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ABSTRACT

Semantic feature norms — lists of features that concepts do and do not possess
— have played a central role in characterizing human conceptual knowledge,
but require extensive human labor. Large language models (LLMs) offer a
novel avenue for the automatic generation of such feature lists, but are prone to
significant error. Here, we present a new method for combining a learned model of
human lexical-semantics from limited data with LLM-generated data to efficiently
generate high-quality feature norms.

Introduction. A central goal in cognitive science is to characterize human knowledge of concepts
and their properties. Many have used human-generated feature lists as norms for establishing the
structural relationship between concepts in the human mind (McRae et al., 2005; Devereux et al.,
2014; De Deyne et al., 2008; Buchanan et al., 2019), but this requires extensive human labor. Large
language models (LLMs) have recently shown impressive capabilities when generating properties
of objects (Hansen & Hebart, 2022) or answering questions(Ouyang et al., 2022; Brown et al., 2020;
Hoffmann et al., 2022; Chowdhery et al., 2022; Wei et al., 2021) and thus suggest an avenue for
more efficient characterization of human knowledge structures, but even state-of-the-art models can
routinely fail on many common-sense questions of fact. GTP3-davinci, for instance, will deny that
alligators are green, while asserting that they can be used to suck dust up from surfaces. Thus,
human effort can generate high-quality norms, but with prohibitive costs, while LLMs can produce
norms with little human effort, but with considerably less accuracy. This paper considers whether
human and machine effort can combine to efficiently estimate high-quality semantic feature vectors.
Our approach leverages two key observations. First, the concept-by-feature matrices collected in
norming experiments are typically high in dimension but low in rank—thus a low-dimension matrix
decomposition based on a representative subset of concepts can be used to estimate how subsets
of features covary with one another across concepts. Second, open-source LLMs optimized for
question-answering, such as Google’s FLAN-T5 XXL (Wei et al., 2021), can be used to generate
“guesses” about which concepts possess which features. While these guesses may not be fully
accurate, they can be be used to infer where a new concept might reside within the low-dimension
similarity space computed from human-generated features. The predicted coordinates of the new
item can then be re-composed to the original human feature space to make inferences about its
features. This idea suggests the following procedure:

1. Collect human feature norms for n concepts representative of a domain and assemble in
concept-by-feature matrix H .

2. Compute a singular value decomposition of H , retaining the matrix of the first d singular
values times the first d right singular vectors.

3. For a new concept, use FLAN-T5 XXL to answer questions about which properties are
‘true’ for the concept to create a binary vector of LLM-generated features, h.

4. Fit a logistic regression model to predict the new concept’s d left singular vector coordinates
using the d right singular vectors as predictors and h as the target.

5. Multiply out the predicted left singular vectors through the rest of the SVD to get
predictions about features of the new item.

Refer to Figure 1 A. for a visual schematic of the procedure. We evaluated this approach using a
well-known pre-existing dataset of semantic feature norms De Deyne et al. (2008).
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Figure 1: (A.) Our procedure for estimating features for new concepts. A human feature-listing
matrix is decomposed using (SVD) into low-rank matrices of principal components (right) and
weights to linearly combine them to estimate the features for each item (left). For a new concept,
logistic regression models estimate weights to map the principal components to LLM-generated
features for the concept. Multiplying the estimated weights with the principal components improves
the alignment between humans and machines. (B.) d′ distributions for raw LLM features and LLM
features generated from the process in (A). (C.) The difference in d′ values using raw LLM features
and the method in (A) with different amounts of the original dataset withheld.

Method. The human norm dataset included 129 animal concepts evaluated on 764 features, and
166 tools evaluated on 1262 features. Each feature corresponded to a property generated by
human participants when asked to ’list all the features they knew to be true of each concept’. For
each domain separately, 4 human raters evaluated whether a given feature was generally true of
a given concept (e.g. “Yes or no, is the property is green true of the concept alligator”). We
threshold the values in these matrices such that only features that all 4 raters agreed to be true
were treated as valid ’trues’. This gave us a set of ground truth binary human-generated feature
matrices. Next, we used the XXL variant of FLAN-T5, a 11B parameter language model accessed
through the huggingface transformers library (Wolf et al., 2019), to perform the same feature
verification task for every cell in both matrices (see Appendix). We then treated human/machine
feature comparisons as a signal detection problem in which the human norms provided the ground
truth (signal present/absent) against which the machine responses were evaluated as hits, misses,
false-alarms, or correct rejections. From these data we computed d′ as the measure of agreement
between human and machine matrices. This metric was computed separately for the animal and
tool datasets using just the FLAN-verified feature vectors. The central question was whether the
matrix completion-based data-augmentation approach described above improves the match between
machine and human feature vectors.

Results. Figure 1 A illustrates the general workflow. To test if our matrix completion technique
improved alignment between human and machine features, we iteratively held-out one concept at a
time and computed the SVD and regression models on the remaining concepts. We then estimated
the features for the held-out concept and computed its d′ relative to ground-truth human features.
We found that our matrix completion technique led to higher d′ values relative to using the raw
features generated by the LLM for both animal (t = 15.86, p < .001) and tool (t = 3.79, p < .001)
concepts (Figure 1B.).

For this method to be efficient, it should require little data to fit the SVD model. To estimate
how much data would be needed for our matrix completion method to show meaningful gains,
we held out 10% - 90% of the original human data when fitting the SVD model and estimated the
differences in d′ when using our method vs. raw LLM feature lists. We found statistically significant
improvements using our method while holding out up to 70% of the original data, with much greater
improvements for animals than tools (Figure 1 C.).

Conclusion. We evaluated a new method for combining human effort and LLM behavior to more
efficiently generate semantic feature norms. Such norms have been critical for understanding the
nature and structure of human conceptual knowledge, but prior efforts have required extensive
human labor. Our method yields higher-quality vectors than those produced by LLMs alone, with
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potentially huge savings in human effort–opening the door for mapping a much broader set of
concepts in future.
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A APPENDIX

A.1 FLAN-T5 FEATURE VERIFICATION

We used a standardized prompt for querying FLAN-T5 about whether a given feature was applicable
for each concept in the animal and tool concept sets. Table 1 shows an example of a prompt to query
whether the feature ’has two eyes’ is valid for the concept ’Dolhpin’. We prefaced the question
with the same example of a positive and negative example for the concept ’book’. We repeated this
procedure for every concept x feature combination in the norm dataset collected by De Deyne et al.
(2008)
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Q: Is the property [is female] true for the concept [book]?
A: False
Q: Is the property [can be digital] true for the concept [book]
A: True
In one word True/False, answer the following question
Q: Is the property [has two eyes] true for Dolphins?
A: <mask>

Table 1: Example Prompt.

A.2 d′ AS AN ALIGNMENT METRIC

Since both the ground-truth human feature matrices and LLM-generated feature matrices had binary
entries, the problem of human-machine comparison can be described in terms of signal detection
theory. That is, if we treat the human-matrix as being the source of ’signal’, the predictions of 1s
and 0s in the machine matrix can be — (1) Hits if the cell in the matrix was 1 for both the human
and machine matrix, (2) Misses if the cell in the machine matrix is 0 and 1 in the human matrix,
(3) False alarms if the cell in the machine matrix is 1 and 0 in the human matrix, and (4) Correct
rejections if the cell in both the machine and human matrices is 0. The number of hits, misses, false
alarms, and correct rejections can be tallied to compute hit rate (HR) and false-alarm rate (FAR) as
follows -

HR =
hits

hits+misses
(1)

FAR =
false alarms

false alarms+ correct rejections
(2)

Finally, d′ is computed as
d′ = z(H)− z(FAR), (3)

where z is the inverse of the cumulative distribution function (CDF) of the standard normal
distribution N (0, 1). A higher d′ indicates a greater degree of alignment between human and
machine features.
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Figure 2: Profile of singular values for both human feature matrices visualized as scree plots. As can
be observed, these matrices were low-rank, thus when fitting our feature verification model, we used
a rank-10 decomposition when computing the SVD. We did find minor variations in performance
as a function of changing the rank of the decomposition, but overall as long as the rank was around
10, which corresponds to the elbow of the scree plots, the reconstructed values were accurate.
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Figure 3: d′ distributions for different holdout percentages. As the amount of data used to fit the
matrix-completion model is reduced, the more the model-based distribution overlaps with the pure
LLM distribution (shown in blue). While greater gains are seen for the animal concepts, FLAN is
already quite good at estimating the structure of tool concepts.
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Figure 4: Human feature-ratings, FLAN-based LLM generated feature-ratings, and features
generated using our matrix-completion model using a leave-one-out approach for (A) animal
concepts and (B) tool concepts . Yellow cells correspond to 1s and purple cells correspond to 0s.
The LLM tends to provide many false positives as is indicated by the greater proportion of yellow
cells. Our method helps to ’clean’ the LLM generated matrix to bring it into closer alignment with
human ratings.

6


	Appendix
	FLAN-T5 Feature verification
	d' as an alignment metric


