,r
i (I)⟩ = ⟨v̂ti(I), σti(I)⟩.

Therefore, we have

η⟨−v̂ti(I),σti(I)−σ
∗,µ,γ,r
i (I)⟩−η2 ∥m̂

t
i(I)−m̂

∗,µ,γ,r
i (I)∥22
2

≤Dψ(σ
∗,µ,γ,r
i (I),θtI)+η⟨−m̂

∗,µ,γ,r
i (I),θtI⟩−Dψ(σ

∗,µ,γ,r
i (I),θt+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩.
(9)

Let βI = πσ̂
∗,µ,γ,r

i (I). Continuing from Eq. (9), we get

ηβI⟨−v̂ti(I), (1− αI)σ
t
i(I)− (1− αI)σ

∗,µ,γ,r
i (I)⟩ − η2(1− αI)βI

∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
2

≤ (1− αI)βI
(
Dψ(σ

∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩
)

⇒ηβI⟨−v̂ti(I), (1− αI)σ
t
i(I) + γ1− (1− αI)σ

∗,µ,γ,r
i (I)− γ1⟩ − η2(1− αI)βI

∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
2

≤ (1− αI)βI
(
Dψ(σ

∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩
)

⇒ηβI⟨−v̂ti(I), σ̂ti(I)− σ̂∗,µ,γ,r
i (I)⟩ − η2(1− αI)βI

∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
2

≤ (1− αI)βI
(
Dψ(σ

∗,µ,γ,r
i (I),θtI) + η⟨−m̂∗,µ,γ,r

i (I),θtI⟩ −Dψ(σ
∗,µ,γ,r
i (I),θt+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θt+1

I ⟩
)
.

By applying Lemma 4.3, we have

η

T∑
t=1

∑
i∈N

⟨ℓ̂ti,x̂ti−x̂∗,µ,γ,r
i ⟩−

T∑
t=1

∑
i∈N

∑
I∈Ii

η2ζI
∥m̂t

i(I)−m̂∗,µ,γ,r
i (I)∥22
2

≤
∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂∗,µ,γ,r
i (I),θ1

I ⟩−Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
,
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where ζI = (1− αI)βI . Since 0 ≤ ζI ≤ 1 (as 0 ≤ βI ≤ 1 and 0 ≤ αI ≤ 1), we get

η

T∑
t=1

∑
i∈N
⟨ℓ̂ti,x̂ti−x̂

∗,µ,γ,r
i ⟩−

T∑
t=1

∑
i∈N

∑
I∈Ii

η2
∥m̂t

i(I)−m̂
∗,µ,γ,r
i (I)∥22
2

≤
∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂
∗,µ,γ,r
i (I),θ1

I ⟩−Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
.

By applying Lemma D.1, we obtain
T∑
t=1

µη∥x̂t−x̂∗,µ,γ,r∥22−
T∑
t=1

∑
i∈N

∑
I∈Ii

η2 ∥m̂t
i(I)−m̂∗,µ,γ,r

i (I)∥22
2

≤
∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂∗,µ,γ,r
i (I),θ1

I ⟩−Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
.

(10)
Now, we use the smoothness of the instantaneous counterfactual regrets to transform ∥m̂t

i(I) −
m̂∗,µ,γ,r
i (I)∥22 into a term only related to ∥x̂t − x̂∗,µ,γ,r∥22. Formally, for the term ∥m̂t

i(I) −
m̂∗,µ,γ,r
i (I)∥22, from the definition of m̂t

i(I) and m̂∗,µ,γ,r
i (I), we have

∥m̂t
i(I)−m̂

∗,µ,γ,r
i (I)∥22

=∥v̂ti(I)−⟨v̂ti(I),σti(I)⟩1−v̂
∗,µ,γ,r
i (I)+⟨v̂∗,µ,γ,r

i (I),σ∗,µ,γ,r
i (I)⟩1∥22

=∥v̂ti(I)−v̂
∗,µ,γ,r
i (I)−⟨v̂ti(I),σti(I)⟩1+⟨v̂

∗,µ,γ,r
i (I),σ∗,µ,γ,r

i (I)⟩1∥22
≤2∥v̂ti(I)−v̂

∗,µ,γ,r
i (I)∥22+2|A(I)|2∥⟨v̂ti(I),σti(I)⟩−⟨v̂

∗,µ,γ,r
i (I),σ∗,µ,γ,r

i (I)⟩∥22
≤2∥v̂ti(I)−v̂

∗,µ,γ,r
i (I)∥22

+2|A(I)|2∥⟨v̂ti(I),σti(I)⟩−⟨v̂ti(I),σ
∗,µ,γ,r
i (I)⟩+⟨v̂ti(I),σ

∗,µ,γ,r
i (I)⟩−⟨v̂∗,µ,γ,r

i (I),σ∗,µ,γ,r
i (I)⟩∥22

≤2∥v̂ti(I)−v̂
∗,µ,γ,r
i (I)∥22+4|A(I)|2∥⟨v̂ti(I),σti(I)⟩−⟨v̂ti(I),σ

∗,µ,γ,r
i (I)⟩∥22

+4|A(I)|2∥⟨v̂ti(I),σ
∗,µ,γ,r
i (I)⟩−⟨v̂∗,µ,γ,r

i (I),σ∗,µ,γ,r
i (I)⟩∥22,

where σ∗,µ,γ,r
i (I) =

σ̂∗,µ,γ,r
i (I)−γ1

1−αI
. By using Amax = maxI∈I |A(I)|, we have

∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
≤2∥v̂ti(I)− v̂∗,µ,γ,r

i (I)∥22 + 4A2
max∥⟨v̂ti(I), σti(I)⟩ − ⟨v̂ti(I), σ

∗,µ,γ,r
i (I)⟩∥22

+ 4A2
max∥⟨v̂ti(I), σ

∗,µ,γ,r
i (I)⟩ − ⟨v̂∗,µ,γ,r

i (I), σ∗,µ,γ,r
i (I)⟩∥22.

(11)

For the term ∥⟨v̂ti(I), σti(I)⟩ − ⟨v̂ti(I), σ
∗,µ,γ,r
i (I)⟩∥22 in Eq. (11), we have

∥⟨v̂ti(I), σti(I)⟩ − ⟨v̂ti(I), σ
∗,µ,γ,r
i (I)⟩∥22

=∥⟨v̂ti(I), σti(I)− σ
∗,µ,γ,r
i (I)⟩∥22

≤∥v̂ti(I)∥22∥σti(I)− σ
∗,µ,γ,r
i (I)∥22

≤(P + 2µD)2∥σti(I)− σ
∗,µ,γ,r
i (I)∥22,

(12)

where the last line is from Lemma D.2. For the term ∥⟨v̂ti(I), σ
∗,µ,γ,r
i (I)⟩ −

⟨v̂∗,µ,γ,r
i (I), σ∗,µ,γ,r

i (I)⟩∥22 in Eq. (11), we get

∥⟨v̂ti(I), σ
∗,µ,γ,r
i (I)⟩ − ⟨v̂∗,µ,γ,r

i (I), σ∗,µ,γ,r
i (I)⟩∥22

=∥v̂ti(I)− v̂∗,µ,γ,r
i (I), σ∗,µ,γ,r

i (I)⟩∥22
≤∥v̂ti(I)− v̂∗,µ,γ,r

i (I)∥22∥σ
∗,µ,γ,r
i (I)⟩∥22

≤∥v̂ti(I)− v̂∗,µ,γ,r
i (I)∥22,

(13)

where the last inequality comes from ∥σ∗,µ,γ,r
i (I)∥22 ≤ 1 as σ∗,µ,γ,r

i (I) is in simplex. By substituting
Eq. (12) and (13) into Eq. (11), as well as using Amax ≥ 1, we obtain

∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
≤2∥v̂ti(I)− v̂∗,µ,γ,r

i (I)∥22 + 4A2
max(P + 2µD)2∥v̂ti(I)− v̂∗,µ,γ,r

i (I)∥22
+ 4A2

max∥v̂ti(I)− v̂∗,µ,γ,r
i (I)∥22

≤6A2
max∥v̂ti(I)− v̂∗,µ,γ,r

i (I)∥22 + 4A2
max(P + 2µD)2∥σti(I)− σ

∗,µ,γ,r
i (I)∥22.

(14)
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By applying Lemma D.3 into Eq. (14), we get

∥m̂t
i(I)− m̂∗,µ,γ,r

i (I)∥22
≤12A2

max(L+ µ)2∥x̂t − x̂∗,µ,γ,r∥21 + 12A2
max(P + 2µD)2∥σ̂ti − σ̂

∗,µ,γ,r
i ∥21

+ 4A2
max(P + 2µD)2∥σti(I)− σ

∗,µ,γ,r
i (I)∥22

≤12A2
max(L+ µ)2∥x̂t − x̂∗,µ,γ,r∥21 + 16A2

max(P + 2µD)2∥σ̂ti − σ̂
∗,µ,γ,r
i ∥21.

(15)

By applying Lemma D.4 into Eq. (15), we get

∥m̂t
i(I)−m̂

∗,µ,γ,r
i (I)∥22

≤12A2
max(L+µ)

2∥x̂t−x̂∗,µ,γ,r∥21+16A2
max(P+2µD)2

(AmaxCmax+1)2

γ2H
∥x̂t−x̂∗,µ,γ,r∥21.

(16)

By substituting Eq. (16) into Eq. (10), we have
T∑
t=1

µη∥x̂t−x̂∗,µ,γ,r∥22−
T∑
t=1

∑
i∈N

∑
I∈Ii

η2A2
max

(
12(L+µ)2+16(P+2µD)2

(AmaxCmax+1)2

γ2H

)
∥x̂t−x̂∗,µ,γ,r∥22

2

≤
∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂∗,µ,γ,r
i (I),θ1

I ⟩−Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
,

which implies

T∑
t=1

µη∥x̂t−x̂∗,µ,γ,r∥22−
T∑
t=1

η2|I|A2
max

(
6(L+µ)2+8(P+2µD)2

(AmaxCmax+1)2

γ2H

)
∥x̂t−x̂∗,µ,γ,r∥22

≤
∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂
∗,µ,γ,r
i (I),θ1

I ⟩−Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
,

Obviously, if

µ≥2η|I|A2
max

(
6(L+µ)2+8(P+2µD)2

(AmaxCmax+1)2

γ2H

)
>0

⇔0<η≤ µγ2H

2|I|A2
max(6γ

2H(L+µ)2+8(AmaxCmax+1)2(P+2µD)2)
,

we have
T∑
t=1

µη

2
∥x̂t−x̂∗,µ,γ,r∥22

≤
∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂
∗,µ,γ,r
i (I),θ1

I ⟩−Dψ(σ
∗,µ,γ,r
i (I),θT+1

I )−η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩
)
,

By using Lemma 4.4, we have that η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩ ≥ 0. As a result, we get
−Dψ(σ

∗,µ,γ,r
i (I),θT+1

I )− η⟨−m̂∗,µ,γ,r
i (I),θT+1

I ⟩ ≤ 0. Then, we conclude that ∀T ≥ 1

T∑
t=1

µη

2
∥x̂t−x̂∗,µ,γ,r∥22≤

∑
i∈N

∑
I∈Ii

ζI
(
Dψ(σ

∗,µ,γ,r
i (I),θ1

I )+η⟨−m̂
∗,µ,γ,r
i (I),θ1

I ⟩
)

⇒
T∑
t=1

∥x̂t−x̂∗,µ,γ,r∥22≤O(1),

which implies the asymptotic last-iterate convergence of the sequence {x̂1, x̂2, · · · , x̂t, · · · } to NE
x̂∗,µ,γ,r of the perturbed regularized EFG since 0 ≤ ζI ≤ 1 (as mentioned above).

As analyzed in Farina et al. [2021], if θ1
I = 0, for any η > 0, the generated sequence

{x̂1, x̂2, . . . , x̂t, . . . } remains identical, achieving the parameter-free property. In this paper, we
further establish that for any initial θ1

I ∈ R|A(I)|
≥0 and η > 0, the sequence x̂t converges to x̂∗,µ,γ,r.
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We first prove that for the accumulated counterfactual regret sequence {θ1
I ,θ

2
I , . . . ,θ

t
I , . . . } gen-

erated by θ1
I ∈ R|A(I)|

≥0 and η > 0, there exists a corresponding sequence {θ1
I
′
,θ2
I
′
, . . . ,θtI

′
, . . . }

generated by θ1
I
′ ∈ R|A(I)|

≥0 and η′ = µ/(2C0), such that the resulting strategy profile sequence
{x̂1, x̂2, . . . , x̂t, . . . } is identical. By the update rule of CFR+ defined in Eq. (3) and the analysis in
Farina et al. [2021], θt+1

I ∈ argmin
θI∈R|A(I)|

≥0

{
⟨−m̂t

i(I),θI⟩+ 1
ηDψ(θI ,θ

t
I)
}

can be expressed

as the projection θt+1
I = [θtI + ηm̂t

i(I)]
+, where [·]+ = max(·,0). Setting θtI

′
= η′θtI/η for t ≥ 1,

it follows that θt+1
I

′
= [θtI

′
+ η′m̂t

i(I)]
+ and σti(I) = θtI/⟨θtI ,1⟩ = θtI

′
/⟨θtI

′
,1⟩ hold [Chakrabarti

et al., 2024]. Furthermore, it is evident that
∑T
t=1 ∥x̂t − x̂∗,µ,γ,r∥22 ≤ O(1) holds independently of

the value of the initial accumulated counterfactual regret.

Based on the above analysis, we conclude that (i) for any accumulated counterfactual regret sequence
{θ1

I ,θ
2
I , . . . ,θ

t
I , . . . } generated by any θ1

I ∈ R|A(I)|
≥0 and η > 0, there exists a corresponding

accumulated counterfactual regret sequence {θ1
I
′
,θ2
I
′
, . . . ,θtI

′
, . . . } generated by θ1

I
′ and η′ =

µ/(2C0), such that the resulting strategy profile sequence {x̂1, x̂2, . . . , x̂t, . . . } are identical, as well
as (ii) the strategy profile sequence {x̂1, x̂2, . . . , x̂t, . . . } generated by the accumulated counterfactual
regret sequence {θ1

I
′
,θ2
I
′
, . . . ,θtI

′
, . . . } converges to x̂∗,µ,γ,r. Therefore, we have that for any

θ1
I ∈ R|A(I)|

≥0 and η > 0, the generated strategy profile sequence {x̂1, x̂2, . . . , x̂t, . . . } converges to
x̂∗,µ,γ,r, demonstrating the parameter-free property. We complete the proof.

E Proof of Useful Lemmas

E.1 Proof of Lemma 4.3

Proof. From the definition of
∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σi(I)− σ′
i(I)⟩, we get∑

I∈Ii

πσ
′

i (I)⟨−vσi (I), σi(I)− σ′
i(I)⟩

=
∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σi(I)⟩ −
∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σ′
i(I)⟩.

(17)

For the term
∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σ′
i(I)⟩, we have∑

I∈Ii

πσ
′

i (I)⟨−vσi (I),σ′
i(I)⟩

=
∑
I∈Ii

πσ
′

i (I)
∑

a∈A(I)

σ′
i(I,a)

ℓi(I,a)+
∑

I′∈Ci(I,a)

⟨−vσi (I ′),σi(I ′)⟩


=
∑
I∈Ii

∑
a∈A(I)

πσ
′

i (I)σ′
i(I,a)ℓi(I,a)+

∑
I∈Ii

∑
a∈A(I)

πσ
′

i (I)σ′
i(I,a)

∑
I′∈Ci(I,a)

⟨−vσi (I ′),σi(I ′)⟩.

(18)

Then, by substituting Eq. (18) into Eq. (17), we have∑
I∈Ii

πσ
′
i (I)⟨−vσi (I),σi(I)−σ′

i(I)⟩

=
∑
I∈Ii

πσ
′
i (I)⟨−vσi (I),σi(I)⟩−

∑
I∈Ii

∑
a∈A(I)

πσ
′
i (I)σ′

i(I,a)ℓi(I,a)−
∑
I∈Ii

∑
a∈A(I)

πσ
′
i (I)σ′

i(I,a)
∑

I′∈Ci(I,a)

⟨−vσi (I ′),σi(I ′)⟩

=
∑
I∈Ii

πσ
′
i (I)⟨−vσi (I),σi(I)⟩−

∑
I∈Ii

∑
a∈A(I)

πσ
′
i (I)σ′

i(I,a)ℓi(I,a)−
∑
I∈Ii

∑
a∈A(I)

∑
I′∈Ci(I,a)

πσ
′
i (I ′)⟨−vσi (I ′),σi(I ′)⟩.

(19)
We denote the initial infosets as Iiniti , i.e., for any I ∈ Iiniti , there does not exist I ′′ ∈ Ii
such that I ∈ Ci(I ′′, a′′) holds for a a′′ ∈ A(I ′′). For the term

∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σi(I)⟩ −
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∑
I∈Ii

∑
a∈A(I)

∑
I′∈Ci(I,a)

πσ
′

i (I ′)⟨−vσi (I ′), σi(I ′)⟩ in Eq. (19), it follows that∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σi(I)⟩ −
∑
I∈Ii

∑
a∈A(I)

∑
I′∈Ci(I,a)

πσ
′

i (I ′)⟨−vσi (I ′), σi(I ′)⟩

=
∑

I∈Iinit
i

πσ
′

i (I)⟨−vσi (I), σi(I)⟩.
(20)

Since the probability of reaching any I ∈ Iiniti is always 1, regardless of the strategies σ or σ′, we
have that ∀σ, σ′, and I ∈ Iiniti , πσ

′

i (I) = πσi (I). Substituting this into Eq. (20), we obtain∑
I∈Iinit

i

πσ
′

i (I)⟨−vσi (I), σi(I)⟩

=
∑

I∈Iinit
i

πσi (I)⟨−vσi (I), σi(I)⟩

=
∑

I∈Iinit
i

πσi (I)
∑

a∈A(I)

σi(I, a)

ℓi(I, a) +
∑

I′∈Ci(I,a)

⟨−vσi (I ′), σi(I ′)⟩


=
∑
I∈Ii

∑
a∈A(I)

πσi (I)σi(I, a)ℓi(I, a),

(21)

where the last line follows from the recursion. Substituting Eq. (21) into Eq. (19), we obtain∑
I∈Ii

πσ
′

i (I)⟨−vσi (I), σi(I)− σ′
i(I)⟩

=
∑
I∈Ii

∑
a∈A(I)

[
πσi (I)σi(I, a)ℓi(I, a)− πσ

′

i (I)σ′
i(I, a)ℓi(I, a)

]
= ⟨ℓi,xi − x′

i⟩,

as ∀i ∈ N , I ∈ Ii, πσi (I)σi(I, a) = xi(I, a) and πσ
′

i (I)σ′
i(I, a) = x′

i(I, a) via the definition of the
sequence-form strategy. It finishes the proof.

E.2 Proof of Lemma 4.4

Proof. First, when θI = 0, we have that ∀I ∈ Ii, ⟨−m̂∗,µ,γ,r
i (I),θI⟩ = 0.

Next, we prove by contradiction that when θI > 0, ∀I ∈ Ii, it holds that ⟨−m̂∗,µ,γ,r
i (I),θI⟩ ≥ 0.

Suppose there exists one I ′ ∈ Ii and θ′
I′ > 0 such that ⟨−m̂∗,µ,γ,r(I ′),θ′

I′⟩ < 0. We construct a
new strategy σ′

i, which matches σ∗,µ,γ,r
i (not σ̂∗,µ,γ,r

i ) except at the infoset I ′, where it is defined as
θ′
I′/⟨θ′

I′ ,1⟩. For ⟨−m̂∗,µ,γ,r(I ′),θ′
I′⟩, we have

⟨−m̂∗,µ,γ,r(I ′),θ′
I′⟩ =− ⟨v̂

∗,µ,γ,r
i (I ′)− ⟨v̂∗,µ,γ,r

i (I ′), σ∗,µ,γ,r
i (I ′)⟩1,θ′

I′⟩
=− ∥θ′

I′∥1⟨v̂
∗,µ,γ,r
i (I ′), σ′

i(I
′)− σ∗,µ,γ,r

i (I ′)⟩
=− ∥θ′

I′∥1⟨−v̂
∗,µ,γ,r
i (I ′), σ∗,µ,γ,r

i (I ′)− σ′
i(I

′)⟩.

Since ⟨−m̂∗,µ,γ,r(I ′),θ′
I′⟩ < 0 and ∥θ′

I′∥1 > 0, we have ⟨−v̂∗,µ,γ,r
i (I ′), σ∗,µ,γ,r

i (I ′)−σ′
i(I

′)⟩ > 0.

We define σ̂′
i(I) = (1 − αI)σ′

i(I) + γ1 for all I ∈ Ii. Additionally, we know that σ̂∗,µ,γ,r
i (I) =

(1− αI)σ∗,µ,γ,r
i (I) + γ1 for all I ∈ Ii, and that ⟨−v̂∗,µ,γ,r

i (I ′), σ∗,µ,γ,r
i (I ′)− σ′

i(I
′)⟩ > 0. Hence,

it follows that ⟨−v̂∗,µ,γ,r
i (I ′), σ̂∗,µ,γ,r

i (I ′)− σ̂′
i(I

′)⟩ > 0.

The correspond sequence-form strategy of σ̂′
i is represented by x̂′

i. According to Lemma 4.3 and the
definition of NE, we get

⟨ℓ̂x
∗,µ,γ,r

i , x̂∗,µ,γ,r
i − x̂′

i⟩ =
∑
I∈Ii

πσ
′

i (I)⟨−v̂∗,µ,γ,r
i (I), σ̂∗,µ,γ,r

i (I)− σ̂′
i(I)⟩ ≤ 0. (22)

Since σ′
i matches σ∗,µ,γ,r

i except at the infoset I ′, and given that σ̂′
i(I) = (1 − αI)σ

′
i(I) + γ1

for all I ∈ Ii, as well as σ̂∗,µ,γ,r
i (I) = (1 − αI)σ

∗,µ,γ,r
i (I) + γ1 for all I ∈ Ii, we obtain
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σ̂∗,µ,γ,r
i (I)− σ̂′

i(I) = 0 holds for all I ∈ Ii except I ′. Therefore, we get

⟨ℓ̂x
∗,µ,γ,r

i , x̂∗,µ,γ,r
i − x̂′

i⟩ =
∑
I∈Ii

πσ
′

i (I)⟨−v̂∗,µ,γ,r
i (I), σ̂∗,µ,γ,r

i (I)− σ̂′
i(I)⟩

= ⟨−v̂∗,µ,γ,r
i (I ′), σ̂∗,µ,γ,r

i (I ′)− σ̂′
i(I

′)⟩ > 0,

(23)

where x̂′
i is the sequence-form strategy profile associated with σ̂i. By the definition of x̂′

i, it follows
that x̂′

i ∈ X γ
i . However, from the definition of NE, as shown in Eq. (22), ⟨ℓ̂x∗,µ,γ,r

i , x̂∗,µ,γ,r
i − x̂′

i⟩ ≤
0, which contradicts the result in Eq. (23). Therefore, there exists no I ′ ∈ Ii and θ′

I′ > 0
such that ⟨−m̂∗,µ,γ,r(I ′),θ′

I′⟩ < 0. Consequently, when θI > 0 for all I ∈ Ii, it holds that
⟨−m̂∗,µ,γ,r

i (I),θI⟩ ≥ 0.

Through the discussion of the above two situations, we complete the proof.

E.3 Proof of Lemma D.2

Proof. From the definition of v̂σi (I), we get

∥v̂σi (I)∥2≤∥v̂σi (I)∥1=
∑

a∈A(I)

∥v̂σi (I,a)∥1

=
∑

a∈A(I)

∥−ℓ̂xi (I,a)+
∑

I′∈Ci(I,a)

⟨v̂σi (I ′),σi(I ′)⟩∥1

≤
∑

a∈A(I)

∥−ℓ̂xi (I,a)∥1+
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥⟨v̂σi (I ′),σi(I ′)⟩∥1

≤
∑

a∈A(I)

∥−ℓ̂xi (I,a)∥1+
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥v̂σi (I ′)∥1∥σi(I ′)∥1

≤
∑

a∈A(I)

∥−ℓ̂xi (I,a)∥1+
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥v̂σi (I ′)∥1

≤
∑
I′∈Ii

∑
a′∈A(I′)

∥−ℓ̂xi (I ′a′)∥1,

(24)

where the last line is from recursion. Continuing from the above inequality, we get∑
I′∈Ii

∑
a′∈A(I′)

∥ − ℓ̂xi (I
′a′)∥1

=∥ℓxi + µ∇ψ(xi)− µ∇ψ(ri)∥1
≤∥ℓxi (I)∥1 + µ∥∇ψ(xi)(I)∥1 + µ∥∇ψ(ri)(I)∥1 ≤ P + 2µD,

(25)

where ℓx0 = Ax1 and ℓx1 = −ATx0. By substituting Eq. (25) into Eq. (24), we have

∥v̂σi (I)∥2 ≤ ∥v̂σi (I)∥1 ≤ P + 2µD,

It completes the proof.

E.4 Proof of Lemma D.3

Proof. From the definition of v̂σi (I) and v̂σ
′

i (I), we have

∥v̂σi (I)− v̂σ
′

i (I)∥2
≤∥v̂σi (I)− v̂σ

′

i (I)∥1
=
∑

a∈A(I)

∥ − ℓ̂xi (I, a) +
∑

I′∈Ci(I,a)

⟨v̂σi (I ′), σi(I ′)⟩+ ℓ̂x
′

i (I, a)−
∑

I′∈Ci(I,a)

⟨v̂σ
′

i (I ′), σ′
i(I

′)⟩∥1

≤
∑

a∈A(I)

∥ − ℓ̂xi (I, a) + ℓ̂x
′

i (I, a)∥1 +
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥⟨v̂σi (I ′), σi(I ′)⟩ − ⟨v̂σ
′

i (I ′), σ′
i(I

′)⟩∥1.
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Then, we have

∥v̂σi (I)−v̂σ
′

i (I)∥2
≤
∑

a∈A(I)

∥−ℓ̂xi (I,a)+ℓ̂x
′

i (I,a)∥1

+
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥⟨v̂σi (I ′),σi(I ′)⟩−⟨v̂σi (I ′),σ′
i(I

′)⟩+⟨v̂σi (I ′),σ′
i(I

′)⟩−⟨v̂σ
′

i (I ′),σ′
i(I

′)⟩∥1

≤
∑

a∈A(I)

∥−ℓ̂xi (I,a)+ℓ̂x
′

i (I,a)∥1+
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥⟨v̂σi (I ′),σi(I ′)⟩−⟨v̂σi (I ′),σ′
i(I

′)⟩∥1

+
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥⟨v̂σi (I ′),σ′
i(I

′)⟩−⟨v̂σ
′

i (I ′),σ′
i(I

′)⟩∥1.

(26)

For the term ∥⟨v̂σi (I ′), σi(I ′)⟩ − ⟨v̂σi (I ′), σ′
i(I

′)⟩∥1 in Eq. (26), we get

∥⟨v̂σi (I ′), σi(I ′)⟩ − ⟨v̂σi (I ′), σ′
i(I

′)⟩∥1 =∥⟨v̂σi (I ′), σi(I ′)− σ′
i(I

′)⟩∥1
≤∥v̂σi (I ′)∥1∥σi(I ′)− σ′

i(I
′)∥1

≤(P + 2µD)∥σi(I ′)− σ′
i(I

′)∥1,
(27)

where the last line comes from Lemma D.2. For the term ∥⟨v̂σi (I ′), σ′
i(I

′)⟩ − ⟨v̂σ′

i (I ′), σ′
i(I

′)⟩∥1 in
Eq. (26), we get

∥⟨v̂σi (I ′), σ′
i(I

′)⟩ − ⟨v̂σ
′

i (I ′), σ′
i(I

′)⟩∥1 =∥⟨v̂σi (I ′)− v̂σ
′

i (I ′), σ′
i(I

′)⟩∥1
≤∥v̂σi (I ′)− v̂σ

′

i (I ′)∥1∥σ′
i(I

′)⟩∥1
≤∥v̂σi (I ′)− v̂σ

′

i (I ′)∥1,

(28)

where the last line comes from ∥σ′
i(I

′)⟩∥1 ≤ 1. By substituting Eq. (27) and (28) into Eq. (26), we
obtain

∥v̂σi (I)− v̂σ
′
i (I)∥2

≤∥v̂σi (I)− v̂σ
′
i (I)∥1

≤
∑

a∈A(I)

∥ − ℓ̂xi (I, a) + ℓ̂x
′
i (I, a)∥1 +

∑
a∈A(I)

∑
I′∈Ci(I,a)

(P + 2µD)∥σi(I ′)− σ′
i(I

′)∥1

+
∑

a∈A(I)

∑
I′∈Ci(I,a)

∥v̂σi (I ′)− v̂σ
′
i (I ′)∥1

≤∥ℓ̂xi − ℓ̂x
′
i ∥1 + (P + 2µD)∥σi − σ′

i∥1,

(29)

where the last line is from recursion. For the term ∥ℓ̂xi − ℓ̂x
′

i ∥1 in Eq. (29), we get

∥ℓ̂xi − ℓ̂x
′

i ∥1 =∥ℓxi + µ∇ψ(xi)− µ∇ψ(ri)− ℓx
′

i − µ∇ψ(x′
i) + µ∇ψ(ri)∥1

=∥ℓxi + µxi − ℓx
′

i − µx′
i∥1

≤L∥x− x′∥1 + µ∥x− x′∥1
≤(L+ µ)∥x− x′∥1,

(30)

where ℓx0 = Ax1 and ℓx1 = −ATx0. By substituting Eq. (30) into Eq. (29), we get

∥v̂σi (I)− v̂σ
′

i (I)∥2 ≤ (L+ µ)∥x− x′∥1 + (P + 2µD)∥σi − σ′
i∥1

⇒∥v̂σi (I)− v̂σ
′

i (I)∥22 ≤ 2(L+ µ)2∥x− x′∥21 + 2(P + 2µD)2∥σi − σ′
i∥21,

where the second line is from ∀b, c ∈ R, (b+ c)2 ≤ 2b2 + 2c2 (in this case, b = (L+ µ)∥x− x′∥1
and c = (P + 2µD)∥σi − σ′

i∥1). It completes the proof.
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E.5 Proof of Lemma D.4

Proof. From the definition of ∥σ̂i − σ̂′
i∥1, we get

∥σ̂i−σ̂′
i∥1

=
∑
I∈Ii

∑
a∈A(I)

∥ x̂i(I,a)
x̂i(ρI)

− x̂′
i(I,a)

x̂′
i(ρI)

∥1

=
∑
I∈Ii

∑
a∈A(I)

∥ x̂i(I,a)x̂
′
i(ρI)

x̂i(ρI)x̂′
i(ρI)

− x̂′
i(I,a)x̂i(ρI)

x̂i(ρI)x̂′
i(ρI)

∥1

=
∑
I∈Ii

∑
a∈A(I)

1

x̂i(ρI)x̂′
i(ρI)

∥x̂i(I,a)x̂′
i(ρI)−x̂′

i(I,a)x̂i(ρI)∥1

=
∑
I∈Ii

∑
a∈A(I)

1

x̂i(ρI)x̂′
i(ρI)

∥x̂i(I,a)x̂′
i(ρI)−x̂i(I,a)x̂i(ρI)+x̂i(I,a)x̂i(ρI)−x̂′

i(I,a)x̂i(ρI)∥1

=
∑
I∈Ii

∑
a∈A(I)

1

x̂i(ρI)x̂′
i(ρI)

(
∥x̂i(I,a)x̂′

i(ρI)−x̂i(I,a)x̂i(ρI)∥1+∥x̂i(I,a)x̂i(ρI)−x̂′
i(I,a)x̂i(ρI)∥1

)
.

(31)
For the term ∥x̂i(I, a)x̂′

i(ρI)− x̂i(I, a)x̂i(ρI)∥1 in Eq. (31), we have
∥x̂i(I, a)x̂′

i(ρI)− x̂i(I, a)x̂i(ρI)∥1 = x̂i(I, a)∥x̂′
i(ρI)− x̂i(ρI)∥1. (32)

For the term ∥x̂i(I, a)x̂′
i(ρI)− x̂i(I, a)x̂i(ρI)∥1 in Eq. (31), we have

∥x̂i(I, a)x̂i(ρI)− x̂′
i(I, a)x̂i(ρI)∥1 = x̂i(ρI)∥x̂i(I, a)− x̂′

i(I, a)∥1. (33)
By substituting Eq. (32) and (33) into Eq. (31), we have

∥σ̂i−σ̂′
i∥1=

∑
I∈Ii

∑
a∈A(I)

1

x̂i(ρI)x̂′
i(ρI)

(x̂i(I,a)∥x̂′
i(ρI)−x̂i(ρI)∥1+x̂i(ρI)∥x̂i(I,a)−x̂′

i(I,a)∥1)

=
∑
I∈Ii

∑
a∈A(I)

(
x̂i(I,a)

x̂i(ρI)x̂′
i(ρI)

∥x̂′
i(ρI)−x̂i(ρI)∥1+

x̂i(ρI)

x̂i(ρI)x̂′
i(ρI)

∥x̂i(I,a)−x̂′
i(I,a)∥1

)
.

Since x̂i(I, a)/x̂i(ρI) = σ̂i(I, a) ≤ 1, we obtain

∥σ̂i−σ̂′
i∥1≤

∑
I∈Ii

∑
a∈A(I)

(
1

x̂′
i(ρI)

∥x̂′
i(ρI)−x̂i(ρI)∥1+

1

x̂′
i(ρI)

∥x̂i(I,a)−x̂′
i(I,a)∥1

)
≤
∑
I∈Ii

∑
a∈A(I)

1

γH
(∥x̂′

i(ρI)−x̂i(ρI)∥1+∥x̂i(I,a)−x̂′
i(I,a)∥1),

where the last inequality comes from x̂i(I) ≤ 1/γH for all i ∈ N , I ∈ Ii, and x̂i ∈ X γ
i (this

follows from the facts that H denotes the maximum number of actions taken by all players along
any path from the root to a leaf node and the probability of selecting each action is guaranteed to be
greater than γ in perturbed EFGs). For the term

∑
I∈Ii

∑
a∈A(I)

1
γH ∥x̂′

i(ρI)− x̂i(ρI)∥1, we get∑
I∈Ii

∑
a∈A(I)

1

γH
∥x̂′

i(ρI)− x̂i(ρI)∥1

=
∑
I∈Ii

∑
a∈A(I)

∑
I′∈Ci(I,a)

∑
a′∈A(I′)

1

γH
∥x̂′

i(I, a)− x̂i(I, a)∥1

≤
∑
I∈Ii

∑
a∈A(I)

AmaxCmax
γH

∥x̂′
i(I, a)− x̂i(I, a)∥1.

Therefore, we have

∥σ̂i − σ̂′
i∥1 ≤

∑
I∈Ii

∑
a∈A(I)

AmaxCmax + 1

γH
∥x̂i(I, a)− x̂′

i(I, a)∥1

=
AmaxCmax + 1

γH
∥x̂i − x̂′

i∥1.

It finishes the proof.
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F Our Parameter-Free Average-Iterate Convergence of CFR+

Now, we extend the proof of CFR+ in Farina et al. [2021] via our proof approach in Appendix D to
demonstrate that for all η > 0, CFR+’s average-iterate convergence holds for all θ1

I ∈ R|A(I)|
≥0 not

only for θ1
I = 0. This result is significant because it implies that even when the strategies generated

during the initial iterations are discarded, CFR+ remains achieving average-iterate convergence.
Specifically, since average-iterate convergence holds for all θ1

I ∈ R|A(I)|
≥0 , θtI can be treated as a new

θ1
I , ensuring that CFR+ enjoys average-iterate convergence for all η > 0 after iteration t. Indeed,

discarding the initial phase strategies is a common technique to improve the empirical convergence
rate of CFR+ [Steinberger, 2019].

Theorem F.1. Assuming all players follow the update rule of CFR+ with any θ1
I ∈ R|A(I)|

≥0 and

η > 0, the average strategy profile x̄T =
∑T

t=1 xt

T converges to the set of NEs of the perturbed
regularized EFGs defined in Eq. (2) with any γ ≥ 0 and µ ≥ 0 as T →∞.

Proof. By substituting θI=σi(I)=
σ̂i(I)−γ1

1−αI
∈∆|A(I)|

γ with σ̂i(I)∈∆|A(I)|
γ into Lemma 4.2, we get

η⟨m̂t
i(I), σi(I)− θt+1

I ⟩ ≤ Dψ(σi(I),θ
t
I)−Dψ(σi(I),θ

t+1
I )−Dψ(θ

t+1
I ,θtI)

⇔η⟨m̂t
i(I), σi(I)− θtI⟩ ≤ Dψ(σi(I),θ

t
I)−Dψ(σi(I),θ

t+1
I )−Dψ(θ

t+1
I ,θtI) + η⟨m̂t

i(I),θ
t+1
I − θtI⟩.

According to the definition of m̂t
i(I), we have

⟨m̂t
i(I), σi(I)− θtI⟩ =⟨v̂ti(I)− ⟨v̂ti(I), σti(I)⟩1, σi(I)− θtI⟩

=⟨−v̂ti(I), σti(I)− σi(I)⟩,
where the second equality comes from that

⟨v̂ti(I)− ⟨v̂ti(I), σti(I)⟩1,θtI⟩ = ⟨v̂ti(I)− ⟨v̂ti(I),
θtI
⟨θtI ,1⟩

⟩1,θtI⟩ = 0,

⟨v̂ti(I)− ⟨v̂ti(I), σti(I)⟩1, σi(I)⟩ = ⟨v̂ti(I), σi(I)− σti(I)⟩.
Therefore, we have

η⟨−v̂ti(I), σti(I)− σi(I)⟩
≤Dψ(σi(I),θ

t
I)−Dψ(σi(I),θ

t+1
I )−Dψ(θ

t+1
I ,θtI) + η⟨m̂t

i(I),θ
t+1
I − θtI⟩.

(34)

Continuing from Eq. (34), we have

η⟨−v̂ti(I), (1− αI)σti(I)− (1− αI)σi(I)⟩
≤(1− αI)

(
Dψ(σi(I),θ

t
I)−Dψ(σi(I),θ

t+1
I ) + η⟨m̂t

i(I),θ
t+1
I − θtI⟩

)
,

which implies

η⟨−v̂ti(I), (1− αI)σti(I) + γ1− (1− αI)σi(I)− γ1⟩
≤(1− αI)

(
Dψ(σi(I),θ

t
I)−Dψ(σi(I),θ

t+1
I ) + η⟨m̂t

i(I),θ
t+1
I − θtI⟩

)
.

Therefore, we get

η⟨−v̂ti(I), σ̂ti(I)− σ̂i(I)⟩ ≤ (1− αI)
(
Dψ(σi(I),θ

t
I)−Dψ(σi(I),θ

t+1
I ) + η⟨m̂t

i(I),θ
t+1
I − θtI⟩

)
.

Continuing from Eq. (34), we have

ηπσ̂i (I)⟨−v̂ti(I), σ̂ti(I)− σ̂i(I)⟩
≤(1− αI)πσ̂i (I)

(
Dψ(σi(I),θ

t
I)−Dψ(σi(I),θ

t+1
I ) + η⟨m̂t

i(I),θ
t+1
I − θtI⟩

)
.

By applying Lemma 4.3, we get
T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩

≤
T∑
t=1

∑
i∈N

∑
I∈Ii

(1− αI)πσ̂i (I)
(
Dψ(σi(I),θ

t
I)

η
−
Dψ(σi(I),θ

t+1
I )

η
+ ⟨m̂t

i(I),θ
t+1
I − θtI⟩

)
,
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where x̂i is the sequence-form strategy corresponding to σ̂i. Using ξI to denote (1− αI)πσ̂i (I), we
get

T∑
t=1

⟨ℓ̂ti,x̂ti−x̂i⟩≤
T∑
t=1

∑
i∈N

∑
I∈Ii

ξI

(
Dψ(σi(I),θ

t
I)

η
−
Dψ(σi(I),θ

t+1
I )

η
+⟨m̂t

i(I),θ
t+1
I −θtI⟩

)

≤
T∑
t=1

∑
i∈N

∑
I∈Ii

ξI

(
Dψ(σi(I),θ

t
I)

η
−
Dψ(σi(I),θ

t+1
I )

η
+∥m̂t

i(I)∥2∥θt+1
I −θtI⟩∥2

)
.

(35)

Lemma F.2 (Adapted from Lemma 11 of Wei et al. [2021]). . If the player i follow the update rule
of CFR+, with η > 0 then for any I ∈ Ii and t ≥ 1, we have

∥θt+1
I − θtI∥2 ≤ η∥m̂t

i(I)∥2.

By substituting Lemma F.2 into Eq. (35), we get

T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩ ≤
T∑
t=1

∑
i∈N

∑
I∈Ii

ξI

(
Dψ(σi(I),θ

t
I)

η
−
Dψ(σi(I),θ

t+1
I )

η
+ η∥m̂t

i(I)∥22
)
.

Assuming ∥m̂t
i(I)∥22 ≤M , we have

T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩ ≤
T∑
t=1

∑
i∈N

∑
I∈Ii

ξI

(
Dψ(σi(I),θ

t
I)

η
−
Dψ(σi(I),θ

t+1
I )

η
+ ηM

)

≤
∑
i∈N

∑
I∈Ii

ξI

(
Dψ(σi(I),θ

1
I )

η
+

T∑
t=1

ηM

) (36)

According to the analysis in Appendix D, we have that for any accumulated counterfactual regret se-
quence {θ1

I ,θ
2
I , . . . ,θ

t
I , . . . } generated by any θ1

I ∈ R|A(I)|
≥0 and η > 0, there exists a corresponding

accumulated counterfactual regret sequence {θ1
I
′
,θ2
I
′
, . . . ,θtI

′
, . . . } generated by θ1

I
′ ∈ R|A(I)|

≥0 and
η′ > 0, such that the resulting strategy profile sequence {x̂1, x̂2, . . . , x̂t, . . . } are identical, where
θtI

′
= η′θtI/η. To analysis the convergence rate of the accumulated counterfactual regret sequence

{θ1
I
′
,θ2
I
′
, . . . ,θtI

′
, . . . }, from Eq. (36), we have

T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩ ≤
∑
i∈N

∑
I∈Ii

ξI

(
Dψ(σi(I),θ

1
I
′
)

η′
+ η′TM

)
. (37)

By substituting θtI
′
= η′θtI/η into Eq. (37), we get

T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩ ≤
∑
i∈N

∑
I∈Ii

ξI

Dψ(σi(I),
η′θt

I

η )

η′
+ η′TM

 .

From the fact that ∀a, b ∈ Rd, ∥a − b∥22/2 = ∥b − a∥22/2 = Dψ(a, b), by using a = σi(I) and

b =
η′θ1

I

η , we get

T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩ ≤
∑
i∈N

∑
I∈Ii

ξI

(
∥σi(I)∥22

2η′
+

(η′θ1
I )

2

2η′η2
+ η′TM

)
. (38)

As σi(I) ∈ ∆|A(I)|, we have ∥σi(I)∥22 ≤ 1. In addition, ∥η′θ1
I∥22/(2η′η2) = η′∥θ1

I∥22/(2η2).
Continuing from Eq. (38), we get

T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩ ≤
∑
i∈N

∑
I∈Ii

ξI

(
1

2η′
+ η′
∥θ1

I∥22
2η2

+ η′TM

)
.
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Table 2: Sizes of the games.
Game #Histories #Infosets #Terminal histories #Depth #Max size of infosets

Kuhn Poker 58 12 30 6 2
Leduc Poker 9,457 936 5,520 12 5
Battleship (3) 732,607 81,027 552,132 9 7
Liar’s Dice (4) 8,181 1,024 4,080 12 4
Liar’s Dice (5) 51,181 5,120 25,575 14 5
Liar’s Dice (6) 294,883 24,576 147,420 16 6
Goofspiel (4) 1,077 162 576 7 14
Goofspiel (5) 26,931 2,124 14,400 9 46
Goofspiel (6) 969,523 34,482 518,400 11 230
Subgame 3 398,112,843 69,184 261,126,360 10 1,980
Subgame 4 244,005,483 43,240 158,388,120 8 1,980

We use Mθ
η to denote max(∥θ1

I∥22/(2η2),M). In addition, as 0 ≤ (1−αI) ≤ 1 and 0 ≤ πσ̂i (I) ≤ 1,
we have 0 ≤ ξI ≤ 1. Therefore, we get

T∑
t=1

⟨ℓ̂ti, x̂ti − x̂i⟩ ≤
∑
i∈N

∑
I∈Ii

(
1

2η′
+ η′(T + 1)Mθ

η

)
.

By setting η′ = 1/
√

2(T + 1)Mθ
η , we have

∑T
t=1⟨ℓ̂ti, x̂ti − x̂i⟩ ≤

√
2(T + 1)Mθ

η |I| ≤√
4TMθ

η |I| with any θ1
I ∈ R|A(I)|

≥0 and η > 0. It completes the proof.

G Additional Experiments

Sizes of the Games. Before introducing our additional experiments, we present the sizes of the
games used in our study, as detailed in Table 2. In this table, #Histories denotes the total number of
histories within the game tree, whereas #Infosets represents the count of information sets. The term
#Terminal histories indicates the number of leaf nodes, and #Depth refers to the game’s tree depth,
defined as the maximum sequence of actions in any single history. Finally, #Max size of infosets
signifies the largest number of histories contained within a single infoset.

Performance of RTCFR+ under simultaneous decrease of µ and γ. we present the results for
RTCFR+ with modifications in line 8 where µ × (1 − ς), γ ← γ × 0.5, and r ← x̂Tu+1, with
ς = 1e− 16, as shown in Figure 3. We denote this variant as "RTCFR+ V2". Our findings reveal
that the empirical convergence performance of RTCFR+ and RTCFR+ V2 is similar.

Performance of RTCFR+ under reset accumulated regrets as 0. we examine the performance of
RTCFR+ that resets θ1

I to 0, which is denoted as "Unstable RTCFR+" in Figure 3. The parameters
of Unstable RTCFR+ are same as RTCFR+ in Section 5. We observe that Unstable RTCFR+ never
converges across all tested games.

Comparison with average-iterate convergence CFR algorithms. We compare the last-iterate
convergence performance of RTCFR+ with the average-iterate performance of CFR+, PCFR+, and
DCFR. The experimental results are shown in Figure 4. With fine-tuning, RTCFR+ outperforms the
average-iterate performance of CFR+, PCFR+, and DCFR in nearly all tested games, except for Liar’s
Dice (6). Even without fine-tuning, RTCFR+ achieves superior performance to the average-iterate of
CFR++, PCFR+, and DCFR in 5 out of the evaluated 9 games (Kuhn Pker, Leduc Poker, Liar’s Dice
(4), Liar’s Dice (5), and Goofspiel (4)). In addition, as shown in Figure 4, even when considering
only CFR+, PCFR+, and DCFR, no single algorithm consistently outperforms the other two across
all games.

Convergence rates in the initial phase. We now present the results of our algorithms RTCFR+

and RTPCFR+, alongside CFR+, R-NaD, Reg-CFR, OMWU, OGDA, PCFR+, and DCFR, over
the first 1000 iterations. The results are shown in Figure 5. Consistent with the results in Figures
1, RTCFR+, RTPCFR+, and PCFR+ demonstrate superior performance compared to the other
algorithms. However, no single algorithm without fine-tuning outperforms all others across all games.

Performance of RTCFR+ in HUNL Subgames. We now present the convergence rate of RTCFR+

within HUNL Subgames, particularly the ones open-sourced by Libratus [Brown and Sandholm,
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Figure 3: Last-iterate convergence rates of RTCFR+, RTCFR+ V2, and Unstable RTCFR+.

2018]. We compare RTCFR+ with CFR+, PCFR+, and DCFR+. Given the immense size of HUNL
Subgames, we implement the tested algorithm using vector CFR. We employ the open-source code
from Poker RL [Steinberger, 2019, Xu et al., 2024b], which supports vector CFR and Subgames
from Libratus, specifically Subgame 3 and Subgame 4. The comparison of RTCFR+ and the last-
iterate convergence performance of CFR+, PCFR+, and DCFR+ is illustrated in Figure 6, while the
comparison of RTCFR+ and the average-iterate convergence performance of CFR+, PCFR+, and
DCFR+ is depicted in Figure 7. RTCFR+ exceeds the last-iterate convergence performance of CFR+

and PCFR+ across both HUNL Subgames. Additionally, in Subgame3, RTCFR+ also surpasses the
average-iterate convergence performance of CFR+ and PCFR+. It is worth noting that CFR+ and
PCFR+ do not provide a last-iterate convergence guarantee. For DCFR, RTCFR+, as well as CFR+

and PCFR+, underperform in both last-iterate and average-iterate convergence performance. We
speculate this is because DCFR is fine-tuned specifically for the tested HUNL Subgames, unlike the
other evaluated algorithms.

Performance of RTCFR+ under different hyperparameters. We investigate the convergence rates
of RTCFR+ under various hyperparameter settings. Specifically, we focus on the impact of µ and Tu
on the convergence rates, as we observe that γ only needs to be set to a sufficiently small value. The
tested ranges for µ and Tu are [1e− 4, 5e− 4, 1e− 3, 5e− 3, 1e− 2, 5e− 2, 1e− 1, 5e− 1] and
[10, 50, 100, 500, 1000], respectively. Experimental results reveal that the performance of RTCFR+

is primarily contingent upon the value of µ. To elucidate this dependency, we discuss the performance
implications of varying µ values. Specifically, for small µ values, CFR+ encounters difficulties in
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Figure 4: Comparison with classical average-iterate convergence CFR algorithms.

accurately learning an NE of perturbed regularized EFGs. Consequently, this challenge persists
irrespective of the value of Tu, enabling that learning an NE of perturbed regularized EFGs becomes
impossible. As a result, attaining an NE of the original game becomes impracticable for any Tu value,
which is also consistent with the experimental results. Conversely, when µ is optimal, neither too
small nor too large, this condition enables CFR+ to learn sufficiently accurate approximate an NE of
perturbed regularized EFGs. These allow RTCFR+ to achieve commendable performance. However,
for large µ values, although CFR+ are capable of learning the exact NE of perturbed regularized
EFGs, the requisite number of reference strategy updates becomes excessively large. Hence, we
observe that with large µ values, a smaller Tu yields better performance. Based on these analyses, we
advocate for the prioritization of determining µ’s value, followed by the value of Tu, when practically
applying our algorithm.
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Figure 5: Last-iterate convergence rates over the first 1000 iterations.
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Figure 6: Comparison with the last-iterate convergence performance of CFR+, PCFR+, and DCFR
in HUNL Subgames.
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Figure 7: Comparison with the average-iterate convergence performance of CFR+, PCFR+, and
DCFR in HUNL Subgames.
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Figure 8: Last-iterate convergence rates of RTCFR+ with µ = 0.0001.
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Figure 9: Last-iterate convergence rates of RTCFR+ with µ = 0.0005.
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Figure 10: Last-iterate convergence rates of RTCFR+ with µ = 0.001.
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Figure 11: Last-iterate convergence rates of RTCFR+ with µ = 0.005.
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Figure 12: Last-iterate convergence rates of RTCFR+ with µ = 0.01.
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Figure 13: Last-iterate convergence rates of RTCFR+ with µ = 0.05.
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Figure 14: Last-iterate convergence rates of RTCFR+ with µ = 0.1.
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Figure 15: Last-iterate convergence rates of RTCFR+ with µ = 0.5.
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H Implementation of RTCFR+

In this section, we present a detailed description of the implementation of RTCFR+, which is adapted
from the open-source implementation of CFR+ by LiteEFG [Liu et al., 2024].

1 import LiteEFG
2 class RTCFRPlusGraph(LiteEFG.Graph):
3 def __init__(self , gamma =1e-10, mu=1e-3, shrink_iter =100): #

default parameters
4 super().__init__ ()
5 self.timestep = 0
6 self.shrink_iter = shrink_iter # shrink_iter is T_u
7

8 # Initialization of RTCFR+
9 with LiteEFG.backward(is_static=True):

10 ev = 1.0 * LiteEFG.const(1, 0.0)
11 # unperturbed_strategy is \sigma
12 self.unperturbed_strategy = LiteEFG.const(self.

action_set_size , 1.0 / self.action_set_size)
13 # perturbed_strategy is \hat{\sigma}
14 self.strategy = LiteEFG.const(self.action_set_size ,

1.0 / self.action_set_size)
15 # regret_buffer is \bm{\ theta}
16 self.regret_buffer = LiteEFG.const(self.

action_set_size , 0.0)
17

18 # ref_strategy is \bm{r}
19 self.ref_strategy = LiteEFG.const(self.action_set_size

, 1.0 / self.action_set_size)
20 # the following three variables are used to compute \

nabla \psi(\bm{r}), note that self.ref_reach_prob(I
) = \nabla \psi(\bm{r})(I)

21 self.ref_reach_prob = LiteEFG.const(self.
action_set_size , 1.0)

22 self.parent_reach_prob = LiteEFG.const(self.
action_set_size , 1.0)

23 self.parent_to_child_prob = LiteEFG.const(self.
action_set_size , 1.0)

24

25 self.iteration = LiteEFG.const(1, 0)
26 self.mu = LiteEFG.const(1, mu)
27 self.gamma = LiteEFG.const(1, gamma)
28 self.alpha_I = self.gamma*self.action_set_size
29

30 with LiteEFG.backward(color =0):
31 self.iteration.inplace(self.iteration +1)
32 # to compute the \hat{\bm{v}}_i^t(I) defined in (4)
33 gradient = LiteEFG.aggregate(ev , aggregator="sum") +

self.utility - self.mu*(self.reach_prob*self.
strategy - self.ref_reach_prob*self.ref_strategy)

34 # to compute the \langle \hat{\bm{v}}_i^t(I), \sigma^
t_i(I) \rangle defined in (4)

35 ev.inplace(LiteEFG.dot(gradient , self.
unperturbed_strategy))

36 # gradient - ev is the instantaneous counterfactual
regret \hat{\bm{m}}_i^t(I ) defined in (4)

37 self.regret_buffer.inplace(LiteEFG.maximum(self.
regret_buffer + gradient - ev, 0.0))

38

39 # to get \sigma ^{t+1}_i(I)
40 self.unperturbed_strategy.inplace(LiteEFG.normalize(

self.regret_buffer , p_norm =1.0, ignore_negative=
True))

41 # to employ PCFR+ to solve the perturbed regularized
EFGs , please use the following line
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42 # self.unperturbed_strategy.inplace(LiteEFG.normalize(
self.regret_buffer + gradient - ev, p_norm =1.0,
ignore_negative=True))

43 # to get \hat{\sigma }^{t+1}_i(I)
44 self.strategy.inplace(LiteEFG.normalize ((1 - self.

alpha_I)*self.unperturbed_strategy + self.gamma ,
p_norm =1.0, ignore_negative=True))

45

46 # update gamma and the reference strategy profile
47 with LiteEFG.backward(color =1):
48 self.gamma.inplace(self.gamma * 0.5)
49 self.ref_strategy.inplace(self.strategy * 1.0)
50

51 with LiteEFG.forward(color =2):
52 # to compute \nabla \psi(\bm{r}) after updating the

reference strategy profile
53 self.parent_reach_prob.inplace(LiteEFG.aggregate(self.

ref_reach_prob , "sum", object="parent", player="
self", padding =1))

54 self.parent_to_child_prob.inplace(LiteEFG.aggregate(
self.ref_strategy , "sum", object="parent", player="
self", padding =1))

55 self.ref_reach_prob.inplace(self.parent_reach_prob*
self.parent_to_child_prob)

56

57

58 print("=============== Graph␣is␣ready␣for␣RTCFR
+===============")

59

60 def update_graph(self , env : LiteEFG.Environment) -> None:
61 self.timestep += 1
62 if self.timestep ==1:
63 env.update(self.strategy , upd_color =[2])
64 if self.timestep % self.shrink_iter == 0:
65 env.update(self.strategy , upd_color =[1])
66 env.update(self.strategy , upd_color =[2])
67 env.update(self.strategy , upd_color =[0], upd_player =1)
68 env.update(self.strategy , upd_color =[0], upd_player =2)
69 else:
70 env.update(self.strategy , upd_color =[0], upd_player =1)
71 env.update(self.strategy , upd_color =[0], upd_player =2)
72

73 def current_strategy(self , type_name="last -iterate") ->
LiteEFG.GraphNode:

74 return self.strategy
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