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ABSTRACT

Parallel sampling promises substantial gains in test-time scaling, but its effec-
tiveness is sharply limited by diversity collapse, where models concentrate on
a few modes and repeated samples reproduce the same mistakes. We propose
the mode-conditioning (ModC) framework, which explicitly allocates test-time
compute across reasoning modes using either specialist models or mode-specific
prefixes. ModC consistently improves scaling across controlled graph-search tasks
and large-scale reasoning benchmarks, spanning model families and sizes from
0.5B to 7B. On OpenThoughts, fine-tuning Qwen2.5-7B with ModC achieves an
8× efficiency gain over standard training while also improving the maximum at-
tainable Pass@k. We further show that gradient clustering enables ModC without
explicit mode labels, yielding upto 10% gains on datasets such as NuminaMath.
These results demonstrate that standard training underutilizes the diversity in data,
and that ModC provides a simple, effective remedy for unlocking the full benefits
of diversity in test-time scaling.

1 INTRODUCTION

Scaling test-time compute has become central to frontier reasoning systems, driving major advances
in capability (Wang et al., 2022; Snell et al., 2025; DeepSeek-AI et al., 2025). Test-time scaling can
proceed either by lengthening individual reasoning traces or by parallel sampling, where the model
is given multiple independent attempts. Parallel scaling has proven especially effective (Ma et al.,
2025; Brown et al., 2024; Wang et al., 2023), and is particularly natural in domains like mathematics,
coding, and scientific discovery, where candidate solutions can be verified automatically, making it a
backbone of systems such as AlphaEvolve (2025).

Despite its promise, parallel scaling relies on a crucial assumption: the model must generate diverse
and creative solutions. In practice, however, finetuning (Dang et al., 2025) and reinforcement
learning (Yue et al., 2025) are well-documented to induce diversity collapse, where generations
concentrate on only a few dominant modes. As a result, additional samples often reproduce the same
errors or converge on indistinguishable strategies, leading to diminishing returns as compute is scaled.
While recent works propose ways to mitigate collapse, some important modes will almost inevitably
remain underrepresented or assigned vanishing probability.

In this work, we put forward mode-conditioning (ModC), a new paradigm that explicitly structures
test-time scaling around multiple reasoning modes. Rather than drawing repeatedly from a collapsed
distribution, we enforce coverage across strategies by conditioning on modes and allocating samples
to cover diverse modes. This simple yet powerful – and, to the best of our knowledge, previously
unexplored – idea provides a principled way to boost test-time scaling. Even when an LLM is
balanced across two modes with complementary strengths, allocating k/2 samples to each mode
strictly outperforms drawing k samples from the original mixture. The advantage becomes especially
pronounced on inputs where the dominant mode fails but a lower-probability one succeeds.

While the principle of ModC is appealing, the key question is how to implement it in practice. One
option is to prompt the model with explicit instructions for which mode to use, but this requires
extensive manual effort to characterize modes and, more critically, models often fail to follow
instructions for low-probability strategies. To move beyond such ad-hoc prompting, we train models
to provide explicit control over modes. We explore two natural instantiations: (i) training separate
specialist models, each dedicated to a distinct mode, and (ii) training a single model with mode-specific
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Figure 1: Mode-conditioning for test-time scaling. Modern LLMs often collapse to a single strategy,
making Pass@k scaling suboptimal: if the chosen strategy is wrong, every attempt fails. (Left) In a
controlled setup with graph problems solvable by DFS or BFS, models trained on both still often
commit to just one. To address this, we introduce mode-conditioning (ModC) that explicitly allocates
test-time compute across modes. We study two training methods that enable this: separate models
or a single model with mode-specific prefixes. (Right) 8× efficiency gains with ModC training.
We apply ModC to long chain-of-thought reasoning distillation on the OpenThoughts dataset. With
ModC, the model achieves the same Pass@1024 as standard training using only k = 128 samples,
yielding an ∼8× improvement in inference efficiency. Moreover, ModC also improves the maximum
attainable Pass@k, pushing the frontier of test-time scaling.

prefixes, where modes can be sampled reliably by using the corresponding prefix. These two versions
offer different tradeoffs. The specialist approach ensures strong separation but eliminates opportunities
for knowledge sharing across modes. By contrast, the prefix approach is more lightweight and enables
positive transfer, but it can face capacity limits that prevent all modes from being fully captured,
as well as imperfect control where the model fails to cleanly separate behaviors. Although both
approaches are conceptually simple and have appeared in other contexts, we find that even these
straightforward implementations yield substantial gains for test-time scaling.

We first consider a simple well-defined task of Countdown from Gandhi et al. (2024) which involves a
search problem that admits two clear modes: breadth-first search (BFS) and depth-first search (DFS).
In this well-defined controlled task, we can detect which mode a sample comes from by analyzing the
trajectory. We see that standard training does in fact struggle to sample from both modes for several
inputs. We also observe that dataset curation and model scaling offer only minimal gains. ModC with
both separate models and prefixes shows consistent superior test-time scaling to standard training,
with gains especially pronounced on those instances that can only be solved by either BFS or DFS. In
this Countdown task, we observe that ModC with separate models outperforms ModC with prefixes,
suggesting that knowledge transfer across modes is less crucial.

We apply ModC to real-world LLM reasoning datasets with both short- and long-form CoT. Our
experiments fine-tune two different base LLMs, Qwen2.5-Base and OLMo2-Base across model
scales from 0.5B to 7B, using distillation from two distinct teachers, each representing a different
mode. Across all settings, we observe a clear and consistent trend: ModC significantly improves test-
time scaling compared to both standard mixed-teacher training and the best single-teacher baseline.
In particular, on Qwen2.5-7B, ModC training yields up to 8× efficiency gains on both long-CoT
(Figure 1) and short-CoT (Figure 4). Notably, standard training often fails to exploit teacher diversity,
with single-teacher models outperforming those trained on mixtures – a counterintuitive outcome,
since more diverse data should in principle help. Mode-conditioning, by contrast, effectively harnesses
this diversity, translating it into stronger test-time scaling. In other words, diverse training data is
most useful when paired with mechanisms that preserve and control its modes.

Finally, we turn to ask: can ModC better harness the implicit diversity of existing post-training
datasets (such as NuminaMath; Li et al., 2024) that standard training might be missing? However,
applying mode conditioning requires knowing the modes apriori as well as mode annotations on the
training data. We find that using a natural idea of gradient clustering (inspired by Xia et al. (2024);
Jung et al. (2025)) allows us to effectively approximate underlying modes. Once again, we see
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consistent gains with ModC achieving up to 10% gains over standard training on the NuminaMath
dataset with no additional side information.

In summary, we make the following contributions.

1. Introducing the mode-conditioning (ModC) framework. We propose a simple but powerful
paradigm to address diversity collapse in LLM reasoning and improve test-time scaling (Section 2).
ModC explicitly allocates test-time compute across reasoning modes. We propose two training
methods to allow for such test-time allocation: (i) specialist models and (ii) mode-specific prefixes.

2. ModC demonstrates consistent gains across tasks. Through controlled graph-search experi-
ments (Section 3) and large-scale reasoning benchmarks (short- and long-form CoT, distillation
from multiple teachers) (Section 4), we show that ModC achieves substantial and consistent im-
provements in test-time scaling, including up to 8× efficiency gains. We also carefully analyze
tradeoffs between different ModC training methods, effect of model size, data composition etc.

3. ModC on training data without explicit modes. We find that gradient clustering provides an
effective way to automate mode-conditioning without requiring explicit mode labels, yielding
consistent test-time gains. On NuminaMath, this approach achieves up to xx% improvement
with no additional supervision. These results suggest that standard training leaves substantial
performance untapped by failing to fully exploit diverse data—an inefficiency that the ModC
framework directly addresses.

2 THE MODE-CONDITIONING FRAMEWORK

2.1 PRELIMINARIES

Large language models (LLMs) generate outputs by sampling from a probability distribution over
continuations. In more complex tasks, instead of producing a single output, we can allocate additional
test-time compute by drawing k independent samples for the same input and selecting the best
candidate. This strategy, known as parallel scaling, is especially effective in tasks where solutions
can be automatically verified (e.g., mathematics or programming). The performance of this standard
approach is captured by the Pass@kstd metric on an input x:

Pass@kstd(x) = 1− (1− px)
k, (1)

where px is the Pass@1 or probability of sampling a trajectory that is successful on input x.

In practice the gains with parallel scaling depend strongly on the underlying success probability px.
Modern training pipelines such as supervised fine-tuning and reinforcement learning often induce
mode collapse, where the model commits to a small set of strategies (Dang et al., 2025; Yue et al.,
2025; Sessa et al., 2024; Chow et al., 2024). On some prompts, this collapse drives the probability px
of sampling a successful strategy to be very small, so that an impractically large number of samples
is required to obtain good performance.

2.2 MODE-CONDITIONED TEST-TIME SCALING

One approach is to modify the finetuning objective to prevent collapse and maintain higher px. We
take a complementary route: rather than sampling from a single collapsed distribution, we explicitly
allocate test-time compute across diverse modes, enforcing coverage so samples include not only the
dominant strategy but also alternatives that may succeed where it fails.

Consider two modes with success probabilities p1,x and p2,x. If we split the budget evenly, sampling
k/2 trajectories from each mode, the resulting probability of solving input x is

Pass@kModC(x) = 1− (1− p1,x)
k/2(1− p2,x)

k/2. (2)

Suppose the model places equal weight on the two modes, then px = (p1,x + p2,x)/2. It is
straightforward to show that whenever p1,x ̸= p2,x,

(1− p1,x)(1− p2,x) < (1− px)
2, i.e. Pass@kModC(x) > Pass@kstd(x).

3
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In other words, even with the same average single-sample accuracy, explicitly allocating compute
across modes is strictly better. This result extends to any number of modes.

But how do we explicitly sample from different modes in practice? A naı̈ve baseline is to prompt the
model with instructions to use different strategies. However, this approach is unreliable: it is unclear
how to phrase the prompts, and the model may not consistently follow them.

2.3 MODE-CONDITIONED TRAINING

Instead of relying on ad-hoc prompting to elicit different behaviors, we consider scalable training
objectives that explicitly enforce control over modes. This provides a reliable lever at test time for
allocating compute across diverse strategies. We explore two natural instantiations: training with
separate specialist models and training with prefixes within a single model.

In this section, we assume that the relevant modes are known a priori and that training data can
be annotated with the mode used to generate each trajectory. While this assumption is convenient
for exposition and testing the benefits of our paradigm, it is not strictly necessary. In practice, one
could imagine automated approaches for mode discovery and annotation, for example by clustering
trajectories using gradient-based similarity measures or other unsupervised techniques. We return to
this point in §5 where we discuss how mode-conditioned training can be extended to settings where
the modes are not explicitly labeled in the data.

Mode-conditioned training with separate models. The most direct approach is to train distinct
models, each specialized to a particular mode of reasoning. Concretely, the training data is partitioned
into subsets corresponding to different strategies, and a separate model is trained on each subset
while keeping total training data and compute constant. At test time, the sampling budget is divided
across the specialists (e.g., k/2 samples from each in the two-mode case). This design ensures strong
specialization and reduces correlated errors, which translates into more effective parallel scaling.

Mode-conditioned training with prefixes. While separate models improve diversity, they prevent
knowledge sharing across modes. This is a significant drawback in realistic reasoning tasks, where
different strategies often rely on common linguistic or mathematical foundations.

To overcome this, we draw inspiration from the literature on steering model behavior via explicit
conditioning tokens, a technique used widely in controlled text generation (Keskar et al., 2019) and
instruction tuning. We prepend discrete condition tokens (e.g., [Mode 1], [Mode 2]) to the input,
training the model to associate each prefix with a distinct reasoning strategy. At inference, balanced
compute allocation is enforced by sampling evenly across the conditioning prefixes. This allows the
model to specialize into distinct modes while still sharing knowledge across them, making it more
scalable than training separate specialist models.

3 INVESTIGATING MODE COVERAGE IN PARALLEL SAMPLING

3.1 THE Countdown TASK

Countdown is a generalization of Game of 24, where a model must find a sequence of arithmetic
operations to transform a set of starting numbers into a target value. (Gandhi et al., 2024). Given
several starting numbers, the model can apply operations {+,−,×,÷} to reach a target. For example,
given {10, 10, 4, 6} with target 16, one solution is (10× 10− 4)÷ 6 = 16.

This task naturally admits two distinct problem-solving modes: depth-first search (DFS) and breadth-
first search (BFS). This allows us to precisely control and examine which mode is used. Solutions
are easily verifiable by checking if operations reach the target, which makes it an ideal testbed for
studying test-time scaling with parallel sampling.

3.2 WHY MODE COVERAGE IS IMPORTANT?

In principle, both BFS and DFS are complete search algorithms capable of finding any solution, so
why would mode coverage matter for this task? For real-world problems, however, computational
constraints require using heuristics to make the search tractable. Following Gandhi et al. (2024), we
use heuristics to guide and prune the search space, which introduces an important asymmetry: with
heuristic pruning and search budget constraints, each algorithm excels on different problem instances
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– some problems become solvable only by the oracle DFS while others only by the oracle BFS. Since
we cannot know a priori which algorithm will succeed for a given problem, maintaining coverage of
both modes during test-time sampling becomes crucial for achieving high success rates.

To evaluate test-time scaling, we report Pass@k metrics on two held-out test sets. We first create
a natural test set of 500 problems by randomly selecting unseen target numbers and valid starting
numbers that can reach the target. Second, we subsample an adversarial test set designed to require
mode diversity: we filter for problems where either oracle BFS or oracle DFS (but not both) achieves
less than 5% success rate across multiple runs. This adversarial set directly tests mode coverage
– each problem is effectively solvable by only one algorithm, so achieving high accuracy requires
sampling from both DFS and BFS modes when we do not know a priori which one works better. We
expect that the benefit from explicit test-time balancing is much larger on the adversarial test set.

3.3 MODE COVERAGE

We use rejection sampling to create our training set, keeping only instances where at least one search
algorithm (oracle DFS or BFS) successfully finds a solution. Specifically, we uniformly generate
a target number from 1 to 200 and four starting numbers that can reach the target, and uniformly
choose DFS and BFS and one of the search heuristics for guidance and pruning. We note that DFS
has a higher overall success rate, so our final training set ends up consisting of 163K problems, with
97K DFS solutions and 65K BFS solutions. Each training example includes the input, the search
trajectory, and final operations. We train Qwen2.5-Base models (0.5B–7B) for 4 epochs.

Figure 2: Standard training fails to balance diverse modes per problem under repeated sampling.
This issue does not go away with balanced training data. Instead, ModC explicitly targets and
successfully achieves balanced test-time compute allocation.

We first examine whether models trained on mixed DFS and BFS data can learn to balance the two
algorithms under repeated sampling. Figure 2 shows the fraction of BFS used by the model for each
test problem. We observe that standard training on the mixture of both algorithms (shown in gray)
tends to bias toward one algorithm for many test problems, i.e., either predominantly using DFS (low
BFS fraction) or BFS (high BFS fraction), rather than balancing both.

Effect of diversity of training data. Recall that we use rejection sampling to create our training
set, which naturally biases the training data towards the on-average more promising algorithm (i.e.,
DFS in this case). What if we had 50-50 data for DFS and BFS? To answer this, in Figure 2 we also
plot the distribution for this standard training with balanced data. We see that the distribution is less
skewed, but still many problems have extremely imbalanced allocation of test-time compute.

ModC balances test-time compute allocation. In contrast, ModC with explicit balanced allocation
achieves the desired behavior. We see that for both training separate models (shown in blue) and
training with prefixes (shown in red), the fraction of BFS per problem is concentrated around 0.5,
which demonstrate nearly perfect balance.

3.4 FROM MODE COVERAGE TO PASS@k

In this part, we show that ModC dramatically improves test-time scaling, particularly on problems
that require diverse algorithmic modes. We start with ModC with separate models. Figure 3 shows
the results on the natural and adversarial test set of Countdown across model scales. While Pass@1 is
comparable or slightly lower for separate models, the scaling behavior dramatically improves by up
to 8% for Pass@1024. The advantages are even more pronounced on the adversarial test set, where
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(b) Pass@k performance on Countdown adversarial test set

Figure 3: Balanced test-time allocation improves scaling. (a) On the natural test set of Countdown,
balanced test-time allocation with ModC shows consistent improvements as k increases. (b) On the
adversarial test set where each problem is challenging for one one algorithm (oracle DFS or BFS),
the gains from enforced mode diversity are even more pronounced.

we see that the gap boosts up to 20% for Pass@1024. On the other hand, Figure 3 shows that ModC
with prefix with balanced allocation outperforms standard training for most scales. As a control, we
try random partitioning the training data into two groups, which sometimes shows gains but does not
outperform ModC (see details in §B).

4 MODE-CONDITIONING IMPROVES MATH POST-TRAINING

We saw how ModC improves Pass@k performance on Countdown and is superior for parallel scaling.
In this section, we evaluate ModC when post-training for math reasoning.

4.1 DISTILLATION FROM MULTIPLE TEACHERS

We start with a natural source of diverse modes: distillation from multiple stronger teacher models.
This setting is particularly relevant given the existence of strong models with distinct reasoning and
response styles. Recent work typically selects the single teacher that provides the best distillation
performance (Muennighoff et al., 2025; Guha et al., 2025). We test whether explicitly balancing
compute across multiple teacher strategies improves performance. In each settting, we collect CoT
reasoning traces from two teacher models for mathematical problems.

4.2 SHORT CHAIN-OF-THOUGHTS

Experimental setup. We first experiment with post-training NuminaMath (Li et al., 2024) dataset
where the chain-of-thought completions are relatively short and do no involve long thinking. We
use the SFT traces distilled from two teacher models: DeepSeek-R1 (DeepSeek-AI et al., 2025)
and GPT-OSS-120B (OpenAI, 2025), with the problems from NuminaMath. For evaluation, we use
MATH500 (Hendrycks et al., 2021) and measure Pass@k. We post-train Qwen2.5-Base (0.5B–7B)
and OLMo2-Base (1B–7B) models for 4 epochs. We tune the learning rate ∈ {1e-4, 1e-5} and use
AdamW optimizer with global batch size of 256.

Naive data mixture underperforms. Figure 4 compares the Pass@k curves on MATH500 for the
four training strategies mentioned above. We observe that naively mixing data from both teachers
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Figure 4: ModC improves short CoT reasoning. Pass@k on MATH500. Naively mixing teacher
data underperforms the single-teacher baseline, while ModC shows consistent gains. ModC with
prefixes generally works better than ModC with separate models underscoring the importance of
sharing knowledge across modes (teacher strategies) in math reasoning.

either underperforms or is at best comparable to the stronger single-teacher baseline. This is consistent
with prior intuition that training on the best teacher can be more effective than mixing teachers.

ModC training unlocks superior test-time scaling. On the other hand, training on both teachers’
data but with mode conditioned (ModC) training and inference unlocks better test-time scaling
(Figure 4). The gains are consistent across model families (Qwen and OLMo2) and scales (0.5B
to 7B), offering up to 10% gain on Qwen2-0.5B and 15% on OLMo-2-7B. Comparing the two
variants of ModC, we see that ModC with prefixes generally outperforms ModC with separate models
suggesting that knowledge sharing across modes is crucial for math tasks.

4.3 LONG CHAIN-OF-THOUGHTS
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Figure 5: ModC improves long CoT reason-
ing. Pass@k on AIME 2025. Standard train-
ing with multiple teachers fails to outperform
the best single teacher, but ModC with multiple
teachers surpasses single teacher.

We now examine long CoT reasoning, where mod-
els usually spend tens of thousands of tokens on
extended reasoning before producing the answer
on more challenging problems.

Experimental setup. We use the subset of prob-
lems from OpenThoughts (Guha et al., 2025) that
they did ablation studies for the teacher models
with. Specifically, solutions are from two teach-
ers: QwQ-32B (Team, 2025) and DeepSeek-R1
(DeepSeek-AI et al., 2025). For evaluation, we
use AIME 2025 and measure Pass@k. Following
Guha et al. (2025), we initialize model weights with
Qwen2.5-7B-Instruct.

8x efficiency gains with ModC. Figure 5 shows
similar patterns to short CoT: ModC achieves con-
sistently higher Pass@k than both single-teacher
and mixed-teacher baselines. Even in the long CoT
setting with extremely large token budgets per sample, standard training fails to adequately cover
multiple modes—mixed training again does not outperform the best single teacher. In contrast, ModC
not only provides an effective way to learn from multiple teachers and surpass each individual teacher,
but also delivers substantial efficiency gains: it matches the Pass@1024 of standard training with only
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k = 128 samples, yielding nearly 8× faster inference, while simultaneously pushing the maximum
achievable Pass@k.

5 AUTOMATIC MODE DISCOVERY

We have seen that ModC improves test-time scaling across a wide variety of real-world settings.
However, previous sections assume access to natural modes in the data: search algorithms in
Countdown or teacher identities in multi-teacher distillation. In practice, most real-world training
data lacks such clear segregation. Can we extend ModC to work on training data that contains mixed
modes but lacks explicit labels? Furthermore, can we discover meaningful modes in training data
without apriori knowledge of these modes? We explore both questions in this section, applying
gradient clustering to automatically discover and annotate modes in training data.

5.1 GRADIENT CLUSTERING

Gradient similarity has been shown effective in understanding training dynamics (Jacot et al., 2018),
identifying influential training data (Koh & Liang, 2017), and diversifying data selection (Jung et al.,
2025). That inspires us to test whether gradient cluster can discover meaningful modes in training
data that we should condition on.

For each training example (x, y), we compute gradients with respect to model parameters gθ(x, y) =
∇θ log pθ(y|x). To reduce dimensionality, we follow prior works (Xia et al., 2024; Jung et al., 2025)
to apply Rademacher random projection (Park et al., 2023) to each gradient vector. Once we get
the projected gradient vectors for all training samples, we cluster the vectors into C clusters, and all
samples in the same cluster belong to one “mode” based on which we apply ModC

5.2 GRADIENT CLUSTERING RECOVERS TEACHER IDENTITY

We first validate gradient clustering on multi-teacher data where ground-truth labels exist. Using
the short CoT dataset from Section 4.2, we compute gradients using Qwen2.5-Base 1.5B and apply
clustering. We first observe that gradient clustering achieves 98.7% F1 score in recovering teacher
assignments. More importantly, Figure 6 shows that ModC with these automatically discovered
gradient-based clusters yields nearly identical test-time scaling benefits as using true teacher labels.
This confirms that gradient patterns effectively capture the underlying modes.
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Figure 6: Validating gradient clustering on multi-teacher data. ModC on training data that is
distilled from multiple teachers outperforms standard training even without access to teacher identity
annotation on training data. ModC with gradient clustering almost completely matches ModC with
access to teacher annotations.

5.3 GRADIENT CLUSTERING IMPROVES POST-TRAINING ON GENERAL DATA

Finally, we apply gradient clustering to NuminaMath, a real-world dataset that is probably quite
diverse but we lack a clear sense of what modes exist. Surprisingly, we see that training with ModC
on automatically discovered modes (via gradient clustering) yields significant improvements. Figure 7
shows that ModC consistenty improves Pass@k compared to standard training across model scales.
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Figure 7: ModC on automatically discovered modes via gradient clustering improves short CoT.
Pass@k on MATH500 for Qwen2.5-Base models finetuned with standard finetuning and ModC.

6 RELATED WORK

Improving parallel test-time scaling. Repeated sampling significantly improves the performance
of LLMs especially in domains like reasoning and coding (Wang et al., 2023; Brown et al., 2024;
Rozière et al., 2024). To decide the final answer from the k attempts, one can use either majority
voting (Wang et al., 2023) or a verifier (especially in the code and scientific discovery domains) (Wang
et al., 2024; AlphaEvolve, 2025). However, a series of works (Cobbe et al., 2021; Dang et al., 2025)
have identified issues during post-training of LLMs that impair the diversity in model generation,
consequently affecting the efficacy of test-time scaling. Huang et al. (2024) attribute this to the
sharpening effect whereas Chu et al. (2025) highlight memorization as a root cause.

Lot of recent works have in turn have proposed fixes for improved parallel test-time scaling. Beeching
et al.; Snell et al. (2024) propose modifications to beam search to explciitly optimize for diversity
amongst the candidates. Wang et al. (2025); Hughes et al. (2024) propose diverse prompting to
improve test-time scaling. Taking a step back, Sessa et al. (2024); Chow et al. (2024); Chen et al.
(2025) explicitly optimize for best-of-k performance during the finetuning process. Dang et al. (2025)
propose a simple fix of ensembling the finetuned weights with the base model to mitigate diversity
collapse. Goyal et al. (2025) further take a step back and propose pretraining with logit distillation to
improve parallel test-time scaling behaviors. In contrast, in this work we propose a more data centric
conditioning of the finetuning process to explcitly encode specialist modes in the model.

Specialization in model training. In this work, we proposed ModC where a single model
is explicitly conditioned to learn separate modes of finetuning data. We do this by prepending
conditioning tokens (e.g., DFS or BFS) to the reasoning traces. Closest to our work is Mixture-of-
Experts (Shazeer et al., 2017; Jiang et al., 2024; Jelassi et al., 2025) where different datapoints are
routed to a specific subpart of the model which is expert for the domain of the particular datapoint.
However, in contrast in ModC all the datapoints are processed by the whole model and not a subpart.
Mixture-of-experts are aimed at reducing the active parameter footprint of the model.

7 CONCLUSION AND FUTURE WORK

In this work, we demonstrated that deliberate mode-conditioning (ModC) during training and infer-
ence is crucial for unlocking the full benefits of test-time compute scaling. Across both controlled
search problems and large-scale reasoning benchmarks, we showed that standard training tends to
collapse onto a single strategy, while specialization through mode-conditioning consistently yields
superior scaling and more reliable gains. Beyond explicit labels such as teacher identity, we further
showed that gradient clustering can automatically uncover meaningful specializations, making ModC
broadly applicable. Looking ahead, exciting directions include extending ModC to a larger number
of modes and to richer behavioral dimensions such as reasoning depth or planning style, as well
as integrating ModC with adaptive allocation policies that learn how to optimally divide compute
across modes at test time. Another promising avenue is applying ModC to reinforcement learning,
where balanced modes could encourage diverse exploration early in training and be gradually relaxed.
Together, these directions position mode-conditioning as a general and effective principle for building
more reliable and powerful reasoning systems.
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8 REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. Complete experimental details
– including model architectures, optimization hyperparameters, datasets, and evaluation protocols –
are provided in the relevant sections of the main paper for each experiment. In addition, we submit
our code and scripts as part of the supplementary material, and will be open-sourcing it along with
other meta-data upon acceptance of the work.
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Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Feng Chen, Allan Raventos, Nan Cheng, Surya Ganguli, and Shaul Druckmann. Rethinking fine-
tuning when scaling test-time compute: Limiting confidence improves mathematical reasoning,
2025. URL https://arxiv.org/abs/2502.07154.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
Boutilier, Rishabh Agarwal, Aviral Kumar, and Aleksandra Faust. Inference-aware fine-tuning for
best-of-n sampling in large language models, 2024. URL https://arxiv.org/abs/2412.15287.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.org/
abs/2110.14168.

Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, and Aditi Raghunathan. Weight ensembling
improves reasoning in language models, 2025. URL https://arxiv.org/abs/2504.10478.

DeepSeek-AI, Daya Guo, et al. Deepseek-r1: Incentivizing reasoning capability in llms via rein-
forcement learning. ArXiv, abs/2501.12948, 2025. URL https://api.semanticscholar.org/
CorpusID:275789950.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma, and Noah D.
Goodman. Stream of search (sos): Learning to search in language. ArXiv, abs/2404.03683, 2024.

Sachin Goyal, David Lopez-Paz, and Kartik Ahuja. Distilled pretraining: A modern lens of data,
in-context learning and test-time scaling, 2025. URL https://arxiv.org/abs/2509.01649.

Etash Kumar Guha, Ryan Marten, Sedrick Scott Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal,
Marianna Nezhurina, Jean-Pierre Mercat, Trung Vu, Zayne Sprague, Ashima Suvarna, Ben Feuer,
Liangyu Chen, Zaid Khan, Eric Frankel, Sachin Grover, Caroline Choi, Niklas Muennighoff,
Shiye Su, Wanjia Zhao, John Yang, Shreyas Pimpalgaonkar, Kartik Sharma, Charlie Cheng-
Jie Ji, Yichuan Deng, Sarah Pratt, Vivek Ramanujan, Jon Saad-Falcon, Jeffrey Li, Achal Dave,
Alon Albalak, Kushal Arora, Blake Wulfe, Chinmay Hegde, Greg Durrett, Sewoong Oh, Mohit
Bansal, Saadia Gabriel, Aditya Grover, Kai-Wei Chang, Vaishaal Shankar, Aaron Gokaslan,
Mike A. Merrill, Tatsunori Hashimoto, Yejin Choi, Jenia Jitsev, Reinhard Heckel, Maheswaran
Sathiamoorthy, Alexandros G. Dimakis, and Ludwig Schmidt. Openthoughts: Data recipes for
reasoning models. ArXiv, abs/2506.04178, 2025.

10

https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms
https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-coding-agent-for-designing-advanced-algorithms
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2502.07154
https://arxiv.org/abs/2412.15287
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2504.10478
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:275789950
https://arxiv.org/abs/2509.01649


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Audrey Huang, Adam Block, Dylan J. Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz,
Jordan T. Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism, 2024. URL https://arxiv.org/abs/2412.01951.

John Hughes, Sara Price, Aengus Lynch, Rylan Schaeffer, Fazl Barez, Oluwasanmi Koyejo,
Henry Sleight, Erik Jones, Ethan Perez, and Mrinank Sharma. Best-of-n jailbreaking. ArXiv,
abs/2412.03556, 2024. URL https://api.semanticscholar.org/CorpusID:274464998.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. NeurIPS, 2018.

Samy Jelassi, Clara Mohri, David Brandfonbrener, Alex Gu, Nikhil Vyas, Nikhil Anand, David
Alvarez-Melis, Yuanzhi Li, Sham M. Kakade, and Eran Malach. Mixture of parrots: Experts
improve memorization more than reasoning, 2025. URL https://arxiv.org/abs/2410.19034.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
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Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas
Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code, 2024. URL
https://arxiv.org/abs/2308.12950.

11

https://arxiv.org/abs/2412.01951
https://api.semanticscholar.org/CorpusID:274464998
https://arxiv.org/abs/2410.19034
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/1909.05858
https://arxiv.org/abs/1909.05858
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2504.09858
https://arxiv.org/abs/2508.10925
https://api.semanticscholar.org/CorpusID:257757261
https://arxiv.org/abs/2308.12950


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026
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(a) Pass@k performance on Countdown natural test set
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(b) Pass@k performance on Countdown adversarial test set

Figure 8: Ablation studies on Countdown. ModC with random paritioning sometimes shows gains
but does not outperform ModC with DFS/BFS partition. Balanced training data DFS/BFS distribution
does not show gains compared to standard training.

A LLM USAGE.

We used a large language model (LLM) solely to refine the writing style. The LLM played no role in
research ideation, experimental design, or analysis. All technical content, results, and conclusions are
entirely our own, and we take full responsibility for the final manuscript.

B ADDITIONAL RESULTS FOR Countdown

We see that ModC with DFS/BFS partition improves test-time scaling on Countdown. As a control,
we also try random partitioning the training data into the same number of groups. From Figure 8, we
see that ModC with random paritioning sometimes shows gains but does not outperform ModC with
DFS/BFS partition. Another baseline we try is to enforce 50-50 distribution of DFS and BFS in the
training data, which we do not see any gains compared to standard training.
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