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Abstract

The ability to detect aerial objects with limited annotation is pivotal to the de-
velopment of real-world aerial intelligence systems. In this work, we focus on
a demanding but practical sparsely annotated object detection (SAOD) in aerial
images, which encompasses a wider variety of aerial scenes with the same num-
ber of annotated objects. Although most existing SAOD methods rely on fixed
thresholding to filter pseudo-labels for enhancing detector performance, adapting
to aerial objects proves challenging due to the imbalanced probabilities/confidences
associated with predicted aerial objects. To address this problem, we propose
a novel Progressive Exploration-Conformal Learning (PECL) framework to ad-
dress the SAOD task, which can adaptively perform the selection of high-quality
pseudo-labels in aerial images. Specifically, the pseudo-label exploration can be
formulated as a decision-making paradigm by adopting a conformal pseudo-label
explorer and a multi-clue selection evaluator. The conformal pseudo-label ex-
plorer learns an adaptive policy by maximizing the cumulative reward, which can
decide how to select these high-quality candidates by leveraging their essential
characteristics and inter-instance contextual information. The multi-clue selection
evaluator is designed to evaluate the explorer-guided pseudo-label selections by
providing an instructive feedback for policy optimization. Finally, the explored
pseudo-labels can be adopted to guide the optimization of aerial object detector in a
closed-loop progressive fashion. Comprehensive evaluations on two public datasets
demonstrate the superiority of our PECL when compared with other state-of-the-art
methods in the sparsely annotated aerial object detection task. The code will be
available at: https://github.com/SAOD-research/PECL.

1 Introduction

Recently, object detection has gained widespread attention, but the demand for a large amount of
labeled data is time-consuming and labor-intensive. To address this challenge, semi-supervised object
detection (SSOD) has been proposed to enhance detection performance by utilizing limited labeled
samples and a large number of unlabeled samples. SSOD methods (14; 30; 23; 36) mainly focus on
general images, and cannot consider the unique characteristics of objects in aerial images, such as
dense arrangements, rich contextual relationships, and large complex scenes. As shown in Figure 1(a),
objects in aerial images are more dense and similar compared to general images. For example, the
average objects per image are 68.4 vs 7.7 in the DOTA (27) and COCO (13) datasets, respectively.
Therefore, we address the sparsely annotated object detection (SAOD) task in aerial images, which
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(a) the global aerial image (b) the local sparsely-annotated objects

Figure 1: An example of sparsely annotated objects in an aerial image. Here a small part of objects are annotated,
e.g., large vehicles with the light blue, and small vehicles with the dark blue.

labels a few part of objects in the training set. Compared with the conventional SSOD task, the
SAOD can cover more diversity of aerial scenes even with the same number of annotated objects, as
illustrated in Figure 1(b).

The SAOD task mitigates the need for expensive instance-level annotations, but also faces severe
challenges of detector optimization, especially only with the limited and sparse annotation objects. In
general, most existing SAOD approaches have attempted to mine more confidence supervised signals
(e.g., pseudo-labels) from a substantial quantity of unlabeled aerial images. For example, Yoon et
al. (32) combined an anchor-free object detector with an object tracker to generate dense annotations
for training images. Co-mining (26) employed a Siamese network comprising two branches that
mutually predict pseudo-label sets. Niitani et al. (18) utilized a part-aware sampling technique to
handle instances within primary categories and used pseudo-labels to exclude un-annotated regions.
However, existing SAOD methods typically focus on using fixed thresholds to filter pseudo-labels,
lacking the ability to adaptively select high-quality pseudo-labels. Different from conventional
objects, some aerial objects characterized by substantial dimensions and notable features (e.g., planes)
exhibit higher predicted probabilities, whereas smaller aerial objects like vehicles are associated
with comparatively lower predicted probabilities. Consequently, the discrepancy in probabilities and
confidence levels observed in the predicted results poses a severe challenge in identifying pseudo-label
instances by setting a rigorous threshold in the sparsely annotated aerial object detection process.
Meanwhile, the conformal prediction methodology, as elucidated by Shafer et al. (2008) (20), emerges
as a potent approach for quantifying uncertainty by harnessing confidence levels to effectively rectify
the challenges stemming from imbalanced data.

In this work, we propose a Progressive Exploration-Conformable Learning (PECL) framework to
improve the SAOD performance in aerial images, which can adaptively explore more confident
pseudo-labels by considering the imbalance characteristics of different categories. Specifically, we
firstly pre-train the detector with these sparsely annotated objects, and employ online clustering to
generate class-wise knowledge to assist the pseudo-label exploration. The conformal decision problem
of pseudo-label exploration is addressed with two essential components: the conformal pseudo-label
explorer and multi-clue selection evaluator. The conformal pseudo-label explorer is responsible for
selecting confident pseudo-labels by considering the intrinsic and conformal characteristics of the
predicted candidates; while the multi-clue selection evaluator assesses the pseudo-label exploration
and provides feedback to guide the optimization of the pseudo-label explorer. Finally, both the
detector updating and the conformal pseudo-label exploration are integrated into a closed-loop,
mutually reinforcing framework, promoting the SAOD task.

To summarize, the contributions of this work are threefold: i) We propose a progressive exploration-
conformable learning framework that integrates the detector updating and the conformal pseudo-label
exploration into an iteratively co-enhancing system. ii) We perform the pseudo-label exploration to
mine more high-quality pseudo-labels by considering contextual information in large complex scenes,
consisting of two modules: the conformal pseudo-label explorer and multi-clue selection evaluator.
iii) Comprehensive evaluations on two public datasets, DOTA (27) and HRSC2016 (15), demonstrate
the effectiveness of our PECL, which outperforms the baselines and state-of-the-art methods by a
large margin in the sparsely annotated aerial object detection task.
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2 Related Work

Semi-/weakly-supervised/sparsely-annotated object detection: Due to the extensive annotations
requiring a significant investment of time and labor, SSOD and SAOD have attracted considerable
attention in recent years. SSOD aims at the detector optimization by using limited labeled samples
and a large number of unlabeled samples. For example, Pseudo labeling (10) has been widely used in
semi-supervised learning, which utilizes pre-trained detector to generate labels for unlabeled data.
Furthermore, some methods (2; 28; 11) combined consistency regularization with pseudo labeling.
CSD (9) leveraged consistent predictions of horizontally flipped image pairs, STAC (21) enforced
consistency constraints on weakly and strongly augmented image pairs. Unbiased Teacher (14)
adopted the focal loss (12) to resolve pseudo-label bias caused by class imbalance in real labels.
SOOD (7) designed rotation-aware adaptive weighting loss and global consistency loss for semi-
supervised oriented object detection. Furthermore, considerable efforts have been made in weakly-
supervised oriented bounding box detection. H2RBox (31) learned object center from horizontal
box labels in weak-supervision, used scale and spatial constraints to estimate object dimensions
in self-supervision. PointOBB (16) and Point2RBox (34) used Multiple Instance Learning and
Knowledge Combination to learn rotated box regression from single point supervision. While SAOD
labels part of instances in each image. Many researchers have explored methods to address this
challenge. Niitani et al. (18) introduced part-aware sampling that leveraged the logical relationship
between parts to guide the sampling process. Co-mining (26) involved a Siamese network with two
branches that predicted pseudo-label sets for each other. Rambhatla et al. (19) treated SAOD as a
semi-supervised problem focusing on regions, automatically identifying unlabeled foreground objects.
Calibrated Teacher (25) calibrated the predicted confidence to match the actual accuracy, ensuring
detectors at different training stages share similar confidence distributions and fixed threshold. In
contrast, our work focuses on sparsely annotated aerial object detection by adaptively exploring
contextual relationships between unlabeled instances in large complex scenes.

Reinforcement/exploratory learning in computer vision: Deep reinforcement learning has shown
promising results in many decision-making domains. It has also been widely applied in the field of
computer vision. Caicedo et al. (3) transformed the object detection into a Markov Decision Process
to deform bounding boxes for accurate localization. Huang et al. (8) proposed an adaptive tracking
method, which used reinforcement learning to select the number of network layers. DSN (37) treated
video summarization as a sequence prediction problem, predicting frame probabilities and selecting
frames based on the probability. Yu et al. (33) applied reinforcement learning for image restoration,
employing a policy network to select suitable repair tools. Walid et al. (1) formulated the landmark
localization in 3D medical images as a reinforcement learning problem and introduced actor-critic
for localization tasks. Tian et al. (24) introduced a medical image segmentation method based on
reinforcement learning, the reward showed the change between the predictions and the ground truth.
IVADC-FDRL (17) empowered the agent to learn from real data by integrating detector for anomaly
detection and Q-learning for anomaly classification. In this work, we build a progressive exploration-
conformal learning process to adaptively select high-quality pseudo-labels, thereby enhancing the
supervision signal for sparsely annotated aerial object detection.

3 The Proposed Method

3.1 Problem Definition

The sparsely annotated aerial object detection is to learn a robust aerial detector by employing these
sparsely annotated instances and a large amount of unlabeled images/regions in the training set.
Formally, we define X = {Xi, Oi}Ni=1 as the training set, where N represents the total number of
training images, Xi and Oi denote the i-th image sample and the corresponding sparsely annotated
object set, respectively. For the i-th image, the annotated object set can be represented as Oi =

{xji , y
j
i , b

j
i}

Nil
j=1, where xji , y

j
i , b

j
i denote the image region, the class label, the bounding-box location

of the j-th annotated object, and Nil (i.e., Nil ≥ 0) refers to the total number of labeled instances.

In the sparsely annotated aerial object detection task, how to mine more confident supervision (e.g.,
pseudo-labels) from these unlabeled images/regions is critical to promote the detector optimization.
In general, most existing sparsely annotated object detection approaches (10; 26; 25) adopted a
fixed threshold to select pseudo-labels, which can be used to provide more supervised signals.
Unlike these typical objects, certain aerial objects characterized by their large, distinct features (e.g.,
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planes) exhibit heightened predicted probabilities, whereas aerial objects with small dimensions
(e.g., vehicles) tend to have lower predicted probabilities. Therefore, the imbalance in the predicted
object probabilities could pose a challenge in pinpointing pseudo-label samples through a strict
thresholding in the sparsely annotated aerial object detection problem. Inspired by the conformal
prediction technique (20), which enables uncertainty quantification and utilizes confidence levels to
tackle imbalanced data, we propose a novel Progressive Exploration-Conformable Learning (PECL)
framework to address the SAOD task in aerial images.

3.2 PECL framework

Our proposed PECL framework can be built as a close-loop iterative learning process between
the conformal pseudo-label exploration and the detector updating. Firstly, we can obtain a pre-
trained aerial detector Θ by employing these sparsely annotated objects in the training set. To
provide the confident guide for the subsequent process, we construct class-wise prototypes P ={
pck ∈ Rd

}C,K

c=1,k=1
with the fully connected layer features of each annotated instance as in (38). Here

C is the number of classes, K is the number of prototypes per class, and d is the feature dimension
of the prototype. We can obtain the candidate set of each input sample Xi, i.e., {x̃ti}

Nic
t=1, where Nic

represents the number of candidates. We perform the conformal pseudo-label exploration to refine
and identify these high-quality candidates as pseudo-labels, which can adaptively consider the distinct
characteristics of different categories in the candidate set, especially in the aerial images. Here we
develop the conformal pseudo-label explorer to facilitate the creation of an adaptive exploration
policy, and the multi-clue selection evaluator to appraise the effectiveness of pseudo-label selection.

3.2.1 Conformal Pseudo-label Explorer

To address the imbalanced prediction probabilities across different categories in the aerial scenes, we
specially design the conformal pseudo-label explorer to effectively probe these high-quality pseudo-
labels. Specifically, the conformal pseudo-label explorer π is a multi-layer perceptron composed
of three fully connected layers. Its objective is to learn an adaptive pseudo-label exploration policy
to determine whether to select the current candidate x̃ti. The conformal pseudo-label explorer π
takes the current exploratory characteristic cti as input, and obtains a two-dimensional selection
probability distribution π(cti) ∈ R2, representing the probabilities of taking different selections
under the current characteristic. The selection decision ati is then obtained by sampling from this
distribution, i.e., ati ∼ π(cti), where a decision value of 0 indicates not selecting the candidate, a
value of 1 represents selecting the candidate as a pseudo-label. To assist the conformal pseudo-label
explorer π in performing the rational decision, the important point is how to design a comprehensive
exploratory characteristic cti by considering multiple aspects of information. Here the characteristic
cti = Fc{Oi, Õ

t
i , x̃

t
i} is formed by utilizing the characteristics of the sparsely annotated objects Oi,

the selected pseudo-labels Õt
i , and the current candidate x̃ti in the current i-th aerial image. The

exploratory characteristic thus provides a rich and accurate scene description for the conformal
pseudo-label explorer, facilitating more effective pseudo-label selection.

Taking the candidate x̃ti as an example, we explain a detailed depiction of constructing the correspond-
ing cti at time t. The characteristic of the current candidate x̃ti can be represented as a feature vector,
denoted as [AP(x̃

t
i), pro(x̃

t
i), fsim(x̃ti)]. AP(x̃

t
i) determines the precise level of confidence (20)

for the candidate x̃ti to quantify the uncertainty of the predicted probability. Here AP(x̃
t
i) can be

expressed as a class-conditional probability where the non-conformity scores of all learned prototypes
take on a value bigger than or equal to the non-conformity score of this candidate under the condition
of the certain class ỹti . Formally:

AP(x̃
t
i) = Pro

(
{NC(pck)}C,K

c=1,k=1 ≥ NC(x̃ti)|ỹti
)

=

∑K
k=1I

[
NC(ỹti |pỹt

ik
) ≥ NC(ỹti |x̃ti)

]
+ 1

K + 1

(1)

where NC(ỹti |x̃ti) = 1− pro(ỹti |x̃ti) represents the non-conformity score of the candidate x̃ti with
the class ỹti and I[·] is the indicator function. A higher non-conformity score indicates a greater
dissimilarity between the candidate and the reference class distribution. pro(x̃ti) indicates the
predicted probability of candidate x̃ti, inferred by the optimized detector. fsim(x̃ti) computes the
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maximum cosine similarity between the feature of the candidate x̃ti and the prototypes {pỹt
ik
}Kk=1 of

the predicted class label ỹti . Based on the above, we can obtain current exploratory characteristic cti by
concatenating the average feature of the sparsely annotated objects Oi and the selected pseudo-labels
Õt

i with the feature of the current candidate x̃ti. The conformal exploratory characteristic enables the
explorer to make effective pseudo-label selection and explore the unlabeled candidates efficiently,
leading to the improved performance of the detector.

3.2.2 Multi-clue Selection Evaluator

To facilitate the conformal pseudo-label explorer π in learning optimal pseudo-label exploration
policy, we introduce a multi-clue selection evaluator Q to assess the current exploratory characteristic
cti and selection policy ati, providing instructive feedback for policy optimization. In essence, the
selection evaluator is also constructed as a multi-layer network with three fully connected layers. It
takes the current characteristic cti and the decision policy ati as input and estimates the cumulative
reward for the characteristic-decision pairs (i.e., Q(cti, a

t
i)), signifying the effectiveness of the current

policy. The cumulative reward takes into account the instant exploratory reward rti accumulated
at each time step t during the conformal pseudo-label decision, which measures how well the
conformal pseudo-label explorer π performs. A high cumulative reward indicates that the conformal
pseudo-label explorer π achieves positive candidate selection in decision-making process, and vice
versa.

To accurately estimate the cumulative reward, the instant exploratory reward rti should reflect whether
the current selection ati is appropriate or not. We first design a reward function ψ(x̃ti) to evaluate the
impact of selecting current candidate x̃ti from the perspectives of information entropy and confidence
margin, which is specifically represented as follows:

ψ(x̃ti) = ∆H(x̃ti) + ξ∆U(x̃ti) (2)

where ξ is the weighting parameter. ∆H(x̃ti) represents the change in the information entropy of the
current confident instances belonging to the same class ỹti when the current candidate x̃ti is introduced
into the collection of the sparsely annotated objects Oi and the selected pseudo-labels Õt

i . It can be
expressed as:

∆H(x̃ti) = H(µ̃t
i)−H(µt

i)

s.t. µ̃t
i =

1
M+1 (

∑M
m=1pro(x̄

m
i ) + pro(x̃ti))

µt
i =

1
M

∑M
m=1pro(x̄

m
i )

(3)

where H(·) calculates the information entropy of probability distribution. x̄mi is from the set
{Oi ∪ Õt

i ∪ P}ỹt
i

related to the class ỹti and M denotes its total number. The candidate with a high
uncertainty will increase the overall entropy. ∆U(x̃ti) indicates the change in the confidence margin
of the current confident instances belonging to the predicted class ỹti when the current candidate x̃ti is
selected. It can be formulated as:

∆U(x̃ti) = U(µt
i)− U(µ̃t

i) (4)

where U(·) denotes the confidence margin, calculating the difference between the highest value and
the second highest value in the prediction probability. A larger margin indicates that the candidate is
more confident, leading to a positive promotion in the overall confidence margin.

By considering the reward function ψ(x̃ti) of the current candidate and the current selection ati taken
by the conformal pseudo-label explorer, we ultimately design the instant exploratory reward rti as
follows:

rti =

{
+1, ati = 1, ψ(x̃ti) ≤ 0|ati = 0, ψ(x̃ti) ≥ 0
−1, ati = 1, ψ(x̃ti) > 0|ati = 0, ψ(x̃ti) < 0

(5)

where the positive exploratory reward plays a constructive guiding role in the conformal pseudo-label
exploration, and vice versa. Then the target value V t

i can be defined as the sum of the instant
exploratory reward rti and the future cumulative reward Q(ct+1

i , at+1
i ), formulated as follows:

V t
i = rti + γQ(ct+1

i , at+1
i ) (6)
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Algorithm 1 The PECL training process
Input: Training set X = {Xi, Oi = {xj

i , y
j
i , b

j
i}

Nil
j=1}

N
i=1

Output: Detector Θ, conformal pseudo-label explorer π, and multi-clue selection evaluator Q
1: Pre-train Θ with Xi, Oi by minimizing Ldet+Lpot, and construct the class-wise prototypes P;
2: Initialize the experience replay pool D = ∅;
3: for i = 1, 2, 3, ..., N do
4: Obtain the candidate set {x̃t

i}Nic
t=1 for Xi with Θ;

5: Initialize the selected pseudo-label set Õ1
i = ∅ and the current candidate x̃1

i , and then obtain the
characteristic c1i ;

6: for t = 1, 2, 3, ..., Nic do
7: # Perform the conformal pseudo-label explorer
8: Obtain the decision at

i using π with the current characteristic cti;
9: Update Õt+1

i by taking the decision at
i;

10: # Conduct the multi-clue selection evaluator
11: Obtain the next characteristic ct+1

i with x̃t+1
i , Õt+1

i and Oi;
12: Calculate the reward rti by Eq. (5);
13: Insert the recording (cti, a

t
i, r

t
i , c

t+1
i ) into D;

14: Sample a batch from D to update π and Q;
15: end for
16: Update Θ with annotated objects Oi and the selected pseudo-labels Õi by minimizing Ldet (Eq.(8)).
17: end for

where γ is a discount factor. Finally, we can continuously update the conformal pseudo-label explorer
π and the multi-clue selection evaluator Q through performing gradient descent on the following
objective function:

Lref = (V t
i −Q(cti, a

t
i))

2︸ ︷︷ ︸
Appro. target value

− Q(cti, a
t
i)︸ ︷︷ ︸

Max. cum. reward
(7)

where the decision ati is sampled from π(cti). The first term aims to adjust the predicted cumulative
reward to approximate the target value for updating the multi-clue selection evaluator Q. The second
term aspires to maximize the cumulative reward, enabling the conformal pseudo-label explorer π
to refine the exploration policy. These selected high-quality candidates can in turn promote the
capability of the aerial object detector. Furthermore, we use an experience replay pool D to store
a series of data {(cti, ati, rti , c

t+1
i )} and sample batches to gradually update the parameters of the

conformal pseudo-label explorer and the multi-clue selection evaluator (i.e., θexp and θeva).

3.2.3 Progressive detector updating
The ultimate goal of our progressive exploration-conformable learning framework is to optimize
an aerial detector by utilizing the sparse annotation and adaptively exploring these high-quality
pseudo-labels in the training set. By employing these explored pseudo-labels ÕNic

i and the initial
sparsely annotated objects Oi as supervision signals, we can progressively acquire a satisfactory
detector Θ by minimizing the loss function using stochastic gradient descent. Formally,

Ldet =

N∑
i

( 1
|Oi|

|Oi|∑
j=1

(Lcls(x
j
i , y

j
i ) + Lreg(x

j
i , b

j
i ) + Lpot(x

j
i ,P)))

+

N∑
i

( 1

|ÕNic
i |

|ÕNic
i |∑

u=1

(Lcls(x̃
u
i , ỹ

u
i ) + Lreg(x̃

u
i , b̃

u
i )))

(8)

where |Oi| and |ÕNic
i | represent the number of sparsely annotated objects and the selected pseudo-

labels during the conformal pseudo-label exploration process in the i-th image. ỹui and b̃ui indicate the
class label and bounding-box of the selected pseudo-labels x̃ui . Lcls is the standard cross-entropy loss
used in ReDet (6) and OR-CNN (29) or the focal loss used in S2A-Net (5) for classification, Lreg is
the SmoothL1 loss for localization. To construct representative class-wise prototypes for providing
confident guidance, we adopt the prototype loss Lpot as referenced in (38). To mitigate the impact
of false negatives, we additionally employ the background weighting reduction strategy during the
detector optimization process. Both the detector updating and the reinforced pseudo-label exploration
are integrated to address the sparsely annotated aerial object detection task in a closed-loop, mutually
reinforcing fashion. The PECL training process is presented in Algorithm 1.
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Table 1: Performance comparisons of different detector baselines for the OBB task on the DOTA dataset at
different label rates.

Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP(%)

1%

S2A-Net (5) 57.27 50.85 20.13 59.11 36.98 32.58 37.97 83.75 49.15 27.89 42.48 48.70 18.33 24.54 12.35 40.14
S2A-Net w/ PECL 73.30 63.17 25.57 62.35 55.87 48.41 59.71 90.00 66.99 53.07 37.35 50.43 27.13 38.45 12.18 50.39

OR-CNN (29) 69.05 69.69 23.81 62.53 40.11 37.65 38.22 88.14 67.52 46.01 51.83 60.68 28.80 36.97 19.39 49.36
OR-CNN w/ PECL 79.57 74.21 32.73 63.70 50.93 48.04 48.22 90.15 77.78 56.75 55.75 59.50 41.62 48.11 26.51 56.91

ReDet (6) 60.36 62.98 26.16 66.08 34.24 39.99 29.35 87.42 68.58 50.11 49.94 56.59 30.75 40.43 18.51 48.10
ReDet w/ PECL 86.09 72.16 38.91 65.05 67.29 72.01 75.40 89.17 78.52 70.42 56.75 57.68 54.09 53.50 18.72 63.72

2%

S2A-Net (5) 56.92 48.39 21.41 61.37 42.76 35.06 46.46 85.02 54.32 35.45 38.11 50.41 20.56 29.15 3.35 41.92
S2A-Net w/ PECL 74.57 58.63 26.14 62.36 60.68 55.81 69.71 89.64 65.52 62.58 36.53 52.20 31.45 42.58 18.71 53.81

OR-CNN (29) 68.78 71.00 24.81 63.66 47.06 37.65 45.59 87.38 70.69 51.26 53.54 57.26 28.20 44.52 23.40 51.65
OR-CNN w/ PECL 79.80 72.87 31.12 67.52 58.97 51.18 66.16 90.15 74.48 58.96 53.41 60.98 42.97 44.95 26.43 58.66

ReDet (6) 59.73 64.67 23.65 72.47 40.07 40.37 53.99 87.90 64.66 48.02 51.16 57.63 33.20 46.65 23.79 51.20
ReDet w/ PECL 87.27 73.30 41.54 70.35 67.19 71.88 81.14 89.08 73.33 77.97 55.47 61.82 60.77 55.55 32.09 66.58

5%

S2A-Net (5) 65.85 49.72 21.97 59.97 56.63 52.17 66.53 87.14 57.84 48.72 38.07 50.47 20.78 36.08 19.75 48.78
S2A-Net w/ PECL 78.18 63.18 30.36 63.85 66.22 64.50 73.06 90.26 69.54 64.57 41.92 50.56 32.99 43.54 28.56 57.42

OR-CNN (29) 78.13 71.05 24.62 64.69 57.81 57.64 70.99 88.62 67.80 53.27 49.46 60.68 30.71 37.51 31.46 56.30
OR-CNN w/ PECL 86.95 73.10 30.17 67.68 68.34 69.61 80.10 90.07 74.91 71.95 47.80 59.82 48.26 52.43 40.06 64.08

ReDet (6) 78.21 68.73 31.49 69.65 54.25 57.11 63.27 88.38 62.21 49.87 52.09 56.34 41.12 44.69 23.52 56.06
ReDet w/ PECL 88.38 71.19 36.56 64.78 72.50 71.38 82.51 89.65 75.85 76.66 50.79 60.95 61.53 61.00 42.08 67.06

10%

S2A-Net (5) 73.92 57.80 28.38 62.52 63.08 64.10 71.33 88.10 59.29 60.02 42.47 52.71 33.22 44.55 14.21 54.39
S2A-Net w/ PECL 80.40 75.51 38.31 65.62 65.93 70.60 69.21 88.97 78.77 69.69 53.13 56.31 52.84 53.29 18.71 62.49

OR-CNN (29) 77.51 69.97 33.06 63.23 68.25 69.09 75.27 88.36 65.87 63.19 52.26 65.89 42.29 45.69 51.72 62.11
OR-CNN w/ PECL 87.07 75.11 37.59 65.78 69.88 72.53 82.44 90.47 77.33 75.82 53.24 65.07 54.58 59.12 50.11 67.74

ReDet (6) 78.75 70.17 32.21 69.76 59.90 67.18 73.86 87.06 66.62 58.84 53.44 56.45 50.91 43.70 35.89 60.32
ReDet w/ PECL 87.23 75.15 42.24 67.21 74.05 73.95 85.42 90.41 84.47 71.95 59.35 57.83 64.48 61.36 45.30 69.36

4 Experiments
4.1 Dataset and setup

Datasets: We conduct experiments on two public aerial datasets, DOTA (27) and HRSC2016 (15),
to evaluate the performance of our proposed PECL. The DOTA (27) dataset consists of 2806 high-
resolution aerial images, where the fully annotated 188282 instances vary in size, aspect ratio and
rotation angle. The dataset has 15 object categories, including plane (PL), baseball-diamond (BD),
bridge (BR), ground-track-field (GTF), small-vehicle (SV), large-vehicle (LV), ship (SH), soccer-ball-
field (SBF), tennis-court (TC), basketball-court (BC), storage-tank (ST), roundabout (RA), harbor
(HA), swimming-pool (SP), and helicopter (HC). To meet the requirement of sparse annotation, we
adopt a novel protocol where we randomly sample 1%, 2%, 5% and 10% of instances for each class
for annotation. While the HRSC2016 (15) dataset contains aerial images with complex backgrounds
and diverse ship objects. The training set and validation set contain 436 and 181 images, while the
test set consists of 444 images. Here 1% and 2% label rates often lead to over-fitting due to the
HRSC2016 dataset is with a small amount of images, thus we only generate sparsely labeled versions
of the dataset with 5% and 10% label rates. All evaluation experiments are conducted on the test set
with the standard mean average precision (mAP) as the performance evaluation metric.

Implementation details: To demonstrate the generality of our PECL, we adopt two-stage detectors,
including ReDet (6) and OR-CNN (29), as well as a one-stage detector, S2A-Net (5), serving as
the baselines. In our experiments, we set the following hyper-parameters: K=10, ξ=1, γ=0.9. The
feature dimension d is set to 1024 for ReDet and OR-CNN, 256 for S2A-Net. Our models are trained
with the mmdetection (4)/mmrotate (39) framework on the DOTA dataset for 12 epochs, and on the
HRSC2016 dataset for 36 epochs. All the experiments are conducted on two NVIDIA 2080Ti GPUs.
For performing the detector optimization, we employ the SGD optimizer with an initial learning rate
of 0.01. The learning rate is divided by 10 at the decay steps: 8 and 11 for DOTA, 24 and 33 for
HRSC2016. The momentum and weight decay are set to 0.9 and 1e-4. The background/foreground
weights are set to 0.3 and 1.0, respectively. The conformal pseudo-label explorer and multi-clue
selection evaluator adopt the SGD optimization with learning rates of 1e-3 and 5e-4, respectively.
The maximum capacity of an experience replay pool is set to 1000.

4.2 Experimental results

DOTA: We present the detection results for the oriented bounding box (OBB) task and horizontal
bounding box (HBB) task on the DOTA (27) dataset, as shown in Table 1 and Table 2, respectively.
In general, our PECL has demonstrated remarkable improvements over different baselines across all

7



Table 2: Performance comparisons of different detec-
tor baselines for the HBB task on the DOTA dataset
at different label rates.

Method mAP(%)

1% 2% 5% 10%

S2A-Net (5) 40.04 42.07 48.84 53.00
S2A-Net w/ PECL 50.67 53.28 57.82 62.57
OR-CNN (29) 49.31 52.91 57.26 63.12
OR-CNN w/ PECL 57.58 57.93 63.74 67.55
ReDet (6) 48.57 52.69 57.93 61.22
ReDet w/ PECL 64.70 67.46 67.76 69.95

Table 3: Performance comparisons of different de-
tector baselines for the OBB and HBB task on the
HRSC2016 at different label rates.

Method

mAP(%)
5% 10%

OBB HBB OBB HBB

S2A-Net (5) 57.90 65.09 68.42 79.23
S2A-Net w/PECL 75.50 75.84 80.65 85.88
OR-CNN (29) 40.90 52.48 55.70 63.22
OR-CNN w/PECL 54.30 62.46 85.50 85.68
ReDet (6) 58.28 69.36 79.66 83.36
ReDet w/PECL 75.10 80.42 87.29 88.57

Table 4: Comparison with state-of-the-art methods for
the OBB task on the DOTA dataset at the 5% label
rate. The detection methods are based on rotated-
Faster-RCNN (∗) and rotated-RetinaNet (†).

Setting Method mAP(%)

Supervised S2A-Net† (5) 48.78

ReDet∗ (6) 56.06

Semi-supervised SOOD† (7) 53.74

Unbiased Teacher∗ (14) 64.74

Sparse-annotated

Calibrated Teacher† (25) 55.81

S2A-Net† w/PECL 57.42
BRL∗ (35) 65.04

Co-mining∗ (26) 65.35

Region-based∗ (19) 65.71

ReDet∗ w/PECL 67.06

Table 5: Performance comparisons of different strate-
gies when selecting pseudo-labels on the DOTA
dataset at the 1% label rate.

Setting Pseudo-label Selection Experience replay mAP(%)explorer evaluator mechanism

I - - - 48.10
II ✓ - - 60.84
III ✓ ✓ - 61.31
IV ✓ ✓ ✓ 63.72

Table 6: Performance comparisons of different ex-
ploratory characteristic designs on the DOTA dataset
at the 1% label rate.

Setting Predicted Feature Confidence mAP(%)probability similarity level

I ✓ ✓ - 60.90
II ✓ - ✓ 61.17
III - ✓ ✓ 62.40
IV ✓ ✓ ✓ 63.72

label rates. For the OBB task, PECL achieves performance gains of 10.25%, 7.55%, and 15.62% at the
1% label rate compared with the baselines, indicating the effectiveness of our approach on different
detectors. Furthermore, it is worth noting that our PECL shows greater performance improvement
in some densely distributed small objects, such as small-vehicle (SV) and ship (SH), compared to
individually presented large objects, such as baseball-diamond (BD) and soccer-ball-field (SBF)
(33.05%, 46.05% vs 9.18%, 6.81% at the 1% label rate with ReDet (6)). This demonstrates that our
PECL takes full advantage of the contextual relationships between instances.
Similarly, for the HBB task, our PECL boosts the performance of the detectors at all label rates,
achieving at least 4.43% improvement. Importantly, as to the ReDet baseline, our sparsely trained
model could achieve a competitive performance to the fully supervised one (69.95% vs 77.47%) by
only using a label rate of 10%.

HRSC2016: We further conduct comparative experiments on the HRSC2016 dataset (15), and the
performance comparisons of our PECL with different detector baselines for two tasks are presented
in Table 3. Overall, our method has brought great improvements across various experimental settings.
At the 10% label rate, our PECL achieves mAPs of 80.65%, 85.50% and 87.29% for the OBB
task, surpassing the baselines with gains of 12.23%, 29.80% and 7.63%, respectively. Similar
improvements are observed at the 5% label rate. These results underscore the effectiveness of
our PECL even on relatively small-scale aerial dataset, further highlighting its efficacy in sparsely
annotated aerial object detection task.

To demonstrate the superiority of our PECL, we further compare it with other state-of-the-art
semi/sparse-supervised methods applied to the sparsely annotated aerial object detection task. To
ensure fairness, all comparative experiments are conducted with ResNet50/ReR50-ReFPN on the
DOTA dataset at the 5% label rate. The results are presented in Table 4. It can be observed that our
PECL achieves the best performance of 67.06% with ReDet as the baseline, surpassing Unbiased
Teacher, BRL, Co-mining, and Region-based by 2.32%, 2.02%, 1.71%, and 1.35%, respectively.
When S2A-Net is used as the baseline, our PECL is 3.68% and 1.61% higher in mAP compared
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Figure 2: Performance comparisons of
different reward settings at various label
rates on the DOTA dataset.
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Figure 3: Loss curves of conformal pseudo-label explorer and multi-
clue selection evaluator under different action spaces at the 1% label
rate on the DOTA dataset.

to SOOD and Calibrated Teacher. The reason may be that our approach can explore high-quality
pseudo-labels by addressing the imbalanced prediction probabilities across different categories in
the aerial scenes, thereby mitigating the limitation of sparse annotation and boosting the detector
optimization.

4.3 Ablation study
We conduct comprehensive ablation experiments to evaluate the performance of our framework under
different settings. All the experiments are conducted with the ReDet baseline on the DOTA dataset at
the 1% label rate for the OBB task, unless stated otherwise.
Effect of each component: As shown in Table 5, we give comparative results with three strategies
when generating an optimal pseudo-label selection policy, including the conformal pseudo-label
explorer, the multi-clue selection evaluator, and the experience replay mechanism. When only using
the conformal pseudo-label explorer, we update the policy using the policy gradient method (22)
and the detector achieves an mAP of 60.84%. It already outperforms the baseline, verifying the
effectiveness of the conformal pseudo-label exploration mechanism. When further adopting the
multi-clue selection evaluator, we can achieve more improvement with an mAP of 61.31%. The
reason may be that the evaluator provides positive guidance for policy optimization. Moreover, the
accumulated experience can alleviate overestimation and bring the best mAP of 63.72%.

Reward setting in the multi-clue selection evaluator: We study the effects of three factors of the
designed instant exploratory reward, including the information entropy (IE), confidence margin (CM)
and value binarization (VB) technique in Eq. (5). As presented in Figure 2, the detection results can
be improved with different factors of the exploratory reward to some extent. These results indicate
that combining information entropy and confidence margin as the exploratory reward is the most
effective way to measure the uncertainty/quality of candidates and evaluate the pseudo-label selection.
Besides, the VB technique ensures the stable convergence for policy optimization, further enhancing
the detection performance.

Exploratory characteristic design in the conformal pseudo-label explorer: To validate the
significance of different characteristics when forming the exploratory characteristic, Table 6 presents
its comparative results with the predicted probability, feature similarity and confidence level. The
predicted probability can measure the accuracy of the candidate, resulting in 1.32% performance
boost. The feature similarity indicates the resemblance of the candidate to the class centers, leading
to a gain of 2.55%. The confidence level reflects the inconsistency between the candidate and the
corresponding prototypes, contributing to 2.82% improvement. These results confirm the rationality
of our characteristic design and emphasize the importance of appropriate exploratory characteristic to
enhance the performance.

Action space in the conformal pseudo-label explorer: We design two sizes of action space (ASS),
namely the dimension of the probability vector obtained by the pseudo-label explorer. For ‘ASS=1’,
the explorer outputs the probability of selecting the candidate, while ‘ASS=2’ gives the likelihood
of the candidate being selected or not. Our approach achieves performance of 60.81% (‘ASS=1’)
vs 63.72% (‘ASS=2’) on the DOTA dataset at the 1% label rate. Moreover, Figure 3 illustrates the
loss curves of explorer and evaluator under different action spaces. We can observe when ‘ASS=2’,
the loss values converge faster and reach lower convergence values compared to ‘ASS=1’. The
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reason may be that ‘ASS=2’ could provide a larger decision space, thereby promoting more flexible
decision-making and improving the exploration capability of the pseudo-label explorer.

5 Conclusion and Discussion

In this paper, we propose a Progressive Exploration-Conformable Learning (PECL) framework to
address the sparsely annotated aerial object detection problem, which can adaptively perform the
conformal pseudo-label exploration from the large-scale unlabeled aerial images. By introducing the
conformal pseudo-label explorer and the multi-clue selection evaluator, we formulate the pseudo-
label exploration as a conformal decision-making problem. It can select these confident pseudo-
labels by considering the specific characteristics of different categories and inter-instance contextual
relationships. Extensive experiments and ablation studies demonstrate the effectiveness of our PECL
framework.

Limitations. This work also has some limitations. The first limitation is that our work is built for
scenes with densely distributed objects, and its performance in general scenes may be suboptimal.
Secondly, the application of reinforcement learning algorithms increases the overall training time. In
the future, we will continue to explore the potential of sparsely annotated object detection and extend
this PECL framework to other weakly supervised detection/segmentation tasks in general/aerial
images to further reduce the annotation costs.
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A Advancing together with big foundation models.

To adapt to the big model era, we adopt big-model CLIP for sparsely annotated object detection task.
The comparisons are shown in Table 7. We observe that direct use of CLIP for pseudo-label inference
cannot cause a large improvement, but additionally adding our PECL boosts the performance greatly.
A possible reason is the difference between aerial images and general images (trained for CLIP).

Table 7: Comparisons after adopting the CLIP model.

Method 1% 2% 5% 10%

ReDet 48.10 51.20 56.06 60.32
ReDet w/ CLIP 54.01 56.33 60.87 62.27
ReDet w/ PECL 63.72 66.58 67.06 69.36
ReDet w/ PECL+CLIP 64.75 67.65 68.36 69.84

B Comparison with SOTA oriented object detection methods.

We have compared with some SOTA oriented object detection methods (e.g., S2A-Net, OR-CNN
and ReDet) in sparsely annotated task, as in Tables 1, 2, 3 of the submitted paper. Here, we add a
comparison with the latest oriented method LSKNet-T on the DOTA dataset at the 5% label rate, as
shown in Table 8. It indicates that our PECL can be well-generalized to SOTA oriented detectors.

Table 8: Performance comparison with SOTA oriented detector as baselines at the 5% label rate on the DOTA
dataset.

Method LSKNet-T LSKNet-T w/ PECL

mAP(%) 58.08 67.89

C Performance comparisons with more label rates setting.

We follow the protocol of previous semi-supervised method (e.g., STAC) to utilize the extreme label
rates of 1%, 2%, 5%, 10%, which actually consider the abundance of objects in aerial images. For
the label rates, e.g., 30%, 50%, 70%, 100%, we also report results on the DOTA dataset in Table 9. It
can be observed that our PECL can bring certain performance improvement under all sparse label
rates, indicating the effectiveness of our method in the sparsely annotated aerial object detection tasks.
However, under the 100% label rate, the performance deteriorates, possibly because the method
introduces other label noise under full supervision, which affects the performance of the detector.

Table 9: Performance comparisons with more label rates.

Method 30% 50% 70% 100%

ReDet 67.48 71.44 72.46 76.25
ReDet w/ PECL 73.03 73.95 74.05 75.18

D Visualization results

The qualitative comparisons of detection results are visualized in Figure 4. We can observe that our
proposed PECL outputs more meaningful and precise predictions than Region-based and the baseline
ReDet on all different tasks and datasets, especially in some densely distributed small instances, i.e.,
plane/ship. But our method seems to be not precise enough in location, which is the future research.
These visualization results demonstrate the superiority of our PECL in SAAOD task.

E Description of prototype loss

Here we describe in detail the prototype loss Lpot in the Eq.(8) of the submitted paper. In our
proposed PECL framework, we construct class-wise prototypes P to provide prior confident guidance
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Figure 4: Some visualized detection results at the 10% label rate. From left to right, each column shows the
results of the ground truth, supervised baseline (ReDet), Region-based, and our PECL. From top to bottom,
each row represents the results of OBB task on DOTA dataset, HBB task on DOTA dataset, and OBB task on
HRSC2016 dataset. The colored rectangles represent predictions. The red dashed circles and the solid red circles
indicate false and missed detections, respectively.

for the subsequent reinforced pseudo-label exploration process. In order to obtain more robust and
representative prototypes, the prototype loss consists of two components, expressed as:

Lpot = Lcont + Lret (9)

where Lcont represents a contrastive learning loss between sparsely annotated instances and proto-
types to distinguish prototypes of different categories, expressed as:

Lcont = − log
exp(cos θyj

i k
j
i
)∑C

c=1

∑K
k=1 exp (cos θck)

(10)

where cos θck = pck · F (xji )T is the cosine similarity between the feature vector of instance xji
and the c-th class k-th prototype, F (·) extracts the feature of the last fully connected layer. kji =

argmaxk{cos θyj
i k
}Kk=1 represents the kji -th prototype of class yji . While Lret is a regularization

term to minimize the distance between the instances and the intra-class prototypes. The term can be
formulated as follows:

Lret = (1− pyj
i k

j
i
· F (xji ))

2 (11)

By applying these constraints, we constantly evolve the prototypes through momentum update method
during the detector optimization. Formally,

pck = αpck + (1− α)F (xji ) (12)

where α ∈ [0, 1] is a momentum coefficient.

F Ablation for prototype number

The number K determines the number of class centers and the size of the calibration set used for
confidence level, greatly affecting the subsequent reinforced pseudo-label exploration process. We
present the performance comparisons of different prototype numbers on DOTA dataset at the 1% label
rate in Table 10. It could be observed that when K = 10, the detector performance reaches the best
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63.72% mAP. WhenK=5, the performance decreases, but it is still a considerable performance. When
K rises to 50, it brings a certain degree of drop. We believe that it may be due to the redundant class
centers, or sparse annotation that cannot learn prototypes well. Therefore, K=10 can better represent
the probability distribution of classes, calculate the confidence level of candidates, and construct better
exploratory characteristic, bringing balance between representation and computational complexity.

Table 10: Performance comparisons with different numbers of prototypes for each class at the 1% label rate on
the DOTA dataset.

K 5 10 20 50

mAP(%) 61.77 63.72 62.91 63.18
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We focus on the problem of sparsely annotated aerial object detection task, i.e.,
the Conformal Pseudo-label Explorer and Multi-clue Selection Evaluator are elaborated in
Sec. .3.2.1 and Sec. .3.2.2. We provide extensive quantitative and qualitative experimental
results in Sec. .4 and Appendix .F, .B, .C, .A. In addition, the visualization results are
shown in Sec. .D.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [NA]

Justification: The paper has no limitation.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the implementation details in Sec. .4.1. In addition, the codes will
be released after the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: No codes are included in this submission, but the codes will be publicly
available when paper is accepted.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are described in Sec. .4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We conducted a large number of statistical experiments and published the most
stable results. The results of some of the comparative experiments come from published
work in the field. We have reproduced them and obtained consistent results, proving that our
experimental results are real and credible, and that the experimental comparison is fair.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resources are described in Sec. .4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurlIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The open source code framework and dataset used in this study is introduced
in Sec. .4.1.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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