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ABSTRACT

The self-attention mechanism traditionally relies on the softmax operator, neces-
sitating positional embeddings like RoPE, or position biases to account for token
order. But current methods using still face length generalisation challenges. We
investigate an alternative attention mechanism based on the stick-breaking process
in larger scale settings. The method works as follows: For each token before the
current, we determine a break point, which represents the proportion of the stick
to allocate to the current token. This process is repeated on the remaining stick,
until all tokens are allocated, resulting in a sequence of attention weights. This
process naturally incorporates recency bias, which has linguistic motivations for
grammar parsing (Shen et al., 2017). We study the implications of replacing the
conventional softmax-based attention mechanism with stick-breaking attention.
We then discuss implementation of numerically stable stick-breaking attention and
adapt Flash Attention to accommodate this mechanism. When used as a drop-in re-
placement for current softmax+RoPE attention systems, we find that stick-breaking
attention performs competitively with current methods on length generalisation
and downstream tasks. Stick-breaking also performs well at length generalisation,
allowing a model trained with 211 context window to perform well at 214 with
perplexity improvements.

1 INTRODUCTION

The Transformer architecture (Vaswani et al., 2017) uses a self-attention mechanism based on the
softmax operator that enables the model to weigh the importance of different tokens in the input data.
However, the reliance on softmax requires using positional embeddings to introduce information
about the order of tokens, as the attention mechanism itself is permutation-invariant. The sinusoidal
position embedding as proposed in Vaswani et al. (2017) has since evolved to relative positional
embeddings (Shaw et al., 2018). Learned relative positional biases were used in the T5 model (Raffel
et al., 2020), and later fixed relative positional biases in Press et al. (2021). At the time of this
writing, a commonly used form of position embedding is RoPE (Su et al., 2021). Allen-Zhu & Li
(2023) observe that, in a context-free grammar parsing setting, attention mechanisms attend to the
“most adjacent” non-terminal. This suggests an inclination to attend to the most recent entry that
matches a given criteria. However, even with relative position information, it is possible to overfit
on specific relative positions, resulting in failure to generalise. Kazemnejad et al. (2024) show that
decoder-only Transformers with No Positional Embeddings (NoPE) can implicitly recover positional
information, experimental results suggest that NoPE Transformers generalise better on length. While
this is promising, a higher attention score from an irrelevant token in the sequence can function as a
distractor (Kazemnejad et al., 2024; Xiao et al., 2023).

The stick-breaking process may have properties that can alleviate the previously mentioned issues,
and possess the ‘most recent’ bias from Allen-Zhu & Li (2023) that we want. For a token at position
j attending to position i, suppose the attention weight is given by:

Ai,j = βi,j

∏
i<k<j

(1− βk,j) = σ(zi,j)
∏

i<k<j

(1− σ (zk,j)) ,

1
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Logits zi,j =
q⊤
i kj√
dhead

Softmax Ai,j =
exp(zi,j)∑

j′≤i

exp(zi,j′)

Stick-breaking Ai,j = σ(zi,j)
∏

i<k<j

(1− σ(zk,j))

Figure 1: Differences in formulation between stick-breaking and softmax. Stick-breaking assigns
high weights to the most recent high logit, while softmax will assign equal weightage to equal logits.

where zk,j are the attention logits. To illustrate via intuition, for Ai,j to be high, all βk,j for i < k
have to be low. Conversely, as long as any βk,j for i < k is high, Ai,j will be low, as a token between
i and j has already been attended to. Shen et al. (2017) makes a similar observation as in Allen-Zhu
& Li (2023), and explicitly uses a stick-breaking process to model local structure. Csordás et al.
(2021) introduces Geometric attention, named after the Geometric distribution, which only has one
parameter p, which gives the probability of success per trial. The geometric distribution then gives
the probability for which k trials are needed for the first success: (1− p)k−1p. But in stick-breaking
and in Geometric attention (Csordás et al., 2021), each p is assigned a different value that corresponds
to the attention score between two tokens.

In this paper, we expand upon prior work on this attention mechanism (Csordás et al., 2021; Shen
et al., 2023). We focus on the implications of replacing the softmax-based attention mechanism with
the stick-breaking process:

1. We compare the different properties of stick-breaking attention against softmax attention,

2. We discuss numerically stable implementations of the stick-breaking attention, and make
stick-breaking amenable for large-scale training by implementing a kernel for stick-breaking
in Triton,

3. We show the performance of stick-breaking attention on length-generalisation in language
modelling, and evaluate 1B and 3B parameter models on various NLP tasks.

2 STICK-BREAKING ATTENTION

For a sequence of L tokens, we have query qi ∈ Rdhead , key ki ∈ Rdhead , and value vi ∈ Rdhead

vectors for 1 ≤ i ≤ L. Then the attention weight for token at j attending to position i is computed
by:

oj =

j−1∑
i=1

Ai,jvi, Ai,j = βi,j

∏
i<k<j

(1− βk,j) , βi,j = σ (zi,j) , zi,j =
q⊤
j ki√
dhead

(1)

Equation 1 is the main difference between our proposal and softmax attention. As discussed earlier
and in Csordás et al. (2021), this parameterisation biases towards recency. Specifically, for any pair
of i and i′ such that i− j < i′ − j and zi,j = zi′,j , then Ai,j ≥ Ai′,j . Consequently, this imposes an
ordering on the attention, and we do not use position embeddings with the query and key embeddings.

We consider two sets of logits, zi,j and z′i,j and their respective attention weights Ai,j and A′
i,j . If

zi,k = z′i,k for i < k < j, then Ai,j = A′
i,j . Further, if

∑j−1
k=i Ak,j = 1, then the output is invariant

to appending additional context earlier than i. This means that unlike softmax attention, a high
attention score further back in the sequence does not ‘distract’ from a more recent high zi,j score.
We note that

∑j−1
i=1 Ai,j ≤ 1, which allows this attention mechanism to attend to nothing when all

βi,j = 0. We discuss a strategy to deal with the remaining attention weight in Appendix B.

2
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3 RELATED WORK

Stick-breaking Process The stick-breaking process formulation of the Dirichlet process (Sethura-
man, 1994) is also known as the GEM distribution, first coined in Ewens (1990) after Griffiths (1989),
Engen (1975), and McCloskey (1965). The GEM is a specific case of what was known as a Residual
Allocation Model (RAM; Allen & Lambie 1976). There are instances of the distribution being used
as a differentiable attention-like mechanism in neural models. Shen et al. (2017) used stick-breaking
process for modelling language, and showed that the model can induce grammatical structure to some
extent. Csordás et al. (2021) used stick-breaking attention, which they refer to as Geometric attention,
in a bidirectional encoder set up. Shen et al. (2023) used stick-breaking attention in a decoding-only
setup, but does not explicitly study the properties of stick-breaking.

Softmax attention, Positional embeddings, and Length Generalisation Bondarenko et al. (2024)
observe that softmax attention tends to attend to low-information tokens with high scores in order
to ‘do nothing’. Xiao et al. (2023) introduces attention sinks, a learnable token that the attention
can assign attention weights to. Irie et al. (2019) and Haviv et al. (2022) find that in a decoder-only
setting, a Transformer with no positional embedding can work fairly well. Kazemnejad et al. (2024)
also found similar results, while also showing that NoPE has a tendency to attend to the start of the
sequence, while ALiBi (Press et al., 2021) has a tendency to only attend to the most recent tokens.
However, Zhou et al. (2024) later found that Transformers without position embeddings do not
generalise to out-of-distribution sequence lengths for an addition task. At present, Rotary Positional
Embeddings (RoPE; Su et al. 2021) are the most commonly used position embedding. It encodes
relative positions via multiplicative interactions with the key and query. RoPE has been found to
generalise to out-of-distribution lengths poorly (Press et al., 2021; Zhou et al., 2024; Kazemnejad
et al., 2024), but a common trick to extend the context window RoPE-based Transfomers is to use
NTK-aware RoPE scaling (bloc97, 2023).

Conditional Computation The use of stick-breaking for conditional computation has also been
explored. Tan & Sim (2016) uses a the stick-breaking distribution as a mixture over outputs for
each layer in an MLP for an acoustic model. Graves (2016) also suggested a similar formulation
for language modelling. Later, Banino et al. (2021) and Tan et al. (2023) also use a stick-breaking
formulation for dynamic depth modelling in a Transformer model. These prior works use conditional
computation on the depth of the model, while in our case, we use stick-breaking as a method of
restricting the computation length-wise.

Connection to Selective State-space Models Each stick-breaking attention head at every time-step
can be viewed as the hidden state of the final step of a selective State-space Model (SSM;Gu & Dao
2023). For a given time-step j, consider the following SSM and its convolutional form (as described
in Merrill et al. 2024):

ôi,j = (1− βi,j) · ôi−1 + βi,j · vj , oj = ôj−1,j =
∑

1≤i≤j

βi

∏
i<k<j

(1− βk)

 · vi, (2)

which is equivalent to the first term in Equation 1. Typically, an attention layer for a Transformer
with hidden dimension dhidden has h heads such that dhidden = h · dhead. For equivalence with an
SSM, we need a constant query vector and each dimension as a separate head, e.g. qi = 1 for all i,
and h = dhidden, dhead = 1.

Connection to Additive Relative Position Encoding (Additive RPE; Kazemnejad et al. 2024)
Generally, Additive RPEs incorporate an added bias function g of the distance of the tokens i− j and
the maximum length of the sequence L:

Aij ∝ exp
(
q⊤
j ki + b

)
In the case of ALiBi (Press et al., 2021), this is a linear function b = −m · (j − i). This implies
that the attention weights will drop off exponentially the further j and i are apart, regardless of the
attention scores. In stick-breaking, Equation 12 has a form that accounts for the scores from j to
i with the bias b = −

∑j
k=i+1 log (1 + exp(zk,j)). Specifically, if log (1 + exp(zk,j)) ≥ m, then

b ≤ −m · (j− i). This suggests a learnable relative position bias that is dependent on the intermediate
scores between j and i.

3
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(a) Forward pass (b) 2-phase backward pass (c) Block Skipping

Figure 2: Thread tile assignments for a given attention head and a sequence. Tiles coloured the
same are processed by the same thread. For stick-breaking, the forward pass has to be computed
from right-to-left, while the backward pass is computed in two-phases: left-to-right for ∇Q, and
top-to-bottom for ∇V ,∇K. Uncoloured tiles are not computed: upper right tiles are not used in
causal language modelling, and in the case of block skipping, some blocks can be skipped if all
entries have summed to 1. The accumulated values a, b are highlighted at the borders for a visual
representation of where they are used.

4 IMPLEMENTATION

Implementing stick-breaking attention naively in PyTorch results in realising the L2 matrix for the
attention logits (where L is the length of the input). FlashAttention (Dao et al., 2022) reduces
the memory footprint of attention by side-stepping the O(L2) memory complexity of realising the
attention matrix. In order to achieve this, it only realises tiles of the attention logits and weights at
a time, and accumulates the resulting weighted sum of vi. In this section we detail the important
differences between computing softmax attention and stick-breaking.

Forward Computing Equation 1 directly will result in underflow issues, especially with lower
precision training. We perform the operations in log-space, which results in a cumulative sum instead:

Ai,j = exp

(
log βi,j +

j−1∑
k=i+1

log (1− βk,j)

)
= exp

(
zi,j −

j−1∑
k=i

log (1 + exp(zk,j))

)
(3)

Where log (1 + exp(·)) is commonly known as the softplus operation. See Appendix A for the full
derivation. We further numerically stabilise softplus with the following computation:

softplus(x) =

{
log (1 + exp(x)) , if x ≤ 15

x otherwise
(4)

to prevent overflowing of exp(x).

Backward Let Ãi,j = logAi,j , then:

∂L
∂Ãi,j

=
∂L

∂Ai,j
·Ai,j ,

∂L
∂zi,j

=
∂L

∂Ãi,j︸ ︷︷ ︸
Contribution from i,j

− σ(zi,j)

j−1∑
i′=1

∂L
∂ ˜Ai′,j︸ ︷︷ ︸

Contribution from before i,j

(5)

The above equations dictate the direction of the order of computation for our implementation. For
the forward pass (Eqn. 12), we compute from j to 1, backwards through time and accumulate∑j

k=i+1 log (1 + exp(zk,j)). For backward pass (Eqn. 5), we compute from 1 to j, accumulating∑j−1
j′=1

∂L
∂ ˜Ai,j′

.

4.1 TRITON SPECIFICS

We modify the Triton implementation of Flash Attention for accelerating the stick-breaking attention.
In theory, the memory complexity of implementing stick-breaking attention would be similar to

4
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Algorithm 1 FORWARD thread i

a← 0,O ← 0 // init a : dblock × 1, O : dblock × dhead
Q← load block i of Q // load High Bandwidth Memory (HBM) to Static RAM (SRAM), Q : dblock × dhead
for k in i . . . 1 do

K ← load block k of K // K : dblock × dhead
V ← load block k of V // V : dblock × dhead
Z ← QK⊤ // Z : dblock × dblock
L← −softplus(Z)

 1 // L : dblock × dblock
A← exp (Z + cumsum←L+ a) // cumulative sum right to left, A : dblock × dblock
O ← O +AV
a← a+

∑
←L

a→ store block (i, k) of M // store from SRAM to HBM
end for
O → store block i of o

Algorithm 2 BACKWARD-q thread i

b← 0,O ← 0
∇O ← load block i of∇O
Q← load block i of Q
for k in 1 . . . i do

K ← load block k of K
V ← load block k of V
a← load block (i, k) of M
Do 1
∇Ã← A⊙ (∇OV ⊤)

∇Ãcs ← cumsum→∇Ã
∇Z ← ∇Ã− (1− exp(L))⊙

(
∇Ãcs + b

)
b← b+

∑
→∇Ã

b→ store block (i, k) of N
∇Q← ∇Q+∇ZK⊤

end for
∇Q→ store block i of∇Q

Algorithm 3 BACKWARD-v,k thread j

∇K ← 0,∇V ← 0
K ← load block j of k
V ← load block j of v
for k in j . . . J do

Q← load block k of q
∇O ← load block k of∇o
a← load block (k, j) of M
b← load block (k, j) of N
Do 1
∇Ã← A⊙ (∇OV ⊤)

∇Ãcs ← cumsum→∇Ã
∇Z ← ∇Ã− (1− exp(L))⊙

(
∇Ãcs + b

)
∇K ← ∇K +A⊤∇O
∇V ← ∇V +∇Z⊤Q

end for
∇K → store block j of∇K
∇V → store block j of∇V

that of Flash Attention, O(L). Due to the limitations of Triton, we borrow from Dao (2023) and
use a two-phased backward pass: the first phase accumulating gradients for Q , and the second
phase accumulates gradients for K,V . Due to the intermediate accumulated values a, b, our
implementation results in a O(L2) memory complexity. However, the constant factor in the quadratic
complexity here is inverse of the predetermined block size dblock: larger block sizes reduces the
memory allocation. In our implementation, dblock = 64. Algorithms 1 details the forward pass
(illustrated in Figure 2a), and Algorithms 2 & 3 details the backward pass (illustrated in Figure 2b).

Throughput We measure throughput on Dolomite Engine (Mishra, 2024) with a 1B class model
on a node with 8 H100 GPUs. Stick-breaking attains a throughput of 16.27 billion tokens / day. This
is a a 19.9% performance drop compared to Flash Attention, which attains throughput of 19.5 billion
tokens / day. Despite the slowdown, the Triton implementation allows the method to be used for long
sequences as the naive Torch implementation causes out-of-memory issues.

Conditional computation We can incorporate speedups due to the specific nature of the stick-
breaking process. Since, we accumulate Ak,j · vk from the diagonal to k = 1, when

∑j−1
i=k Ai,j = 1

for some k, we know that all Ak′,j = 0 where k′ < k. Therefore, once the condition is met, we
can skip all subsequent accumulations. We implement block skipping only the forward pass, and
measured the time elapsed on a subset of 10,000 instances of The Pile1. Evaluating on 16K context
lengths using the the LM evaluation harness (Gao et al., 2023) with a batch size of 1, we find that
early halting allows for a 9.3% percent speed improvement.

1https://huggingface.co/datasets/NeelNanda/pile-10k
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Table 1: Model hyperparameters and total size

nlayer dhidden dinter nhead L Total params.
350M 24 1024 2730 32 2048 367,526,912
1B 40 1536 4096 24 4096 1,208,083,968
3B 40 2304 9216 36 4096 3,513,473,280

5 EXPERIMENTS

In this section, we compare existing attention methods against stick-breaking. We first look at
a modification of a synthetic task from Arora et al. (2023) to understand the inductive biases of
stick-breaking. We then compare the stick-breaking against existing length extrapolation methods
on a 350M model setting. We then pretrain a 1B parameter model, and evaluate it on various NLP
benchmarks, and evaluate it for length extrapolation and retrieval capabilities on long context using
the RULER benchmark (Hsieh et al., 2024). We also report benchmark results for a 3B model we
have trained. For reference, the size of the models are detailed in Table 1.

5.1 MULTI-QUERY REPEATED ASSOCIATIVE RECALL TASK

To illustrate the inductive bias of stick-breaking attention, we first analyse its behaviour on a simple
synthetic task. Arora et al. (2023) demonstrate that there is a correlation between multi-query
associative recall (MQAR) and the performance of language modelling. They show that while
Transformers, which are based on attention can easily handle MQAR, the current linear state-space
models cannot. While stick-breaking can also solve the MQAR task, we formulated a different
version of this toy task and tested it on both softmax attention and stick-breaking. As before, each
instance of the task has an initial assignment of values to variables. However, in the query sequence,
the same variable can be queried multiple times, and each query is then followed by a variable
assignment, which successive queries must recall. We refer to this task as multi-query repeated
associative recall (MQRAR).

Input B 6 P 4 E 3 X 1 Z 2 E 2 B 1 E 5 B 4
Output ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ 3 ϕ 6 ϕ 2 ϕ 1 ϕ

Figure 3: MQRAR performance on in-
creasing key-value pairs.

We compare Transformer models with Softmax and RoPE
against stick-breaking attention, comparing their ability to
handle MQRAR with increasing key-value pairs: from 32
to 192, in increments of 32. The full sequence length is
768. Both models are 2-layer Transformers with 256 hid-
den dimension and one attention head. We sweep through
4 learning rates of {10−4, 10−

10
3 , 10−

8
3 , 10−2}, and report

the results of the best performing model. Softmax+RoPE
is able to perform perform this task up to 128 key-value
pairs, while stick-breaking is able to deal with sequences
up to 192 key-value pairs.

For a more qualitative analysis, we trained another set of
2-layer Transformers of 100 dimensions on 16 key-value pairs, and visualised the patterns of the
attention head. In Figure 4, we visuallised the above given example. Note here that the retrieval of the
third ‘E’ is distracted by the earlier assignment of 3 to ‘E’, while stick-breaking attention correctly
retrieves the later assignment of 2. This may be due to the limitations of RoPE with fewer layers and
fewer head dimensions (here we use 32).

5.2 350M MODEL LENGTH EXTRAPOLATION

We test the ability of stick-breaking for length generalisation, where we train on a fixed context length
(L = 1024) and test it on longer context lengths. We started with the LLaMa 2 (Touvron et al., 2023)
architecture, and modified the attention module to use the various baselines we compare against:

6
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Figure 4: Attention visualisation of the models trained on the MQRAR task. The figure shows
the attention for each token for the 2-layer 100-dimension Transformer. Note that in the standard
Softmax+RoPE setting (above), the attention head is “distracted" at the third retrieval of ‘E’, attending
to the first instance of ‘E’ rather than the mroe recent one. In the stick-breaking setting (below), each
attention head attends to the prior assignment of the variable.

ALiBi (Press et al., 2021), FIRE (Li et al., 2023), NoPE (Kazemnejad et al., 2024) and the default
Llama position embedding RoPE (Su et al., 2021). We trained on the first 15B tokens of SlimPajama
(Soboleva et al., 2023), and evaluate it on the Wikitext benchmark in the LM evaluation harness (Gao
et al., 2023) , with context lengths of 2048 to 64K. As control, we also trained a model with a context
of L = 8192, and as expected, the performance on longer sequences was better when RoPE scaling
is used (See Figure 5b).

Intuitively, we should expect a model that generalises well on longer sequences to have better
likelihood as the context length is increased — longer contexts mean more information for predicting
the next word. However, most methods do not generalise well to longer contexts (See Figure 5a).

Contrary to the results in Kazemnejad et al. (2024), NoPE loss increases as context lengths are
extended. We also find that RoPE embeddings alone do not generalise, despite being a relative
position encoding Using RoPE scaling with the scaling factor f = 1.0 does alleviate the issue, but
still results in an increase in the loss. Surprisingly, while ALiBi is a fixed linear bias that increases
with relative distance, it performs better than FIRE, which learns a function of the bias for a given
relative distance. For position embeddings, our experiments suggest that RoPE with scaling works
best for length extrapolation. ALiBi is an incremental bias for the logits, effectively down-weighting
positions further away, eventually approaching 0. This can be viewed as a ‘soft’ windowed attention,
and given the relatively good performance, we also trained 3 models with windowed attention of
W ∈ {512, 1024, 2048}. The results suggest that windowed attention helps with preventing the

(a) Position bias and embeddings (b) Comparison with L = 8192 (c) Sliding window

Figure 5: Comparisons against different methods of sequence length extension. L represents the
training context length, f is the RoPE scaling factor used, and W is the window size in sliding
window attention. We compare against different position embeddings and biases with L = 8192,
training with L = 8192, and various sliding window sizes with L = 2048. Note that the scale on the
y-axis are different in all three plots.
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Table 2: Results on the various NLP benchmarks for the 1B and 3B pretrained model. ‘Softmax’
benchmark is the standard Softmax + RoPE setting.

Task ARC-c ARC-e Hella. OBQA PIQA RACE SciQ Wino. Avg. Wiki.
Accuracy (normalised) Accuracy Ppl.

1B Parameter Models
Softmax 35.8 65.6 64.8 38.8 75.0 36.5 90.5 63.4 58.8 13.8
Stick-breaking 37.7 67.6 65.4 36.6 76.0 37.4 91.9 63.1 59.5 13.4
3B Parameter Models
Softmax 42.2 73.1 73.2 40.8 78.8 37.4 93.5 67.6 63.3 11.3
Stick-breaking 44.9 74.3 74.1 40.4 79.7 37.8 93.9 68.0 64.1 10.8
Gemma2-2B 50.0 80.2 72.9 41.8 79.2 37.3 95.8 68.8 65.8 13.1
Qwen1.5-4B 39.6 61.5 71.4 40.0 77.0 38.2 90.0 68.1 60.7 12.5

loss from spiking when the context length is extended. As expected, W = 512 performs the worst.
However, W = 2048 increases slightly as the context length is increased, while W = 1024 decreases
till L = 213 and stays constant. The W = 1024 model is trained on context lengths of L = 2048,
which would allow the model to learn to deal with context lengths longer than the window size,
while W = 2048 is trained similar to the standard non-window attention model. Figure 5c shows
the generalisation curves. Note that the y-axis in the plot is on a smaller scale than that of Figure 5a,
indicating that the sliding window method is a relatively good method for length extrapolation as
well. In all cases, stick-breaking negative log-likelihood still decreases as the context length increases,
outperforming the other methods.

5.3 MODEL PRETRAINING
Table 3: MMLU few-shot results

MMLU
0-shot 5-shot

1B Parameter Model
Softmax 25.7 25.2
Stick-breaking 28.4 29.3
TinyLlama 25.3 26.0

3B Parameter Model
Softmax 46.1 49.1
Stick-breaking 50.8 52.9
Gemma2-2B 49.3 53.1
Qwen1.5-4B 54.2 55.2

We pretrain the 1B and 3B models in this section us-
ing a two-stage training scheme in Hu et al. (2024) and
the Power learning rate schedule (Shen et al., 2024). In
the first stage, there is a warmup for the learning rate to
0.01, then we apply Power decay. Our training corpus
has 1T tokens and mixes large-scale open-source datasets
of medium quality with permissive licenses. In the sec-
ond stage, we exponentially decay the learning rate to
zero. The stage 2 training corpus is a mix of stage 1 data
and a small amount of high-quality open-source and syn-
thetic corpora with permissive licenses. The training batch
size is 1024 and uses padding-free sequence packing for
training in Dolomite Engine (Mishra, 2024). We evalu-
ate the pretrained models on language model tasks and
multiple-choice tasks from LM evaluation Harness (Gao
et al., 2023). The multiple-choice tasks include: grade-
school science questions (ARC; Clark et al. 2018), common sense reasoning (Hellaswag; Zellers
et al. 2019), open book question answering (OpenBookQA; Mihaylov et al. 2018), physical questions
(PIQA; Bisk et al. 2020), reading comprehension (RACE; Lai et al. 2017), and Winograd schema
task (Winogrande; Sakaguchi et al. 2021). Table 5 shows the performance.

Overall, we outperform our own pretrained standard attention models that are trained on the same
settings. We perform better on average, and attain better perplexity on Wikitext. We also evaluated
the models on MMLU with 0-shot and 5-shot settings. For the 1B models, we have included the
results for TinyLlama (Zhang et al., 2024) Due to the inductive bias of stick-breaking, we believed
that stick-breaking would perform better on MMLU in a few-shot setting as it would not be distracted
by the few-shot examples provided in the context.

Stick-breaking performs surprisingly well even in the 0-shot setting, and improves with
few-shot examples provided. Note that this may not always be the case, as in our
Softmax + RoPE model, the performance decreases with few-shot examples in context.
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(a) Overall (b) Needle in a Haystack (NIAH) (c) Variable Tracking

Figure 6: Results on the RULER benchmark. Without further finetuning for long context, we evaluate
the 1B models on the RULER tasks. Subfigures: 6a shows the average over all 13 task, 6b is the
average across the various NIAH tasks, 6c is the result for the variable tracking task.

Table 4: 3B Model GSM8K Results

GSM8K
5-shot 8-shot, CoT

Softmax 44.1 44.2
Stick-breaking 42.3 49.7

We have included the the Qwen1.5-4B and Gemma2-
2B models for comparison, and our 3B model underper-
forms Gemma2-2B, a smaller model, while it outperforms
Qwen1.5-4B. This may be attributable to a variety of fac-
tors, including data mixture or training hyperparameters.
Finally, we evaluate our 3B model on the GSM8K dataset
(Cobbe et al., 2021). Interestingly, the 5-shot setting un-
derperforms standard attention while CoT with 8-shot sees
a 5.5% improvement.

5.3.1 1B LENGTH EXTRAPOLATION

We test the 1B stick-breaking and softmax model with the RULER benchmark (Hsieh et al., 2024).
The benchmark consists of ‘needle-in-a-haystack’-like tasks, and is generally used for testing retrieval
capabilities of long-context models that are trained specifically for long contexts. In our setting,
we use RULER to evaluate both 1B models trained on 4096 contexts. Accordingly, the general
capabilities of these models on longer contexts are much worse than purpose-trained models.

On average, the performance of stick-breaking dominates Softmax + RoPE with scaling (Figure 6a).
In the breakdown, we find that the stick-breaking model is surprisingly good at extrapolating on NIAH
tasks up to 16K context lengths, while the standard model significantly drops in performance. Our
results on the variable tracking (VT) task agrees with our experiments on MQRAR. The task involves
tracking the variable assignments provided in the context, and we find that even in-distribution
(L = 4096), the standard model does not perform well at this task.

6 CONCLUSION & FUTURE WORK

We propose a formulation for using the stick-breaking process as a replacement for softmax for
attention. Stick-breaking attention allows us to do away with position embeddings, while still retaining
model performance. We detail the specifics of implementing the stick-breaking kernel in Triton
for large scale training. We then demonstrate that stick-breaking is good at length extrapolation,
performing better than other position embedding and position bias methods in our 350M class
models. We also show that our pretrained stick-breaking models peform better in a controlled
experiment, given the same training data and training regime. On retrieval in the RULER benchmark,
stick-breaking outperforms softmax attention.

The drawbacks in efficiency can be improved in future work by making similar optimisations that
Flash Attention (Dao et al., 2022; Dao, 2023) made for speedups. These include making full use
of features in CUDA, and by cache retrieval optimisations. We believe there is plenty of room for
improvement in computation efficiency that can be made in future versions of stick-breaking. Overall,
we find stick-breaking attention to be a promising replacement for Softmax + RoPE in Transformer
models.
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A DERIVATION OF LOG-SPACE FORMULATION

σ(x) is the sigmoid function,

σ(x) =
1

1 + exp(−x)
=

exp(x)

1 + exp(x)
(6)

1− σ(x) =
1

1 + exp(x)
(7)

Since βi,j = σ(zi,j),

log βi,j = zi,j − log (1 + exp(zi,j)) (8)

log (1− βi,j) = log
1

1 + exp(zi,j)
= − log (1 + exp(zi,j)) (9)

We can substitute these back in,

Ai,j = exp

(
log βi,j +

j−1∑
k=i+1

log (1− βk,j)

)
(10)

= exp

(
zi,j − log (1 + exp(zi,j))−

j−1∑
k=i+1

log (1 + exp(zk,j))

)
(11)

= exp

(
zi,j −

j−1∑
k=i

log (1 + exp(zk,j))

)
(12)

B REMAINDER METHOD

We experimented with using remaining attention weight is assigned to the current timestep vi, by
modifying the output of the attention layer as follows:

oj =

j−1∑
i=1

Ai,j · vi +

(
1−

j−1∑
i=1

Ai,j

)
· vj (13)

This way when the attention ‘does nothing’, the value vector for the current time-step is the output for
that attention head. We refer to this modification as ‘stick-breaking with remainder’ (SB w/ rem.).

Figure 7: Length generalisation experiment on 350M model.
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Table 5: Results on the various NLP benchmarks for the 1B and 3B pretrained model. ‘Softmax’
benchmark is the standard Softmax + RoPE setting.

Task ARC-c ARC-e Hella. OBQA PIQA RACE SciQ Wino. Avg. Wiki.
Accuracy (normalised) Accuracy Ppl.

1B Parameter Models
Softmax 35.8 65.6 64.8 38.8 75.0 36.5 90.5 63.4 58.8 13.8
Stick-breaking 37.7 67.6 65.4 36.6 76.0 37.4 91.9 63.1 59.5 13.4
SB w/ rem. 35.2 66.1 64.1 38.6 75.1 36.9 90.9 62.7 58.7 13.9

C 1B MODEL RULER RESULTS

Figure 8: RULER length extrapolation results
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