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Abstract

Explaining black-box models for time series data is critical for the wide-scale
adoption of deep learning techniques across domains such as healthcare. Recently,
explainability methods for deep time series models have seen significant progress
by adopting saliency methods that perturb masked segments of time series to
uncover their importance towards the prediction of black-box models. Thus far,
such methods have been largely restricted to regular time series. Irregular time
series, however, sampled at irregular time intervals and potentially with missing
values, are the dominant form of time series in various critical domains (e.g.,
hospital records). In this paper, we conduct the first evaluation of saliency methods
for the interpretation of irregular time series models. We first translate techniques
for regular time series into the continuous time realm of irregular time series and
show under which circumstances such techniques are still applicable. However,
existing perturbation techniques neglect the timing and structure of observed
data, e.g., informative missingness when data is not missing at random. Thus,
we propose Contimask, a simple framework to also apply non-differentiable
perturbations, such as simulating that parts of the data had not been observed using
NeuroEvolution. Doing so, we successfully detect how structural differences in the
data can bias irregular time series models on a real-world sepsis prediction task
where 90% of the data is missing. Source code is available on GitHub.

1 Introduction

Deep learning promises to change the analysis of time series data across various domains, including
healthcare, economics, ecology, or physics. To enable the broad-scale application of deep learning
models in these domains, model internals have to be verifiable. Suggestions made by models
must become explainable for humans using them, which has become the challenge of the field of
explainable AI (XAI). Especially in fields such as healthcare, where models could be used to assist
patient treatment, human-level explainability is vital to enable impactful broad-scale application [9].

Explainability methods for deep learning initially surged for image models [6, 38, 31], and have seen
some recent progress for time series [13, 14, 4, 5, 22]. Methods for explaining time series models
initially translated masking and perturbation techniques from the image domain to the realm of time
series [4, 5] and extended them to create more realistic perturbations that more naturally imitate time
series [14]. So far, these methods have only focused on regularly sampled time series, i.e., samples
arrive at equally spaced intervals and without missing values.

However, in many domains, time series data arrive at irregularly sampled intervals since data is
often only generated in response to a specific event. For example, in healthcare, the physician
and the state of the patient’s health determine when data is collected so that hospital resources
are not wasted [9]. Similarly, in mobile and wearable computing, signals might only be partially
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Figure 1: a) for regular time series, the timing of observations is fixed. Counterfactual examples thus
simulate different values for existing timestamps. b) for irregular time series, counterfactual examples
can take many different forms. They might simulate different values for existing timestamps, change
the timing of observations, remove observations all together or simulate additional observations.
Contimask adopts methods from regular time series to simulate different values of observed data. We
further introduce a perturbation to simulate that data had not been observed, which helps to uncover
the importance of time intensity and missing data, which is neglected by current methodologies.

measurable [16, 18, 17, 1]. In such scenarios, data is not missing at random, and missing data and the
time interval between data collection can be informative. Irregular time series models are capable of
not only considering observed data, but also informative missingness (also called time intensity) [8].
These models showed particular success for modeling hospital and general practitioner (GP) records,
where up to 90% of data might be missing, and data is generally sparse [8, 9, 33].

In scenarios such as the ones described above, it is of particular importance to verify model internals.
Take the example of hospital records: does the model simply predict that a patient will have a certain
disease because a physician ordered a related test? In this case, the model would be of little use in
practice. However, if information collected way before the treating physician’s diagnosis is already
contributing towards the model’s prediction, the model might be a useful aid to improve patient care.

Logically, since the timing of observations is fixed for regularly sampled time series, existing masking
and perturbation techniques to explain time series models ignore the timing of observations (see
Figure 1). This poses an issue when trying to explain models for irregular time series when data is
not missing at random, such as in the cases described above.

In this paper, we investigate techniques to calculate saliency maps for irregular time series models.
We identify scenarios where adopting perturbation techniques for regular time series work well for
irregular time series, and conditions under which they fail to recover the true saliency. We then
propose Contimask: a framework applying non-differentiable perturbations to irregular time series
data to uncover also saliency connected to the timing/missingness of data. Contimask operates in
the continuous time realm of irregular time series and utilizes NeuroEvolution to train masks that,
besides altering observed data points, simulate that data had not been observed.

Contributions To the best of our knowledge, Contimask is the first method to calculate saliency
maps for irregular time series models without access to model internals and to apply non-differentiable
perturbations that alter the timing and structure of data. Doing so, we are able to explain also models
where missingness influences predictions—common for irregular time series. In summary, we

• propose a novel perturbation for irregular time series that simulates that data has not been observed,

• propose a novel method that uses NeuroEvolution to apply also non-differentiable perturbations,

• show that small networks in continuous time are more effective to calculate saliency maps for
irregular time series—especially if one incorporates Fourier feature activations, and

• showcase on a real-world prediction task how irregular time series models pick up structural biases.
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2 Background & Related Works

2.1 Irregular Time Series

Irregular time series differ from regular time series in that observations are not collected at uniform
time intervals, and not all channels of the time series have to be observed at all times, i.e., missingness.
This format is prevalent in many real-world applications such as healthcare, where data is collected in
response to events rather than on a fixed schedule, and not always the same information is collected.

Understanding and modeling these gaps is critical for downstream tasks. Consequently, any frame-
work for interpreting or predicting from irregular time series must account not only for the observed
values but also for the timing and structure of data (and the structure of missing data).

Notation To formalize the setting of irregular time series, we unify well-established notation [8]
that ultimately represents the nth element of a dataset D as a triplet (tn, xn, dn). We assume a
supervised setting, where we have some black-box function f that maps elements of D to labels y.
Therefore, D = {(sn, yn) | n = 1, . . . , N} is a dataset with N elements. An individual element has
a label yn and a sparse and irregularly sampled multivariate time series with C channels, say sn.

The C channels of the multivariate time series sn might be sampled at different times, leading to
varying numbers of total observations per channel: Lcn. Each channel c of time series sn can thus be
noted as scn = (tcn, xcn), where tcn = [t1cn, . . . , t

Lcn
cn ] and xdn = [x1

dn, . . . , x
Ldn

dn ] are the list of time
points and corresponding observations of channel c of element {sn, yn} ∈ D. Ultimately, to transform
the time series into a triplet of tensors (t, x, d)n = (tn, xn, dn), we let tn =

⋃C
c=1 tcn ∈ R|tn| contain

the sorted unique time stamps across all channels. We let xn ∈ R|tn|×C combine all observed values
across all C channels, and dm be a binary data mask indicating if channel c has been observed:

xn(i, c) =

{
xj
cn if tjcn = t

(i)
n

nan otherwise
, dn(i, d) =

{
1 if ∃ j such that tjcn = t

(i)
n

0 otherwise
.

Model Architectures Almost all models for irregular time series involve some level of smoothing
or interpolation—either on raw data or derived hidden representations. These models are designed to
handle the non-uniform sampling and potential missingness inherent in irregular time series. Earlier
techniques used Gaussian Process Adapters [12], or learned both high- and low-frequency smoothing
functions [26]. Oftentimes, such approaches would later discretize the time axis again and simply
extract representations interpolated in continuous time at some fixed reference points [12]. Currently,
the majority of irregular time series models fall into two main architectural families:

Continuous-time recurrent units: These include Neural Ordinary, Controlled, and Stochastic
Differential Equations (NODEs [2], NCDEs [8], and NSDEs [20]). These approaches generalize discrete
recurrent neural networks (RNNs) and model hidden states in continuous time using differential
equations, or using a continuous-time Kalman filter [24].

Encoder-decoder models with multi-time attention: Multi-time attention (mtan [28]) leverages
attention mechanisms that operate across irregular timestamps. mtan [28], and adoptions thereof,
have been particularly successful at interpolating irregular time series [3, 27, 37].

2.2 Post-hoc Instance-Level Explanation

In this paper, we attempt what has been termed “Post-hoc Instance-level Explanation” [14]. Originally
concerned with image classification, such methods have the goal of explaining the prediction of an
arbitrary black-box model f for a single input: e.g., explaining why the provided image of a dog is
indeed classified as a dog [29]. The output of such methods is often described as a saliency map [38].
Such maps highlight the parts of the input that are deemed important towards the prediction [31].

The earliest explainability methods tracked representations and/or gradients through the consecutive
hidden layers of the network [38, 29, 31], many requiring access to intermediate layers or architectural
modifications [6]. This was followed by approaches that modified parts of the input, observing
changes in the prediction of f to detect areas of importance [6]. Many of the current explainability
methods for regular time series focus on the objective introduced by Fong and Vedaldi [6]:
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For simplicity, we will ignore the previously defined irregular time series triplet for now, and note any
model inputs as x, i.e., we aim to explain some black-box f : X → Y . Further, let m ∈ [0, 1]dim(x)

be a soft mask and Φ(x,m) a perturbation of x. Then, Fong and Vedaldi [6] optimize the following
objective (excluding some further penalty terms on m):

min
m

L(f(x), f(Φ(x,m))) + λ∥1 −m∥1, (1)

where L is some loss function encouraging large perturbations that only minimally affect f(x).

2.2.1 Explanations for Regular Time Series

Most works on time series explainability are based on the objective defined by Fong and Vedaldi [6],
where m is learned via gradient descent due to the problem being differentiable (given that f is itself
differentiable). Earlier works are FIT [36] and DynaMask [4], who also introduced crucial artificial
benchmark problems. While FIT tracks the predictive distribution of f over time to estimate feature
importance, DynaMask translates the objective defined in Eq. 1 to the realm of time series. Motivated
by Fong and Vedaldi [6], Crabbé and Van Der Schaar [4] introduce a penalty on the total variation of
m, encouraging smoothness and optimizing for m to cover a set proportion a ∈ (0, 1) of x.

min
m∈[0,1]T×c

L(y, f(Φ(x,m))) + λ1||vecsort(m)− ra||2 + λ2

T−1∑
t=1

C∑
i=1

|mt+1,i −mt,i|, (2)

where x ∈ RT×C is a fully observed time series of length T with C channels, m ∈ [0, 1]T×C , ra is
a sorted vector with the same number of entries as m with the desired proportion a being equal to 1
(otherwise 0), which encourages sharp masks that cover proportion a of x.

Dynamask proposes two main perturbations for time series: a Gaussian blur ΦGB and fading to a
moving average ΦFMA. Both perturbations are applied independently for each channel c:

ΦFMA(x,m)t,c =mt,c · xt,c + (1−mt,c) · µt,c, (3)

ΦGB(x,m)t,c =

∑T
t′=1 xt′,c · gσ(mc)(t− t′)∑T

t′=1 gσ(mt,c)(t− t′)
, (4)

where gσ(t) = exp
(
− t2

2σ2

)
with σ(m) = σmax · (1−m), µt,c =

1
2W+1

∑t+W
t′=t−W xt′,c, and W ∈ N

is a sliding window size.

Works like ExtremalMask [5], TimeX++ [13], and ContraLSP [14], have replaced closed-form
perturbations by small RNNs to learn perturbations Φ(x,m, θ), where θ parametrizes a RNN. This
led to perturbations imitating the original data more closely and improved the resulting saliency maps.

2.3 Explainability Methods for Irregular Time Series

Currently, there exists no method for post-hoc instance-level irregular time series explanation. Even
though TimeX [22], a self-supervised pre-training strategy to detect explanations via consistency
constraints in the latent space, can be adopted to work for methods such as mtan, it requires access to
model internals. Further, it does not work for architectures such as NCDE due to the CDE solve.

2.4 NeuroEvolution

Gradient descent is the predominant optimization technique to ‘learn’ the parameters of neural
networks, say f . Techniques such as Adam [10] or Stochastic Gradient Descent (SGD) [23] require
f to be differentiable, and the objective f is trying to optimize using f to be differentiable also.
NeuroEvolution on the other hand, does not require f or the objective to be differentiable and thereby
is capable of solving a much larger set of problems [7]. While NeuroEvolution is evidently slower,
and at times, less reliable than gradient descent, recent work demonstrated state-of-the-art MNIST30K
performance using NeuroEvolution [11]. In comparison to Neuroevolution, Adam and SGD operate
at light speed. However, they require the objective to supply gradients, i.e., to be differentiable.
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3 Methods

Our approach Contimask makes a step towards post-hoc instance-level explanations for irregular
time series models to also detect saliency dependent on missingness and time intensity. Such methods
alter, i.e., perturb, the input based on some learned mask m and observe changes in model output.
Loosely speaking, if part of the input can be altered greatly without changing the model output, such a
region is considered uninformative (i.e., non-salient) towards the prediction of the model. Conversely,
if small changes in some regions have a large effect on model output, such regions would be deemed
informative (i.e., salient) towards the prediction of the model. All current approaches for explaining
time series models only change the value of observed data and ignore the timing/presence of data as a
possible explanation. For irregular time series, the action space of producing viable counterfactual
examples is much larger than for regular time series (see Figure 1). Since for regular time series the
timing of data is fixed (and thereby the fact that data was observed), only the value of observed data
can be altered. A counterfactual example of irregular time series might include different timing of
data points, different values of observed data points, data might be missing altogether, or additional
data might have been observed. We strive that our approach generalizes to any black box function f
and does not require access to or specific knowledge of the model internals.

Finding a saliency map in continuous time Following notation from [6, 4, 5], we optimize
the following objective for some black-box model f that takes as input a triplet (tn, xn, dn) ∈ D
as defined in Section 2.1. Assume we are trying to explain f(tn, xn, dn), where |tn| = T , and
xn ∈ RT×C is a time series with C channels, and therefore dn ∈ [0, 1]T×C , where xn might include
missing values that are marked with a 0 in dn, non-missing entries are denoted by 1 in dn. In contrast
to prior work, we define m : R → [0, 1]C as a function operating in continuous time. Provided some
perturbation Φ, and a loss function L, we optimize:

min
m

L(f(tn, xn, dn), f(t̃n, x̃n, d̃n)) + λ1

∑
C

∫ T

0

(1−m(u)c)du+ λ2

∑
C

∫ T

0

|m(u)′c|du, (5)

where (t̃n, x̃n, d̃n) = Φ((tn, xn, dn),m). Similarly to Eq. 1, we are trying to maximize the area
covered by m while ensuring m is somewhat smooth and minimizing changes in model output.

We adopt ΦGB and ΦFMA as used in DynaMask to the setting of irregular time series, i.e., where m
is a function in continuous time and x includes missing values as indicated by the binary mask d:

ΦFMA
(
(t, x, d), m

)
i,c

=

(
ti,

{
m(i)c xi,c + (1−m(i)c)µi,c if di,c = 1,

xi,c if di,c = 0,
, di,c

)
, (6)

ΦGB
(
(t, x, d), m

)
i,c

=

(
ti,


∑T

t′=1 xt′,c · gσ(m(t)c)(i− t′)∑T
t′=1 gσ(m(t)c)(i− t′)

if di,c = 1,

xi,c if di,c = 0,

, di,c

)
. (7)

where gσ(i) = exp
(
− i2

2σ2

)
with σ(m) = σmax · (1 −m)and µi,c = 1

2W+1

∑i+W
i′=i−W xi′,c, where

W ∈ N is a sliding window size. Note that t and d remain unchanged, and only the value of the
observed data (x) is altered. Please find visual examples of these perturbations in Appendix A.1.

A perturbation that alters the structure of observed data We further introduce a simple, yet
effective, data perturbation that removes data points, i.e., simulates that data points had not been
observed. We refer to this perturbation simply as the Deletion-perturbation—Del in short. This
forms the first perturbation to also affect d of our triplet (and potentially t):

ΦDel
(
(t, x, d), m

)
i,c

=

{
(ti, xi,c, di,c) if Ber(m(i)c) = 0

(ti, nan, 0) if Ber(m(i)c) = 1
(8)

Here, Ber(p) denotes the sample from a Bernoulli distribution with probability of success equal to p.
If Ber(m(i)c) = 1, Del therefore alters x and d. Effectively, in case there are time points for which
all data is being removed, t is also being altered. We ignore this scenario in the above notation.
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Non-differentiability of perturbations that alter the structure of data Without knowledge of the
specific model internals, simulating that data had not been observed is non-differentiable w.r.t. the
applied perturbation mask m, since this requires m to be a hard mask (i.e., a binary or boolean mask).
This holds true for all perturbations that affect the structure of the data, i.e, that affect not just x, but
also d, or the order of t, With access to and exact knowledge of model internals, deletion of data
can be simulated for mtan models or, partially, also for models such as NCDE (see Appendix A.2).
Perturbations that alter the timing of data or insert new data points (see Fig. 1) will face similar issues.
Therefore, Contimask relies on gradient-free optimization to learn mask m.

We learn m using NeuroEvolution and employ the PGPE algorithm [25, 7] as implemented in
EvoTorch [35] using the ClipUp optimizer [34]. While NeuroEvolution gets around the issue of
non-differentiability, it trains much slower, which we discuss more extensively in Appendix A.3.

Perturbation masks as functions in continuous time We define saliency, and the mask we are
trying to construct in continuous time. Rather than optimizing for a tensor m ∈ RT×C , we learn
m(t) : R → [0, 1]C as a small feedforward neural network. We show that this reduces the required
number of parameters to accurately define m and, particularly when employing NeuroEvolution,
leads to better performance and faster training. To learn m, we evaluated various small network archi-
tectures. Beyond a 3-layer MLP with ReLu activations, we evaluated architectures that incorporated
feature transformations to create sharper masks. In particular, we tested sinusoidal representations
(SIRENs) [30], Haar functions [21], and Fourier feature transformations [32]. We ultimately opted for
Fourier feature transformations given performance on initial baselines (Table 1) and proven success
on images [15]. In this paper, MT implies m ∈ RT×C , whereas MLP implies m(t) : R → [0, 1]C .

MLPs with and without Fourier feature transformations We term the small MLP with Fourier
transformations MLP-F. Given a scalar input t, MLP-F applies a fixed encoding using L exponentially
spaced Fourier frequencies, transforming the input into a 2L-dimensional feature vector composed of
sine and cosine terms. If not stated otherwise, we set L = 10, such that:

γ(t) =
[
sin(2kπt), cos(2kπt)

]L−1

k=0
.

These features, γ(t), are then passed through a MLP with three linear layers and ReLU activations,
mapping to an output of dimension C. When we refer simply to MLP, we feed a scalar input t straight
into three linear layers with ReLU activations. We use a final sigmoid layer such that m(t) ∈ [0, 1]C .

4 Evaluation

We consider 5 problem settings. We first convert two commonly used synthetic scenarios for regular
time series explanations into the continuous time setting. Termed ‘Rare Time’ and ‘Rare Feature’ by
Crabbé and Van Der Schaar [4], they depend on a low number of salient times and a low number of
salient features, respectively, and form scenarios that saliency methods have traditionally struggled
with [22, 13, 14]. The original versions of these two artificial problems depend on the value of
observed data. We will refer to this setting as value-based, i.e., the function that we are trying to
explain depends on the element x of our triplet defined in Section 2.1. We then adapt these two
scenarios and create two problem settings, where the value of observations (i.e., x) does not impact
the output of the function we are trying to explain, but only the timing of data, i.e., t. We refer to this
setting as a temp-based. We finish by explaining a model trained on a common problem for irregular
time series models: sepsis prediction from hospital records based on [8].

Rare Time & Rare Feature In these two artificial problems, we create white-box regressors that
only depend on a salient area, say A = AT ×AX , where AX ⊂ [1 : C]. While in the regular time
series settings, AT ⊂ [0 : T ], we define AT ⊂ [0, 1] again in continuous time.

In the Rare Time scenario, we consider 100 randomly sampled time points in the interval [0,1] and
3 channels. At each iteration of the experiment, we sample a random location for each of the three
channels to define our salient area. The salient area covers 20% of the first channel, 10% of the
second, and 45% of the third. In the Rare Feature scenario, we sample again 100 time points but
simulate a time series with 50 channels. For each iteration, we randomly sample 5 consecutive
features that are the only salient ones, and we set AT = [0.25, 0.75] in all cases.
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For both scenarios, as per [4], the output of the white-box regressor is
∑

(t,c)∈A x2
t,c.

Temp-based settings We adapt the previously defined scenarios and change the white-box regressor
to
∑

(t,c)∈A 1, i.e., we count all data points in A such that the output is only dependent on t.

Sepsis prediction We train a NCDE and mtan model on the sepsis prediction task as implemented
by Kidger et al. [8]. We then take these models, and apply the Del, FMA, and GB perturbations to train
MLP-F masks to cover 10% of the observed data to explain two cases: one where the model is initially
confident that a patient will die of sepsis within the first 72 hours in the hospital; and one where the
model is initially confident of survival. We only explain cases on the test set (5.4% mortality). In
addition to static variables (i.e. fixed over time), 34 features were sampled irregularly over 72 hours
at 1 hour resolution with ≈ 90% missing values.

Since the NCDE model trained by Kidger et al. [8] takes as input cubic spline coefficients rather than
the irregular time series triplet (Section 2.1), we first have to reconstruct the test set from the spline
coefficients. At each iteration, we then apply our perturbations on the reconstructed data, calculate
the new cubic spline coefficients, and feed those into the model to observe the change in prediction.
Recalculating the coefficients for a single evaluation is very slow (30 s on H200 GPU). Therefore, we
train smaller MLP-F masks with a hidden dimension of 16, and L = 12 Fourier features for only 200
epochs using PGPE and limit ourselves to two participants with low and high probability of sepsis.
While the mtan model operates directly on the irregular time series and is therefore much faster to
explain, we stick to above settings for fair comparability. vram

Metrics For the Rare Time & Rare Feature settings, ground truth saliency maps are available.
We calculate the F1 score (F1), Precision (Prec), and Recall (Rec) for correctly identifying these
maps, using a threshold of 0.5 to binarize masks. However, masks are usually already binary, as
also indicated by very low Sm values, especially for MLP-F masks. Further, we calculate metrics
introduced in [4]: Im(A) = −

∑
(i,c)∈A ln(1−m(i)c) to capture the information content of mask

m over the salient area A (higher is better), and Sm(A) = −
∑

(i,c)∈A m(i)c lnm(i)c + (1 −
m(i)c) ln(1−m(i)c) to measure the sharpness of the mask over A (lower is better).

For sepsis prediction, we calculate the average change in log-odds as the main metric. To allow for a
fair comparison between Del, which removes data, and FMA and GB, which only alter the value of
observed data, we calculate two metrics for each mask m. First, we apply Del based on the output of
m to observe the change in predictions, which we term ‘Del odds change’. Second, we impute 0 for
all data points suggested by the trained mask, similar to [4, 5], which we term ‘Imp odds change’.
Note that as per [8], all features are normalized, i.e., imputing 0 inserts the mean feature.

Experiment setup We run all experiments using an H200 GPU needing at most 8GB of VRAM.

5 Results

In Table 1 we show how gradient descent and gradient-free training via NeuroEvolution compare
for the value-based Rare Feature problem when applying the FMA perturbation. Here, we compare
different mask parameterizations, all with similar parameter count close to 5,000. We set λ1 =
0.01, λ2 = 0.001 and train for 16,000 epochs using an Adam optimizer with a learning rate of
0.01, or 2000 iterations using the PGPE optimizer with a population size of 100. For PGPE, we
initialize with a radius of 3, and a center learning rate of 0.5 (±0.3). While MLP and MLP-F have not
yet meaningfully converged after 16,000 iterations, MT achieves an almost perfect F1 score using
gradient descent. However, when training using NeuroEvolution, MLP and MLP-F outperform MT,
even outperforming the gradient descent training. We provide a more detailed comparison between
the different training strategies, and how parameter count influences convergence and computation
cost in Appendix A.3. Since MLP-F consistently outperforms MLP, we chose MLP-F in all subsequent
problems with a hidden layer size 32 and L = 10, resulting in a parameter count of 3,400.

In Table 2, we compare different perturbations to train masks parameterized by MLP-F using Neu-
roEvolution for the value-based and temp-based problem. We use the same settings for the PGPE
algorithm as before, we identify the optimal values for λ1 and λ2 (Eq. 5) based on a broad-sacle
grid s.t. λ1 = 10λ2 or λ1 = 100λ2. The optimal parameters are reported in Appendix A.4. While
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Gradient Decent NeuroEvolution

Mask F1 ↑ Prec ↑ Rec ↑ I ↑ S ↓ F1 ↑ Prec ↑ Rec ↑ I ↑ S ↓
MLP 0.192 0.419 0.131 189 48.235 0.534 0.522 0.582 2387 2.050
MLP-F 0.250 0.796 0.167 268 79.126 0.622 1.000 0.452 1877 0.218
MT 0.978 1.000 0.957 335 238.789 0.219 0.147 0.436 449 134.712

Table 1: Comparison of different mask parameterizations and whether they are learned using gradient
descent or NeuroEvolution. Performance is compared on the Rare Feature Dataset using differentiable
perturbations as proposed in [4], averaged across 10 runs. The mask tensor (MT) has 5,000 entries
(50 features × 100 time points). The hidden dimensions of MLP and MLP-F are scaled to approx.
the same number of parameters, resulting in 4,914 and 4,898 parameters, respectively.

all three perturbations perform similarly for the value-based setting, Del, unsurprisingly, clearly
outperforms FMA and GB for the temp-based setting, being the only perturbation to detect saliency that
is solely based on t. Similarly, in Table 3, we observed comparable performance for perturbation FMA
and Del for the value-based setting, yet a complete failure to detect saliency for perturbations FMA
and GB in the temp-based setting. We generally observe lower F1 scores for the Rare Time setting
than the Rare Feature Problem, indicating slightly higher difficulty.

Value-based Temp-based

Perturbation F1 ↑ Prec ↑ Rec ↑ I ↑ S ↓ F1 ↑ Prec ↑ Rec ↑ I ↑ S ↓
GB 0.556 0.973 0.430 1786 0.004 0.000 0.000 0.000 0 0.000
FMA 0.638 0.774 0.557 2311 0.066 0.000 0.000 0.000 0 0.000
Del (ours) 0.891 0.967 0.851 3533 0.004 0.982 0.967 1.000 4152 0.004

Table 2: Method comparison on the Rare Feature Dataset across 10 runs using MLP-F masks.
Examples of fitted masks are included in Appendix A.7.

In Table 4, we compare the explanations of MLP-F masks for the real-world sepsis prediction task.
We trained an NCDE [8] and mtan [28] model for the sepsis task proposed in [8]. Both models which
achieves a binary AUC of roughly 0.90 on a held-out test set (the same 20% split as per [8]). We
compare the change in log-odds when perturbing ≈ 10% of the observed data points that are indicated
as important by the respective MLP-F mask. We train masks using an adapted version of Eq. 5, where
we penalize not the total area covered by the mask but the deviation from the 10% of observed
data (see Appendix A.5 for details). Since returned masks usually cover a larger area than 10%, we
randomly sample them down to the desired 10%. We again start a grid search for different optimal
penalty weights (λ1 and λ2 in Eq. 5), starting with very high values of λ1 (we set λ2 = 0.1λ1 or
λ2 = 0.01λ1). We iteratively reduce λ1 and λ2 by a factor of 10 until the resulting mask perturbs at
least 10% of the observed data. Selected hyperparameters are outlined in Appendix A.8. An ablation
study shows the effect of different values for λ1 and λ2 for the sepsis prediction task using the mtan
model in Appendix A.6. Since evaluations of the NCDE model require calculating spline coefficients
for every new perturbation, explaining NCDE models is very slow. The mtan model operates on ‘raw’
data without requiring additional calculations, and evaluations are much faster. When explaining a
prediction made by either model, we observed a difference in speed of around 70x. For the NCDE
model, we train the PGPE optimizer for only 200 iterations with a population size of 50, which brings
a single run down to roughly 2 hours using an H200 GPU. The same process takes less than 2 minutes
for the mtan model. We discuss computational speed in Appendix A.3 and A.8.

For the NCDE model, we explain the predictions for 50 participants of the test set (25 who were
predicted to become septic and 25 who were predicted not to become septic). For the mtan model, we
explain a total of 200 predictions for the 100 participants with the highest and lowest probability of
becoming septic, respectively. We find that Del clearly outperforms FMA and GB for patients who are
predicted to develop sepsis. Generally, all perturbations perform much better explaining Pred: Sepsis
cases, i.e., where the model predicts sepsis. For cases that are predicted to not develop sepsis, value
altering perturbations outperform Del. For predictions made using the mtan model, we investigate
the explanations made using Contimask more closely in Section 5.1.
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Value-based Temp-based

Perturbation F1 ↑ Prec ↑ Rec ↑ I ↑ S ↓ F1 ↑ Prec ↑ Rec ↑ I ↑ S ↓
GB 0.336 0.794 0.283 396 0.003 0.000 0.000 0.000 0 0.000
FMA 0.747 0.997 0.600 840 0.001 0.000 0.000 0.000 0 0.000
Del (ours) 0.692 1.000 0.531 744 0.001 0.248 1.000 0.147 206 0.001

Table 3: Method comparison on the Rare Time Dataset across 10 runs using MLP-F masks. Examples
of fitted masks are included in Appendix A.7.

mTAN NCDE
Pred: Sepsis Pred: No Sepsis Pred: Sepsis Pred: No Sepsis

Perturbation Del ↑ Imp ↑ Del ↑ Imp ↑ Del ↑ Imp ↑ Del ↑ Imp ↑
GB 4.41 10.45 6.29 11.80 0.25 0.26 4.01 4.05
FMA 4.16 3.41 7.26 7.19 0.26 0.23 5.15 5.16
Del (ours) 7.88 2.26 4.57 5.90 4.97 0.21 2.72 3.94

Table 4: Comparison of perturbations using Contimask for Sepsis prediction from ICU data [8] using
an MLP-F mask. We train an mTAN [28] and NCDE [8] model for the sepsis prediction task and
explain predictions on the left-out test set. For mTAN, we investigate the 100 cases with the highest
and lowest predicted probability of developing sepsis. For NCDE, we only investigate 25 cases each.

5.1 Case Study Table 5: Retention and sepsis-related imbal-
ance for the 6 features removed most often by
Del-perturbation for mtan sepsis predictions

Feature Retention (%) Imbalance

Age 79.12 1.00
Height 79.82 1.00
AST 80.63 1.52
ICUType 81.96 1.00
ALP 82.04 1.44
Cholesterol 83.00 1.43

For the Sepsis prediction task using the mtan model,
we further investigated the results of fitted masks. We
display 4 examples in Figure 2. Table 5 showcases
the 6 features that were removed proportionally most
often for a participant that was predicted to develop
sepsis by the mtan model. Interestingly, these are
mainly static features (age, height, ICUType), or fea-
tures that are up to 52% more likely to have been
recorded for a patient that later becomes septic (Im-
balance). We include a full table in Appendix A.9
Table 13. Retention indicates how often a feature was
retained after applying the learned Deletion mask. Since not all signals are recorded for all patients,
there is the possibility of structural differences in the data between patients who develop sepsis and
patients who do not. Examples of this might include blood markers that are only relevant to monitor
if the treating physician believes that the patient is at a high risk of developing sepsis. The value in
the Imbalance column indicates how much more likely a patient who later developed sepsis is to have
any observation of that specific feature, highlighting the potential of bias related to this particular
feature. A value greater than 1 indicates that this feature is recorded more often for patients who later
become septic. Troponin I, a bloodmarker often used to test for sepsis, has the highest Imbalance
with a value of 2.6. AST, ALP, and Cholesterol are among the next most imbalanced features, and are
indicated to strongly influence predictions by the mtan model. This indicates that the mtan is highly
influenced by decisions of treating physicians about whether to monitor certain features, which might
be highly indicative of whether a patient is at risk of becoming septic. If this is indeed the case, such a
model would be of little use in practice as it simply confirms the decision of a treating physician. The
capability of irregular time series models to incorporate the structure of the data into the prediction
can therefore also become an issue and introduce bias.

6 Discussion

We show that to explain irregular time series models, existing techniques for regular time series are
only partially sufficient. We propose the Contimask framework, where we learn masks parameterized
as small feed-forward networks with Fourier feature transformations using NeuroEvolution. Within
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Figure 2: Example masks fitted to 4 participants predicted to develop sepsis. Observed features that
are not affected by the perturbation are marked in yellow. Green dots are removed by the fitted mask.

this framework, we are able to uncover saliency that is based on the structure of the data, such as time
intensity informative missingness, via our novel Deletion perturbation, where we simulate that data
had not been observed. While our Deletion perturbation is non-differentiable (as any perturbation
that alters the structure of the observed data), it clearly outperforms differentiable perturbations on
toy datasets and sepsis predictions on real-world data. In particular, existing techniques for regular
time series fail if the saliency is not dependent on the value of observed data, which Contimask
using Deletion is able to detect. As indicated by the strong performance of Contimask using the
Deletion perturbation when explaining a model for sepsis prediction, missingness and the structure
of data are important to explain irregular time series models operating on hospital records. We find
particular evidence of irregular time series models picking up on structural differences in the data
introduced by decision of the treating physicians, which might introduce dangerous biases.

The applicability of Contimask is limited based on the model family that is being explained: while
some architectures (e.g., mtan) are much quicker to explain, explaining NCDE models is particularly
challenging given the repeated fitting of cubic splines. Further, Contimask is limited in its ability to
incorporate learned perturbations similar to [5, 13], where more fine-tuned perturbations improve
explanations, since NeuroEvolution does not scale as well as gradient descent. In practice, we have
found that the slower speed of NeuroEvolution makes it more difficult to obtain stable results. Thus,
improved NeuroEvolution strategies might lead to improvements in speed and also accuracy.

We thereby conclude that the development of novel post-hoc explanation tools for irregular time series
is crucial to foster more broad-scale application of irregular time series in critical domains such as
healthcare, where data is not missing at random. In such scenarios, it is critical to assess if the model
is indeed useful in practice or has picked up biases that might also arise from informative missingness.
Existing techniques for regular time series are not sufficient, and perturbations truly imitating irregular
time series are needed for better model explanations. However, one of two advancements is necessary
to increase the applicability of such explainability methods: Either, 1) advancements on differentiable
perturbations that uncover similar patterns such as our introduced Deletion perturbation, or 2)
advancements of existing NeuroEvolution methods to speed up the learning of masks such as the
ones used in Contimask are needed. Since the latest generative models for irregular time series are
not capable of altering the timing and structure (i.e., missingness) of data [19], generating more
diverse counterfactual examples in a differentiable manner still remains a very difficult problem.
Tailoring NeuroEvolution techniques to train masks for 2D problems more efficiently might be a
more promising route for future work.

Further work is needed to combine value-altering and structure-altering perturbations into a single
framework. Existing techniques for regular time series might be able to pick up saliency that
Contimask using the Deletion perturbation is not, as also indicated by our results for sepsis-negative
cases where value-altering perturbations performed best.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our contributions are accurately listed.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We clearly communicate the limitations of our work in terms of compute and
required tuning of hyperparameters.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We do not provide theoretical proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our Methods and Evaluation Sections allow for clear reproducibility. Even
without our provided code, implementing our method is straightforward.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We publicly share our code and all data is either synthetically created as
part of the code we provide or publicly available online and we provide the download and
processing scripts.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly outline the tests we conduct, and how we tuned hyperparameters.
Even without our code, our paper includes all those details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Where applicable, we include standard deviations across 10 test runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:[Yes]

Justification: We outline the specs of the server we used and how much memory was being
used since a much smaller server would have been sufficient.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, we fully conform with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work does not have direct implications to society.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: Our works evaluates broadly used models either on small completely artificial
toy datasets and one commonly used publicly available dataset hosted via PhysioNet.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: To the best of our knowledge, we owners of assets used in the paper are
properly credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not collect new data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not collect new data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not involved in any stage of this research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Appendix

A.1 Examples Of Perturbation In Continuous Time

Figure 3 shows examples of the three perturbations applied to the same single-channel irregular time
series. All perturbations are applied to the same area of that time series.
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Figure 3: Examples of the three perturbations FMA, GB, and Del applied to same single channel
irregular time series in the gray-shaded area. FMA insert the Moving Average, GB applies a Gaussian
Blur, and Del deletes the points that lie inside the gray-shaded area.

A.2 Simulating The Deletion Of Data In A Differentiable Manner

Without knowing how exactly a model processes the data it receives as input, it is not possible to
simulate that data had not been observed in a way that is differentiable with respect to the mask m,
where m highlights which data points are being deleted. In such a case, m needs to be converted to a
hard mask. Essentially, at some point during the process, m needs to function as an index. This means
it has to be converted to an integer or boolean data type, which breaks the automatic differentiation
graph in frameworks such as PyTorch.

For NCDE models, for instance, the way in which data is processed internally allows to (partially)
simulate that data had not been observed. NCDE models model irregular data using differential
equations. Via integration (i.e., the numerical ODE solver of one’s choice), the hidden states of
the model are derived in continuous time. Given the nature of differential equations, the hidden
states will therefore only update if the data changes. One can therefore delete the data observed
at a certain timepoint by constructing a forward (or indeed backward) fill that overwrites said
timepoint to duplicate one of the neighboring timepoints. Since this only involves multiplication and
addition, we are still able to backpropagate w.r.t. m. However, note that this includes overwriting
the time intensity channels, and also the entry in t. Thereby, one can alter that no new data had been
observed at the chosen timepoint. This means simulating that no data had been observed at all at that
timepoint—across all channels.

Going one step further, it is possible to simulate the deletion of data points in a way that is differ-
entiable with respect to the deletion mask m for models such as mtan if one has access to model
internals. Since mtan relies on attention modules to deal with missing data, it is possible to ma-
nipulate the attention mask to simulate that some further datapoints had not been observed. To do
so, one requires access to the attention module. mtan uses scaled dot-product attention for some
reference points (set somewhat arbitrarily to project the irregular data into a fixed dimension) and the
timings of observed data points. The points one is trying to ‘delete’ can then be subtracted from the
resulting attention mask or the corresponding part is simply multiplied by zero during the dot-product
operation. These points then no longer influence the state of the model at the reference points, and
thereby no longer have influence on the model output. Since this operation does not require a hard
mask, and only involves multiplication and subtraction, it allows to simulate that data had not been
observed if one is willing to access model internals.

Please note that we have not tested the ideas described above in practice. One would need to verify
that they behave exactly as intended and indeed produce gradients useful for learning. While the
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above strategies for mtan and NCDE do not break gradients, it is not guaranteed that they indeed
feedback gradients that enable stable learning. If one is using an objective similar to Eq. 5, the
gradients related to the penalty terms will not be zero, but gradients related to the error in f will
likely oftentimes be zero which might still make learning difficult.

A.3 NeuroEvolution: performance, parameter counts, and runtime

In Table 6 we compare the runtime and performance when trainingMLP-F masks using different
parameter counts. While performance varies based on parameter count, the time required for training
remains relatively constant. All experiments were performed on a H200 GPU, where the used VRAM
never exceeded 8 GB. In Table 6, the performance is averaged across the 10 runs, while the runtime is
for all 10 experiments together. The results show that a much smaller mask with only 1906 parameters
achieves similar performance to a mask close to 5000 parameters.

Training using NeuroEvolution takes 4–5 times longer than using gradient descent. As discussed
in Section 5, we observe that masks parameterized as a Tensor of the same shape as X and d train
in much fewer iterations using gradient descent, but require more iterations using NeuroEvolution.
We’ve trained for 2,000 iterations using NeuroEvolution, and 32,000 iterations using gradient descent.
Masks parameterized as MLP-F converge much better using NeuroEvolution but worse using gradient
descent. We can only speculate about the reasons for this. Potentially, they are related to the
assumptions algorithms such as PGPE make about the distributions of the parameters they are trying
to optimize.

Model Size NeuroEvolution Gradient Descent

Dim L Count F1 Prec Rec Time F1 Prec Rec Time

MLP-F 32 34 4914 0.622 1.000 0.452 2:18 0.250 0.796 0.167 0:27
MLP-F 32 32 4786 0.690 0.961 0.556 2:18 0.170 0.372 0.115 0:26
MLP-F 32 24 4274 0.638 0.774 0.557 2:08 0.170 0.569 0.112 0:26
MLP-F 16 24 1906 0.670 0.897 0.560 2:17 0.218 0.560 0.143 0:26
MLP-F 16 12 1522 0.584 0.835 0.490 2:18 0.157 0.377 0.108 0:27
MLP-F 8 24 914 0.539 0.717 0.515 2:17 0.107 0.381 0.068 0:26
MLP-F 8 12 722 0.497 0.806 0.429 2:13 0.106 0.353 0.070 0:27

Table 6: Model size, performance, and runtime averaged across 10 runs for the value-based Rare
Feature problem when training MLP-F masks using the FMA perturbation across 10 runs. The
performance is averaged across 10 runs, the runtime (Time) is given for all 10 runs in total in (h:mm),
i.e., training an MLP-F mask with 4914 parameters 10 times takes 2 hours and 18 minutes using
NeuroEvolution and only 27 minutes using gradient descent.

A.4 Regularizing Parameters

Table 7 and 8 display the chosen values for λ1 and λ2 for the Rare Feature and Rare Time problems
for each of the two settings. We started with values for λ1 that penalize the area covered by the
mask too heavily and then decreased λ1 until the mask returned reasonable results, where initially we
restricted λ2 such that λ1 = 10λ2 or λ1 = 100λ2. Once a value for λ1 was set, we optimized further
for λ2 also allowing for smaller values of λ2.

Value-based Temp-based

Perturbation λ1 λ2 λ1 λ2

GB 0.01 0.001 0.1 0.000001
FMA 0.01 0.001 0.1 0.000001
Del 0.1 0.001 0.1 0.000001

Table 7: Values for λ1 and λ2for the Rare Feature Problem reported in Table 2.
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Value-based Temp-based

Perturbation λ1 λ2 λ1 λ2

GB 0.1 0.0001 0.00001 0.000001
FMA 0.1 0.0001 0.00001 0.000001
Del 0.1 0.0001 0.00001 0.000001

Table 8: Values for λ1 and λ2 for the Rare Time Problem reported in Table 3.

A.5 Updated Objective Function For Real-world Sepsis Task

For the sepsis prediction task, we adapted Equation 5 such that the loss term involving λ1 changes
from:

λ1

∑
C

∫ T

0

(1−m(u)c) du (9)

to:

λ1

(
TS −

∑
C

∫ T

0

(m(u)c) du

)
, (10)

where TS is the target size, i.e. in our case 100%− 10% = 90%.

For the sepsis task, the goal is to maximize the divergence in prediction while the mask should only
alter a previously defined target size TS, for example, 10% of all observed time points. The goal for
the previous tasks on synthetic data was to keep the prediction unchanged while altering as many
data points as possible.

The full objective for the sepsis task then becomes:

min
m

−L(f(tn, xn, dn), (t̃n, x̃n, d̃n)) + λ1

(
TS −

∑
C

∫ T

0

(m(u)c) du

)
+ λ2

∑
C

∫ T

0

|m(u)′c| du.

(11)

A.6 Ablation Study for λ1 and λ2

We conducted an ablation study on the hyperparameters λ1 and λ2 for the Del, FMA, and GB attribution
methods on the sepsis prediction task using mTAN. The results are reported for 10 cases predicted
as sepsis-positive. Each cell contains two values: the first corresponds to the Del odds change, and
the second to the Val odds change. Note that these results can be higher than those reported for the
full set of 100 sepsis-positive cases, as the top 10 predictions are typically easier to explain—more
confident predictions tend to exhibit more pronounced feature relevance.

Table 9: Ablation on λ1 and λ2 for Del. Each cell shows Del odds change | Val odds change.
λ1 λ2 = 0 λ2 = λ1/100 λ2 = λ1/10

0.01 6.24 | 7.06 10.34 | 7.94 5.95 | 8.27
0.1 9.13 | 8.44 9.91 | 7.81 6.51 | 6.82
0.5 10.75 | 8.83 9.05 | 6.89 8.09 | 7.42
1.0 12.92 | 8.42 13.64 | 7.19 10.99 | 8.48
10.0 11.24 | 6.81 8.50 | 7.55 8.69 | 7.30

A.7 Examples of Fitted Masks

To visualize how metrics such as F1-Score, Precision, and Recall represent the quality of fitted masks,
Figure 4 shows examples of MLP-F masks fitted based on GB, FMA, and Del perturbations using
NeuroEvolution. The masks are fitted for the value-based Rare-Feature problem and correspond to
what is displayed in Table 2 (100 time points and 50 features). Averaged across the 10 runs, the
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Table 10: Ablation on λ1 and λ2 for FMA. Each cell shows Del odds change | Val odds change.
λ1 λ2 = 0 λ2 = λ1/100 λ2 = λ1/10

0.01 6.76 | 7.76 6.01 | 7.81 10.08 | 7.48
0.1 7.78 | 8.15 9.50 | 8.95 9.68 | 9.31
0.5 7.16 | 6.83 10.47 | 8.17 12.63 | 9.49
1.0 8.10 | 6.95 10.24 | 9.15 11.83 | 7.15
10.0 11.74 | 7.04 11.63 | 6.56 11.43 | 7.71

Table 11: Ablation on λ1 and λ2 for GB. Each cell shows Del odds change | Val odds change.
λ1 λ2 = 0 λ2 = λ1/100 λ2 = λ1/10

0.01 5.86 | 15.78 5.54 | 15.58 8.91 | 15.16
0.1 4.64 | 15.22 5.85 | 14.84 9.14 | 16.04
0.5 6.05 | 16.92 9.27 | 17.02 8.59 | 15.48
1.0 7.04 | 16.15 8.31 | 16.82 9.30 | 14.62
10.0 7.95 | 8.31 10.99 | 11.16 9.86 | 11.93

masks based on GB correspond to an F1 Score of 0.556, compared to 0.638 for masks based on FMA
and 0.891 for masks based on Del. The ground truth saliency changes every run (i.e. changes row by
row) but is the same for all perturbations (i.e., only one ground truth saliency per row).

A.8 Details On The Sepsis Prediction Task

We train a model according to [8] for sepsis prediction on real-world hospital data. Kidger et al. [8]
feed cubic spline coefficients to the model. Since the computation of these coefficients takes long
if there are missing data in X , they compute and save the coefficients once and simply load them
during iterative training and testing. Since we alter the underlying data using our perturbations, we
have to recompute the cubic spline coefficients at every iteration, which is very costly. Computing the
coefficients according to Kidger et al. [8] takes approximately 30 seconds for a single triplet (t,X, d).
While this is largely parallelized, this significantly increases the time needed to explain a single
prediction by the model. As per Table 6, 10 runs to using NeuroEvolution take around 2 hours and
18 minutes. This is roughly the time it takes to conduct one run for the real-world sepsis prediction
task. Note that we have already decreased the iterations for PGPE from 2000 to 200. While the
reduction to 200 iterations cuts computation time, it leads to poorer fitted saliency maps. We have not
been able to quantify this drop in performance.

For other models such as mtan, where the raw data is fed into the models, perturbing data is much
more straight forward and such experiments will be much closer to the Rare Feature and Rare Time
examples in terms of required compute.

Table 12 shows the λ1 and λ2 values for the real-world sepsis prediction task using the NCDE model.
Similar to before, we started with too large values of λ1 and set λ1 = 10λ2 or λ1 = 100λ2. We
then iteratively reduced λ1 until we reached reasonable performance and then further finetuned λ2.
Generally, we did not consider alternative values for λ1 and λ2 other than multiplies of 10n for some
positive or negative integer n.

For the mtan model, we simply set λ1 = 1, and λ2 = 0 (ablation study above).

Pred: No Sepsis Pred: Sepsis

Perturbation λ1 λ2 λ1 λ2

GB 1 0.01 1 0.01
FMA 0.00001 0.000001 0.00001 0.000001
Del 1 0.01 10 0.1

Table 12: Regularization parameters for the real-world sepsis prediction task using the NCDE model.
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Figure 4: Examples of fitted masks using GB, FMA, and Del for the value-based Rare Feature problem
(MLP-F masks trained using NeuroEvolution). The masks correspond to the results is displayed in
Table 2.

A.9 Mask Evaluation For Sepsis Prediction Task Using mtan Model

We evaluated for every feature of the data how often it was removed during the real-world sepsis task
based on the mtan model. If a feature was removed very often, i.e., retention is low, it is estimated
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to have a large effect on the prediction. In Table 13, we ordered all features by retention ratio, i.e.,
the most important features are listed first. It is a more extensive version of Table 5. In the Sepsis
Imbalance column, we’ve calculated how much more often this feature was present for a patient who
later becomes septic compared to a patient who does not become septic. High values indicate that
the shear presence of a particular feature might be a strong indicator of a patient later developing
sepsis. This corresponds to decisions of the treating physicians who might decide to only collect
certain information if a patient is at a high risk of developing sepsis.

Feature Retention Ratio Sepsis Imbalance Description
Age 0.7912 1.0000 Patient age (y)
Height 0.7982 1.0000 Height (cm)
AST 0.8063 1.5256 Aspartate transaminase
ICUType 0.8196 1.0000 ICU unit type
ALP 0.8204 1.4433 Alkaline phosphatase
Cholesterol 0.8300 1.4276 Serum cholesterol
RespRate 0.8360 0.5092 Respiratory rate (bpm)
Creatinine 0.8422 1.0123 Serum creatinine
K 0.8589 1.0100 Potassium (mmol/L)
MechVent 0.8597 1.1880 Mechanical ventilation
Na 0.8610 1.0100 Sodium (mmol/L)
pH 0.8656 1.1483 Arterial pH
NISysABP 0.8741 1.0183 Non-invasive systolic BP
Gender 0.8790 1.0000 Sex (F=0, M=1)
MAP 0.8793 1.0734 Mean arterial pressure
DiasABP 0.8846 1.0689 Diastolic BP
Weight 0.8852 1.0000 Weight (kg)
PaO2 0.8902 1.1642 Arterial oxygen (mmHg)
SysABP 0.8935 1.0689 Systolic BP
Temp 0.8946 1.0102 Temperature (°C)
Platelets 0.8956 1.0138 Platelet count
TroponinT 0.8998 1.4946 Cardiac troponin T
HR 0.9038 1.0102 Heart rate (bpm)
GCS 0.9057 1.0102 Glasgow Coma Scale
Urine 0.9058 0.9904 Urine output (mL)
Lactate 0.9093 1.3661 Blood lactate
ALT 0.9104 1.5256 Alanine transaminase
Glucose 0.9114 1.0191 Blood glucose
HCT 0.9174 1.0123 Hematocrit (%)
TroponinI 0.9186 2.6003 Cardiac troponin I
SaO2 0.9190 1.0734 O2 saturation (%)
NIDiasABP 0.9236 1.0200 Non-invasive diastolic BP
FiO2 0.9239 1.2318 Inspired O2 fraction (%)
NIMAP 0.9337 1.0200 Non-invasive MAP
HCO3 0.9370 1.0115 Bicarbonate (mmol/L)
BUN 0.9421 1.0123 Blood urea nitrogen
Bilirubin 0.9458 1.4518 Total bilirubin
PaCO2 0.9475 1.1642 Arterial CO2 (mmHg)
WBC 0.9551 1.0168 White blood cells
Albumin 0.9648 1.3987 Serum albumin
Mg 0.9721 1.0191 Magnesium (mmol/L)

Table 13: Features included in the real-world sepsis prediction task ordered by their estimation
importance (most important features first) including the retention ratio, an indicator of structural bias
(Imbalance) of this feature, and a short description.
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