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ABSTRACT

In this paper, we study inverse game theory (resp. inverse multiagent learning) in
which the goal is to find parameters of a game’s payoff functions for which the
expected (resp. sampled) behavior is an equilibrium. We formulate these problems
as generative-adversarial (i.e., min-max) optimization problems, which we develop
polynomial-time algorithms to solve, the former of which relies on an exact first-
order oracle, and the latter, a stochastic one. We extend our approach to solve
inverse multiagent simulacral learning in polynomial time and number of samples.
In these problems, we seek a simulacrum, meaning parameters and an associated
equilibrium that replicate the given observations in expectation. We find that our
approach outperforms the widely-used ARIMA method in predicting prices in
Spanish electricity markets based on time-series data.

1 INTRODUCTION

Game theory provides a mathematical framework, called games, which is used to predict the outcome
of the interaction of preference-maximizing agents called players. Each player in a game chooses a
strategy from its strategy space according to its preference relation, often represented by a payoff
function over possible outcomes, implied by a strategy profile (i.e., a collection of strategies, one-
per-player). The canonical outcome, or solution concept, prescribed by game theory is the Nash
equilibrium (NE) (Nash, 1950): a strategy profile such that each player’s strategy, fixing the equilib-
rium strategies of its opponents, is payoff-maximizing (or more generally, preference-maximizing).

In many applications of interest, such as contract design (Holmström, 1979; Grossman & Hart, 1992)
and counterfactual prediction (Peysakhovich et al., 2019), the payoff functions (or more generally,
preference relations) of the players are not available, but the players’ strategies are. In such cases, we
are concerned with estimating payoff functions for which these observed strategies are an equilibrium.
This estimation task serves to rationalize the players’ strategies (i.e., we can interpret the observed
strategies as solutions to preference-maximization problems). Estimation problems of this nature
characterize inverse game theory (Waugh et al., 2013; Bestick et al., 2013).

The primary object of study of inverse game theory is the inverse game, which comprises a game
with the payoff functions omitted, and an observed strategy profile. The canonical solution concept
prescribed for an inverse game is the inverse Nash equilibrium, i.e., payoff functions for which the
observed strategy profile corresponds to a Nash equilibrium. If the set of payoff functions in an
inverse game is unrestricted, the set of inverse Nash equilibria can contain a wide variety of spurious
solutions, e.g., in all inverse games, the payoff function that assigns zero payoffs to all outcomes is
an inverse Nash equilibrium, because any strategy profile is a Nash equilibrium of a constant game:
i.e., one whose payoffs are constant across strategies. To meaningfully restrict the class of payoff
functions over which to search for an inverse Nash equilibrium, one common approach (Kuleshov &
Schrijvers, 2015; Syrgkanis et al., 2017) is to assume that the inverse game includes in addition to all
the aforementioned objects, a parameter-dependent payoff function for each player, in which case
an inverse Nash equilibrium is simply defined as parameter values such that the observed strategy
profile is a Nash equilibrium of the parameter-dependent payoff functions evaluated at those values.

⇤Research conducted while the author was an intern at JP Morgan Chase & Co.
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If one assumes exact oracle access to the payoffs of the game (i.e., if there exists a function which,
for any strategy profile, returns the players’ payoffs1), the problem of computing an inverse Nash
equilibrium is one of inverse multiagent planning. In many games, however, a more appropriate
assumption is stochastic oracle access, because of inherent stochasticity in the game (Shapley, 1953)
or because players employ randomized strategies Nash (1950). The problem of computing an inverse
Nash equilibrium assuming stochastic oracle access is one of inverse multiagent learning.

One important class of inverse games is that of inverse Markov games, in which the underlying game
is a Markov game (Shapley, 1953; Fink, 1964; Takahashi, 1964), i.e., the game unfolds over an
infinite time horizon: at each time period, players observe a state, take an action (simultaneously),
receive a reward, and transition onto a new state. In such games, each player’s strategy,2 also called a
policy, is a mapping from states to actions describing the action the player takes at each state, with
any strategy profile inducing a history distribution over histories of play i.e., sequences of (state,
action profile) tuples. The payoff for any strategy profile is then given by its expected cumulative
reward over histories of play drawn from the history distribution associated with the strategy profile.
Excluding rare instances,3 the payoff function in Markov games is only accessible via a stochastic
oracle, typically implemented via a game simulator that returns estimates of the value of the game’s
rewards and transition probabilities. As such, the computation of an inverse Nash equilibrium in
an inverse Markov game is an inverse multiagent learning problem, which is often called inverse
multiagent reinforcement learning (inverse MARL) (Natarajan et al., 2010).

In many real-world applications of inverse Markov games, such as robotics control (Coates et al.,
2009), one does not directly observe Nash equilibrium strategies but rather histories of play, which
we assume are sampled from the history distribution associated with some Nash equilibrium. In these
applications, we are given an inverse simulation—an inverse Markov game together with sample
histories of play—based on which we seek parameter values which induce payoff functions that
rationalize the observed histories. As a Nash equilibrium itself is not directly observed in this setting,
we aim to compute parameter values that induce a Nash equilibrium that replicates the observed
histories in expectation. We call the solution of such an inverse simulation (i.e., parameter values
together with an associated Nash equilibrium) a simulacrum. Not only does a simulacrum serve to
explain (i.e., rationalize) observations, additionally, it can provide predictions of unobserved behavior.

We study two simulacral learning problems, a first-order version in which samples histories of play
are faithful, and a second-order version in which they are not—a (possibly stochastic) function of each
history of play is observed rather than the history itself. Here, the use of the term “first-order” refers
to the fact that the simulacrum does not necessarily imitate the actual equilibrium that generated the
histories of play, since multiple equilibria can generate the same histories of play (Baudrillard, 1994).
More generally, if the simulacrum is “second-order,” it is nonfaithful, meaning some information
about the sample histories of play is lost. We refer to the problems of computing first-order (resp.
second-order) simulacra as first-order (resp. second-order) simulacral learning: i.e., build a first-order
(resp. second-order) simulacrum from faithful (resp. non-faithful; e.g., aggregate agent behavior)
sample histories of play. We summarize the problems characterizing inverse game theory in Table 1a.

Contributions The algorithms introduced in this paper extend the class of games for which an
inverse Nash equilibrium can be computed efficiently (i.e., in polynomial-time) to the class of normal-
form concave games (which includes normal-form finite action games), finite state and action Markov
games, and a large class of continuous state and action Markov games. While our focus is on Markov
games in this paper, the results apply to normal-form (Nash, 1950), Bayesian (Harsanyi, 1967; 1968),
and extensive-form games (Zermelo, 1913). The results also extend to other equilibrium concepts,
beyond Nash, such as (coarse) correlated Aumann (1974); Moulin & Vial (1978), and more generally,
�-equilibrium (Greenwald & Jafari, 2003) mutatis mutandis.

First, regarding inverse multiagent planning, we provide a min-max characterization of the set of
inverse Nash equilibria of any inverse game for which the set of inverse Nash equilibria is non-empty,
assuming an exact oracle (Theorem 3.1). We then show that for any inverse concave game, when the

1Throughout this work, we assume that the oracle evaluations are constant time and measure computational
complexity in terms of the number of oracle calls.

2Throughout this paper, a strategy refers to the complete description of a players’ behavior at any state or
time of the game, while an action refers to a specific realization of a strategy at a given state and time.

3For simple enough games, one can express the expected cumulative reward in closed form, and then solve
the inverse (stochastic) game assuming exact oracle access.
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Equilibrium Access Exact Oracle Stochastic Oracle
Direct Inverse Multiagent Planning Inverse Multiagent Learning
Faithful Samples First-order Simulacral Planning First-order Simulacral Learning
Nonfaithful Samples Second-order Simulacral Planning Second-order Simulacral Learning

(a) Taxonomy of inverse game theory problems. First-
order simulacral learning is more commonly known as
multiagent apprenticeship learning (Abbeel & Ng, 2004;
Yang et al., 2020).

Reference Game Type Solution Concept Polytime?
(Fu et al., 2021) Finite Markov Nash 7
(Yu et al., 2019) Finite Markov Quantal Response 7
(Lin et al., 2019) Finite Zero-sum Markov Various 7
(Song et al., 2018) Finite Markov Quantal Response 7
(Syrgkanis et al., 2017) Finite Bayesian Bayes-Nash 3
(Kuleshov & Schrijvers, 2015) Finite Normal-Form Correlated 3
(Waugh et al., 2013) Finite Normal-Form Correlated 3
(Bestick et al., 2013) Finite Normal-Form Correlated 7
(Natarajan et al., 2010) Finite Markov Cooperative 7

This work Finite/Concave Normal-form
Finite/Concave Markov

Nash/Correlated
Any Other 3

(b) A comparison of our work and prior work on inverse
game theory and inverse MARL.

regret of each player is convex in the parameters of the inverse game, an assumption satisfied by a
large class of inverse games such as inverse normal-form games, this min-max optimization problem
is convex-concave, and can thus be solved in polynomial time (Theorem 3.2) via standard first-order
methods. This characterization also shows that the set of inverse Nash equilibria can be convex, even
when the set of Nash equilibria is not.

Second, we generalize our min-max characterization to inverse multiagent learning, in particular
inverse MARL, where we are given an inverse Markov game, and correspondingly, a stochastic
oracle, and we seek a first-order simulacrum (Corollary 1). We show that under standard assumptions,
which are satisfied by a large class of inverse Markov games (e.g., all finite state and action Markov
games and a class of continuous state and action Markov games), the ensuing min-max optimization
problem is convex-gradient dominated, and thus an inverse Nash equilibrium can be computed once
again via standard first-order methods in polynomial time (Theorem 4.1).

Third, we provide an extension of our min-max characterization to (second-order) simulacral learning
(Theorem 5.1). We once again characterize the problem as a solution to a min-max optimization
problem, for which standard first-order methods compute a first-order stationary (Lin et al., 2020)
solution in polynomial-time, using a number of observations (i.e., unfaithful samples of histories of
play) that is polynomial in the size of the inverse simulation (Theorem 5.2).

Finally, we include two sets of experiments. In the first, we show that our method is effective in
synthetic economic settings where the goal is to recover buyers’ valuations from observed competitive
equilibria (which, in this market, coincide with Nash equilibria). Second, using real-world time-series
data, we apply our method to predict prices in Spanish electricity markets, and find that it outperforms
the widely-used ARIMA method in predicting prices on this real-world data set.

2 PRELIMINARIES

Notation. All notation for variable types, e.g., vectors, should be clear from context; if any
confusion arises, see Section 7.1. We denote by [n] the set of integers {1, . . . , n}. Let X be any
set and (X ,F) any associated measurable space, where the �-algebra F unless otherwise noted
is assumed to be the �-algebra of countable sets, i.e., F .

= {E ✓ X | E is countable }. We write
�(X )

.
= {µ : (X ,F)! [0, 1]} to denote the set of probability measures on (X ,F). Additionally,

we denote the orthogonal projection operator onto a set X by ⇧X (x)
.
= argminy2X kx� yk22.

Mathematical Concepts. Consider any normed space (X , k·k) where X ⇢ Rm and any function
f : X ! R. f is `f-Lipschitz-continuous w.r.t. norm (typically, Euclidean) k·k iff 8x1,x2 2
A, kf(x1)� f(x2)k  `f kx1 � x2k. If the gradient of f is `rf-Lipschitz-continuous, we refer
to f as `rf-Lipschitz-smooth. Furthermore, given µ > 0, f is said to be µ-gradient-dominated if
minx02X f(x0) � f(x) + µ ·minx02X hx0 � x,rf(x)i (Bhandari & Russo, 2019).

Normal-form Games. A (parametric) game G✓ .
= (n,m, d,X,⇥,✓,u) comprises n 2 N+ players,

each i 2 [n] of whom chooses a strategy x
i
2 Xi from an strategy space Xi ✓ Rm simultaneously.

We refer to any vector of per-player strategies x = (x1, . . . ,xn
) 2 X as a strategy profile, where

X .
=⇥i2[n]

Xi ✓ Rnm denotes the space of all strategy profiles. After the players choose their
strategies x 2 X, each receives a payoff u

i
(x;✓) given by payoff function u

i
: X ⇥ ⇥ ! R

parameterized by a vector ✓ in a parameter space ⇥ ✓ Rd. We define the payoff profile function
u(x;✓)

.
= (u

i
(x;✓))

i2[n]; the cumulative regret  : X⇥X⇥⇥! R across all players, between two
strategy profiles x,y 2 X, given ✓ 2 ⇥, as  (x,y ;✓) .

=
P

i2[n] ui
(y

i
,x�i

;✓)�u
i
(x;✓); and the

exploitability (or Nikaido-Isoda potential (Nikaido & Isoda, 1955)) '(x;✓) .
= maxy2X  (x,y ;✓).

3



Published as a conference paper at ICLR 2024

A game is said to be concave if for all parameters ✓ 2 ⇥ and players i 2 [n], 1. Xi is non-
empty, compact, and convex, 2. u

i
is continuous, and 3. x

i
7! u

i
(x

i
,x�i

;✓) is concave. Given
✓ 2 ⇥, an "-Nash equilibrium ("-NE) of a game G✓ is a strategy profile x

⇤ 2 X s.t. u
i
(x⇤;✓) �

maxxi2Xi ui
(x

i
,x⇤

�i
;✓)� ", for all players i 2 [n]. A 0-Nash equilibrium is simply called a Nash

equilibrium, and is guaranteed to exist in concave games (Nash, 1950; Arrow & Debreu, 1954).

Dynamic Games. An (infinite-horizon, discounted, parametric) Markov game (Shapley, 1953;
Fink, 1964; Takahashi, 1964) M✓ .

= (n,m,S,A,⇥,✓, r, p, �, µ) is a dynamic game played over
an infinite time horizon. The game initiates at time t = 0 in some state S(0) ⇠ µ drawn from
an initial state distribution µ 2 �(S). At each time period t = 0, 1, . . ., each player i 2 [n]

plays an action a
(t)
i
2 Ai from an action space Ai ⇢ Rm . We define the space of action profiles

A =⇥i2[n]
Ai. After the players choose their action profile a

(t) .
= (a(t)

1 , . . . ,a(t)
n ) 2 A, each

player i receives a reward r
i
(s(t),a(t);✓) according to a parameterized reward profile function

r : S ⇥ A ⇥ ⇥ ! Rn. The game then either ends with probability 1 � �, where � 2 (0, 1) is
called the discount factor, or transitions to a new state S(t+1) ⇠ p(· | s(t),a(t)) according to a
(Markov) probability transition kernel p whereby for all (s,a) 2 S ⇥ A, p(· | s,a) 2 �(S),
and p(s(t+1) | s(t),a(t)) = P(S(t+1) = s

(t+1) | S(t) = s
(t), A(t) = a

(t)) is the probability of
transitioning to state s

(t+1) from state s
(t) when the players’ take action profile a

(t).4

A (stationary Markov) policy (Maskin & Tirole, 2001) for player i 2 [n] is a mapping ⇡
i
: S ! A

from states to actions so that ⇡
i
(s) 2 Ai denotes the action that player i takes at state s. For each

player i 2 [n], we define the space of all (measurable) policies P
i

.
= {⇡

i
: S ! Ai}. As usual,

⇡
.
= (⇡1, . . . ,⇡n

) 2 P .
=⇥i2[n]

P
i

denotes a policy profile. A history (of play) h 2 (S ⇥A)T of
length T 2 N is a sequence of state-action tuples h = (s(t),a(t))T�1

t=0 . For any policy profile ⇡ 2 P ,
define the discounted history distribution ⌫⇡ (h) .

= µ(s(0))
Q

T

t=0 �
tp(s(t+1) | s(t),⇡(s(t))) as the

probability of observing a history h of length T. Throughout, we denote by H
.
=
�
S(t), A(t)

�
t
⇠ ⌫⇡

any randomly sampled history from ⌫⇡ .5

Fix a policy profile ⇡ 2 P and a player i. In our analysis of Markov games, we rely
on the following terminology. The expected cumulative payoff is given by u

i
(⇡ ;✓)

.
=

EH⇠⌫
⇡

⇥P1
t=0 ri(S

(t), A(t);✓)
⇤
. The state- and action-value functions are defined, re-

spectively, as v
⇡
i
(s;✓)

.
= EH⇠⌫

⇡

⇥P1
t=0 ri(S

(t), A(t);✓) | S(0) = s
⇤

and q
⇡
i
(s,a;✓)

.
=

EH⇠⌫
⇡

⇥P1
t=0 ri(S

(t), A(t);✓) | S(0) = s, A(0) = a
⇤
. The state occupancy distribution �

⇡
µ 2

�(S) denotes the probability that a state is reached under a policy ⇡ , given initial state distribution µ,
i.e., �⇡µ (s)

.
= EH⇠⌫

⇡

hP1
t=0 S(t)=s

i
. Finally, as usual, an "-Nash equilibrium ("-NE) of a game

M✓ is a policy profile ⇡
⇤ 2 P such that for all i 2 [n], u

i
(⇡⇤;✓) � max⇡i2Pi

u
i
(⇡

i
,⇡⇤

�i
;✓)� ";

and a Nash equilibrium ensues when " = 0.

3 INVERSE MULTIAGENT PLANNING

The goal of inverse multiagent planning is to invert an equilibrium: i.e., estimate a game’s parameters,
given observed behavior. In this section, we present our main idea, namely a zero-sum game (i.e.,
min-max optimization) characterization of inverse multiagent planning, where one player called

4For notational convenience, we assume the probability transition function is independent of the parameters,
but we note that our min-max characterizations apply more broadly without any additional assumptions, while
our polynomial-time computation results apply when, in addition to Assumption 4, one assumes the probability
transition function is stochastically convex (see, for instance, Atakan (2003a)) in the parameters of the game.

5Let (S,FS), (A,FA), and (S ⇥ A,FS⇥A) be the measurable spaces associated with the state, action
profile, and state-action profile (S⇥A) spaces, respectively. Further, let ([0, 1],B[0,1]), (Rn,BRn) be measurable
spaces on [0, 1] and Rn defined by the Borel �-algebra. For simplicity, we do not explicitly represent the reward
profile function, transition probability kernel, initial state distribution, or policies as measures or measurable
functions. We note, however, that for the expectations we define to be well-posed, they all must be assumed
to be measurable functions. We simply write r : S ⇥ A ! Rn, p : S ⇥ (S ⇥ A) ! [0, 1], µ : S ! [0, 1],
and ⇡ : S ! A to mean, respectively, r : (S ⇥A,FS⇥A) ! (Rn,BRn), p : (S,FS)⇥ (S ⇥A,FS⇥A) !
([0, 1],B[0,1]), µ : (S,FS) ! ([0, 1],B[0,1]), and ⇡ : (S,FS) ! (A,FA).
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the stabilizer picks parameters, while the other called the destabilizer picks per-player deviations.
This game is zero-sum) because the stabilizer seeks parameters that rationalize (i.e., minimize the
exploitability of) the observed equilibrium, while the destabilizer aims to rebut the rationality of
the observed equilibrium (i.e., seeks deviations that maximize cumulative regret). We use this
characterization to develop a gradient descent ascent algorithm that finds inverse NE in polynomial
time, assuming access to an exact first-order oracle: specifically, a pair of functions that return the
value and gradient of the payoff profile function.

An inverse game G�1 .
= (G✓† \ ✓

†,x†) comprises a game form (i.e., a parametric game sans its
parameter) G✓† \ ✓

† together with an observed strategy profile x
†, which we assume is a Nash

equilibrium. Crucially, we do not observe the parameters ✓† of the payoff functions. Given an inverse
game G�1, our goal is to compute an "-inverse Nash equilibrium, meaning parameter values ✓⇤ 2 ⇥
s.t. x† 2 X is an "-NE of G✓⇤

. As usual, a 0-inverse NE is simply called an inverse NE. Note that this
definition does not require that we identify the true parameters ✓†, as identifying ✓

† is impossible
unless there exists a bijection between the set of parameters and the set of Nash equilibria, a highly
restrictive assumption that is not even satisfied in games with a unique Nash equilibrium. To compute
an inverse NE is to find parameter values that minimize the exploitability of the observed equilibrium.
This problem is a min-max optimization problem, as the parameter values that minimize exploitability
are those that maximize the players’ cumulative regrets. More precisely:
Theorem 3.1. The set of inverse NE of G�1 is the set of parameter profiles ✓ 2 ⇥ that solve the
optimization problem min✓2⇥ '(x

†;✓), or equivalently, this min-max optimization problem:

min
✓2⇥

max
y2X

f(✓,y)
.
=  (x†,y ;✓) =

X

i2[n]

h
u
i
(y

i
,x†

�i
;✓)� u

i
(x†;✓)

i
(1)

This min-max optimization problem can be seen as a generalization of the dual of Waugh et al.’s
(2013) maximum entropy likelihood maximization method for games with possibly continuous
strategy spaces, taking Nash equilibrium rather than maximum entropy correlated equilibrium as
the inverse equilibrium. In contrast to Waugh et al.’s dual, our min-max optimization problem
characterizes the set of all inverse NE, and not only a subset of the inverse correlated equilibria, in
particular those that maximize entropy. This formulation also generalizes Swamy et al.’s (2021)
moment matching game from a single-agent to a multiagent setting.

Algorithm 1 Adversarial Inverse Multiagent Planning
Inputs: ⇥,X, f,⌘✓ ,⌘y , T,✓(0),y(0),x†

Outputs: (✓(t),y(t))T
t=0

1: for t = 0, . . . , T � 1 do
2: ✓

(t+1)  ⇧⇥

h
✓
(t) � ⌘(t)✓ r✓f(✓

(t),y(t))
i

3: y
(t+1)  ⇧X

h
y
(t) + ⌘(t)y ryf(✓

(t),y(t))
i

4: return (✓(t),y(t))T
t=0

Without further assumptions, the objective
function f in Equation (1) is non-convex non-
concave; however, under suitable assump-
tions (Assumption 1) satisfied by finite action
normal-form games, for example, it becomes
convex-concave.
Assumption 1. Given an inverse game G�1,
assume 1. (Concave game) for all parame-
ters ✓ 2 ⇥, G✓ is concave; and 2. (Con-
vex parametrization) ⇥ is non-empty, com-

pact, and convex; and for all 8i 2 [n], y
i
2 Xi, and x

† 2 X, each player i’s regret
✓ 7! u

i
(y

i
,x†

�i
;✓)� u

i
(x†;✓) is convex.

Remark 1. Perhaps surprisingly, the set of inverse NE can be convex even when the set of NE is not,
since the set of solutions to a convex-concave (or even convex-non-concave) min-max optimization
problem is convex. This observation should alleviate any worries about the computational in-
tractability of inverse game theory that might have been suggested by the computational intractability
of game theory itself (Daskalakis et al., 2009; Chen & Deng, 2006).

If additionally, we assume the players’ payoffs are Lipschitz-smooth (Assumption 2), Equation (1)
can then be solved to " precision in O (1/"2) via gradient descent ascent (Algorithm 1). That is, as
Theorem 3.2 shows, an inverse "-NE can be computed in O (1/"2) iterations.6 We note that this
convergence complexity can be further reduced to O (1/") (even without decreasing step-sizes) if one
instead applies an extragradient descent ascent method (Golowich et al., 2020) or optimistic GDA
(Gorbunov et al., 2022).

6We include detailed theorem statements and proofs in Section 7.2.
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Assumption 2 (Lipschitz-Smooth Game). For all players i 2 [n], u
i

is `rui
-Lipschitz-smooth.

Theorem 3.2 (Inverse NE Complexity). Under Assumptions 1–2, for " � 0, if Algorithm 1 is run
with inputs that satisfy T 2 ⌦(1/"2) and for all t 2 [T], ⌘(t)y = ⌘(t)✓ ⇣ 1/t, then the time-average of
all parameters ✓(T) .

= 1
T+1

P
T

t=0 ✓
(t) is an "-inverse NE.

4 INVERSE MULTIAGENT REINFORCEMENT LEARNING

In this section, we build on our zero-sum game (i.e., min-max optimization) characterization of
inverse game theory to tackle inverse MARL in an analogous fashion. As it is unreasonable to assume
exact oracle access to the players’ (cumulative) payoffs in inverse MARL, we relax this assumption
in favor of a stochastic oracle model. More specifically, we assume access to a differentiable game
simulator (Suh et al., 2022), which simulates histories of play h ⇠ ⌫⇡ according to ⌫⇡ , given any
policy profile ⇡ , and returns the rewards r and transition probabilities p,7 encountered along the way,
together with their gradients.

Formally, an inverse Markov game M�1 .
= (M✓† \ ✓

†,⇡†) is an inverse game that comprises a
Markov game form (i.e., a parametric Markov game sans its parameter) M✓† \ ✓† together with an
observed policy profile ⇡

†, which we assume is a Nash equilibrium. Crucially, we do not observe
the parameters ✓

† of the payoff functions. Since a Markov game is a normal-form game with
payoffs given by u(⇡ ;✓) = EH⇠⌫

⇡

⇥P1
t=0 r(S

(t), A(t);✓)
⇤
, the usual definitions of inverse NE

and cumulative regret apply, and the following result, which characterizes the set of inverse NE as the
minimizers of a stochastic min-max optimization problem, is a corollary of Theorem 3.1.
Corollary 1. The set of inverse NE of M�1 is characterized by solutions to the following problem:

min
✓2⇥

max
⇡2P

f(✓,⇡)
.
=

X

i2[n]

E
H⇠⌫

(⇡i,⇡
†
�i)

H
0⇠⌫

⇡†

" 1X

t=0

r
i
(S(t), A(t);✓)�

1X

t=0

r
i
(S†(t), A†(t);✓)

#
(2)

As is usual in reinforcement learning, we use policy gradient to solve the destabilizer’s problem in
Equation (2). To do so, we restrict the destabilizer’s action space to a policy class PX parameterized
by X ⇢ Rl . Redefining f(✓,x)

.
= f(✓,⇡x), for ⇡x 2 PX , we aim to solve the stochastic min-max

optimization problem min✓2⇥ maxx2X f(✓,x). Solutions to this problem are a superset of the
solutions to Equation (2), unless it so happens that all best responses can be represented by policies in
PX , because restricting the expressivity of the policy class decreases the power of the destabilizer. As
in Section 3, without any additional assumptions, f is in general non-convex, non-concave, and non-
smooth. While we can ensure convexity and smoothness of ✓ 7! f(✓,x) under suitable assumptions
on the game parameterization, namely by assuming the regret at each state is convex in ✓ , concavity
in x is not satisfied even by finite state and action Markov games. Under the following conditions,
however, we can guarantee that f is Lipschitz-smooth, convex in ✓ , and gradient dominated in x.
Assumption 3 (Lipschitz-Smooth Gradient-Dominated Game). Given an inverse Markov game
M�1, assume 1. S and A are non-empty, and compact; 2. (Convex parameter spaces) X,⇥ are
non-empty, compact, and convex; 3. (Smooth Game) rr , rp, and rx⇡

x , for all policies
⇡

x 2 PX , are continuously differentiable; 4. (Gradient-Dominated Game) for all players i 2 [n],
states s 2 S, action profiles a 2 A, and policies ⇡x 2 PX , x 7! q

⇡x

i
(s,⇡x(s);✓) is µ-gradient-

dominated for some µ > 0; and 5. (Closure under Policy Improvement) for all states s 2 S,
players i 2 [n], and policy profiles ⇡ 2 P , there exists ⇡

x 2 PX s.t. q⇡
i
(s,⇡

x
i
(s),⇡�i

(s)) =
max⇡0

i2Pi
q
⇡
i
(s,⇡0

i
(s),⇡�i

(s)).

Part 3 of Assumption 3 implies that the game’s cumulative payoff function is Lipschitz-smooth
in the policy parameters x. We note that a large class of Markov games satisfy Part 4, including
linear quadratic games (Bhandari & Russo, 2019), finite state and action games, and continuous
state and action games whose rewards (resp. transition probabilities) are concave (resp. stochastically

7We note that in inverse reinforcement learning, as opposed to reinforcement learning, it is typical to assume
that the transition model is known (see, for instance (Abbeel & Ng, 2004), Footnote 8).

6



Published as a conference paper at ICLR 2024

concave) in each player’s action (Atakan, 2003b). Finally, Part 5 is a standard assumption (see, for
instance, Section 5 of Bhandari & Russo (2019)), which guarantees that the policy parameterization
is expressive enough to represent best responses.
Assumption 4 (Convex Parameterization). Given an inverse Markov game M�1, assume that
for all players i 2 [n], states s 2 S, and action profiles a, b 2 A, the per-state regret ✓ 7!
r
i
(s, b

i
,a�i

;✓)� r
i
(s,a;✓) is convex.

With these assumptions in hand, we face a convex gradient-dominated optimization problem, i.e.,
✓ 7! f(✓,x) is convex, for all x 2 X, and x 7! f(✓,x) gradient-dominated, for all ✓ 2 ⇥. As
for normal-form games (see Remark 1), the set of inverse NE in Markov games is convex under
Assumptions 3 and 4. Consequently, we can obtain polynomial-time convergence of stochastic
gradient descent ascent (Algorithm 2) by slightly modifying known results (Daskalakis et al., 2020).

Algorithm 2 Adversarial Inverse MARL
Inputs: ⇥,P , f✓ , fx , ⌘✓ , ⌘x , T,✓(0),x(0),⇡†

Outputs: (✓(t),x(t))T
t=0

1: for t = 0, . . . , T � 1 do

2: H ⇠⇥i2[n]
⌫(⇡

x(t)

i ,⇡†
�i), h† ⇠ ⌫⇡†

3: ✓
(t+1)  ⇧⇥

h
✓
(t) � ⌘(t)✓ r✓f✓ (✓

(t),x(t);H,h†)
i

4: x
(t+1)  ⇧P

h
x
(t) + ⌘(t)x rxfx(✓

(t),x(t);H,h†)
i

5: return (✓(t),x(t))T
t=0

Algorithm 2 requires an estimate of
rf w.r.t. both ✓ and x. Under Part
3 of Assumption 3, the gradient of f
w.r.t. x can be obtained by the deter-
ministic policy gradient theorem (Sil-
ver et al., 2014), while the gradient of
f w.r.t. ✓ can be obtained by the lin-
earity of the gradient and expectation
operators. However, both of these
gradients involve an expectation—
over H ⇠ ⌫(⇡

x

i ,⇡†
�i) and H† ⇠ ⌫⇡†

.
As such, we estimate them using sim-
ulated trajectories from the deviation

history distribution H
.
=
�
h
1, . . . ,hn

�T ⇠⇥i2[n]
⌫(⇡

x

i ,⇡†
�i) and the equilibrium history distribu-

tion h
† ⇠ ⌫⇡†

, respectively. For a given such pair (H,h†), the cumulative regret gradient estimators
f✓ and fx correspond to the gradients of the cumulative regrets between each deviation history h

i in
H and h

†, and can be computed directly using the chain rule for derivatives, as we assume access to
a differentiable game simulator.8

Finally, we define the equilibrium distribution mismatch coefficient k@�⇡
†

µ /@µk1 as the Radon-
Nikodym derivative of the state occupancy distribution of the NE ⇡

† w.r.t. the initial state distribution
µ. This coefficient, which measures the inherent difficulty of reaching states under ⇡†, is closely
related to other distribution mismatch coefficients introduced in the analysis of policy gradient
methods (Agarwal et al., 2020). With this definition in hand, we can finally show polynomial-time
convergence of stochastic GDA (Algorithm 2) under Assumptions 3–4.
Theorem 4.1. Under Assumptions 3–4, for all " 2 (0, 1), if Algorithm 2 is run with inputs that satisfy
T 2 ⌦

⇣
"�10k@�⇡

†
µ /@µk1

⌘
and for all t 2 [T], ⌘(t)y ⇣ "4 and ⌘(t)✓ ⇣ "8, then the time-average of all

parameters ✓(T) .
= 1

T+1

P
T

t=0 ✓
(t) is an "-inverse NE.

5 SIMULACRAL LEARNING

In this section, we consider the more realistic setting in which we do not observe an equilibrium, but
observe only sample histories

�
h
(k)
 
k
=
�
(s(t,k),a(t,k))t

 
k
⇠ ⌫⇡†

associated with an unobserved
equilibrium ⇡

†. The problem of interest then becomes one of not only inferring parameter values
from observed behavior, but of additionally finding equilibrium policies that generate the observed
behavior, a solution which we refer to as a first-order simulacrum. A first-order simulacrum can be
seen as a generalization of an inverse equilibrium, as it not only comprises parameters that rationalize

8For completeness, we show how to compute fx and f✓ in Section 7.5. In our experiments, however,
as has become common practice in the literature (Mora et al., 2021), we compute these gradients by simply
autodifferentiating the cumulative regret of any history w.r.t. the policy parameters using a library like Jax
(Bradbury et al., 2018). We also show that under Assumption 3, (f✓ , fx) is an unbiased estimate of (r✓f,rxf)
whose variance is bounded.
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the observed histories, but also policies that mimic them in expectation. First-order simulacral
learning is also known as multiagent apprenticeship learning (Abbeel & Ng, 2004; Yang et al., 2020).

Algorithm 3 Adversarial Simulacral Learning
Inputs: ⇥,P , (cg✓ ,cgx ,cgy ), ⌘✓ , ⌘x , ⌘y , T,✓(0),x(0),y(0), {o†(k)}
Outputs: (✓(t),x(t),y(t))T

t=0

1: for t = 0, . . . , T � 1 do

2: H ⇠⇥i2[n]
⌫(⇡

x(t)

i ,⇡
y(t)

�i ), h ⇠ ⌫(⇡x(t)
)

3: ✓
(t+1)  ⇧⇥

h
✓
(t) � ⌘(t)✓ r✓cg✓ (✓(t),x(t),y(t);H,h)

i

4: x
(t+1)  ⇧P

h
x
(t) � ⌘(t)x rxcgx(✓(t),x(t),y(t);H,h)

i

5: y
(t+1)  ⇧P

h
y
(t) + ⌘(t)y rycgy (✓(t),x(t),y(t);H,h)

i

6: return (✓(t),x(t),y(t))T
t=0

Even more generally, we might
not have access to samples
{h†(k)}k2[] ⇠ ⌫⇡

†
from

an equilibrium history distribu-
tion, but rather a lossy func-
tion of those histories accord-
ing to some function ⇢ :
H ! O that produces
observations {o†(k)}k2[]

.
=

{⇢
�
h
†(k)�}k2[] ⇠ ⌅⇡†

, dis-
tributed according to some
(pushforward) observation dis-
tribution ⌅⇡ 2 �(O), parame-
terized by policy profile ⇡ 2 P ,

where O is the observation space. This more general framework is very useful in applications where
there are limitations on the data collection process: e.g., if there are game states at which some of the
players’ actions are unobservable, or when only an unfaithful function of them is available. Here, we
seek to learn the more general notion of a second-order simulacrum.

Formally, an inverse simulation I�1 .
= (M✓† \✓†,O,⌅,⌅⇡†

) is a tuple consisting of a Markov game
form M✓† \ ✓† with unknown parameters ✓†, an observation distribution ⌅ : P ! �(O) mapping
policies to distributions over the observation space O, and an observation distribution ⌅⇡†

for the
unobserved behavioral policy ⇡

†, which we assume is a Nash equilibrium. Our goal is to find an (", �)-
Nash simulacrum, meaning a tuple of parameters and policies (✓⇤,⇡⇤) 2 ⇥⇥P that (", �)-simulates
the observations as a Nash equilibrium: i.e., u

i
(⇡⇤;✓⇤) � max⇡i2Pi

u
i
(⇡

i
,⇡⇤

�i
;✓⇤) � " and

E(o,o†)⇠⌅⇡⇤⇥⌅⇡†

h��o � o
†
��2
i
 �. Theorem 5.1, which is analogous to Corollary 1, characterizes

the set of Nash simulacra of an inverse simulation.
Theorem 5.1. Given an inverse simulation I�1, for any ↵,� > 0, the set of Nash simulacra of M�1

is equal to the set of minimizers of the following stochastic min-max optimization problem:

min
✓2⇥
⇡2P

'(✓,⇡) = min
✓2⇥
⇡2P

max
⇢2P

g(✓,⇡ ,⇢)
.
= ↵ E

(o,o†)⇠⌅⇡⇥⌅⇡†

h��o � o
†��2

i
+ � (⇡ ,⇢;✓) (3)

To tackle simulacral learning, we approximate g via realized observation samples
{o†(k)} ⇠ ⌅⇡†

, based on which we compute the empirical learning loss bg(✓,⇡ ,⇢)
.
=

↵Eo⇠⌅⇡

h
1/

P


k=1

��o � o
†(k)

��2
i
+ � (⇡ ,⇢;✓). Additionally, as in the previous section, we

once again restrict policies to lie within a parametric class of policies PX , redefine g(✓,x,y)
.
=

g(✓,⇡x ,⇡y ) and bg(✓,x,y) .
= bg(✓,⇡x ,⇡y ), and solve the ensuing optimization problem over the

empirical learning loss min(✓ ,x)2⇥⇥X maxy2X bg(✓,x,y).
In general, this stochastic min-max optimization is non-convex non-concave. By Assumption 3,
however, the function y 7! g(✓,x,y) is gradient dominated, for all ✓ 2 ⇥ and x 2 X. Nevertheless,
it is not possible to guarantee that (✓,x) 7! g(✓,x,y) is convex or gradient dominated, for all
y 2 Y, without overly restrictive assumptions. This claim is intuitive, since the computation of
an inverse simulacrum involves computing a Nash equilibrium policy, which in general is a PPAD-
complete problem (Daskalakis et al., 2009; Foster et al., 2023). Finally, defining gradient estimators
as we did in Section 4, to obtain gradient estimators (cg✓ ,cgx ,cgy )(✓,x,y ;H,hx) from samples
histories H ⇠⇥i2[n]

⌫(⇡
x

i ,⇡
y

�i) and h
x ⇠ ⌫⇡x

, we can use Algorithm 3 to compute a local solution
of Equation (3) from polynomially-many observations.

Theorem 5.2. Suppose that Assumption 3 holds, and that for all ⇡x 2 PX , ⌅⇡x

is twice con-
tinuously differentiable in x. For any " 2 (0, 1), if Algorithm 3 is run with inputs that satisfy
T 2 ⌦

⇣
�
2/"10k@�⇡

⇤
µ /@µk1

⌘
and for all t 2 [T], ⌘(t)y ⇣ "4 and ⌘(t)✓ ⇣ "8, then the best iterate
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(✓best,xbest) converges to an "-stationary point of ' (defined in Section 7.2). Additionally, for any
⇣, ⇠ � 0, it holds with probability 1� ⇣ that b'(✓(T)

best,x
(T)
best)� '(✓

(T)
best,x

(T)
best)  ⇠ if the number of

sample observations  2 ⌦(1/⇠2 log(1/⇣)).

6 EXPERIMENTS
We run two sets of experiments with the aim of answering two questions. Our first goal is to
understand the extent to which our algorithms are able to compute inverse Nash equilibria, if any,
beyond our theoretical guarantees. Our second goal is to understand the ability of game-theoretic
models to make predictions about the future.9

Figure 1: Hourly prices in the Spanish
electricity market from January 2015 to
December 2020. The Nash simulacrum
achieves a MSE that is twice as low as
that of the ARIMA method.

In our first set of experiments, we consider five types
of economic games whose equilibria and payoffs have
different properties. The first three are Fisher market
(FM) games, which are zero-sum, between sellers and
buyers engaged in trading goods. These games can be
categorized based on the buyers’ utility functions as lin-
ear, Cobb-Douglas, or Leontief (Cheung et al., 2013). We
then consider two general-sum economic games, which
model competition between two firms, namely Cournot
competition and Bertrand oligopoly. When budgets are
the only parameters we seek to recover, our min-max for-
mulation is convex-concave, because the players’ payoffs
are concave in their actions, and affine in their budgets,
and hence the regret of players is also affine in the players’
budgets. In addition, in both the Cournot competition and
Bertrand oligopoly games, regret is again convex in the
parameters of the game. Finally, all the games we study
are concave, with the exception of the Bertrand oligopoly game, and the equilibria are unique in the
Cobb-Douglas FM, Cournot competition, and Bertrand oligopoly games. In each experiment, we
generate 500 synthetic game instances, for which the true parameters are known, and use Algorithm 1
(which does not rely on this knowledge) to compute an inverse NE for each. We record whether our
algorithm recovers the true parameters of the market and whether it finds an inverse NE (i.e., average
exploitability). We summarize our findings for the FM games in Table 2. We find that our algorithm
recovers the true parameters more often when budgets are the only parameters we seek to recover,
as opposed to both budgets and types; but even in non-convex-concave case, our algorithm is still
able to approximate inverse NE over 80% of the time. In settings where the equilibria are unique, we
recover true parameters most often, while the worst performance is on Leontief FM games, where
payoffs are not differentiable.

Game Parameters Budgets Types + Budgets
Fisher Market Type Linear Leontief CD Linear Leontief CD
% Parameters Recovered 100% 36.8% 100% 12% 1% 99.6%
Average Exploitability 0.0018 0.2240 0.0004 0.0119 0.1949 0.0004

Cournot Bertrand
% Parameters Recovered 95.2% 78%
Average Exploitability 0.0000 0.0011

Table 2: The percentage of games for which we recovered the true parameters and the average
exploitabilities of the observed equilibrium evaluated w.r.t the computed inverse Nash equilibrium.
In our second set of experiments, we model the Spanish electricity market as a stochastic Fisher
market game between electricity re-sellers and consumers. In this game, the state comprises the supply
of each good and the consumers’ budgets, while the re-sellers’ actions are to set prices in today’s spot
market and tomorrow’s day ahead market, and the consumers’ actions are their electricity demands.
We assume the consumers utilities are linear; this choice is suited to modeling the substitution effect
between electricity today and electricity tomorrow. Using publicly available hourly Spanish electricity
prices and aggregate demand data from Kaggle, we compute a simulacrum of the game that seeks to
replicate these observations from January 2015 to December 2016. We also train an ARIMA model
on the same data, and run a hyperparameter search for both algorithms using data from January 2017
to December 2018. After picking hyperparameters, we then retrain both models on the data between
January 2015 to December 2018, and predict prices up to December 2018. We also compute the
mean squared error (MSE) of both methods using January 2018 to December 2020 as a test set. We
show the predictions of both methods in Figure 1. To summarize, we find that the simulacrum makes
predictions whose MSE is twice as low.

9Our code can be found here.

9

https://www.kaggle.com/datasets/nicholasjhana/energy-consumption-generation-prices-and-weather
https://anonymous.4open.science/r/Generative-Adversarial-Inverse-Multiagent-Learning-ICLR2024-1C2C/
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