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ABSTRACT

As more data is gathered over time, deployed ML models should be updated to
take advantage of a larger sample size to improve performance. Unfortunately,
even when model updates improve aggregate metrics such as accuracy, they can
lead to errors on samples the previous model correctly predicted causing per sam-
ple regression in performance known as predictive churn. Such prediction flips
erode user trust thereby reducing the effectiveness of the human-AI team as a
whole. Current approaches for reducing predictive churn fall mainly into two
categories: ensembles and distillation. While ensembles are the most effective,
they require much greater resources for training, inference and storage. Distil-
lation is much more efficient both in terms of training and inference, but is far
less effective at reducing churn. We propose a missing middle-ground solution
called StackEm based on accumulating models over time which achieves compa-
rable performance to ensembles without any training time increases or changes
to training procedures. Additionally, StackEm can be used to reduce churn for
models which are already deployed, unlike ensembles. We demonstrate the effec-
tiveness of StackEm on several computer vision benchmark datasets comparing
against state-of-the-art churn reduction methods, showing comparable results to
ensembles and a significant improvement over distillation.

1 INTRODUCTION

Model updates are necessary for many machine learning applications since learning on a larger
number of samples as data is accumulated over time can often improve performance. Performance
evaluation using common aggregate metrics such as accuracy can hide nuanced differences between
the original model and updated model (Hossin & Sulaiman, 2015; Hardt et al., 2016). For example,
models can make diverse errors at the sample level where switching from one model to another
can cause perceived instability from the perspective of users even if overall the models perform the
same, or the new model is better. It takes time for users to adapt to the strengths and weaknesses
of a model, and a change in behaviour that violates their expectations is counterproductive as even
a highly accurate model can have only marginal positive impact if it is not used to its full potential
(Yin et al., 2019; Bansal et al., 2021). This is especially applicable in decision support settings
where the user and model can be viewed as a team as opposed to APIs where a task is being fully
automated. The flipping of predictions made by a new model relative to a base model is referred to
as predictive churn (Fard et al., 2016). Not all churn is undesireable as prediction flips which result
in correct classification are ideal, and flips between erroneous predictions are largely benign. Thus,
we focus on negative flips or relevant churn: samples correctly predicted by the base model and
incorrectly predicted by the new model.

Reducing negative flips has received more attention recently as the adoption of ML grows, with
the two most common perspectives being variance reduction and prediction matching done by en-
sembles and distillation respectively. Ensembles aim to average out the stochastic aspects of neural
network training resulting from random initialization, data augmentation, stochastic regularization
techniques such as dropout, and the non-convex nature of the loss landscape (Zhao et al., 2022).
They do so at a large computational cost since in order to observe reduced churn, the base model
must be an ensemble, as does the new model, and this increases both training and inference costs
linearly with the number of models in the ensemble. The assumption that the base model is an
ensemble is impractical since any model that has already been deployed is not amenable to this
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technique. Distillation instead tries to balance learning on a combination of true labels and the base
model’s predictions thus introducing a stability-plasticity tradeoff. Focusing too much on matching
base model predictions inhibits the ability to learn from new data, and disregarding the base model’s
predictions does not limit churn (Jiang et al., 2021).

Between the effectiveness of ensembles and the efficiency of distillation exists a compromise that
does not increase training cost, does not require modifications to the training procedure, and makes
no assumptions about the base model. We propose keeping both the base model and new model,
and using stacking where a meta-model combines their outputs to create a final prediction for a
given sample. In settings where model updates are infrequent, this method is more efficient in
terms of both training and inference compared to ensembles, and is consistently more effective than
distillation. We make the following contributions:

1. Explain the existence of negative flips through the perspective of inter-sample gradient
compatibility. This suggests the need for a method that can explicitly remember the knowl-
edge of the base model without constraining the learning of the new model (Section 3).

2. Introduce model stacking in the context of model updates with additional data gathered
over time and propose several principled ways of combining base and new model outputs
(Section 4).

3. Show superior performance against distillation, and comparable performance to ensembles
at a fraction of the cost (Section 5).

4. Investigate what role model calibration plays in reducing churn (Section 5).

2 RELATED WORKS

Forgetting An important concept in the context of churn is catastrophic forgetting where updating
on new data overwrites previously learned knowledge thereby causing negative flips. Catastrophic
forgetting is typically discussed in the lifelong learning setting where a model is trained on one task
A, and needs to learn a new task B under the assumption that data from task A is no longer available
(Chen & Liu, 2018). Updating on data from the new task leads to forgetting on the previous task,
and a variety of optimization schemes have been developed to prevent such forgetting. The tension
that exists between keeping model parameters stable enough to perform well on task A while having
enough flexibility to adapt to task B is known as the stability-plasticity tradeoff (Mermillod et al.,
2013). Seminal work on preventing forgetting by Kirkpatrick et al. (2016) uses the Fisher Informa-
tion matrix for task A to constrain the parameters learned on task B to be in a close neighbourhood
to the parameters learned on Task A while taking into account individual parameter importance.
Another line of work focuses on constraining gradients rather than distance in parameter space by
projecting onto a subspace that improves both tasks, or at least does not decrease performance on
task A (Farajtabar et al., 2019; Saha et al., 2021; Chaudhry et al., 2020). Other methods assume
access to a buffer of past experiences, and replay experiences to reinforce original predictions (Ver-
wimp et al., 2021). More recently Buzzega et al. (2020) combined experience replay with knowledge
distillation to more effectively force the new model to make the same predictions on samples from
the original task. Outside of lifelong learning, Toneva et al. (2018) introduced the concept of for-
getting due to the stochastic nature of neural network optimization, where predictions can flip from
right to wrong several times during the course of training. We discuss the implications of this work
for churn and use it to motivate StackEm in Section 3.

Negative Flip Reduction Predictive churn has been mentioned in the literature under other terms
such as performance regression and model backward compatibility. The concept was formally intro-
duced by Fard et al. (2016) who focused on the model adaptation notion of churn which occurs when
learning a new model on additional data. Two additional notions of churn exist: reproducing re-
sults across random initializations (variance), and changing the model architecture/hyperparameters
(model upgrade). What separates the variance notion of churn from model adaptation and model
upgrade is that it focuses only on stability, whereas the other two have a stability-plasticity tradeoff.
Thus, the most effective method for reducing churn due to variance in the optimization procedure
is not the most effective for the other two types of churn. We focus on the model adaptation notion
of churn in our work as we are interested in learning a new model with the same architecture as the
base model while leveraging additional data.
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The most efficient class of methods for reducing churn are based on distillation (Hinton et al., 2015)
where the opitmization objective is modified to include a term that biases the predictions of the
new model towards those of the base model. Fard et al. (2016) introduced the general concept of
a stabilization operator meant to allow learning on new data while keeping predictions consistent
with the base model. The actual stabilization operator used is referred to as anchor loss by other
works, and is a distillation-based objective which trains on a mixture distribution of the ground truth
one-hot targets and predictions made by the base model, similar to label smoothing (Müller et al.,
2019). Anil et al. (2018) introduced co-distillation for reducing the variance notion of churn such
that predictions are reproducible even when it is not feasible to control the random initialization.
Co-distillation works by training 2 models in parallel using each other’s predictions for distillation,
and only one of the models is kept upon convergence. This procedure is then repeated, again keeping
just one of the models upon convergence such that the churn between the two runs is significantly
less than when training two models independently from different initializations. Bhojanapalli et al.
(2021) built upon co-distillation by combining it with entropy regularization to achieve further churn
reduction. Both co-distillation and anchor loss modify the training procedure for the base model
which is impractical for models that are already in deployment. Jiang et al. (2021) address this
limitation with an objective similar to anchor loss that requires fewer hyperparameters and achieves
SOTA churn reduction in the model adaptation setting.

Yan et al. (2020) introduced a new distillation objective called focal loss where samples correctly
predicted by the base model undergo a stronger distillation loss than other samples. Even though
focal loss is meant to increase the plasticity of the new model, Yan et al. (2020) observed that
ensembles have superior performance. Bahri & Jiang (2021) also showed that ensembles, though
impractical due to their high training and inference costs, are by far the most effective way of reduc-
ing churn. In an attempt to reduce ensemble inference cost, Zhao et al. (2022) distill the knowledge
from the average logits of an ensemble to a single model. Their method ELODI was shown to be
more efficient, but not quite as effective in both accuracy and churn reduction as ensembles. It also
requires training an ensemble for both the base and new model prior to applying distillation, so
it is still very expensive relative to distillation, and is not applicable to already deployed models.
Most similar to our approach is that of Cai et al. (2022) who show that storing models over time
is effective for reducing churn in the structured prediction setting for both syntactic and semantic
parsing tasks. In particular, they focus on the case of switching from one type of parser to another
(model upgrade), rather than our setting of accumulating more data over time (model adaptation).
A re-ranking procedure is used where the new model generates a set of candidate predictions, and
the base model chooses from these predictions. However, re-ranking is a fundamentally different
procedure compared to model stacking and is not directly transferable to classification tasks since
the notion of candidate prediction does not exist in classification.

3 UNDERSTANDING CHURN

We are interested in the supervised classification setting where Dtrain = {(x(i), y(i))}ntrain
i=1 is our

initial training data comprised of samples x ∈ Rd, y ∈ [k]. We would like to learn the parameters
θ of a model f(·; θ) where f : Rd → Rk. Let ℓ be the cross-entropy loss, and ϕ : Rk → ∆k be
the Softmax function mapping from logits to the k − 1 dimensional simplex. The parameters of the
base model θbase are obtained via empirical risk minimization

θbase = argmin
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

ℓ(ϕ(f(x; θ)), y)

where ℓ is the cross entropy loss function.

Given additional data Dupdate we would like to learn new parameters θnew such that the churn
between θbase and θnew is less than a tolerance ϵ. Specifically, let D = Dtrain ∪ Dupdate, and
σ : Rk → [k] be the argmax function mapping from soft model scores to a hard prediction. The

3



Under review as a conference paper at ICLR 2023

churn-constrained optimization problem is formulated as follows (Jiang et al., 2021)

min
θnew

1

|D|
∑

(x,y)∈D

ℓ (ϕ (f(x; θnew)) , y) s.t. C(θbase, θnew) < ϵ

C(θbase, θnew) =
1

|D|
∑

(x,y)∈D

1[σ(f(x; θbase)) ̸= σ(f(x; θnew))]

Note that we use a hard definition of churn rather than the soft, divergence-based churn used by
(Jiang et al., 2021).

C(θbase, θnew) counts samples that both θbase and θnew predict incorrectly, what we refer to as
benign flips. We believe negative flips to be most disruptive to user-model workflows, so we consider
the notion of relevant churn that focuses on negative flips instead

Crel(θbase, θnew) =
1

|D|
∑

(x,y)∈D

1[σ(f(x; θnew)) ̸= σ(f(x; θbase)) ∧ σ(f(x, θbase)) = y] (1)

as in (Yan et al., 2020).

Jiang et al. showed that the above constraint optimization problem is equivalent to distillation by
training with a mixture distribution of the ground truth one-hot target and output probability from
the base model

min
θnew

1− α

|D|
∑

(x,y)∈D

ℓ(ϕ(f(x; θnew)), y) +
α

|D|
∑

(x,y)∈D

ℓ(ϕ(f(x; θnew)), ϕ(f(x; θbase)))

Distillation introduces an explicit stability-plasticity tradeoff between learning on new data and
matching the predictions of the base model which can be controlled by varying α. It allows for
substantial churn reduction and is SOTA among non-ensemble based methods Jiang et al. (2021),
but to achieve further churn reduction requires limiting the performance of f(·; θnew).
While churn is defined between two models, it is important to note that it also occurs during the
course of training a single model. Toneva et al. (2018) introduced the notion of a forgetting event
where if ŷti = argmaxk f(xi, θ

t) and accti = 1[ŷti = yi], then a forgetting event occurs at time
t+ 1 if accti > acct+1

i . On CIFAR-10, it was discovered that only ∼ 15k samples are unforgettable
(i.e. no forgetting event occurs once correctly predicted the first time), meaning that the remaining
∼ 35k samples have unstable predictions during training. This instability between points along an
optimization trajectory suggests churn can be attributed to some samples being incompatible with
a given update. We define sample compatibility as the cosine similarity between the average batch
gradient and individual sample gradient

gB = ∇θ
1

|B|
∑

(x,y)∈B

ℓ(ϕ(f(x; θ)), y) g = ∇θℓ(ϕ(f(x; θ)), y)

comp(gB, g) :=
⟨gB, g⟩

||gB|| ||g||

The set of incompatible samples is then Sinc = {(x, y) ∈ D|comp(gB, g) < 0}, i.e. samples that
incur an increase in loss when taking a step in the direction of the average gradient. Figure 1 shows
the distribution of cosine similarities between the average gradient and per-sample gradients at 3
checkpoints during the training of a ResNet18 on CIFAR10. Even as the model fits the training
data increasingly well, there are still many incompatible samples. Incompatible samples close to
the decision boundary are precisely those that are likely to have a negative flip during training. As
a proxy for distance to decision boundary, we use the margin as defined by (Pleiss et al., 2020)
M(x, y) = fy(x) −maxi ̸=y fi(x). The margin is affected by both the given sample’s gradient, as
well as the gradients of all other samples in the batch, where the former decreases the margin given
a small enough learning rate, and the latter depends on how the knowledge from remaining samples
generalizes to the current sample. We also compute gradient norms to see if the samples in Sinc

have a significant impact on the overall batch weight update. Figure 2 compares gradient norm and
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Figure 1: Gradient cosine similarity distribution throughout training on a random subset of 100 sam-
ples for a ResNet18 model trained on CIFAR10 data. Density to the left of the blue line corresponds
to incompatible samples that will have increased loss after a weight update. Left, middle, and right
figure correspond to epochs 10, 100, and 200 respectively.
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Figure 2: Gradient norm vs. sample margin grouped by gradient similarity revealing that even as the
model fits the data well, there are still incompatible samples with both high gradient norm and small
margin. Red points with low margin are at high risk of having a flipped prediction. Left, middle,
and right figure correspond to epochs 10, 100, and 200 respectively.

margin for compatible (blue) and incompatible (red) samples. Incompatible samples with both high
gradient norm, and small margin persist throughout training suggesting that forgetting on training
samples is common until the final loss is 0. The churn reduction effectiveness of a regularization
method which trains only a single model is thus limited by its ability to ensure self-consistency from
one epoch to the next. Specifically, this means the ability to find a direction in weight space which
simultaneously decreases the loss on all samples at every parameter update.

Thus, the performance of any single-model churn reduction method, of which distillation is a prime
example, is limited by the existence of incompatible samples. In order to bypass the stability-
plasticity tradeoff, we propose introducing a memory mechanism through model stacking that allows
keeping the new model’s predictions when it is more likely to be correct than the base model.

4 STACKING MODELS

We use fbase and fnew to denote f(;̇θbase) and f(;̇θnew) for cleaner notation. The ensemble approach
for reducing churn (Figure 3) requires that both the base and new model are ensembles: Fbase =

{f (1)base, ..., f
(M)
base}, Fnew = {f (1)new, ..., f

(M)
new }, where M is the number of models per ensemble, and

inference is done by averaging the logits of the ensemble predictions

F(x) =
1

M

M∑
i=1

f (i)(x)

This has two major challenges which limit its feasibility in practice. First, it increases both training
and inference costs by a factor of M which can be prohibitively expensive. Second, since the base
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model needs to be an ensemble, it is not possible to apply this approach to an already deployed
model.

...

f
(1)
base f

(M)
base

1
M

∑M
i=1 f

(i)
base(x)

initial deployment

...

f
(1)
new f

(M)
new

1
M

∑M
i=1 f

(i)
new(x)

update

Figure 3: Traditional Ensemble approach for reducing churn. Both the base model and new model
are an ensemble of M models in order to achieve sufficient variance reduction.

fbase

fbase(x)

initial deployment

fbase fnew

ψ(fbase(x), fnew(x))

update

Figure 4: StackEm for reducing churn. After updating, a combination of the base and new model’s
outputs are used to generate the final prediction.

To bypass these limitations, we introduce StackEm (Figure 4) : a stacking based approach that fuses
the output of fbase and fnew using a meta model ψ to generate the final prediction. While stacking
has been around for decades (Wolpert, 1992), its use has not been explored for churn reduction,
and the meta-models we consider are meant to reduce churn rather than increase accuracy (Ting &
Witten, 1997). By not requiring fbase and fnew to be ensembles, our method would train M − 1
models fewer than ensemble approach at each update. Most of all, it allows for churn reduction even
for an already deployed base model. Ensembles and StackEm are not only different in terms of their
computational requirements, but also in the way that they reduce churn.

Since ensembles results in both a more accurate base model and new model, most of the churn reduc-
tion advantages come from the improvement in performance, with some additional benefit coming
from less variance in predictions as shown by Zhao et al. (2022). Under some strong assumptions,
namely that the output logits are normally distributed, the authors show that

F(X) =
1

M

M∑
i=1

f (i)(X) ∼ N (µ,
1

M
Σ)
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assuming f (i)(X) ∼ N (µ,Σ) where X ∼ P (X). We use capital X to emphasize that we are
considering model outputs for a random input from the data distribution, not a particular realization.
Thus, the difference between the logits of base and new ensembles is

Fbase(X)−Fnew(X) ∼ N (µbase − µnew,
2

M
(Σbase +Σnew))

which has a variance smaller by a factor of 1
M compared to single models.

Instead of reducing variance, StackEm aims to deviate from the base model for a sample x when
the new model is more likely to be correct. By keeping both fbase and fnew, we can avoid creating
a tradeoff between stability and plasticity. To show this, assume that fnew and fbase are perfectly
calibrated. This means that Pr(Ŷ = Y |P̂ = p) = p,∀p ∈ [0, 1] where Ŷ = argmaxk f(X)k (hard
prediction) and P̂ = maxk ϕ(f(X))k (predicted probability). We capitalize the symbols to indicate
that they are random variables jointly distributed according to P (X,Y ).

Perfect calibration implies that model accuracy acc(f) = Ep̂[Pr(Ŷ = Y |P̂ = p)] where the
expectation is taken w.r.t. the distribution of predicted probabilities P̂ . If we have a meta-
model ψ that chooses the highest confidence model according to the rule ψ(x) = f∗(x) where
∗ = argmaxω∈{base,new} maxc fω(x)c, then ψ is also perfectly calibrated. We have

acc(ψ) = EP̂ψ [Pr(Ŷψ = Y |P̂ψ = p)]

= EX
[
max
k

ϕ (f∗(x))k

]
# due to calibration

≥ EX
[
max
k

ϕ (fnew(x))k

]
= EP̂new

[Pr(Ŷnew = Y |P̂new = p)]

= acc(fnew)

and trivially Crel(ψ) ≤ Crel(fnew) (see eq 1) since negative flips can only be reduced by using fbase
instead of fnew. Thus, StackEm can reduce Crel without decreasing accuracy, hence it bypasses the
stability-plasticity tradeoff. We refer to the above ψ as Confidence in the results since it chooses the
highest confidence prediction of the two models. We consider two other meta-models ψ to aggregate
the outputs of fbase and fnew and compare their performance in the results section.

4.1 KL-DIVERGENCE

The KL-divergence between a model’s output probabilities and the uniform distribution has been ob-
served to be larger for in-distribution data compared to out-of-distribution data (Huang et al., 2021).
While correlated with prediction confidence, this captures uniformity among remaining classes and
prefers that the remaining probability is concentrated among a few classes. We thus choose the
model that has the highest such KL-divergence for a given sample

u =

[
1

K
, ...,

1

K

]
∈ RK Gω(x) = Dkl(u||fω(x)) ∗ = argmax

ω∈{base,new}
Gω(x)

ψ(x) = f∗(x)

4.2 LEARNED COMBINATION

Learning to use the outputs of fbase and fnew to generate a new prediction capable of correcting the
mistakes of both models is the original approach used for stacking (Ting & Witten, 1997). A model
h∗ : Rd × Rd → Rk is learned to maximize the accuracy on the validation set given the outputs of
fbase and fnew:

h∗ = argmin
h∈H

1

|Dval
|

∑
(x,y)∈Dval

ℓ(h(fbase(x), fnew(x)), y)

ψ(x) = h∗(fbase(x), fnew(x))
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where H is the hypothesis space for the learned combination. We perform 5-fold cross validation to
select the the best h ∈ H as to avoid overfitting.

5 EXPERIMENTS

Data We largely follow the experimental setup of Jiang et al. (2021) and focus on benchmark
computer image classification datasets. However, rather than using small subsets of data for training
and updates (1000 samples for both) as in Jiang et al. (2021), we use all available data in order to
obtain results that are representative of real-world models. For all datasets, we use a 60/20/20 split
into training/validation/update partitions which enables a clear performance improvement for fnew
relative to fbase since it is trained on significantly more samples. All of the datasets used have a
pre-defined test partition which we use for final evaluation. We use the following datasets:

1. CIFAR10, CIFAR100 (Krizhevsky), STL10 (Coates et al., 2011) using ResNet18 (He et al.,
2015)

2. MNIST (LeCun & Cortes, 2010), EMINST (Cohen et al., 2017), KMNIST (Clanuwat et al.,
2018), FashionMNIST (Xiao et al., 2017), SVHN (Netzer et al., 2011) using LeNet-5 (Le-
cun et al., 1998)

Training: We use early stopping like Jiang et al. (2021) to avoid having to find an optimal fixed
number of epochs for each dataset/method combination which is complicated by the fact that fnew
has access to more data and would require a different number of update iterations than fbase. fbase is
trained on Dtrain, and fnew is trained from scratch on Dtrain∪Dupdate. We use the Adam optimizer
with a learning rate of 0.001 for both models. Data augmentation in the form of random horizontal
flips and crops is used for the CIFAR10, CIFAR100, and STL10 datasets (Shorten & Khoshgoftaar,
2019). Every set of experiments is run with 10 random seeds to obtain a reliable estimate of average
accuracy and Crel (eq1). We note that since we are randomly splitting the original training sets into
train/validation/update, the aim is not to reach SOTA accuracy, rather an effective churn reduction
method should be as accurate as the baseline model while significantly reducing Crel.

Jiang et al. (2021) investigated several churn reduction baselines and found that distillation outper-
forms all of them including initializing fnew with θbase, label smoothing Bahri & Jiang (2021), and
Mix-Up (Zhang et al., 2017). We use the Distillation approach from (Jiang et al., 2021) shown in
Section 3 as the SOTA distillation approach to compare against, and use the same search space for
the hyperparameter α ∈ {0.1, 0.2, ..., 0.9} as in their paper for a fair comparison. For Ensemble, we
consider M ∈ {3, 5, 7} as a larger number of models results in diminishing variance reduction rel-
ative to the increase in training costs. Finally, for StackEm only the Learned Combination requires
hyperparameter tuning, namely a search over the space of models used to combine the outputs of
fbase and fnew. We consider logistic regression, random forests, and gradient boosting models, with
the hyperparameters used for each listed in the appendix.

Table 1 compares the performance of the considered methods, and results for two additional base-
lines can be seen in the appendix. The best performing method for each dataset is bolded, and since
we are looking at both accuracy and Crel (relevant churn), each row has 2 bold entries. If the ob-
served difference in Crel is not statistically significant (one-sided t-test with α = 0.05), we highlight
both methods. In all cases, StackEm outperforms Distillation by a significant margin, and the re-
duction in churn is greater than the increase in accuracy. This is not the case with Ensemble where
relative to Distillation, churn reduction is less than the observed increase in accuracy. On Fashion-
MNIST and CIFAR100 StackEm even outperforms Ensemble. While Ensemble achieves less churn
than StackEm for the remaining datasets, the results are not statistically significant as confirmed by
a t-test. We emphasize that StackEm achieves nearly as much churn reduction as Ensemble at a
fraction of the cost, in this case 7x less memory, training compute cost, and inference cost. Due
to limited space, confidence intervals are not included in Table 1, but boxplots can be found in the
Appendix.

Given the substantial churn reduction performance of StackEm , we investigate which meta-model is
best. Table 2 shows that on all datasets except MNIST and EMNIST, Confidence is consistently the
most effective at reducing churn, even though it does not achieve the highest accuracy. To understand
this discrepancy between accuracy and churn, Figure 5 shows the number of negative and positive
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Table 1: Comparison of churn reduction methods on benchmark image classification datasets.
StackEm outperforms Distillation on both accuracy and Crel (relevant churn) across all datatsets,
and even outperforms Ensemble in terms of reducing Crel on FashionMNIST and CIFAR100. Note
that we report Crel as a percentage, hence why it takes on values greater than 1.

No Regularization Distillation Ensemble (7x) StackEm

Dataset Acc ↑ Crel ↓ Acc ↑ Crel ↓ Acc ↑ Crel ↓ Acc ↑ Crel ↓
MNIST 98.958 0.640 99.072 0.410 99.520 0.128 99.374 0.162
EMNIST 93.490 2.359 93.647 1.656 94.980 0.744 94.279 0.760
KMNIST 95.405 1.991 95.585 1.595 97.119 0.534 96.124 0.607
FashionMNIST 90.601 3.642 90.653 2.634 92.699 1.353 91.509 1.312
SVHN 87.319 6.096 89.002 3.927 92.981 1.557 90.013 1.685
CIFAR10 82.598 6.450 83.372 4.354 85.226 2.399 84.130 2.526
CIFAR100 49.851 9.745 50.613 5.814 54.371 4.568 51.524 4.092
STL10 64.140 11.672 64.762 6.592 71.678 4.614 67.174 4.971

Table 2: Comparison of the three meta-models ψ considered for StackEm . Learned Model is the
most accurate except for on CIFAR100 where it fails likely due to the low accuracy of both fbase and
fnew. However, Learned Model does worse than Confidence for churn reduction except on MNIST.

Confidence KL-Div Learned Model

Dataset Acc ↑ Crel ↓ Acc ↑ Crel ↓ Acc ↑ Crel ↓
MNIST 99.271 0.183 99.194 0.242 99.374 0.162
EMNIST 94.279 0.760 93.947 1.120 94.391 1.095
KMNIST 96.124 0.607 95.430 0.760 96.359 0.679
FashionMNIST 91.509 1.312 90.949 1.901 91.760 1.550
SVHN 90.013 1.685 89.724 1.867 90.809 1.820
CIFAR10 84.130 2.526 83.316 3.371 84.839 2.618
CIFAR100 51.524 4.092 50.066 5.473 46.047 11.620
STL10 67.174 4.971 66.000 7.200 68.504 6.447

flips made by each meta-model. For Confidence and Entropy, ψ is not capable of making additional
negative or positive flips compared to just using fnew since ψ chooses between fbase and fnew.
However, Learned Model is capable of making new predictions that differ from both fbase and fnew,
so while it is more effective at reducing negative flips relative to Confidence (green bar for Learned
Model is lower than Confidence), it introduces new errors on samples that both fbase and fnew
correctly predict which results in a higher total number of negative flips compared to Confidence.

Conf Learned KL-Div
0

200

400

600

Co
un

t

Negative Flips

Flip Source
New Orig

Conf Learned KL-Div
Selected Model

Positive Flips

Figure 5: Flip counts for the 3 meta-models
for ResNet18 models trained on CIFAR10.
Confidence has the fewest negative flips.
Learned and KL-Div have more positive
flips, showing that better accuracy does not
imply less churn.

The Confidence meta-model works best under the as-
sumption that predictions are calibrated, so we inves-
tigate if further churn reduction is achievable by im-
proving calibration. The calibration of both models
before and after temperature scaling can be seen in
Figure 6 for a ResNet18 models on CIFAR10. Both
expected calibration error (ECE) and maximum cali-
bration error (MCE) are significantly reduced through
temperature scaling (Guo et al., 2017). Surprisingly,
this does not help reduce churn, or improve model
accuracy. Accuracy without scaling is 84.17% and
after scaling it is 84.08% while Crel with scaling is
2.17% without scaling and 2.19% with scaling. We
observe that both fbase and fnew were systematically
overconfident in their predictions prior to temperature
scaling.
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Figure 6: Calibration of ResNet18 models trained on CIFAR10.

Table 3: Changes in prediction confi-
dence ranking due to temperature scaling.

Switch To Benign Good Bad

fbase 234 9 18
fnew 41 11 11

Thus, improved calibration does not affect the ranking
in prediction confidence between the models for many
samples. Table 3 shows that calibration results in a to-
tal of just 324 total changes in ranking between fbase
and fnew. Most of the changes are benign meaning they
occur for samples which fbase and fnew both get right
or both get wrong. Good switches to fbase correspond
to decreases in negative flips, and bad switches to fnew
are increases in negative flips. The Appendix shows the
distribution of prediction confidence on negative flips focusing on samples that fnew predicts with
higher confidence than fbase and thus cannot be eliminated using the Confidence meta-model. Per-
fect churn reduction can thus occur only when using a meta-model that sometimes chooses fbase
even when maxk fbase(x)k < maxk fnew(x)k.

6 DISCUSSION AND LIMITATIONS

By showing that prediction instability exists due to incompatibility between samples at different
steps during the learning process, we motivate the need for a churn reduction method that does not
rely on the new model having to match the predictions of the base model. We showed that our
method StackEm is capable of bypassing the stability-plasticity tradeoff by reverting to the base
model when necessary for stability, and letting the new model be unconstrained for maximum plas-
ticity. While the performance advantages over distillation are clear, the cost of inference becomes
O(T ) where T is the number of model updates performed. Thus, StackEm eventually suffers the
same computational drawbacks as ensembles at inference time when model updates are frequent,
though training costs are still greatly reduced. Overall, StackEm gives ML practitioners an option
that is in between the two extremes of ensembles and distillation. It can serve as an easy to imple-
ment way of maintaining user trust throughout model deployment.
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7 REPRODUCIBILITY

We will be releasing our GitHub repository containing all code required for precise replication of
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PyTorch and PyTorch Lightning. We will also release access to the runs generated on Weights and
Biases for easier analysis of our results without having to train models. Our code repository also
contains Jupyter notebooks capable of generating all of the figures and tables in this paper.
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APPENDIX

DESCRIPTION OF BASELINES EVALUATED

No Regularization fbase is learned on the original training data as follows

θbase = argmin
θ

1

|Dtrain|
∑

(x,y)∈Dtrain

ℓ(ϕ(f(x; θ)), y)

fnew is naively trained from a random initialization independently of fbase using the additional data
D = Dtrain ∪ Dupdate

θnew = argmin
θ

1

|D|
∑

(x,y)∈D

ℓ(ϕ(f(x; θ)), y)

This leads to an upper bound on churn that we aim to reduce.

Warm Start Instead of training fnew from a random initialization, it is initialized with the pa-
rameters of fbase. This reduces churn by biasing the parameters of fnew to be closer to fbase. This
baseline is not always an option as on some datasets it results in worse accuracy than training from
scratch using no regularization which is not a tradeoff we are willing to make. Ash & Adams (2020)
have also observed that warm starts lead to worse generalization performance than retraining from
scratch.

Distillation fnew is learned using a loss that is a combination of standard cross entropy loss on
ground truth one-hot labels, and distillation using the predicted probabilities of fbase as targets

θnew = argmin
θ

1− α

|D|
∑

(x,y)∈D

ℓ(ϕ(f(x; θ)), y) +
α

|D|
∑

(x,y)∈D

ℓ(ϕ(f(x; θ)), ϕ(f(x; θbase)))

where lower values of α place more emphasis on learning independently from D, and higher values
encourage matching the predictions of fbase.

Ensemble The base model is itself an ensemble Fbase = {f (1)base, ..., f
(M)
base} where the parameters

of each individual model θ(i)base, i ∈ [M ] are learned as in the No Regularization baseline from
different random initializations.

The new model is also an ensemble Fnew = {f (1)new, ..., f
(M)
new } where the parameters of each indi-

vidual model θ(i)new, i ∈ [M ] are learned as in the No Regularization baseline from different random
initializations.

Inference is done by averaging model logits via

F(x) =
1

M

M∑
i=1

f (i)(x)

Anchor Loss Similar to distillation except that the distillation loss target depends on the correct-
ness of the base model. fnew is learned using the following loss

θnew = argmin
θ

1− α

|D|
∑

(x,y)∈D

ℓ(ϕ(f(x; θ)), y) +
α

|D|
∑

(x,y)∈D

ℓ(ϕ(f(x; θ)), t(x, y))

t(x, y) =

{
ϕ(f(x; θbase)) if σ(f(x; θbase)) = y

ϵy otherwise
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BEST LEARNER FOR LEARNED MODEL

Table 1 compares the effectiveness of logisic regression, random forest, and gradient boosting mod-
els as a trainable meta-model σ. Logistic regression does the best on all datasets except CIFAR100
suggesting there is no advantage to learning a non-linear function that combines the outputs of fnew
and fbase. This observation is in accordance with the stacking literature where the meta-model is
usually naive Bayes or logistic regression.

Table 1: Comparison logistic regression, random forest, and gradient boosting models for Learned
Model stacking.

Logistic Regression Random Forest Gradient Boosting

Dataset Acc ↑ Crel ↓ Acc ↑ Crel ↓ Acc ↑ Crel ↓
MNIST 99.374 0.162 99.355 0.192 99.278 0.239
EMNIST 94.391 1.095 94.284 1.225 93.866 1.667
KMNIST 96.359 0.679 96.151 0.802 95.810 1.084
FashionMNIST 91.760 1.573 91.547 1.795 91.449 1.914
SVHN 90.859 1.795 90.457 2.033 90.163 2.241
CIFAR10 84.839 2.618 84.512 3.102 84.281 3.341
CIFAR100 46.067 11.714 50.655 7.622 40.694 15.310
STL10 68.504 6.448 67.349 7.005 65.855 8.411

Logistic Regression Hyperparameters We search over different values of the L2-regulariazation
parameter λ ∈ [1e− 4, 1e− 3, 1e− 2, 1e− 1]

Random Forest Hyperparameters We consider random forests having [50, 100, 250, 500] trees.

Gradient Boosting We consider [50, 100, 250, 500] stages of gradient boosting.

14



Under review as a conference paper at ICLR 2023

PERFORMANCE BOXPLOTS

We visualize the spread of performance across runs using boxplots for both accuracy and churn to
augment the results in our main table.
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Figure A1: Accuracy of methods on all datasets. Ensemble gives the best accuracy as expected,
albeit at a large computation cost.
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Figure A2: Churn of methods on all datasets. Ensemble and StackEm are comparable in churn
reduction performance.

PREDICTION CONFIDENCE ON NEGATIVE FLIPS

To get a better understanding of why calibrating models post-hoc with temperature scaling does
not improve the effectiveness of the Confidence meta-model, we visualize the paired prediction
confidence of fbase and fnew on negative flips where maxk fnew(x)k > maxk fbase(x)k (Figure
A3). If temperature scaling does not make fnew less confident on average, or fbase more confident
on average, or both, these negative flips cannot be further reduced by a Confidence meta-model.
Since both fbase and fnew are overconfident as was shown in the main text, temperature scaling
does not change the ranking in prediction confidence on many samples, hence why negative flips
are not reduced further. Moreover, even if fbase and fnew are perfectly calibrated, 0 negative flips
cannot be achieved by the Confidence meta-model since if for example maxk fbase(x)k = 0.5 and
maxk fnew(x)k = 0.51, then the probability of choosing the correct model is still a coin flip. Thus,
full negative flip reduction would require occasionally choosing the lower confidence model.

16



Under review as a conference paper at ICLR 2023

Base New
Model

0.4

0.6

0.8

1
Co

nf
id

en
ce Base - New

0.5
0.4
0.3
0.2
0.1

Figure A3: Paired prediction confidence of the predicted class for the base and new model on neg-
ative flips where the new model is more confident than the base model. The color indicates the
difference in prediction confidence between the base and new model. ResNet18 model trained on
CIFAR10 where the base model is trained on 30000 samples, and the new model is trained on an
extra 10000 samples from scratch with no churn reduction regularization. These negative flips can-
not be reduced further by a meta-model that chooses the model with highest prediction confidence
since the new model predicts higher confidence than the base model but is incorrect.

ADDITIONAL BASELINES

Table 2 shows results for 2 more baselines that did not fit in table 1. Note that results for the Warm
Start baseline on FashionMNIST and CIFAR100 are not shown because Warm Start does not achieve
the same accuracy as No Regularization, so churn reduction benefits are irrelevant in this case.

Table 2: Comparison of churn reduction methods on benchmark image classification datasets.
StackEm Distillation outperforms both focal loss and warm start on both accuracy and Crel (rel-
evant churn) across all datatsets.

No Regularization Warm Start Distillation Anchor Loss

Dataset Acc ↑ Crel ↓ Acc ↑ Crel ↓ Acc ↑ Crel ↓ Acc ↑ Crel ↓
MNIST 98.958 0.640 99.028 0.552 99.072 0.410 99.162 0.419
EMNIST 93.490 2.359 93.505 2.109 93.647 1.656 93.818 1.734
KMNIST 95.405 1.991 95.499 1.665 95.585 1.595 95.832 1.594
FashionMNIST 90.601 3.642 Na Na 90.653 2.634 91.044 2.724
SVHN 87.319 6.096 88.207 4.504 89.002 3.927 88.812 4.181
CIFAR10 82.598 6.450 82.792 5.406 83.372 4.354 83.383 4.681
CIFAR100 49.851 9.745 Na Na 50.613 5.814 51.356 6.752
STL10 64.140 11.672 65.154 10.177 64.762 6.592 66.590 7.309
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ADDITIONAL CALIBRATION FIGURES
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Figure A4: Calibration of LeNet models trained on SVHN.

Table 3: Changes in prediction confidence ranking due to temperature scaling for LeNet models on
SVHN.

Switch To Benign Good Bad

fbase 0 0 0
fnew 1587 37 35
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Figure A5: Calibration of LeNet models trained on FashionMNIST.

Table 4: Changes in prediction confidence ranking due to temperature scaling for LeNet models on
FashionMNIST.

Switch To Benign Good Bad

fbase 601 2 3
fnew 118 12 10
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