
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SCALING STICK-BREAKING ATTENTION:
AN EFFICIENT IMPLEMENTATION AND IN-DEPTH
STUDY

Anonymous authors
Paper under double-blind review

ABSTRACT

The self-attention mechanism traditionally relies on the softmax operator, neces-
sitating positional embeddings like RoPE, or position biases to account for token
order. But current methods using still face length generalisation challenges. We
investigate an alternative attention mechanism based on the stick-breaking process
in larger scale settings. The method works as follows: For each token before the
current, we determine a break point, which represents the proportion of the stick
to allocate to the current token. This process is repeated on the remaining stick,
until all tokens are allocated, resulting in a sequence of attention weights. This
process naturally incorporates recency bias, which has linguistic motivations for
grammar parsing (Shen et al., 2017). We study the implications of replacing the
conventional softmax-based attention mechanism with stick-breaking attention.
We then discuss implementation of numerically stable stick-breaking attention and
adapt Flash Attention to accommodate this mechanism. When used as a drop-in re-
placement for current softmax+RoPE attention systems, we find that stick-breaking
attention performs competitively with current methods on length generalisation
and downstream tasks. Stick-breaking also performs well at length generalisation,
allowing a model trained with 211 context window to perform well at 214 with
perplexity improvements.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) uses a self-attention mechanism based on the
softmax operator that enables the model to weigh the importance of different tokens in the input data.
However, the reliance on softmax requires using positional embeddings to introduce information
about the order of tokens, as the attention mechanism itself is permutation-invariant. The sinusoidal
position embedding as proposed in Vaswani et al. (2017) has since evolved to relative positional
embeddings (Shaw et al., 2018). Learned relative positional biases were used in the T5 model (Raffel
et al., 2020), and later fixed relative positional biases in Press et al. (2021). At the time of this
writing, a commonly used form of position embedding is RoPE (Su et al., 2021). Allen-Zhu & Li
(2023) observe that, in a context-free grammar parsing setting, attention mechanisms attend to the
“most adjacent” non-terminal. This suggests an inclination to attend to the most recent entry that
matches a given criteria. However, even with relative position information, it is possible to overfit
on specific relative positions, resulting in failure to generalise. Kazemnejad et al. (2024) show that
decoder-only Transformers with No Positional Embeddings (NoPE) can implicitly recover positional
information, experimental results suggest that NoPE Transformers generalise better on length. While
this is promising, a higher attention score from an irrelevant token in the sequence can function as a
distractor (Kazemnejad et al., 2024; Xiao et al., 2023).

The stick-breaking process may have properties that can alleviate the previously mentioned issues,
and possess the ‘most recent’ bias from Allen-Zhu & Li (2023) that we want. For a token at position
j attending to position i, suppose the attention weight is given by:

Ai,j = βi,j

∏
i<k<j

(1− βk,j) = σ(zi,j)
∏

i<k<j

(1− σ (zk,j)) ,

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Logits zi,j =
q⊤
i kj√
dhead

Softmax Ai,j =
exp(zi,j)∑

j′≤i

exp(zi,j′)

Stick-breaking Ai,j = σ(zi,j)
∏

i<k<j

(1− σ(zk,j))

Figure 1: Differences in formulation between stick-breaking and softmax. Stick-breaking assigns
high weights to the most recent high logit, while softmax will assign equal weightage to equal logits.

where zk,j are the attention logits. To illustrate via intuition, for Ai,j to be high, all βk,j for i < k
have to be low. Conversely, as long as any βk,j for i < k is high, Ai,j will be low, as a token between
i and j has already been attended to. Shen et al. (2017) makes a similar observation as in Allen-Zhu
& Li (2023), and explicitly uses a stick-breaking process to model local structure. Csordás et al.
(2021) introduces Geometric attention, named after the Geometric distribution, which only has one
parameter p, which gives the probability of success per trial. The geometric distribution then gives
the probability for which k trials are needed for the first success: (1− p)k−1p. But in stick-breaking
and in Geometric attention (Csordás et al., 2021), each p is assigned a different value that corresponds
to the attention score between two tokens.

In this paper, we expand upon prior work on this attention mechanism (Csordás et al., 2021; Shen
et al., 2023). We focus on the implications of replacing the softmax-based attention mechanism with
the stick-breaking process:

1. We compare the different properties of stick-breaking attention against softmax attention,

2. We discuss numerically stable implementations of the stick-breaking attention, and make
stick-breaking amenable for large-scale training by implementing a kernel for stick-breaking
in Triton,

3. We show the performance of stick-breaking attention on length-generalisation in language
modelling, and evaluate 1B and 3B parameter models on various NLP tasks.

2 STICK-BREAKING ATTENTION

For a sequence of L tokens, we have query qi ∈ Rdhead , key ki ∈ Rdhead , and value vi ∈ Rdhead

vectors for 1 ≤ i ≤ L. Then the attention weight for token at j attending to position i is computed
by:

oj =

j−1∑
i=1

Ai,jvi, Ai,j = βi,j

∏
i<k<j

(1− βk,j) , βi,j = σ (zi,j) , zi,j =
q⊤
j ki√
dhead

(1)

Equation 1 is the main difference between our proposal and softmax attention. As discussed earlier
and in Csordás et al. (2021), this parameterisation biases towards recency. Specifically, for any pair
of i and i′ such that i− j < i′ − j and zi,j = zi′,j , then Ai,j ≥ Ai′,j . Consequently, this imposes an
ordering on the attention, and we do not use position embeddings with the query and key embeddings.

We consider two sets of logits, zi,j and z′i,j and their respective attention weights Ai,j and A′
i,j . If

zi,k = z′i,k for i < k < j, then Ai,j = A′
i,j . Further, if

∑j−1
k=i Ak,j = 1, then the output is invariant

to appending additional context earlier than i. This means that unlike softmax attention, a high
attention score further back in the sequence does not ‘distract’ from a more recent high zi,j score.
We note that

∑j−1
i=1 Ai,j ≤ 1, which allows this attention mechanism to attend to nothing when all

βi,j = 0. We discuss a strategy to deal with the remaining attention weight in Appendix B.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3 RELATED WORK

Stick-breaking Process The stick-breaking process formulation of the Dirichlet process (Sethura-
man, 1994) is also known as the GEM distribution, first coined in Ewens (1990) after Griffiths (1989),
Engen (1975), and McCloskey (1965). The GEM is a specific case of what was known as a Residual
Allocation Model (RAM; Allen & Lambie 1976). There are instances of the distribution being used
as a differentiable attention-like mechanism in neural models. Shen et al. (2017) used stick-breaking
process for modelling language, and showed that the model can induce grammatical structure to some
extent. Csordás et al. (2021) used stick-breaking attention, which they refer to as Geometric attention,
in a bidirectional encoder set up. Shen et al. (2023) used stick-breaking attention in a decoding-only
setup, but does not explicitly study the properties of stick-breaking.

Softmax attention, Positional embeddings, and Length Generalisation Bondarenko et al. (2024)
observe that softmax attention tends to attend to low-information tokens with high scores in order
to ‘do nothing’. Xiao et al. (2023) introduces attention sinks, a learnable token that the attention
can assign attention weights to. Irie et al. (2019) and Haviv et al. (2022) find that in a decoder-only
setting, a Transformer with no positional embedding can work fairly well. Kazemnejad et al. (2024)
also found similar results, while also showing that NoPE has a tendency to attend to the start of the
sequence, while ALiBi (Press et al., 2021) has a tendency to only attend to the most recent tokens.
However, Zhou et al. (2024) later found that Transformers without position embeddings do not
generalise to out-of-distribution sequence lengths for an addition task. At present, Rotary Positional
Embeddings (RoPE; Su et al. 2021) are the most commonly used position embedding. It encodes
relative positions via multiplicative interactions with the key and query. RoPE has been found to
generalise to out-of-distribution lengths poorly (Press et al., 2021; Zhou et al., 2024; Kazemnejad
et al., 2024), but a common trick to extend the context window RoPE-based Transfomers is to use
NTK-aware RoPE scaling (bloc97, 2023).

Conditional Computation The use of stick-breaking for conditional computation has also been
explored. Tan & Sim (2016) uses a the stick-breaking distribution as a mixture over outputs for
each layer in an MLP for an acoustic model. Graves (2016) also suggested a similar formulation
for language modelling. Later, Banino et al. (2021) and Tan et al. (2023) also use a stick-breaking
formulation for dynamic depth modelling in a Transformer model. These prior works use conditional
computation on the depth of the model, while in our case, we use stick-breaking as a method of
restricting the computation length-wise.

Connection to Selective State-space Models Each stick-breaking attention head at every time-step
can be viewed as the hidden state of the final step of a selective State-space Model (SSM;Gu & Dao
2023). For a given time-step j, consider the following SSM and its convolutional form (as described
in Merrill et al. 2024):

ôi,j = (1− βi,j) · ôi−1 + βi,j · vj , oj = ôj−1,j =
∑

1≤i≤j

βi

∏
i<k<j

(1− βk)

 · vi, (2)

which is equivalent to the first term in Equation 1. Typically, an attention layer for a Transformer
with hidden dimension dhidden has h heads such that dhidden = h · dhead. For equivalence with an
SSM, we need a constant query vector and each dimension as a separate head, e.g. qi = 1 for all i,
and h = dhidden, dhead = 1.

Connection to Additive Relative Position Encoding (Additive RPE; Kazemnejad et al. 2024)
Generally, Additive RPEs incorporate an added bias function g of the distance of the tokens i− j and
the maximum length of the sequence L:

Aij ∝ exp
(
q⊤
j ki + b

)
In the case of ALiBi (Press et al., 2021), this is a linear function b = −m · (j − i). This implies
that the attention weights will drop off exponentially the further j and i are apart, regardless of the
attention scores. In stick-breaking, Equation 12 has a form that accounts for the scores from j to
i with the bias b = −

∑j
k=i+1 log (1 + exp(zk,j)). Specifically, if log (1 + exp(zk,j)) ≥ m, then

b ≤ −m · (j− i). This suggests a learnable relative position bias that is dependent on the intermediate
scores between j and i.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Forward pass (b) 2-phase backward pass (c) Block Skipping

Figure 2: Thread tile assignments for a given attention head and a sequence. Tiles coloured the
same are processed by the same thread. For stick-breaking, the forward pass has to be computed
from right-to-left, while the backward pass is computed in two-phases: left-to-right for ∇Q, and
top-to-bottom for ∇V ,∇K. Uncoloured tiles are not computed: upper right tiles are not used in
causal language modelling, and in the case of block skipping, some blocks can be skipped if all
entries have summed to 1. The accumulated values a, b are highlighted at the borders for a visual
representation of where they are used.

4 IMPLEMENTATION

Implementing stick-breaking attention naively in PyTorch results in realising the L2 matrix for the
attention logits (where L is the length of the input). FlashAttention (Dao et al., 2022) reduces
the memory footprint of attention by side-stepping the O(L2) memory complexity of realising the
attention matrix. In order to achieve this, it only realises tiles of the attention logits and weights at
a time, and accumulates the resulting weighted sum of vi. In this section we detail the important
differences between computing softmax attention and stick-breaking.

Forward Computing Equation 1 directly will result in underflow issues, especially with lower
precision training. We perform the operations in log-space, which results in a cumulative sum instead:

Ai,j = exp

(
log βi,j +

j−1∑
k=i+1

log (1− βk,j)

)
= exp

(
zi,j −

j−1∑
k=i

log (1 + exp(zk,j))

)
(3)

Where log (1 + exp(·)) is commonly known as the softplus operation. See Appendix A for the full
derivation. We further numerically stabilise softplus with the following computation:

softplus(x) =

{
log (1 + exp(x)) , if x ≤ 15

x otherwise
(4)

to prevent overflowing of exp(x).

Backward Let Ãi,j = logAi,j , then:

∂L
∂Ãi,j

=
∂L

∂Ai,j
·Ai,j ,

∂L
∂zi,j

=
∂L

∂Ãi,j︸ ︷︷ ︸
Contribution from i,j

− σ(zi,j)

j−1∑
i′=1

∂L
∂ ˜Ai′,j︸ ︷︷ ︸

Contribution from before i,j

(5)

The above equations dictate the direction of the order of computation for our implementation. For
the forward pass (Eqn. 12), we compute from j to 1, backwards through time and accumulate∑j

k=i+1 log (1 + exp(zk,j)). For backward pass (Eqn. 5), we compute from 1 to j, accumulating∑j−1
j′=1

∂L
∂ ˜Ai,j′

.

4.1 TRITON SPECIFICS

We modify the Triton implementation of Flash Attention for accelerating the stick-breaking attention.
In theory, the memory complexity of implementing stick-breaking attention would be similar to

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 FORWARD thread i

a← 0,O ← 0 // init a : dblock × 1, O : dblock × dhead
Q← load block i of Q // load High Bandwidth Memory (HBM) to Static RAM (SRAM), Q : dblock × dhead
for k in i . . . 1 do

K ← load block k of K // K : dblock × dhead
V ← load block k of V // V : dblock × dhead
Z ← QK⊤ // Z : dblock × dblock
L← −softplus(Z)

 1 // L : dblock × dblock
A← exp (Z + cumsum←L+ a) // cumulative sum right to left, A : dblock × dblock
O ← O +AV
a← a+

∑
←L

a→ store block (i, k) of M // store from SRAM to HBM
end for
O → store block i of o

Algorithm 2 BACKWARD-q thread i

b← 0,O ← 0
∇O ← load block i of∇O
Q← load block i of Q
for k in 1 . . . i do

K ← load block k of K
V ← load block k of V
a← load block (i, k) of M
Do 1
∇Ã← A⊙ (∇OV ⊤)

∇Ãcs ← cumsum→∇Ã
∇Z ← ∇Ã− (1− exp(L))⊙

(
∇Ãcs + b

)
b← b+

∑
→∇Ã

b→ store block (i, k) of N
∇Q← ∇Q+∇ZK⊤

end for
∇Q→ store block i of∇Q

Algorithm 3 BACKWARD-v,k thread j

∇K ← 0,∇V ← 0
K ← load block j of k
V ← load block j of v
for k in j . . . J do

Q← load block k of q
∇O ← load block k of∇o
a← load block (k, j) of M
b← load block (k, j) of N
Do 1
∇Ã← A⊙ (∇OV ⊤)

∇Ãcs ← cumsum→∇Ã
∇Z ← ∇Ã− (1− exp(L))⊙

(
∇Ãcs + b

)
∇K ← ∇K +A⊤∇O
∇V ← ∇V +∇Z⊤Q

end for
∇K → store block j of∇K
∇V → store block j of∇V

that of Flash Attention, O(L). Due to the limitations of Triton, we borrow from Dao (2023) and
use a two-phased backward pass: the first phase accumulating gradients for Q , and the second
phase accumulates gradients for K,V . Due to the intermediate accumulated values a, b, our
implementation results in a O(L2) memory complexity. However, the constant factor in the quadratic
complexity here is inverse of the predetermined block size dblock: larger block sizes reduces the
memory allocation. In our implementation, dblock = 64. Algorithms 1 details the forward pass
(illustrated in Figure 2a), and Algorithms 2 & 3 details the backward pass (illustrated in Figure 2b).

Throughput We measure throughput on Dolomite Engine (Mishra, 2024) with a 1B class model
on a node with 8 H100 GPUs. Stick-breaking attains a throughput of 16.27 billion tokens / day. This
is a a 19.9% performance drop compared to Flash Attention, which attains throughput of 19.5 billion
tokens / day. Despite the slowdown, the Triton implementation allows the method to be used for long
sequences as the naive Torch implementation causes out-of-memory issues.

Conditional computation We can incorporate speedups due to the specific nature of the stick-
breaking process. Since, we accumulate Ak,j · vk from the diagonal to k = 1, when

∑j−1
i=k Ai,j = 1

for some k, we know that all Ak′,j = 0 where k′ < k. Therefore, once the condition is met, we
can skip all subsequent accumulations. We implement block skipping only the forward pass, and
measured the time elapsed on a subset of 10,000 instances of The Pile1. Evaluating on 16K context
lengths using the the LM evaluation harness (Gao et al., 2023) with a batch size of 1, we find that
early halting allows for a 9.3% percent speed improvement.

1https://huggingface.co/datasets/NeelNanda/pile-10k

5

https://huggingface.co/datasets/NeelNanda/pile-10k


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Model hyperparameters and total size

nlayer dhidden dinter nhead L Total params.
350M 24 1024 2730 32 2048 367,526,912
1B 40 1536 4096 24 4096 1,208,083,968
3B 40 2304 9216 36 4096 3,513,473,280

5 EXPERIMENTS

In this section, we compare existing attention methods against stick-breaking. We first look at
a modification of a synthetic task from Arora et al. (2023) to understand the inductive biases of
stick-breaking. We then compare the stick-breaking against existing length extrapolation methods
on a 350M model setting. We then pretrain a 1B parameter model, and evaluate it on various NLP
benchmarks, and evaluate it for length extrapolation and retrieval capabilities on long context using
the RULER benchmark (Hsieh et al., 2024). We also report benchmark results for a 3B model we
have trained. For reference, the size of the models are detailed in Table 1.

5.1 MULTI-QUERY REPEATED ASSOCIATIVE RECALL TASK

To illustrate the inductive bias of stick-breaking attention, we first analyse its behaviour on a simple
synthetic task. Arora et al. (2023) demonstrate that there is a correlation between multi-query
associative recall (MQAR) and the performance of language modelling. They show that while
Transformers, which are based on attention can easily handle MQAR, the current linear state-space
models cannot. While stick-breaking can also solve the MQAR task, we formulated a different
version of this toy task and tested it on both softmax attention and stick-breaking. As before, each
instance of the task has an initial assignment of values to variables. However, in the query sequence,
the same variable can be queried multiple times, and each query is then followed by a variable
assignment, which successive queries must recall. We refer to this task as multi-query repeated
associative recall (MQRAR).

Input B 6 P 4 E 3 X 1 Z 2 E 2 B 1 E 5 B 4
Output ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 3 ϕ 6 ϕ 2 ϕ 1 ϕ

Figure 3: MQRAR performance on in-
creasing key-value pairs.

We compare Transformer models with Softmax and RoPE
against stick-breaking attention, comparing their ability to
handle MQRAR with increasing key-value pairs: from 32
to 192, in increments of 32. The full sequence length is
768. Both models are 2-layer Transformers with 256 hid-
den dimension and one attention head. We sweep through
4 learning rates of {10−4, 10−

10
3 , 10−

8
3 , 10−2}, and report

the results of the best performing model. Softmax+RoPE
is able to perform perform this task up to 128 key-value
pairs, while stick-breaking is able to deal with sequences
up to 192 key-value pairs.

For a more qualitative analysis, we trained another set of
2-layer Transformers of 100 dimensions on 16 key-value pairs, and visualised the patterns of the
attention head. In Figure 4, we visuallised the above given example. Note here that the retrieval of the
third ‘E’ is distracted by the earlier assignment of 3 to ‘E’, while stick-breaking attention correctly
retrieves the later assignment of 2. This may be due to the limitations of RoPE with fewer layers and
fewer head dimensions (here we use 32).

5.2 350M MODEL LENGTH EXTRAPOLATION

We test the ability of stick-breaking for length generalisation, where we train on a fixed context length
(L = 1024) and test it on longer context lengths. We started with the LLaMa 2 (Touvron et al., 2023)
architecture, and modified the attention module to use the various baselines we compare against:

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Attention visualisation of the models trained on the MQRAR task. The figure shows
the attention for each token for the 2-layer 100-dimension Transformer. Note that in the standard
Softmax+RoPE setting (above), the attention head is “distracted" at the third retrieval of ‘E’, attending
to the first instance of ‘E’ rather than the mroe recent one. In the stick-breaking setting (below), each
attention head attends to the prior assignment of the variable.

ALiBi (Press et al., 2021), FIRE (Li et al., 2023), NoPE (Kazemnejad et al., 2024) and the default
Llama position embedding RoPE (Su et al., 2021). We trained on the first 15B tokens of SlimPajama
(Soboleva et al., 2023), and evaluate it on the Wikitext benchmark in the LM evaluation harness (Gao
et al., 2023) , with context lengths of 2048 to 64K. As control, we also trained a model with a context
of L = 8192, and as expected, the performance on longer sequences was better when RoPE scaling
is used (See Figure 5b).

Intuitively, we should expect a model that generalises well on longer sequences to have better
likelihood as the context length is increased — longer contexts mean more information for predicting
the next word. However, most methods do not generalise well to longer contexts (See Figure 5a).

Contrary to the results in Kazemnejad et al. (2024), NoPE loss increases as context lengths are
extended. We also find that RoPE embeddings alone do not generalise, despite being a relative
position encoding Using RoPE scaling with the scaling factor f = 1.0 does alleviate the issue, but
still results in an increase in the loss. Surprisingly, while ALiBi is a fixed linear bias that increases
with relative distance, it performs better than FIRE, which learns a function of the bias for a given
relative distance. For position embeddings, our experiments suggest that RoPE with scaling works
best for length extrapolation. ALiBi is an incremental bias for the logits, effectively down-weighting
positions further away, eventually approaching 0. This can be viewed as a ‘soft’ windowed attention,
and given the relatively good performance, we also trained 3 models with windowed attention of
W ∈ {512, 1024, 2048}. The results suggest that windowed attention helps with preventing the

(a) Position bias and embeddings (b) Comparison with L = 8192 (c) Sliding window

Figure 5: Comparisons against different methods of sequence length extension. L represents the
training context length, f is the RoPE scaling factor used, and W is the window size in sliding
window attention. We compare against different position embeddings and biases with L = 8192,
training with L = 8192, and various sliding window sizes with L = 2048. Note that the scale on the
y-axis are different in all three plots.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Results on the various NLP benchmarks for the 1B and 3B pretrained model. ‘Softmax’
benchmark is the standard Softmax + RoPE setting.

Task ARC-c ARC-e Hella. OBQA PIQA RACE SciQ Wino. Avg. Wiki.
Accuracy (normalised) Accuracy Ppl.

1B Parameter Models
Softmax 35.8 65.6 64.8 38.8 75.0 36.5 90.5 63.4 58.8 13.8
Stick-breaking 37.7 67.6 65.4 36.6 76.0 37.4 91.9 63.1 59.5 13.4
3B Parameter Models
Softmax 42.2 73.1 73.2 40.8 78.8 37.4 93.5 67.6 63.3 11.3
Stick-breaking 44.9 74.3 74.1 40.4 79.7 37.8 93.9 68.0 64.1 10.8
Gemma2-2B 50.0 80.2 72.9 41.8 79.2 37.3 95.8 68.8 65.8 13.1
Qwen1.5-4B 39.6 61.5 71.4 40.0 77.0 38.2 90.0 68.1 60.7 12.5

loss from spiking when the context length is extended. As expected, W = 512 performs the worst.
However, W = 2048 increases slightly as the context length is increased, while W = 1024 decreases
till L = 213 and stays constant. The W = 1024 model is trained on context lengths of L = 2048,
which would allow the model to learn to deal with context lengths longer than the window size,
while W = 2048 is trained similar to the standard non-window attention model. Figure 5c shows
the generalisation curves. Note that the y-axis in the plot is on a smaller scale than that of Figure 5a,
indicating that the sliding window method is a relatively good method for length extrapolation as
well. In all cases, stick-breaking negative log-likelihood still decreases as the context length increases,
outperforming the other methods.

5.3 MODEL PRETRAINING
Table 3: MMLU few-shot results

MMLU
0-shot 5-shot

1B Parameter Model
Softmax 25.7 25.2
Stick-breaking 28.4 29.3
TinyLlama 25.3 26.0

3B Parameter Model
Softmax 46.1 49.1
Stick-breaking 50.8 52.9
Gemma2-2B 49.3 53.1
Qwen1.5-4B 54.2 55.2

We pretrain the 1B and 3B models in this section us-
ing a two-stage training scheme in Hu et al. (2024) and
the Power learning rate schedule (Shen et al., 2024). In
the first stage, there is a warmup for the learning rate to
0.01, then we apply Power decay. Our training corpus
has 1T tokens and mixes large-scale open-source datasets
of medium quality with permissive licenses. In the sec-
ond stage, we exponentially decay the learning rate to
zero. The stage 2 training corpus is a mix of stage 1 data
and a small amount of high-quality open-source and syn-
thetic corpora with permissive licenses. The training batch
size is 1024 and uses padding-free sequence packing for
training in Dolomite Engine (Mishra, 2024). We evalu-
ate the pretrained models on language model tasks and
multiple-choice tasks from LM evaluation Harness (Gao
et al., 2023). The multiple-choice tasks include: grade-
school science questions (ARC; Clark et al. 2018), common sense reasoning (Hellaswag; Zellers
et al. 2019), open book question answering (OpenBookQA; Mihaylov et al. 2018), physical questions
(PIQA; Bisk et al. 2020), reading comprehension (RACE; Lai et al. 2017), and Winograd schema
task (Winogrande; Sakaguchi et al. 2021). Table 5 shows the performance.

Overall, we outperform our own pretrained standard attention models that are trained on the same
settings. We perform better on average, and attain better perplexity on Wikitext. We also evaluated
the models on MMLU with 0-shot and 5-shot settings. For the 1B models, we have included the
results for TinyLlama (Zhang et al., 2024) Due to the inductive bias of stick-breaking, we believed
that stick-breaking would perform better on MMLU in a few-shot setting as it would not be distracted
by the few-shot examples provided in the context.

Stick-breaking performs surprisingly well even in the 0-shot setting, and improves with
few-shot examples provided. Note that this may not always be the case, as in our
Softmax + RoPE model, the performance decreases with few-shot examples in context.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Overall (b) Needle in a Haystack (NIAH) (c) Variable Tracking

Figure 6: Results on the RULER benchmark. Without further finetuning for long context, we evaluate
the 1B models on the RULER tasks. Subfigures: 6a shows the average over all 13 task, 6b is the
average across the various NIAH tasks, 6c is the result for the variable tracking task.

Table 4: 3B Model GSM8K Results

GSM8K
5-shot 8-shot, CoT

Softmax 44.1 44.2
Stick-breaking 42.3 49.7

We have included the the Qwen1.5-4B and Gemma2-
2B models for comparison, and our 3B model underper-
forms Gemma2-2B, a smaller model, while it outperforms
Qwen1.5-4B. This may be attributable to a variety of fac-
tors, including data mixture or training hyperparameters.
Finally, we evaluate our 3B model on the GSM8K dataset
(Cobbe et al., 2021). Interestingly, the 5-shot setting un-
derperforms standard attention while CoT with 8-shot sees
a 5.5% improvement.

5.3.1 1B LENGTH EXTRAPOLATION

We test the 1B stick-breaking and softmax model with the RULER benchmark (Hsieh et al., 2024).
The benchmark consists of ‘needle-in-a-haystack’-like tasks, and is generally used for testing retrieval
capabilities of long-context models that are trained specifically for long contexts. In our setting,
we use RULER to evaluate both 1B models trained on 4096 contexts. Accordingly, the general
capabilities of these models on longer contexts are much worse than purpose-trained models.

On average, the performance of stick-breaking dominates Softmax + RoPE with scaling (Figure 6a).
In the breakdown, we find that the stick-breaking model is surprisingly good at extrapolating on NIAH
tasks up to 16K context lengths, while the standard model significantly drops in performance. Our
results on the variable tracking (VT) task agrees with our experiments on MQRAR. The task involves
tracking the variable assignments provided in the context, and we find that even in-distribution
(L = 4096), the standard model does not perform well at this task.

6 CONCLUSION & FUTURE WORK

We propose a formulation for using the stick-breaking process as a replacement for softmax for
attention. Stick-breaking attention allows us to do away with position embeddings, while still retaining
model performance. We detail the specifics of implementing the stick-breaking kernel in Triton
for large scale training. We then demonstrate that stick-breaking is good at length extrapolation,
performing better than other position embedding and position bias methods in our 350M class
models. We also show that our pretrained stick-breaking models peform better in a controlled
experiment, given the same training data and training regime. On retrieval in the RULER benchmark,
stick-breaking outperforms softmax attention.

The drawbacks in efficiency can be improved in future work by making similar optimisations that
Flash Attention (Dao et al., 2022; Dao, 2023) made for speedups. These include making full use
of features in CUDA, and by cache retrieval optimisations. We believe there is plenty of room for
improvement in computation efficiency that can be made in future versions of stick-breaking. Overall,
we find stick-breaking attention to be a promising replacement for Softmax + RoPE in Transformer
models.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

M Allen and F Lambie. An environmental residual allocation model. In Proceedings of the Conference
on Environmental Modeling and Simulation, April 19-22, 1976, Cincinnati, Ohio, pp. 236. US
Environmental Protection Agency, 1976.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free grammar. arXiv
preprint arXiv:2305.13673, 2023.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Ré. Zoology: Measuring and improving recall in efficient language models. arXiv
preprint arXiv:2312.04927, 2023.

Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder. arXiv preprint
arXiv:2107.05407, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
pp. 7432–7439, 2020.

bloc97. NTK-Aware Scaled RoPE allows LLaMA models to have extended (8k+) con-
text size without any fine-tuning and minimal perplexity degradation., 2023. URL
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_
rope_allows_llama_models_to_have/.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing
outliers by helping attention heads do nothing. Advances in Neural Information Processing Systems,
36, 2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The neural data router: Adaptive control flow
in transformers improves systematic generalization. arXiv preprint arXiv:2110.07732, 2021.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Steinar Engen. A note on the geometric series as a species frequency model. Biometrika, 62(3):
697–699, 1975.

Warren John Ewens. Population genetics theory-the past and the future. In Mathematical and
statistical developments of evolutionary theory, pp. 177–227. Springer, 1990.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Alex Graves. Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983, 2016.

RC Griffiths. Genealogical-tree probabilities in the infinitely-many-site model. Journal of mathemat-
ical biology, 27:667–680, 1989.

10

https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://zenodo.org/records/10256836


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. arXiv preprint arXiv:2203.16634, 2022.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney. Language modeling with deep trans-
formers. arXiv preprint arXiv:1905.04226, 2019.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race: Large-scale reading
comprehension dataset from examinations. arXiv preprint arXiv:1704.04683, 2017.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. arXiv preprint arXiv:2310.04418, 2023.

John William McCloskey. A model for the distribution of individuals by species in an environment.
PhD Thesis, 1965.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Mayank Mishra. Dolomite Engine: A Hyper-Optimized Library for Pretraining and Finetuning, 2024.
URL https://github.com/ibm/dolomite-engine.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Jayaram Sethuraman. A constructive definition of dirichlet priors. Statistica sinica, pp. 639–650,
1994.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155, 2018.

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, and Aaron Courville. Neural language modeling by
jointly learning syntax and lexicon. arXiv preprint arXiv:1711.02013, 2017.

Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, and Chuang Gan. Mod-
uleformer: Learning modular large language models from uncurated data. arXiv preprint
arXiv:2306.04640, 2023.

11

https://github.com/ibm/dolomite-engine


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad,
Adriana Meza Soria, David D Cox, and Rameswar Panda. Power scheduler: A batch size and
token number agnostic learning rate scheduler. arXiv preprint arXiv:2408.13359, 2024.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama, 2023.
URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv preprint arXiv:2104.09864, 2021.

Shawn Tan and Khe Chai Sim. Towards implicit complexity control using variable-depth deep neural
networks for automatic speech recognition. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5965–5969. IEEE, 2016.

Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron Courville, and Chuang Gan. Sparse universal
transformer. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pp. 169–179, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly. arXiv preprint arXiv:2402.09371,
2024.

12

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DERIVATION OF LOG-SPACE FORMULATION

σ(x) is the sigmoid function,

σ(x) =
1

1 + exp(−x)
=

exp(x)

1 + exp(x)
(6)

1− σ(x) =
1

1 + exp(x)
(7)

Since βi,j = σ(zi,j),

log βi,j = zi,j − log (1 + exp(zi,j)) (8)

log (1− βi,j) = log
1

1 + exp(zi,j)
= − log (1 + exp(zi,j)) (9)

We can substitute these back in,

Ai,j = exp

(
log βi,j +

j−1∑
k=i+1

log (1− βk,j)

)
(10)

= exp

(
zi,j − log (1 + exp(zi,j))−

j−1∑
k=i+1

log (1 + exp(zk,j))

)
(11)

= exp

(
zi,j −

j−1∑
k=i

log (1 + exp(zk,j))

)
(12)

B REMAINDER METHOD

We experimented with using remaining attention weight is assigned to the current timestep vi, by
modifying the output of the attention layer as follows:

oj =

j−1∑
i=1

Ai,j · vi +

(
1−

j−1∑
i=1

Ai,j

)
· vj (13)

This way when the attention ‘does nothing’, the value vector for the current time-step is the output for
that attention head. We refer to this modification as ‘stick-breaking with remainder’ (SB w/ rem.).

Figure 7: Length generalisation experiment on 350M model.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Table 5: Results on the various NLP benchmarks for the 1B and 3B pretrained model. ‘Softmax’
benchmark is the standard Softmax + RoPE setting.

Task ARC-c ARC-e Hella. OBQA PIQA RACE SciQ Wino. Avg. Wiki.
Accuracy (normalised) Accuracy Ppl.

1B Parameter Models
Softmax 35.8 65.6 64.8 38.8 75.0 36.5 90.5 63.4 58.8 13.8
Stick-breaking 37.7 67.6 65.4 36.6 76.0 37.4 91.9 63.1 59.5 13.4
SB w/ rem. 35.2 66.1 64.1 38.6 75.1 36.9 90.9 62.7 58.7 13.9

C 1B MODEL RULER RESULTS

Figure 8: RULER length extrapolation results

14


	Introduction
	Stick-breaking Attention
	Related Work
	Implementation
	Triton Specifics

	Experiments
	Multi-Query Repeated Associative Recall Task
	350M Model Length Extrapolation
	Model Pretraining
	1B Length extrapolation


	Conclusion & Future Work
	Derivation of Log-space Formulation
	Remainder Method
	1B Model Ruler Results

