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Abstract. Many medical datasets have recently been created for medical
image segmentation tasks, and it is natural to question whether we can
use them to sequentially train a single model that (1) performs better
on all these datasets, and (2) generalizes well and transfers better to
the unknown target site domain. Prior works have achieved this goal by
jointly training one model on multi-site datasets, which achieve competi-
tive performance on average but such methods rely on the assumption
about the availability of all training data, thus limiting its e↵ectiveness
in practical deployment. In this paper, we propose a novel multi-site
segmentation framework called incremental-transfer learning (ITL),
which learns a model from multi-site datasets in an end-to-end sequen-
tial fashion. Specifically, “incremental” refers to training sequentially
constructed datasets, and “transfer” is achieved by leveraging useful
information from the linear combination of embedding features on each
dataset. In addition, we introduce our ITL framework, where we train the
network including a site-agnostic encoder with pretrained weights and at
most two segmentation decoder heads. We also design a novel site-level
incremental loss in order to generalize well on the target domain. Second,
we show for the first time that leveraging our ITL training scheme is
able to alleviate challenging catastrophic forgetting problems in incremen-
tal learning. We conduct experiments using five challenging benchmark
datasets to validate the e↵ectiveness of our incremental-transfer learning
approach. Our approach makes minimal assumptions on computation
resources and domain-specific expertise, and hence constitutes a strong
starting point in multi-site medical image segmentation.

Keywords: Incremental Learning · Transfer Learning · Medical Image
Segmentation.
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1 Introduction

Many medical image datasets have been created over the year, and recent
breakthrough achieved by supervised training accelerates the pace in medical
image segmentation. Despite great promise, many prior works have limited
clinical value, since they are separately trained on small datasets in terms of
scale, diversity, and heterogeneity of annotations. As a result, such single-site
methods [22,14,21,10,32,29,35,31,36,41,38,40,37,39] are vulnerable to unknown
target domains, and linearly expand parameters since they assume to train
a new model in isolation when adding new datasets. This jeopardizes their
trustworthiness and practical deployment in real-world clinical environments.

In this paper, we carry out the first-of-its-kind comprehensive exploration
of how to build a multi-site model to achieve strong performance on the training
domains and can also serve as a strong starting point for better generalization
on new domains in the clinical scenarios. Multi-site training [8,24,25,1,11,3,7]
has been proposed to consolidate the generalization on multi-site datasets, but it
has the following limitations: (1) it still exhibits certain vulnerability to di↵erent
domains (i.e., di↵erent imaging protocols), which yields sub-optimal performance
[1,13,34]; (2) due to various constraints (i.e., imaging time, privacy, and copyright
status), it could become challenging or even infeasible for the requirement on the
availability of all training data in a certain time phase. For example, when a new
site’s data will be available after training, the model requires retraining, which
largely prohibits the practical deployments; and (3) consider the relatively small
size of the single medical imaging dataset, simply training a dense network from
scratch usually leads to sub-optimal segmentation quality because the model
might over-fit to those datasets.

Our key idea is to combine the benefits of incremental-learning (IL) and
transfer-learning by sequentially training a multi-dataset expert: we continually
train a model with corresponding pretrained weights as new site data are incre-
mentally added, which we call Incremental-Transfer Learning (ITL). This setting
is appealing as: (1) the common IL setting [23,4,15,17,27,5,42,28] is to train the
base-learner when di↵erent site datasets gradually come; thus the e↵ectiveness of
this approach heavily depends on the optimality of the base-learner. Consider each
single medical image dataset is usually of relatively small size, it is undesirable
to build a strong base-learner from scratch; (2) transfer-learning [43,26,30,44,33]
typically leads to better performance and faster convergence in medical image
analysis. Inspired by these findings above, we develop a novel training strategy for
expanding its high-quality learning abilities to our multi-site incremental setting,
considering both model-level and site-level. Specifically, our system is built upon
a site-agnostic encoder with pretrained weights from natural image datasets
such as ImageNet, and at most two segmentation decoder heads wherein only
one head is trainable, and the other is fixed associated with specific sites - a
parameter-e�cient design. Our intuition is that the shared site-agnostic encoder
network with pretrained weights encodes regularities across di↵erent medical
image datasets, while the target and source segmentation decoder heads model
the sub-distribution by our proposed site-level incremental loss, resulting in an
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Fig. 1. Overview of (a) our proposed Incremental Transfer Learning framework, and (b)
the multi-site expert model. Note that in this study, we only use one multi-site expert
model and one source decoder network, which will not introduce additional parameter.

accurate and robust model that transfers better to new domains without sacrific-
ing performance. We conduct a comprehensive evaluation of ITL on five prostate
MRI datasets. Our approach can consistently achieve competitive performance
and faster convergence compared to the upper-bound baselines (i.e., isolated-site
and mixed-site training), and has a clear advantage on overall segmentation
performance compared to the lower-bound baselines (i.e., multi-site training).
We also find that our simple approach can e↵ectively address the forgetting
issues. Our experiments demonstrate the benefits of modeling both multi-site
regularities and site-specific attributes, and thereby serve as a strong starting
point on this important practical setting.

2 Method

2.1 Problem Setup

In ITL, a model incrementally learns from a sequential site stream wherein new
datasets (namely, medical image segmentation tasks with new sites) are gradually
added during the training, as illustrated in Figure 1. More formally, we denote
the sequence of multi-site datasets to be trained as a multi-domain data sequence
D={D1, D2, · · · , DN} of N sites, and i-th site Di contains the training images
X={xj}Mj=1 and segmentation labels Y ={yj}Mj=1, where xj 2 RH⇥W⇥3 is the

augmented image input, and yj 2 {0, 1}H⇥W is the ground-truth label. Here the
augmented input setting is appealing: the axial context naturally provided by
a 3D volume can uniquely yield more robust semantic representations to the
downstream tasks. We assume access to a multi-site expert model Fi={Ei, Gi}
for i-th (site) phase, including a pretrained model as a site-agnostic encoder
network Ei with the weight ✓i, a target decoder network G

t

i
with the weight ✓t

i
.

During training, we additionally attach a source decoder network G
s

i
(i.e., using

G
s

i�1 from previous phrase) with the weight ✓
s

i
. In the i-th incremental (site)

phase, the multi-site expert model has access to two types of domain knowledge:
the site-specific knowledge from the current dataset Di and old exemplars Pi. The
latter refers to a set of old exemplars from all previous training datasets D1:i�1 in
the memory protocol M. This is highly nontrivial to preventing the challenging
“catastrophic forgetting” problem [20] of the current dataset i against previous
sites in clinical practice. Note that, in this study, we only use one multi-site
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Table 1. Information about five di↵erent sites from three benchmark datasets.

Dataset Modality # of cases Field strength (T) Resolution(in/through plane)(mm) Coil Source

Site0 MRI 30 3 0.6-0.625 / 3.6-4 Surface NCI-ISBI13 [2]
Site1 MRI 30 1.5 0.4 / 3.0 Endorectal NCI-ISBI13 [2]
Site2 MRI 19 3 0.67-0.79 / 1.25 - I2CVB [12]
Site3 MRI 12 1.5 0.625 / 3.6 Endorectal PROMISE12 [16]
Site4 MRI 13 1.5 and 3 0.325-0.625 / 3-3.6 - PROMISE12 [12]

expert model and one source decoder network, which will not introduce additional
parameters. Based on the setting above, we define the ITL problem below.
Problem of ITL In the current site i, our goal is to continuously learn a multi-

site expert model based on the knowledge from both (Di, Pi) and the pretrained

weight, making the model (1) generalizes well on the unseen data at site i, and

(2) achieves competitive performance on the previous sites.

2.2 Preliminary

Our goal is to build a strong multi-site model by learning a site-agnostic encoder
with pretrained weights as well as a segmentation decoder over multi-site datasets.
This naturally raises several interesting questions: How well will ITL-based

methods perform in multi-site medical image datasets? Will transfer learning

make the base learner stronger on the unseen site? If yes, can they perform stably

well? To answer the above questions, a prerequisite is to define the upper bound
and lower bound. Here we introduce three common paradigms for multi-site
medical image segmentation: (1) isolated-site training, (2) mixed-site training,
and (3) multi-site training. It is well-known that the isolated-site and mixed-site
training approaches can achieve state-of-the-art performance when evaluating
the same dataset, while the performance catastrophically drops when evaluating
new datasets. On the other hand, the multi-site training approach often yields
inconsistent performance across multiple sites. For all training paradigms, we
minimize Dice loss between the predicted outputs and the ground truth label.
Upper Bound We consider two training paradigms (i.e., isolated-site and
mixed-site training) as our upper bound baseline. For isolated-site training, given
each site Di, we train isolated-site models separately. The architecture of the
isolated-site model consists of a pretrained encoder Ei and a segmentation decoder
network, same architecture as Gi. Then, we apply di↵erent isolated-site models to
predict results based on the site-specific data at inference. However, this approach
dramatically increases memory and computational overhead, making it practically
challenging at scale. For mixed-site training, we train one full model on the full
mixed-site data D, and then use the well-trained model for inference. However,
it requires the simultaneous presence of all data in training and inference.
Lower Bound For multi-site training, we sequentially train only one model
coupled with the pretrained weights on all sites. This can get rid of large parameter
counts, making it appealing in practice. However, due to the forgetting quandary,
it inevitably su↵ers from severe performance degradation. This naturally questions:
can we improve performance on multi-site medical image segmentation with

minimal additional memory footprint? In the following, we give an a�rmative
answer.
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2.3 Proposed Incremental Transfer Learning Multi-Site Method

To address the aforementioned problems, we develop the incremental transfer
learning framework to perform well on the training distribution and generalize
well on the new site dataset with minimal additional memory. To our best
knowledge, we are the first work to apply incremental transfer learning to the
limited clinical data regimes. To control the parameter e�ciency, we decompose
the model into a share site-agnostic encoder Ei and two segmentation decoder
heads (i.e., source decoder Gs

i
and target decoder Gt

i
). In this way, we can keep

the network parameters the same when adding a new site. Specifically, Gs

i
is

designed to transfer the knowledge of a previously learned site, and G
t

i
is designed

to comprehensively train on a new site and previous datasets. During training,
we only update G

t

i
while G

s

i
is frozen. It is worth mentioning that our proposed

framework is independent of the encoder architecture, and can be easily plugged
in other pretrained vision models.

The full ITL algorithm is summarized in Algorithm 1. We describe our ITL
algorithm as follows. We first randomly initialize G

t

i
, Gs

i
, and then iteratively

train our full model (i.e., a pretrained encoder Ei and two decoders G
t

i
, Gs

i
)

with N -site training samples. Bounded by the computational requirements, it is
challenging or even infeasible to retain all data for training. Inspired by recent
work [23], to maintain the knowledge of previous sites, we “store” all the old
site data exemplars in the memory protocol Mi. In the i-th incremental (site)
phase, we first load Pi, and then use both Pi and Di to train Fi initialized by
✓
s

i
. This setting is appealing as (1) it can substantially alleviate the imbalance

between the old and new site knowledge, and (2) it is e�cient to train on them.
Of note, we do not use the source decoder when training on the first-site dataset.
We formulate ITL as model-level and site-level optimization.

Model-level Optimization To perform better on all these training distribu-
tions, we propose improving generic representations by distilling knowledge from
previous data. In each incremental phase, we jointly optimize two groups of learn-
able parameters in our ITL learning by minimizing the model-level incremental
loss (i.e., Lmodel=Ltarget+Lsource) on all training samples (i.e., Di

S
D0:i�1): (1)

a share site-agnostic encoder Ei and a target decoder Gt

i
; (2) a share site-agnostic

encoder Ei and a source decoder Gs

i
. This helps ITL avoid catastrophic forgetting

of prior site-specific knowledge.

Site-level Optimization The above model-level optimization is used to main-
tain previously learned knowledge. In contrast, this step is design to train the
multi-site model to learn site-specific knowledge on the newly added site. Specifi-
cally, we minimize the site-level incremental loss Lsite between the probability
distribution from Fi and the ground truth. This essentially learns the site-specific
knowledge for the downstream medical image segmentation tasks. Of note, Lsource,
Ltarget, and Lsite use the Dice loss. The overall loss combines the model-level loss
and the site-level loss as follows:

Lall = Lmodel + Lsite. (1)



6 C. You et al.

Algorithm 1 Incremental-Transfer Learning(ITL) Algorithm
Require: Dataset: D; Hyper-parameters: ↵, �, �
1: Initialize the M (Memory) : M
2: Initialize the Model F0: Pertrained Encoder �! E0, G0

3: for i = 1,2,3,....N do
4: for All training Sample in Di and Mi�1 do

5: Ltarget =
PN�1

j=0 ↵jLEi,G
t
i

Dice (Mj , Yj) or 0 When N = 1

6: Lsource =
PN�1

j=0 �jLEi,G
s
i

Dice (Mj , Yj) or 0 When N = 1
7: Lmodel = Lsource + Ltarget

8: Lsite = LEi,G
t
i

Dice (Di, Yi)
9: Lall = Lsite + Lmodel

10: Fi = (Ei, G
t
i) by minimizing the Lall

11: end for
12: Update Memory: M+ �%DN �! M
13: Save Teacher Model: GN

14: end for

3 Experiments

Datasets and Settings We evaluate our proposed incremental transfer learn-
ing method on three prostate T2-weighted MRI datasets with di↵erent sub-
distributions: NCI-ISBI13 [2], I2CVB [12], and PROMISE12 [16]. Due to the
diverse data source distributions, they can be split into five multi-site datasets,
which is similar to [19]. Table 1 provides some dataset statistics. For pre-processing,
we follow the setting in [18] to normalize the intensity, and resample all 2D slices
and the corresponding segmentation maps to 384⇥ 384 in the axial plane. For
all five site datasets, we randomly split each original site dataset into training
and testing with a ratio of 4 : 1. For each site training, we divide the data from
the previous site into a small subset with a certain portion (i.e., 1%, 3%, 5%),
and combine it with the current site data for training.
Training and Evaluation In this study, we implement all models using
Pytorch. We set H,W as 384, ↵, � as 0.5, and the batch size as 5. To mitigate
the overfitting, we augment the data by random horizontal flipping, random
rotation, and random shift. We adopt ResNet family [9] (i.e., ResNet18, ResNet34,
ResNet50) and ViT [6] (i.e., R50+ViT-B/16 hybrid model) as our pretrained
encoder. We evaluate the model performance by Dice coe�cient (DSC) and 95%
Hausdor↵ Distance (95HD). For a fair comparison, we adopt the same decoder
architecture design in [18] are shown in Appendix Table A1, and do not use
any post-processing techniques. All of our experiments are conducted on two
NVIDIA Titan X GPUs. All the models are trained using Adam optimizer with
�1 = 0.9, �2 = 0.999. For 100 epochs training, a multi-step learning rate schedule
is initialized as 0.001 and then decayed with a power of 0.95 at epochs 60 and 80.
Main Results We conduct extensive experiments on five benchmark datasets.
We adopt four models: ResNet-18, ResNet-34, ResNet-50, and ViT. We select
three portions (i.e., 1%, 3%, 5%) of exemplars from previous data for every
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Table 2. Comparison of segmentation performance (DSC[%]/95HD[mm]) across
datasets. Note that a larger DSC (") and a smaller 95HD (#) indicate better performing
ITL models. We use four models pretrained on ImageNet: ResNet-18, ResNet-34,
ResNet-50, and ViT under di↵erent portions (i.e., 1%, 3%, 5%) of exemplars from
previous data for every incremental phase. We consider multi-site training as the lower
bound, isolated-site, and mixed-site training as the upper bound.

HK UCL ISBI ISBI1.5 I2CVB

Backbone Scheme DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

RES-18

Multi 59.38 64.17 66.26 54.19 54.38 73.40 66.89 44.49 84.54 11.70
1% 67.82 56.08 67.12 58.05 59.47 70.46 77.34 34.77 82.94 6.06
3% 71.60 18.41 82.18 23.92 72.26 20.91 81.53 19.21 84.08 13.75
5% 81.81 5.50 84.45 13.95 84.52 15.65 89.32 10.11 86.72 11.70

Isolated 93.46 2.06 88.29 6.20 93.35 2.04 90.89 7.53 88.74 13.93
Mixed 92.17 7.60 83.38 12.22 91.70 2.46 90.08 9.20 89.12 13.86

RES-34

Multi 57.75 55.13 64.87 52.50 57.47 65.38 65.61 56.83 91.46 8.83
1% 67.40 24.18 79.55 30.43 69.61 44.69 84.68 18.71 89.38 15.24
3% 80.90 28.41 82.57 22.18 75.89 26.26 84.68 10.57 90.35 13.15
5% 80.46 22.92 87.79 17.32 88.14 14.64 90.29 8.57 91.30 8.52

Isolated 93.87 1.89 89.03 4.05 92.08 2.19 92.57 7.96 91.57 7.98
Mixed 93.85 1.71 87.81 16.85 91.49 3.35 93.82 5.30 92.58 6.64

RES-50

Multi 63.24 53.98 64.79 56.59 72.95 26.63 69.41 49.89 90.40 8.21
1% 69.01 60.70 69.85 44.21 75.30 28.74 80.27 20.10 90.08 8.02
3% 78.72 16.89 83.74 12.81 84.96 8.51 86.95 6.18 92.34 5.24
5% 92.46 2.92 88.79 10.97 92.16 2.04 92.18 4.87 91.35 2.12

Isolated 93.73 2.12 89.03 7.23 93.26 4.39 93.48 5.10 93.20 2.40
Mixed 94.38 1.34 88.28 9.77 92.71 9.43 92.27 5.29 90.45 5.29

VIT

Multi 66.94 53.57 65.85 54.69 92.66 6.37 72.80 51.35 90.56 7.02
1% 71.99 48.61 85.29 11.35 75.99 17.87 84.73 12.32 90.11 7.23
3% 79.33 20.84 88.16 7.08 85.48 7.97 87.64 9.95 90.07 6.94
5% 93.25 1.37 87.62 9.23 92.22 4.82 91.62 2.82 91.87 6.59

Isolated 94.44 1.88 88.80 8.21 93.23 4.76 92.47 6.27 93.23 6.43
Mixed 93.30 1.38 87.20 9.21 92.86 9.29 86.92 12.28 92.01 6.99

incremental phase. Our results are presented in Table 2 and Appendix Figure
A1. First and foremost, we can see ITL-based methods generalize across all
datasets under two exemplar portions (i.e., 3% and 5%), yielding the competitive
segmentation quality comparable to the upper bound baselines (i.e., isolated-
site and mixed-site training), which are much higher than the lower bound
counterparts. The 1% exemplar portion seems slightly more challenging for ITL,
but its superiority over the lower bound counterparts is still solid. A possible
explanation for this finding is that using two exemplar portions (i.e., 3% and 5%)
maintains enough information of ITL, which mitigates the catastrophic forgetting,
while ITL trained in the setting of 1% exemplar portion is not powerful enough
to inherit prior knowledge and generalize well on newly added sites. Second,
we consistently observe that ITL using larger models (i.e., ResNet-50 and ViT)
generalize substantially better than those using small models (i.e., ResNet-18
and ResNet-34), which demonstrate competitive performance across all datasets.
These results suggest that our ITL using the large model as our pretrained
encoder leads to substantial gains in the setting of very limited data.

4 Analysis and Discussion

We address several research questions pertaining to our ITL approach. We use a
ResNet-18 model as our encoder in our experiments. For comparisons, all models
are trained for the same number of epochs, and all results are the average of three
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Table 3. Comparison of segmentation performance in di↵erent phases.

HK UCL ISBI ISBI1.5 I2CVB

DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm] DSC[%] 95HD[mm]

94.06 1.96 - - - - - - - -
93.68 1.98 88.74 8.72 - - - - - -
93.20 1.83 87.38 9.30 92.87 1.82 - - - -
90.37 8.34 86.73 12.75 89.84 13.32 91.57 11.05 - -
88.88 8.91 85.14 10.97 85.98 14.23 89.74 13.11 88.46 12.15

independent runs of experiments. To study the e↵ectiveness of our proposed ITL
framework, we performed experiments with 5% exemplars ratio.

Does transfer learning lead to better ITL? We draw two perspectives
that may intuitively explain the e↵ectiveness of transfer learning in our proposed
ITL framework. As a first test of whether transfer learning makes the base-

learner stronger, we plot the training loss/validation loss (i.e., Lall) to iteration
to demonstrate the convergence improvements in Appendix Figure A2. We can
see that training from pretrained weights can converge faster than training
from scratch. Another (perhaps not so surprising) observation we can get from
Appendix Figure A2 is that using pretrained weights usually yields slightly
smaller loss compared to training from scratch. We then ask whether transfer

learning produces increased performance on multi-site datasets. Since each single
medical image dataset is usually of relatively small size, training the model
from scratch tends to overfit a particular dataset. To evaluate the impact of
transferring learning, we compare w/pretraining to w/o pretraining. As shown
in Appendix Table A4, training from scratch does not bring benefits to the ITL
framework. Instead of training from scratch, we find that simply incorporating
transfer learning significantly boots the performance of ITL while achieving
faster convergence speed, suggesting that transfer learning provides additional
regularization against overfitting.

Does ITL generalizes well on multi-site datasets? We investigate whether
the ITL framework generalizes well on multi-site datasets. We report the seg-
mentation results of di↵erent phases in Table 3, from which we observe that ITL
achieves good performance in di↵erent phases. This reveals that our approach is
greatly helpful in reducing forgetting issues. We evaluate the proposed ITL meth-
ods with two random ordering (i.e., (1) {HK!UCL!ISBI!ISBI1.5!I2CVB},
and (2) {ISBI!ISBI1.5!I2CVB!HK! UCL}). The results are shown in Ap-
pendix Table A2. We perform experiments using both ordering strategies and
observe comparable performance.

E�ciency of ITL We report the network size and memory costs in Appendix
Table A3. We observe that ITL achieves competitive performance and utilizes
less network parameters compared to isolated-site training (upper bound), which
requires the new model when adding new site data. We also examine the required
memory footprint at each incremental phase. We observe that ITL is significantly
more memory-e�cient than mixed-site training (upper bound), although the
latter remains the same network size when adding a new training phase. These
results further demonstrate the e�ciency of our proposed ITL framework.
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5 Conclusion

In this paper, we present a novel incremental transfer learning framework for
incrementally tackling multi-site medical image segmentation tasks. We pose
model-level and site-level incremental training strategies for better segmentation,
generalization, and transfer performance, especially in limited clinical resource
settings. Extensive experimental results on four di↵erent baseline architectures
demonstrate the e↵ectiveness of our approach, o↵ering a strong starting point to
encourage future work in these important practical clinical scenarios.
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