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Abstract

Contrastive learning (CL) is one of the most successful paradigms for self-1

supervised learning (SSL). Specifically, contrastive learning treats two augmented2

“views” of the same sample as positive, pulling them close and treating all other3

samples as negative to push them far apart. Despite the evident success of CL SSL4

methods, there are several challenges in the existing methods as they may require5

special structures, large batches, or huge training epochs, etc. Our motivation in6

this work is to provide a simple, efficient, and yet competitive contrastive learning7

baseline. Through both theoretical and empirical studies, we identified a strong8

negative-positive-coupling (NPC) effect in the widely used cross-entropy loss in9

CL SSL methods. We hypothesize that the NPC effect may be a major cause of the10

inefficiency in many contrastive learning methods. By removing the NPC effect,11

we reach a decoupled contrastive learning (DCL) objective function, which signifi-12

cantly improves the training efficiency. DCL can achieve competitive performance,13

requiring neither large batches in SimCLR, momentum encoding in Moco, or large14

epochs. We demonstrate the benefit of DCL in various benchmarks. Further, DCL15

is also much less sensitive to suboptimal hyperparameters. Notably, our approach16

achieves 66.9% ImageNet top-1 accuracy with 256 batch size within 200 epochs17

pre-training, which outperforms its baseline SimCLR by 5.1%. We believe DCL18

may provide a strong baseline for future contrastive learning-based SSL studies.19

1 Introduction20

As a fundamental task in machine learning, representation learning aims to extract features to21

reconstruct the raw data fully. It has been regarded as a long-acting goal over the past decades. Recent22

progress on representation learning has achieved a significant milestone over self-supervised learning23

(SSL), facilitating feature learning with its competence in exploiting massive raw data without any24

annotated supervision. In the early stage of SSL, representation learning has focused on exploiting25

pretext tasks, which are addressed by generating pseudo-labels to the unlabeled data through different26

transformations, such as solving jigsaw puzzles [1], colorization [2] and rotation prediction [3].27

Though these approaches achieve some success in computer vision, there is a large gap between28

these methods and supervised learning. Recently, there has been a significant advancement in using29

contrastive learning [4, 5, 6, 7, 8] for self-supervised pre-training, which significantly closes the gap30

between the SSL method and supervised learning. Contrastive SSL methods, e.g., SimCLR [8], in31

general, try to pull different views of the same instance close and push different instances far apart in32

the representation space.33

Despite the evident progress of the state-of-the-art contrastive SSL methods, there have been several34

challenges in future developing this direction: 1) The SOTA models [7] may require unique structures35

like the momentum encoder and large memory queues, which may complicate the understanding. 2)36

The contrastive SSL models [8] may depend on large batch size and huge epoch numbers to achieve37

competitive performance, posing a computational challenge for academia to explore this direction.38
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Figure 1: An overview of the batch size issue in the general contrastive approaches: (a) shows the
NPC multiplier qB in different batch sizes. As the large batch size increasing the qB will approach 1
with a small coefficient of variation. (b) illustrates the distribution of qB .

3) They may be sensitive to hyperparameters and optimizers, introducing additional difficulty to39

reproduce the results on various benchmarks.40

Our motivation in this work is to provide a simple, efficient, and yet competitive contrastive learning41

baseline. We choose SimCLR as our starting point, given its conceptual simplicity. By analyzing the42

objective function, we identified a Negative-Positive-Coupling (NPC) multiplier qB in the gradient43

as shown in Proposition 1. The NPC multipliers modulate the gradient of each sample, and it44

mistakenly increases the impact of both negative samples and positive samples, given either of them45

is more informative. Such a coupling exacerbates when smaller batch sizes are used. By removing46

the coupling term, we reach a new formulation, the decoupled contrastive learning (DCL). The47

new objective function significantly improves the training efficiency, requires neither large batches,48

momentum encoding, or large epochs to achieve competitive performance on various different49

benchmarks. Specifically, DCL reaches 66.9% ImageNet top-1 (linear probing) accuracy with batch50

size 256, SGD optimizer within 200 epochs. Even if DCL is trained for 100 epochs, it still reaches51

64.6% ImageNet top-1 accuracy with batch size 256.52

In short, this work makes the following contributions:53

1) We provide both theoretical analysis and empirical evidence to show the negative-positive54

coupling in the gradient of contrastive learning;55

2) We introduce a new, decoupled contrastive learning (DCL) objective, which casts off the56

coupling phenomenon between positive and negative samples in contrastive learning, and57

significantly improves the training efficiency; Additionally, the proposed DCL objective is58

less sensitive the several important hyperparameters;59

3) We demonstrate our approach via extensive experiments and analysis on both large and60

small-scale vision benchmarks, with an optimal configuration for the standard SimCLR61

baseline to have a competitive performance within contrastive approaches.62

2 Related work63

2.1 Self-supervised representation learning64

Self-supervised representation learning (SSL) aims to learn a robust embedding space from data65

without human annotation. Previous arts can be roughly categorized into generative and discriminative.66

Generative approaches, such as autoencoders and adversarial learning, focus on reconstructing67

images from latent representations [9, 10]. Conversely, recent discriminative approaches, especially68

contrastive learning-based approaches, have gained the most ground and achieved state-of-the-art69

standard large-scale image classification benchmarks with increasingly more compute and data70

augmentations.71
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2.2 Contrastive learning72

Contrastive learning (CL) constructs positive and negative sample pairs to extract information from73

the data itself. In CL, each anchor image in a batch has only one positive sample to construct a positive74

sample pair [11, 8, 7]. CPC [5] predicts the future output of sequential data by using current output75

as prior knowledge, which can improve the feature representing the ability of the model. Instance76

discrimination [4] proposes a non-parametric cross-entropy loss to optimize the model at the instance77

level. Inv. spread [12] makes use of data augmentation invariants and the spread-out property of78

instance to learn features. MoCo [7] proposes a dictionary to maintain a negative sample set, thus79

increasing the number of negative sample pairs. Different from the aforementioned self-supervised80

CL approaches, [13] proposes a supervised CL that considers all the same categories as positive pairs81

to increase the utility of images.82

2.3 Collapsing issue via batch size and negative sample83

In CL, the objective is to maximize the mutual information between the positive pairs. However, to84

avoid the “collapsing output”, vast quantities of negative samples are needed so that the learning85

objectives obtain the maximum similarity and have the minimum similarity with negative samples.86

For instance, in SimCLR [8], training requires many negative samples, leading to a large batch size87

(i.e., 4096). Furthermore, to optimize such a huge batch, a specially designed optimizer LARS [14]88

is used. Similarly, MoCo [7] needs a vast queue (i.e., 65536) to achieve competitive performance.89

BYOL [15] does not collapse output without using any negative samples by considering all the90

images are positive and to maximize the similarity of “projection” and “prediction ” features. On the91

other hand, Simsam [16] leverages the Siamese network to introduce inductive biases for modeling92

invariance. With the small batch size (i.e., 256), Simsam is a rival to BYOL (4096). Unlike both93

approaches that achieved their success through empirical studies, this paper tackles from a theoretical94

perspective, proving that an intertwined multiplier qB of positive and negative is the main issue to95

contrastive learning.96

3 Decouple negative and positive samples in contrastive learning97

(a) (b)

Figure 2: Contrastive learning and negative-positive coupling (NPC). (a) In SimCLR, each sample
xi has two augmented views {x(1)

i ,x
(2)
i }. They are encoded by the same encoder f and further

projected to {z(1)i , z
(2)
i } by a normalized MLP. (b) According to Equation 3. For the view x

(1)
i , the

cross-entropy loss L(1)
i leads to a positive force z(2)i , which comes from the other view x

(2)
i of x and

a negative force, which is a weighted average of all the negative samples, i.e. {z(l)j |l ∈ {1, 2}, j 6= i}.
However, the gradient −∇

z
(2)
i
L
(1)
i is proportional to the NPC multiplier.

We choose to start from SimCLR because of its conceptual simplicity. Given a batch of N samples98

(e.g. images), {x1, . . . ,xN}, let x(1)
i ,x

(2)
i be two augmented views of the sample xi and B be99

the set of all of the augmented views in the batch, i.e. B = {x(k)
i |k ∈ {1, 2}, i ∈ [[1, N ]]}. As100
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shown by Figure 2(a), each of the views x(k)
i is sent into the same encoder network f and the output101

h
(k)
i = f(x

(k)
i ) is then projected by a normalized MLP projector that z(k)i = g(h

(k)
i )/‖g(h(k)

i )‖.102

For each augmented view x
(k)
i , SimCLR solves a classification problem by using the rest of the103

views in B as targets, and assigns the only positive label to x
(u)
i , where u 6= k. So SimCLR104

creates a cross-entropy loss function L
(k)
i for each view x

(k)
i , and the overall loss function is105

L =
∑
k∈{1,2},i∈[[1,N ]] L

(k)
i .106

L
(k)
i = − log

exp(〈z(1)i , z
(2)
i 〉/τ)

exp(〈z(1)i , z
(2)
i 〉/τ) +

∑
l∈{1,2},j∈[[1,N ]],j 6=i exp(〈z

(k)
i , z

(l)
j 〉/τ)

(1)

Proposition 1. There exists a negative-positive coupling (NPC) multiplier q(1)B,i in the gradient of107

L
(1)
i :108 
−∇

z
(1)
i
L
(1)
i =

q
(1)
B,i

τ

[
z
(2)
i −

∑
l∈{1,2},j∈[[1,N ]],j 6=i

exp 〈z(1)
i ,z

(l)
j 〉/τ∑

q∈{1,2},j∈[[1,N]],j 6=i exp(〈z
(1)
i ,z

(q)
j 〉/τ)

· z(l)j
]

−∇
z
(2)
i
L
(1)
i =

q
(1)
B,i

τ · z
(1)
i

−∇
z
(l)
j
L
(1)
i = − q

(1)
B,i

τ

exp 〈z(1)
i ,z

(l)
j 〉/τ∑

q∈{1,2},j∈[[1,N]],j 6=i exp(〈z
(1)
i ,z

(q)
j 〉/τ)

· z(1)i

(2)

where the NPC multiplier q(1)B,i is:109

q
(1)
B,i = 1− exp(〈z(1)i , z

(2)
i 〉/τ)∑

q∈{1,2},j∈[[1,N ]],j 6=i exp(〈z
(1)
i , z

(q)
j 〉/τ)

(3)

Due to the symmetry, a similar NPC multiplier q(k)B,i exists in the gradient of L(k)
i , k ∈ {1, 2}, i ∈110

[[1, N ]].111

As we can see, all of the partial gradients in Equation 2 are modified by the common NPC multiplier112

q
(k)
B,i in Equation 3. Equation 3 makes intuitive sense: 1) When a positive sample pair {z(1)i , z

(2)
i } are113

farther, the corresponding NPC multiplier q(1)B,i is larger. This will makes the overall gradient larger.114

Otherwise, the gradient is smaller. 2) When a negative sample is closer to z
(1)
i , it makes q(1)B,i larger.115

Overall, the intuition here is that a positive sample farther from the target or a negative sample closer116

to the target is more informative. However, the positive samples and negative samples are strongly117

coupled. An outlier positive sample also makes the gradient from the negative samples significantly118

larger and vice versa.119

Figure 1(b) shows the NPC multiplier qB distribution shift w.r.t. different batch sizes for a pre-trained120

SimCLR baseline model. While all of the shown distributions have prominent fluctuation, the smaller121

batch size makes qB cluster towards 0, while the larger batch size pushes the distribution towards122

δ(1). Figure 1(a) shows the averaged NPC multiplier 〈qB〉 changes w.r.t. the batch size and the123

relative fluctuation. The small batch sizes introduce significant NPC fluctuation. Based on this124

observation, we propose to remove the NPC multipliers from the gradients, which corresponds to the125

case qB,N→∞. This leads to the decoupled contrastive learning formulation.126

Proposition 2. Removing the positive pair from the denominator of Equation 2 leads to a decoupled127

contrastive learning loss. If we remove the NPC multiplier q(k)B,i from Equation 2, we reach a128

decoupled contrastive learning loss LDC =
∑
k∈{1,2},i∈[[1,N ]] L

(k)
DC,i, where L(k)

DC,i is:129

L
(k)
DC,i = − log

exp(〈z(1)i , z
(2)
i 〉/τ)hhhhhhhhexp(〈z(1)i , z

(2)
i 〉/τ) +

∑
l∈{1,2},j∈[[1,N ]],j 6=i exp(〈z

(k)
i , z

(l)
j 〉/τ)

(4)

= −〈z(1)i , z
(2)
i 〉/τ + log

∑
l∈{1,2},j∈[[1,N ]],j 6=i

exp(〈z(k)i , z
(l)
j 〉/τ) (5)
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Figure 3: Comparisons on ImageNet-1K with/without DCL under different numbers of (a): batch
sizes for SimCLR [8] and (b): queues for MoCo [7]. Without DCL, the top-1 accuracy significantly
drops when batch size (SimCLR) or queues (MoCo) becomes very small.

The proofs of Proposition 1 and 2 are given in Appendix. Further, we can generalize the loss130

function LDC to LDCW by introducing a weighting function for the positive pairs i.e. LDCW =131 ∑
k∈{1,2},i∈[[1,N ]] L

(k)
DCW,i.132

L
(k)
DCW,i = −w(z

(1)
i , z

(2)
i )(〈z(1)i , z

(2)
i 〉/τ) + log

∑
l∈{1,2},j∈[[1,N ]],j 6=i

exp(〈z(k)i , z
(l)
j 〉/τ) (6)

where we can intuitively choose w to be a negative von Mises-Fisher weighting function that133

w(z
(1)
i , z

(2)
i ) = 2 − exp(〈z(1)

i ,z
(2)
i 〉/σ)

E i

[
exp(〈z(1)

i ,z
(2)
i 〉/σ)

] and E [w] = 1. LDC is a special case of LDCW and we134

can see that limσ→∞ LDCW = LDC . The intuition behind w(z(1)i , z
(2)
i ) is that there is more learning135

signal when a positive pair of samples are far from each other.136

4 Experiments137

This section evaluates our proposed decoupled contrastive learning (DCL) empirically and compares138

it to the general contrastive learning methods. We summarize our experiments and analysis as the139

following: (1) our proposed work significantly outperforms the general contrastive learning on large140

and small-scale vision benchmarks; (2) we show the better version of DCL: LDCW could further141

improve the representation quality. (3) we further analyze our DCL with few learning epochs, which142

shows fast convergence of the proposed DCL. Detailed experimental settings can be found in the143

Appendix.144

4.1 Implementation details145

To understand the effect of the sample decoupling, we consider our proposed DCL, which is based on146

the general contrastive learning, where model optimization is irrelevant to the size of batches (i.e.,147

negative samples). Extensive experiments and analysis are demonstrated on large-scale benchmarks:148

ImageNet-1K [19], ImageNet-100 [6], and small-scale benchmark: CIFAR [20], and STL10 [21].149

Note that all of our experiments are conducted with 8 Nvidia V100 GPUs on a single machine.150

ImageNet For a fair comparison on ImageNet data, we implement our proposed decoupled structure,151

DCL by following SimCLR [8] with ResNet-50 [22] as the encoder backbone and use cosine annealing152

schedule. We set the temperature τ to 0.1 and the latent vector dimension to 128. Following [23],153

we evaluate the pre-trained models by training a linear classifier with frozen learned embedding on154

ImageNet data. We further consider evaluating our approach on ImageNet-100, a selected subset of155

100 classes of ImageNet-1K.156
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Table 1: Comparisons with/without DCL under different numbers of batch sizes from 32 to 512.
Results show the effectness of DCL on four widely used benchmarks. The performance of DCL
keeps steadier than the SimCLR baseline while the batch size is varied.

Dataset ImageNet-100 (linear) CIFAR10 (kNN)

Batch Size 32 64 128 256 512 32 64 128 256 512

SimCLR [8] 74.2 77.6 79.3 80.7 81.3 78.9 80.4 81.1 81.4 81.3
SimCLR w/ DCL 80.8 82.0 81.9 83.1 82.8 83.7 84.4 84.4 84.2 83.5

Dataset CIFAR100 (kNN) STL10 (kNN)

Batch Size 32 64 128 256 512 32 64 128 256 512

SimCLR [8] 49.4 50.3 51.8 52 52.4 74.1 76.2 76.9 77.3 77.6
SimCLR w/ DCL 51.1 54.3 54.6 54.9 55 82.0 82.8 81.8 81.2 81.0

Table 2: kNN top-1 accuracy (%) comparison of SSL approaches on small-scale benchmarks:
CIFAR10, CIFAR100, and STL10. Results show that DCL consistently improves its SimCLR
baseline. With multi-cropping [17], our DCLW reaches competitive performance within other
contrastive learning approaches [8, 7, 4, 12, 18].

kNN (top-1) SimCLR MoCo MoCo + CLD NPID NPID + CLD Inv. Spread Exemplar DCL DCLW w/ mcrop

CIFAR10 81.4 82.1 87.5 80.8 86.7 83.6 76.5 84.1 87.8
CIFAR100 52.0 53.1 58.1 51.6 57.5 N/A N/A 54.9 58.8
STL10 77.3 80.8 84.3 79.1 83.6 81.6 79.3 81.2 84.1

CIFAR and STL10 For CIFAR10, CIFAR100, and STL10, ResNet-18 [22] is used as the encoder157

architecture. We set the temperature τ to 0.07. All models are trained for 200 epochs with SGD158

optimizer and a base lr = 0.03 ∗ batchsize/256. We follow NPID [4] on using k = 200 nearest159

neighbor (kNN) classifier. Note that on STL10, we follow [24] to use both train set and unlabeled160

set for model pre-training.161

4.2 Experiments and analysis162

DCL on ImageNet This section illustrates the effect of our DCL under different batch sizes and163

queues. The initial setup is to have 1024 batch size (SimCLR [8]) and 65536 queues (MoCo [7])164

and gradually reduce the batch size (SimCLR) and queue (MoCo) to show the corresponding top-1165

accuracy by linear evaluation. Figure 3 indicates that without DCL, the top-1 accuracy drastically166

drops when batch size (SimCLR) or queue (MoCo) becomes very small. While with DCL, the167

performance keeps steadier than baselines (SimCLR:−4.1% vs. −8.3%, MoCo: −0.4% vs. −5.9%).168

Specifically, Figure 3 further shows that in SimCLR, the performance with DCL improves from169

61.8% to 65.9% under 256 batch size; MoCo with DCL improves from 54.7% to 60.8% under 256170

queues. The comparison fully demonstrates the necessity of DCL, especially when the number of171

negatives is small. Although batch size is increased to 1024, we also note that our DCL (66.1%) still172

improves over the SimCLR baseline (65.1%).173

We further observe the same phenomenon on ImageNet-100 data. Table 1 shows that, while with174

DCL, the performance only drops 2.3% compare to the SimCLR baseline of 7.1%.175

In summary, it is worth noting that, while the batch size is small, the strength of qB,i, which is used to176

push the negative samples away from the positive sample, is also relatively weak. This phenomenon177

tends to reduce the efficiency of learning representation. While taking advantage of DCL alleviates178

the performance gap between small and large batch sizes. Hence, through the analysis, we find out179

DCL can simply tackle the batch size issue in contrastive learning. With this considerable advantage180

given by DCL, general SSL approaches can be implemented with fewer computational resources or181

lower standard platforms.182
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Table 3: Comparisons between SimCLR baseline, DCL, and DCLW. Results indicate that DCL
improves the performance of baseline, and DCLW further provides an extra boost. Note that results
are under the batch size 256 and epoch 200. All of models are both trained and evaluated with same
experimental settings.

Baseline DCL DCLW

CIFAR10 81.8 84.2 (+3.1) 84.8 (+3.7)
CIFAR100 51.8 54.6 (+2.8) 54.9 (+3.1)
ImageNet-100 79.3 81.9 (+2.6) 82.8 (+3.5)
ImageNet-1K 61.8 65.9 (+4.1) 66.9 (+5.1)

Table 4: ImageNet-1K top-1 accuracy (%) on SimCLR and MoCo v2 with/without DCL under few
training epochs. We further list results under 200 epochs for clear comparison. With DCL, the
performance of SimCLR trained under 100 epochs nearly reaches its performance under 200 epochs.
The MoCo v2 with DCL also reaches higher accuracy than the baseline under 100 epochs.

SimCLR[8] SimCLR w/ DCL MoCo v2[25] MoCo v2 w/ DCL

100 epoch 57.5 64.6 63.6 64.4
200 epoch 61.8 65.9 67.5 67.7

DCL on CIFAR and STL10 In Table 1 and Table 3, it is observed that DCL also demonstrates183

its effectiveness on small-scale benchmarks. In summary, DCL outperforms its baseline by 3.1%184

(CIFAR10) and 2.8% (CIFAR100) and keeps the performance relatively steady under batch size 256.185

We also improve the kNN accuracy of the SimCLR baseline on STL10 by 3.9%.186

Decoupled objective with re-weighting DCLW We only replace LDC with LDCW with no pos-187

sible advantage from additional tricks. That is, both our approach and the baselines apply the same188

training instruction of the OpenSelfSup benchmark [23] for fairness. Note that we empirically choose189

σ = 0.5 in the experiments.190

Results in Table 3 indicates that, DCLW achieves extra 5.1% (ImageNet-1K), 3.5% (ImageNet-100)191

gains compared to the baseline. For CIFAR data, extra 3.7% (CIFAR10), 3.1% are gained from the192

addition of DCLW. It is worth to note that, trained with 200 epochs, our DCLW reaches 66.9% with193

batch size 256, surpassing the SimCLR [8] baseline: 66.2% with batch size 8192.194

4.3 Small-scale benchmark results: STL10, CIFAR10, and CIFAR100195

For STL10, CIFAR10, and CIFAR100, we implement our DCL with ResNet-18 [22] as encoder196

backbone by following small-scale benchmark of CLD [24]. All the models are trained for 200197

epochs with 256 batch size and evaluate by using kNN accuracies (k = 200).198

Results in Table 2 indicates that, our DCLW with multi-cropping [17] consistently outperforms the199

state-of-the-art baselines on CIFAR10, STL10, and CIFAR100. Our DCL also demonstrates its200

capability while comparing against other baselines. More analysis of large-scale benchmarks can be201

found in Appendix.202

4.4 Ablations203

We perform extensive ablations on the hyperparameters of our DCL and DCLW on both ImageNet data204

and other small-scale data, i.e., CIFAR10, CIFAR100, and STL10. By seeking better configurations205

empirically, we see that our approach gives consistent gains over the standard SimCLR baseline. In206

other ablations, we see that our DCL achieves more gains over both SimCLR and MoCo v2, i.e.,207

contrastive learning baselines, also when training for 100 epochs only.208
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(a) (b) (c)

Figure 4: During the SSL pre-training, DCL speeds up the model convergence and provides better
performance than the baseline on CIFAR and STL10 data.

Few learning epochs Our DCL is inspired by the traditional contrastive learning framework, which209

needs a large batch size, long learning epochs to achieve higher performance. The previous state-210

of-the-art, SimCLR [8], heavily rely on large quantities of learning epochs to obtain high top-1211

accuracy. (e.g., 69.3% with up to 1000 epochs). The purpose of our DCL is to achieve higher learning212

efficiency with few learning epochs. We demonstrate the effectiveness of DCL in contrastive learning213

frameworks SimCLR and MoCo v2. We choose the batch size of 256 (queue of 65536) as the baseline214

and train the model with only 100 epochs instead of the normal number of 200. We make sure other215

parameter settings are the same for a fair comparison. Table 4 shows the result on ImageNet-1K216

using linear evaluation. With DCL, SimCLR can achieve 64.6% top-1 accuracy with only 100 epochs217

compared to SimCLR baseline: 57.5%; MoCo v2 with DCL reaches 64.4% compared to MoCo v2218

baseline: 63.6% with 100 epochs pre-training.219

We further demonstrate that, with DCL, learning representation becomes faster during the early stage220

of training. The reason is that DCL successfully solves the decoupled issue between positive and221

negative pairs. Figure 4 (a), (b), and (c), show that our DCL improves the speed of convergence and222

reaches higher performance than the baseline on CIFAR and STL10 data.223

5 Conclusion224

In this paper, we identify the negative-positive-coupling (NPC) effect in SimCLR. By removing225

the NPC effect, we reach a new objective function, decoupled contrastive learning (DCL). The226

proposed DCL loss function requires minimal modification to the SimCLR baseline and provides227

efficient, reliable, and nontrivial performance improvement on various benchmarks. Given the228

conceptual simplicity of DCL and that it requires neither momentum encoding, large batch sizes, or229

long epochs to reach competitive performance, we wish that DCL can serve as a strong baseline for230

the contrastive-based SSL methods.231
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