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ABSTRACT

Video prediction is an important yet challenging problem; burdened with the tasks
of generating future frames and learning environment dynamics. Recently, autore-
gressive latent video models have proved to be a powerful video prediction tool,
by separating the video prediction into two sub-problems: pre-training an im-
age generator model, followed by learning an autoregressive prediction model in
the latent space of the image generator. However, successfully generating high-
fidelity and high-resolution videos has yet to be seen. In this work, we investigate
how to train an autoregressive latent video prediction model capable of predicting
high-fidelity future frames with minimal modification to existing models, and pro-
duce high-resolution (256x256) videos. Specifically, we scale up prior models by
employing a high-fidelity image generator (VQ-GAN) with a causal transformer
model, and introduce additional techniques of top-k sampling and data augmen-
tation to further improve video prediction quality. Despite the simplicity, the pro-
posed method achieves competitive performance to state-of-the-art approaches on
standard video prediction benchmarks with fewer parameters, and enables high-
resolution video prediction on complex and large-scale datasets. Videos are avail-
able at the anonymized website https://sites.google.com/view/harp-anonymous.

1 INTRODUCTION

Figure 1: Selcted 256× 256 video sample generated by HARP on RoboNet (Dasari et al., 2019).

Video prediction can enable agents to learn useful representations for predicting the future conse-
quences of the decisions they make, which is crucial for solving the tasks that require long-term
planning, including robotic manipulation (Finn & Levine, 2017; Kalashnikov et al., 2018) and au-
tonomous driving (Levinson et al., 2011; Xu et al., 2017). Despite the recent advances in improving
the quality of video prediction (Finn et al., 2016; Lotter et al., 2017; Liang et al., 2017; Babaeizadeh
et al., 2018; Denton & Fergus, 2018; Lee et al., 2018; Byeon et al., 2018; Kumar et al., 2020; Weis-
senborn et al., 2020; Babaeizadeh et al., 2021), learning an accurate video prediction model remains
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notoriously difficult problem and requires a lot of computing resources, especially when the inputs
are video sequences with high-resolution (Castrejon et al., 2019; Villegas et al., 2019; Clark et al.,
2019; Luc et al., 2020; Walker et al., 2021). This is because the video prediction model should excel
at both tasks of generating high-fidelity images and learning the dynamics of environments, though
each task itself is already a very challenging problem.

Recently, autoregressive latent video prediction methods (Rakhimov et al., 2021; Yan et al., 2021)
have been proposed to improve the efficiency of video prediction, by separating video prediction
into two sub-problems: first pre-training an image generator (e.g., VQ-VAE; Oord et al. 2017), and
then learning the autoregressive prediction model (Weissenborn et al., 2020; Chen et al., 2020) in
the latent space of the pre-trained image generator. However, the prior works are limited in that
they only consider relatively low-resolution videos (up to 128 × 128 pixels) for demonstrating the
efficiency of the approach; it is questionable that such experiments can fully demonstrate the benefit
of operating in the latent space of image generator instead of high-dimensional pixel-channel space.

In this paper, we present High-fidelity AutoRegressive latent video Prediction (HARP), which scales
up the previous autoregressive latent video prediction methods for high-fidelity video prediction.
The main principle for the design of HARP is simplicity: we improve the video prediction quality
with minimal modification to existing methods. First, for image generation, we employ a high-
fidelity image generator, i.e., vector-quantized generative adversarial network (VQ-GAN; Esser et al.
2021). This improves video prediction by enabling high-fidelity image generation (up to 256× 256
pixels) on various video datasets. Then a causal transformer model (Chen et al., 2020), which
operates on top of discrete latent codes, is trained to predict the discrete codes from VQ-GAN,
and autoregressive predictions made by the transformer model are decoded into future frames at
inference time. Moreover, motivated by the sampling techniques widely-used in language generation
for making coherent and diverse predictions, we propose to utilize top-k sampling (Fan et al., 2018)
that draws the next discrete code from the k-most probable codes. Since the number of discrete
codes the autoregressive model has to predict is very large, e.g., 6,400 codes on KITTI driving
dataset (Geiger et al., 2013), we find that discarding rare discrete codes helps the model predict
diverse but high-quality videos, without any change to the training procedure.

We highlight the main contributions of this paper below:

• We show that our autogressive latent video prediction model, HARP, can predict high-resolution
(256×256 pixels) future frames on simulated robotics dataset (i.e., Meta-World; Yu et al. 2020)
and large-scale real-world robotics dataset (i.e., RoboNet; Dasari et al. 2019).

• We show that HARP can leverage the image generator pre-trained on ImageNet (Deng et al.,
2009) for training a high-resolution video prediction model on complex, large-scale Kinetics-
600 dataset (Carreira et al., 2018), significantly reducing the training cost.

• HARP achieves competitive or superior performance to prior state-of-the-art video prediction
models with large end-to-end networks on widely-used BAIR Robot Pushing (Ebert et al., 2017)
and KITTI driving (Geiger et al., 2013) video prediction benchmarks.

• We also show that the pre-trained representations of HARP can be useful for learning multi-task
imitation learning agent on Meta-World MT50 benchmark (Yu et al., 2020).

2 RELATED WORK

Video prediction. Video prediction aims to predict the future frames conditioned on images
(Michalski et al., 2014; Ranzato et al., 2014; Srivastava et al., 2015; Vondrick et al., 2016; Lotter
et al., 2017), texts (Wu et al., 2021b), and actions (Oh et al., 2015; Finn et al., 2016), which would
be useful for several applications, e.g., model-based RL (Hafner et al., 2019; Kaiser et al., 2020;
Rybkin et al., 2021), and simulator development (Kim et al., 2020; 2021). Various video prediction
models have been proposed with different approaches, including generative adversarial networks
(GANs; Goodfellow et al. 2014) known to generate high-fidelity images by introducing adversarial
discriminators that also considers temporal or motion information (Aigner & Körner, 2018; Jang
et al., 2018; Kwon & Park, 2019; Clark et al., 2019; Luc et al., 2020), latent video prediction mod-
els that operates on the latent space (Babaeizadeh et al., 2018; Denton & Fergus, 2018; Lee et al.,
2018; Villegas et al., 2019; Wu et al., 2021a; Babaeizadeh et al., 2021), and autoregressive video
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Figure 2: Illustration of our approach. We first train a VQ-GAN model that encodes frames into
discrete latent codes. Then the discrete codes are flattened following the raster scan order, and a
causal transformer model is trained to predict the next discrete codes in an autoregressive manner.
At inference time, we use top-k sampling that only draws the next discrete code from top-k probable
codes, in order to predict diverse but high-quality videos.

prediction models that operates on pixel space by predicting the next pixels in an autoregressive way
(Kalchbrenner et al., 2017; Reed et al., 2017; Weissenborn et al., 2020).

Autoregressive latent video prediction. Most closely related to our work are autoregressive la-
tent video prediction models that separate the video prediction problem into image generation and
dynamics learning. Walker et al. (2021) proposed to learn a hierarchical VQ-VAE (Razavi et al.,
2019) that extracts multi-scale hierarchical latents then train SNAIL blocks (Chen et al., 2018) that
predict hierarchical latent codes, enabling high-fidelity video prediction. However, this involves a
complicated training pipeline and a video-specific architecture, which limits its applicability. As
simple alternatives, Rakhimov et al. (2021); Yan et al. (2021) proposed to first learn a VQ-VAE
(Oord et al., 2017) and train a causal transformer with 3D self-attention (Weissenborn et al., 2020)
and factorized 2D self-attention (Child et al., 2019), respectively. These approaches, however, are
limited in that they only consider low-resolution videos. We instead present a simple high-resolution
video prediction method that incorporates the strengths of both prior approaches.

3 PRELIMINARIES

We consider the standard video prediction framework where the goal is to predict the future frames
conditioned on the initial frames of a video. Specifically, conditioned on the first c frames of a video
x<c = (x0,x1, ...,xc−1), we aim to learn a video prediction model that predicts the future frames
xc:T = (xc, ...,xT−1), where xt ∈ RH×W×Nch is the frame at timestep t. Optionally, one can
also consider conditioning the prediction model on actions a = (a0, ...,aT−1) that the agents in the
video would take, i.e., action-conditioned video prediction.

Autoregressive video prediction model. Motivated by the recent success of pixel-level autore-
gressive models on image generation (Menick & Kalchbrenner, 2018), Weissenborn et al. (2020)
introduced an autoregressive video prediction model that approximates the distribution of a video
in a pixel-channel space. Specifically, given a video x ∈ RT×H×W×Nch , the joint distribution over
pixels conditioned on the first c frames is modelled as the product of channel intensities Nch and all
Np = T ·H ·W pixels except Nc = c ·H ·W pixels of conditioning frames:

p(xc:T |x<c) =
Np−1∏
i=Nc−1

Nch−1∏
k=0

p(xkπ(i)|xπ(<i),x
<k
π(i)), (1)

where π is a raster-scan ordering over all pixels from the video (we refer to Weissenborn et al. (2020)
for more details on the case where π is the combination of a subscale and raster-scan ordering since
we only utilize raster-scan ordering for our approach), xπ(<i) is all pixels before xπ(i), xkπ(i) is the
k-th channel intensity of the pixel xπ(i), and x<kπ(i) is all channel intensities before xkπ(i).
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Vector quantized variational autoencoder. VQ-VAE (Oord et al., 2017) consists of an encoder
that compresses images into discrete representations, and a decoder that reconstructs images from
these discrete representations. Both encoder and decoder share a codebook of prototype vectors
which are also learned throughout training. Formally, given an image x ∈ RH×W×Nch , the encoder
E encodes x into a feature map ze(x) ∈ RH′×W ′×Nz that consists of a series of latent vectors
zπ′(i)(x) ∈ RNz , where π′ is a raster-scan ordering of the feature map ze(x) of size |π′| = H ′ ·W ′.
Then ze(x) is quantized to discrete representations zq(x) ∈ R|π′|×Nz based on the distance of latent
vectors zπ′(i)(x) to the prototype vectors in the codebook C = {ek}Kk=1 as follows:

zq(x) = (eq(x,1), eq(x,2), · · · , eq(x,|π′|)), where q(x, i) = argmin
k∈[K]

‖zπ′(i)(x)− ek‖2, (2)

where [K] is the set {1, · · · ,K}. Then the decoder G learns to reconstruct x from discrete repre-
sentations zq(x). The VQ-VAE is trained by minimizing the following objective:

LVQVAE(x) = ‖x−G(zq(x))‖22︸ ︷︷ ︸
Lrecon

+ ‖sg [ze(x)]− zq(x)‖22︸ ︷︷ ︸
Lcodebook

+β · ‖sg [zq(x)]− ze(x)‖22︸ ︷︷ ︸
Lcommit

, (3)

where the operator sg refers to a stop-gradient operator, Lrecon is a reconstruction loss for learning
representations useful for reconstructing images, Lcodebook is a codebook loss to bring codebook rep-
resentations closer to corresponding encoder outputs h, and Lcommit is a commitment loss weighted
by β to prevent encoder outputs from fluctuating frequently between different representations.

Vector quantized generative adversarial network. VQ-GAN (Esser et al., 2021) is a variant of
VQ-VAE that (a) replaces the Lrecon in (3) by a perceptual loss LLPIPS (Zhang et al., 2018), and (b)
introduces an adversarial training scheme where a patch-level discriminator D (Isola et al., 2017) is
trained to discriminate real and generated images by maximizing following loss:

LGAN(x) = [logD(x) + log(1−D(G(zq(x)))]. (4)
Then, the objective for training the VQ-GAN model is defined as:

min
E,G,C

max
D

Ex∼p(x) [(LLPIPS + Lcodebook + Lcommit) + λ · LGAN] , (5)

where λ =
∇GL

[LLPIPS]

∇GL
[LGAN]+δ

is an adaptive weight, ∇GL
is the gradient of the inputs to the last layer of

the decoder GL, and δ = 10−6 is a scalar introduced for numerical stability.

4 METHOD

We present HARP, a video prediction model capable of predicting high-fidelity future frames. Our
method is designed to fully exploit the benefit of autoregressive latent video prediction model that
separates the video prediction into image generation and dynamics learning. Specifically, we con-
sider the combination of (a) the recently introduced high-fidelity image generator (Esser et al., 2021)
and (b) an autoregressive latent video prediction model (Oord et al., 2017; Rakhimov et al., 2021;
Walker et al., 2021; Yan et al., 2021) that operates on top of the pre-trained image generator. The
full architecture of HARP is illustrated in Figure 2.

4.1 HIGH-FIDELITY IMAGE GENERATOR

We consider the VQ-GAN model (Esser et al., 2021) that has proven to be effective for high-
resolution image generation as our image generator (see Section 3 for the formulation of VQ-GAN).
Similar to the motivation of Tian et al. (2021) that utilizes a pre-trained image generator in the
context of video synthesis, we first pre-train the image generator then freeze the model throughout
training to improve the efficiency of learning video prediction models. The notable difference to a
prior work that utilize 3D convolutions to temporally downsample the video for efficiency (Yan et al.,
2021) is that our image generator operates on single images; hence our image generator solely focus
on improving the quality of generated images. Importantly, this enables us to utilize the VQ-GAN
model pre-trained on a wide range of natural images, e.g., ImageNet, without training the image
generator on the target datasets, which can significantly reduce the training cost of high-resolution
video prediction model, Also, the representations from our video prediction model can be easily
transferred to downstream tasks that require fine-grained control at each timestep, e.g., imitation
learning (see Section 5.3 for supporting experimental results on multi-task imitation learning).
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Figure 3: 256× 256 future frames predicted by HARP on action-free Meta-World (Yu et al., 2020).
Using videos from 50 different asks, we train a single model to predict the 11 frames conditioned
on the first frame without leveraging task-specific information (e.g., task index). We observe that
the model can accurately predict the high-resolution future frames of diverse tasks. More videos
predicted by HARP are available in Appendix D.

4.2 AUTOREGRESSIVE LATENT VIDEO PREDICTION MODEL

To leverage the VQ-GAN model for video prediction, we utilize the autoregressive latent video pre-
diction architecture that operates on top of the discrete codes extracted from a video x. Specifically,
we extract the discrete codes z(x) = (z(x1), ..., z(xT )) using the pre-trained VQ-GAN, where
z(xt) = (q(xt,1), q(xt,2), ..., q(xt,|π′|)) is the discrete code extracted from the frame xt as in (2).
Then, instead of modelling the distribution of video p(x) in the pixel-channel space as in (1), we
learn the distribution of the video in the discrete latent representation space:

p(z(xc:T |x<c)) =
Nd−1∏
i=0

p(zπ′(i)(x)|zπ′(<i)(x)), (6)

where Nd = (T − C) ·H ′ ·W ′ is the total number of codes from xc:T . While the specific imple-
mentation for modelling p(z(x)) differs in prior works (Oord et al., 2017; Rakhimov et al., 2021;
Walker et al., 2021; Yan et al., 2021), due to its simplicity, we utilize the causal transformer archi-
tecture (Yan et al., 2021) where the output logits from input codes are trained to predict the next
discrete codes. We remark that our approach is also compatible with other architectures.

4.3 ADDITIONAL TECHNIQUES

Top-k sampling. To improve the video prediction quality of latent autoregressive models whose
outputs are sampled from the probability distribution over a large number of discrete codes, we uti-
lize the top-k sampling (Fan et al., 2018) that randomly samples the output from the top-k probable
discrete codes. By preventing the model from sampling rare discrete codes from the long-tail of
a probability distribution and predicting future frames conditioned on such discrete codes, we find
that top-k sampling improves video prediction quality, especially given that the number of discrete
encodings required for future prediction is very large, e.g., 2,560 on RoboNet (Dasari et al., 2019)
up to 6,400 on KITTI dataset (Geiger et al., 2013) in our experimental setup.

Data augmentation. We also investigate how data augmentation can be useful for improving the
performance of autoregressive latent video prediction models. Since the image generator model is
not trained with augmentation, we utilize a weak augmentation to avoid the instability coming from
aggressive transformation of input frames, i.e., translation augmentation that moves the input images
by m pixels along the X or Y direction.
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Figure 4: 256×256 future frames predicted by HARP on action-conditioned RoboNet (Dasari et al.,
2019). The model predicts the next ten frames conditioned on the first two frames and the future ten
actions. We observe that our model can predict the movement of a robot arm surrounded by various
objects of different colors and shapes. More videos predicted by HARP are available in Appendix E.

5 EXPERIMENTS

We design our experiments to investigate the following:

• Can HARP predict high-resolution future frames (up to 256 × 256 pixels) on various video
datasets with different characteristics?
• How does HARP compare to state-of-the-art methods with large end-to-end networks on

standard video prediction benchmarks in terms of quantitative evaluation?
• How does the proposed techniques affect the performance of HARP?
• Can HARP be transferred to solve multi-task imitation learning tasks?

5.1 HIGH-RESOLUTION VIDEO PREDICTION

Implementation. We utilize up to 8 Nvidia 2080Ti GPU and 20 CPU cores for training each
model. For training VQ-GAN (Esser et al., 2021), we first train the model without a discriminator
lossLGAN, and then continue the training with the loss following the suggestion of the authors. For all
experiments, VQ-GAN downsamples each frame into 16× 16 latent codes, i.e., by a factor of 4 for
frames of size 64×64 frames, and 16 for frames of size 256×256. For training a transformer model,
the VQ-GAN model is frozen so that its parameters are not updated. We use Sparse Transformers
(Child et al., 2019) as our transformer architecture to accelerate the training. As for hyperparameter,
we use k = 10 for sampling at inference time, but no data augmentation for high-resolution video
prediction experiments. We report more detailed implementation details in Appendix A.

Meta-World experiments. To demonstrate that our method can predict high-resolution videos
(256× 256 pixels), we first use action-free Meta-World dataset (Yu et al., 2020) consisting of 2,500
demonstrations from 50 different robotics manipulation tasks, which we collected using the deter-
ministic scripted policies1. Specifically, we train a single model to predict future videos of all 50
tasks, without leveraging task-specific information, such as task index. For evaluation, we use 10%
of the demonstrations as a held-out test dataset. As shown in Figure 3, our model can accurately
predict the high-resolution future frames of diverse tasks, capturing all the small details. This shows
that our model can effectively learn all the information of multiple tasks required for predicting fu-
ture frames. We also remark that such representations can be useful to improve the performance of
imitation learner (see Section 5.3 for supporting experimental results).

RoboNet experiments. Now we investigate how our model works on large-scale, real-world
RoboNet dataset (Dasari et al., 2019) consisting of more than 15 million frames. While prior works
successfully trained a video prediction model with 64 × 64 videos (Wu et al., 2021a; Babaeizadeh

1The dataset is available at: https://shorturl.at/acnxM
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Figure 5: 256 × 256 future frames predicted by HARP trained on Kinteics-600 dataset (Carreira
et al., 2018) using ImageNet pre-trained VQ-GAN model. Videos are licensed under CC-BY and at-
tribution can be found in Appendix G. More videos predicted by HARP are available in Appendix F.

et al., 2021), we show that our model can predict high-resolution 256× 256 videos even with fewer
number of parameters than the one used in the prior works for predicting 64×64 videos. Specifically,
we first train a VQ-GAN model with 91.5M parameters, and then train a 12-layer causal transformer
model with 74.2M parameters that predicts future 10 frames conditioned on first two frames and
future ten actions. Total number of parameters is 165.7M, which is smaller than 303.3M of FitVid
(Babaeizadeh et al., 2021) that predicts 64 × 64 videos. Figure 1 and Figure 4 show the predicted
frames on the held-out test video, where the model predicts the high-resolution future frames where
a robot arm is moving around various objects of different colors and shapes.

Kinetics-600 experiments using ImageNet pre-trained VQ-GAN. Finally, we consider a very
complex, large-scale Kinetics-600 dataset (Carreira et al., 2018) consisting of more than 400,000
videos, which requires a large amount of computing resources for training even on 64 × 64 reso-
lution (Clark et al., 2019; Luc et al., 2020). To avoid the prohibitively expensive training cost of
high-resolution video prediction models on this dataset and fully exploit the benefit of employing a
high-fidelity image generator, we utilize the VQ-GAN model pre-trained on ImageNet dataset (Deng
et al., 2009). 2 As we only train the transformer model for video prediction, this enables us to train
a high-resolution video prediction model in a very efficient manner. Specifically, we train the trans-
former model for 60,000 steps on training dataset, which takes less than a day using our machine.
As shown in Figure 5, our model can predict future frames on the test videos3, which demonstrates
that leveraging the large image generator pre-trained on a wide range of natural images can be a
promising recipe for efficient video prediction on high-resolution, large-scale video datasets.

5.2 COMPARATIVE EVALUATION ON STANDARD BENCHMARKS

Datasets. For quantitative evaluation, we first consider the BAIR robot pushing dataset (Ebert
et al., 2017) consisting of roughly 40k training and 256 test videos. We consider action-free setup,
hence video prediction models should be stochastic for predicting the diverse possible movement
of a robot arm and objects. Following the setup in prior works (Clark et al., 2019; Weissenborn
et al., 2020; Luc et al., 2020; Yan et al., 2021), we predict 15 future frames conditioned on one
frame. We also evaluate our method on KITTI driving dataset (Geiger et al., 2013), where the
training and test datasets are split by following the setup in Lotter et al. (2017). As the KITTI
dataset is relatively small-scale compared to other datasets, i.e., 57 training videos, it provides a
good testbed for investigating the effect of data augmentation. For hyperparameters, we use k = 10
for both datasets and data augmentation with m = 4 is only applied to KITTI as there was no sign
of overfitting on BAIR dataset. For a fair comparison, we follow the setup of Villegas et al. (2019),
where (i) a model is trained to predict future ten frames conditioned on five frames and evaluated to
predict future 25 frames conditioned on five frames, and (ii) test dataset consists of 148 video clips
constructed by extracting 30-frame clips and skipping every 5 frames.

2https://github.com/CompVis/taming-transformers
3We collected videos covered by CC-BY license, which are available to put the frames on a paper.
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Table 1: Quantitative evaluation on (a) BAIR Robot Pushing (Ebert et al., 2017) and (b) KITTI
driving dataset (Geiger et al., 2013). We observe that HARP can achieve competitive performance
to state-of-the-art methods with large end-to-end networks on these benchmarks.

(a) BAIR Robot Pushing

Method4 Params FVD (↓)
LVT 50M 125.8
SAVP 53M 116.4
DVD-GAN-FP —† 109.8
VideoGPT 82M 103.3
TrIVD-GAN-FP —† 103.3
Video Transformer 373M 94.0
FitVid 302M 93.6

HARP (ours) 89M 99.3

(b) KITTI

Method4 Params FVD (↓) LPIPS (↓)
SVG 298M 1217.3 0.327
GHVAE 599M 552.9 0.286
FitVid 302M 884.5 0.217

HARP (ours) 89M 482.9 0.191
† Not available

Table 2: FVD scores of HARP with varying (a) the number of codes to use for top-k sampling, (b)
number of layers, and (c) magnitude m of data augmentation.

(a) Effects of k

Dataset k FVD (↓)

BAIR
No top-k 104.4

100 103.6
10 99.3

KITTI
No top-k 578.1

100 557.7
10 482.9

(b) Effects of layers

Dataset Layers FVD (↓)

BAIR 6 111.8
12 99.3

KITTI 6 520.1
12 482.9

(c) Effects of m

Dataset m FVD (↓)

KITTI

0 980.1
2 497.0
4 482.9
8 523.4

Metrics. We use two evaluation metrics: Learned Perceptual Image Patch Similarity (LPIPS;
Zhang et al. 2018), a frame-wise metric designed to better represent the human perceptual simi-
larity of two frames compared to traditional metrics (Wang et al., 2004; Huynh-Thu & Ghanbari,
2008), and Frèchet Video Distance (FVD; Unterthiner et al. 2018), a dynamics-based evaluation
metric known to be better correlated with the human evaluation compared to frame-wise evaluation
metrics. FVD is computed by comparing the summary statistics of I3D network trained on Kinetics-
400 dataset (Carreira & Zisserman, 2017), and LPIPS is computed using the features from AlexNet
(Krizhevsky et al., 2012). For comparison with the scores reported in prior works, we exactly follow
the evaluation setup in Villegas et al. (2019) and Babaeizadeh et al. (2021) that samples 100 future
videos for each ground-truth test video, then reports the best score over 100 videos for LPIPS, and
the score using all videos for FVD, with the batch size of 256 for BAIR and 148 for KITTI.

Results. Table 1 shows the performances of our method and baselines on test sets of BAIR Robot
Pushing and KITTI driving dataset. We observe that our model achieves competitive or superior
performance to state-of-the-art methods with large end-to-end networks, e.g., HARP outperforms
FitVid with 302M parameters on KITTI driving dataset. Our model successfully extrapolates to un-
seen number of future frames (i.e., 25) instead of 10 future frames used in training on KITTI dataset.
This implies that transformer-based video prediction models can also predict arbitrary number of
frames at inference time. In the case of BAIR dataset, HARP achieves the similar performance of
FitVid with 302M parameters, even though our method only requires 89M parameters. We provide
videos predicted by HARP on BAIR and KITTI datasets in Appendix C.

Analysis. We investigate how the top-k sampling, number of layers, and magnitude m of data
augmentation affect the performance. Table 2a shows that smaller k leads to better performance,
implying that the proposed top-k sampling is effective for improving the performance by discarding
rare discrete codes that might degrade the prediction quality at inference time. As shown in Ta-
ble 2b, we observe that more layers leads to better performance on BAIR dataset, which implies our
model can be further improved by scaling up the networks. Finally, we find that (i) data augmen-
tation on KITTI dataset is important for achieving strong performance, similar to the observation
of Babaeizadeh et al. (2021), and (ii) too aggressive augmentation leads to worse performance. We
provide the learning curves with and without augmentation in Appendix B.

4Baselines are SVG (Villegas et al., 2019), GHVAE (Wu et al., 2021a), FitVid (Babaeizadeh et al., 2021),
LVT (Rakhimov et al., 2021), SAVP (Lee et al., 2018), DVD-GAN-FP (Clark et al., 2019), VideoGPT (Yan
et al., 2021), TrIVD-GAN-FP (Luc et al., 2020), and Video Transformer (Weissenborn et al., 2020).
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(a) RoboNet (b) Kinetics-600
Figure 6: Failure cases in our experiments. (a) Interaction with the objects is ignored. (b) The model
repeats the first frame while a person is moving right in the ground-truth frames.

5.3 FINE-TUNING HARP FOR MULTI-TASK IMITATION LEARNING

Setup. In order to demonstrate that the pre-trained representations from HARP can be useful for
solving downstream tasks, we evaluate the imitation learning performance of fine-tuned HARP on
MT-50 benchmark from Meta-World. Specifically, we take the pre-trained HARP model (see Fig-
ure 3 for the video predictions from this model), and fine-tune the model to predict expert actions
by introducing a policy network on top of the transformer model. For comparative evaluation, we
consider three baselines: (a) VQ-Transformer, which shares the same architecture with HARP but
trained from scratch, (b) CNN-LSTM, which extracts features using convolutional neural networks
(CNN) and LSTM networks, and (c) CNN-Transformer, that utilizes transformer networks instead
of LSTM networks. For training and evaluation, we use the same training and test dataset used for
video prediction experiments. We report the average success rate over 10 trials for each task. More
details are available in Appendix A.

Table 3: Average success rate on
MT-50 test environments. The re-
sults report the mean and standard
deviation over five runs.

Method Success rate

VQ-Transformer 0.0± 0.0
CNN-LSTM 0.41± 0.057
CNN-Transformer 0.50± 0.055
HARP (ours) 0.58± 0.038

Results. Table 3 shows the performance of imitation learn-
ing policies on MT50 test environments. We first observe
that VQ-Transformer, which has a same architecture with
HARP but trained from scratch, completely fails to solve the
tasks. This shows the difficulty of training useful represen-
tations with fixed discrete codes as inputs. However, fine-
tuned HARP model successfully outperforms other baselines
because pre-trained representations contain useful information
for long-term reasoning. This demonstrates that video predic-
tion with HARP can be an effective self-supervised learning
scheme for solving various control tasks.

6 DISCUSSION

In this work, we present HARP, a high-fidelity autoregressive latent video prediction model. By
employing a high-fidelity image generator and utilizing top-k sampling at inference time, HARP
can predict high-resolution future frames, and achieve competitive performance to state-of-the-art
video prediction methods with large end-to-end networks. We also show that HARP can leverage
the image generator pre-trained on a wide range of natural images for video prediction, similar
to the approach in the context of video synthesis (Tian et al., 2021). We hope this work inspires
more investigation into leveraging a pre-trained image generator for video prediction, which can
significantly reduce the cost for training a high-resolution video prediction model by building on the
recent success of high-fidelity image generation (Oord et al., 2017; Razavi et al., 2019; Esser et al.,
2021; Child, 2020; Ho et al., 2020; Karras et al., 2020; Dhariwal & Nichol, 2021).

Finally, we report the failure cases of video prediction with HARP and discuss the possible ex-
tensions to resolve the issue. A common failure case for video prediction on RoboNet dataset is
ignoring the interaction between a robot arm and objects. For example, in Figure 6a, our model
ignores the objects and only predicts the movement of a robot arm. On the other hand, common
failure case for Kinetics-600 is a degenerate video prediction, where a model just repeats the con-
ditioning frame without predicting the future, as shown in Figure 6b. These failure cases might be
resolved by training more larger networks similar to the observation in the field of natural language
processing, e.g., GPT-3 (Brown et al., 2020), or might necessitate a new architecture for addressing
the complexity of training autoregressive latent prediction models on video datasets.
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ETHICS STATEMENT

While video prediction can be useful for various applications including robotic manipulation and
autonomous driving, it might be misused by malicious users for unethical purposes, e.g., fake videos
accusing politicians or sexual videos of any individuals. As our work introduces a method for
generating more high-resolution future frames, our method may improve the chance of such videos
being recognized as real videos. For this reason, in addition to developing a video prediction method
that generates more realistic frames, it is important to be aware of potential problems and develop a
method to detect generated videos (Gentine et al., 2018).

REPRODUCIBILITY STATEMENT

We describe the implementation and evaluation details in Section 5 and Appendix A. We also pro-
vide our code in the supplementary material.
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A EXPERIMENTAL SETUP

A.1 DATASETS

Meta-World. Meta-World (Yu et al., 2020) is a robotics manipulation simulator that supports 50
different tasks. For our experiments, we collect 50 demonstrations for each task using the determin-
istic scripted policies.5, hence we use total 2500 demonstrations. For evaluation, we construct the
held-out test dataset with 10% of the demonstrations. To improve the visibility of rendered frames,
we adjust the camera view of the camera using the publicly available source codes.6 We provide the
dataset we used in our experiments7.

RoboNet. RoboNet (Dasari et al., 2019) is a large-scale real-world robotics dataset consisting of
more than 160,000 high-resolution videos. Since there is no test set for RoboNet dataset, we follow
the setup in Wu et al. (2021a) for constructing a held-out test dataset8 of size 256. Following the
setup in Wu et al. (2021a); Babaeizadeh et al. (2021), we train a video prediction model to predict ten
future frames conditioned on two initial frames and ten future actions. For preprocessing the frames,
we resize the original frames to 256×256 resolution frames without cropping. For downloading the
dataset, we utilize the publicly available script.9

Kinetics-600. Kinetics-600 dataset is a large-scale video dataset consisting of more than 400,000
videos of total 600 action classes. Following the setup in Clark et al. (2019); Luc et al. (2020), we
train a video prediction model to predict future 11 frames conditioned on the first five frames. For
downloading the dataset, we use the publicly available repository10.

BAIR Robot Pushing. BAIR Robot Pushing dataset (Ebert et al., 2017) consists of 43,264 training
and 256 test videos. While BAIR dataset contains the information of actions robots take, common
setup for evaluation on BAIR dataset is action-free (Clark et al., 2019; Weissenborn et al., 2020;
Luc et al., 2020; Yan et al., 2021), where a video prediction model is trained to predict future 15
frames conditioned on the initial frame. For downloading and preprocessing the dataset, we utilize
the publicly available script.11

KITTI driving dataset. KITTI driving dataset (Geiger et al., 2013) is the dataset that contains
a large number of high-resolution driving videos. However, for video prediction, we follow the
setup in Lotter et al. (2017) and utilize 57 training videos and 3 test videos for evaluation. To avoid
utilizing too similar video clips from the test dataset for evaluation, we follow the setup in Villegas
et al. (2019) where 30-frame clip is extracted with the interval of 5 frames, which constructs a test
of size 148. For comparison with baselines, following the setup in Villegas et al. (2019), we train
a model to predict future ten frames conditioned on five frames and evaluate the model to predict
future 25 frames conditioned on five frames. For downloading and preprocessing the dataset, we
utilize the publicly available script.12

5https://github.com/rlworkgroup/metaworld/tree/master/metaworld/policies
6we use the of 9e3863d in https://github.com/rlworkgroup/metaworld.
7https://shorturl.at/acnxM
8We use the list of videos available at https://github.com/google-research/fitvid/blob/master/robonet testset

filenames.txt
9https://gist.github.com/soskek/d762751ce0aef4b2c7cf0a1537917016

10https://github.com/cvdfoundation/kinetics-dataset
11https://github.com/wilson1yan/VideoGPT
12https://github.com/coxlab/prednet
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A.2 IMPLEMENTATION DETAILS OF HARP

VQ-GAN. The training of HARP consists of two-stages. First, for training a VQ-GAN model
(Esser et al., 2021) we use the publicly available source code from the authors13. Following the sug-
gestion of the authors, we trained a VQ-GAN model without a discriminator loss until it converges,
then resume the training with a discriminator loss for total {300000, 500000, 150000, 30000} train-
ing steps with batch size of {24, 24, 320, 96} on Meta-World, RoboNet, BAIR Robot Pushing,
and KITTI driving dataset, respectively. For Kinetics-600 dataset, we leverage the publicly avail-
able VQ-GAN model14 pre-trained on ImageNet without training a VQ-GAN model from scratch.
The size k of codebook C in (2) is {8192, 8192, 1024, 1024, 1024} for Meta-World, RoboNet,
Kinetics-600, BAIR Robot Pushing, and KITTI dataset, respectively.

Causal transformer. Then we train a 12-layer Sparse Transformers (Child et al., 2019) to predict
the discrete codes from VQ-GAN models in an autoregressive manner, by building on the publicly
available source code15 of VideoGPT (Yan et al., 2021). For conditioning on initial frames, we
utilize the same architecture as in Yan et al. (2021) that utilizes ResNet architecture to extract the
downsampled feature map. We utilize ResNet-18 architecture for all experiments. We train the
model until it converges on Meta-World, BAIR, and KITTI datasets, but we cannot find the sign of
overfitting on large-scale datasets of RoboNet and Kinetics-600. Specifically, we train the model
for {50000, 80000, 100000, 85000, 30000} training steps on Meta-World, RoboNet, Kinetics-600,
BAIR Robot Pushing, and KITTI dataset, respectively. We use the data augmentation with the
magnitude of m = 4 on KITTI driving dataset, which has shown to be very effective for improving
the performance (see Appendix B) for a learning curve with and without augmentation).

Inference with top-k sampling. We utilize top-k sampling (Fan et al., 2018) to improve the video
prediction quality. For all datasets, we utilize k = 10. One major limitation of autoregressive
prediction model is slow inference time. We utilize the implementation of Yan et al. (2021) that
caches the previous key, values and utilize them for fast inference. In order to enable our model to
extrapolate to unseen length of frames at evaluation time on KITTI dataset (e.g., the model has to
predict 25 frames instead of 10 frames the model is trained to predict), we first predict T frames
xc:T−1 conditioned on c initial frames x1:c, then predict the next frames by (a) keeping x1:c as
conditioning frames and (b) giving the predicted last T−1 frames as inputs to the causal transformer
model. We repeat this process until predicting all 25 future frames.

A.3 IMPLEMENTATION DETAILS OF ACTION-CONDITIONED HARP.

Figure 7: Action-conditioned HARP.

In order to predict future frames conditioned on future ac-
tions on RoboNet dataset (Dasari et al., 2019), we condi-
tion the prediction on actions by adding the action embed-
dings to the embeddings of discrete codes. Specifically,
we introduce a linear layer that processes raw actions to
action embeddings with the same dimension of token em-
beddings, then add the action embeddings of time step
t+ 1 to token embeddings used for predicting the tokens
of time step t + 1. At inference time, the inference pro-
cedure is exactly same as HARP except that future action
embedding is added to the token embedding. We find that
this simple modification to the original architecture en-
ables HARP to predict future frames conditioned on ac-
tions. We provide the illustration of action-conditioned
HARP in Figure 7.

13https://github.com/CompVis/taming-transformers
14https://heibox.uni-heidelberg.de/d/8088892a516d4e3baf92/
15https://github.com/wilson1yan/VideoGPT
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A.4 IMPLEMENTATION DETAILS OF HARP FINE-TUNING.

In order to fine-tune the HARP model for solving multi-task imitation learning tasks on Meta-World
(Yu et al., 2020), we first pre-train a model to predict future 11 frames conditioned on the first frame
using the dataset from all 50 tasks (see Appendix A.1 for the details on the dataset). Then we fine-
tune the model to predict expert actions by introducing a two-layer policy network on top of the
causal transformer model. Specifically, we train a behavioral cloning policy to minimize the mean
squared error between the predicted actions from a layer and ground-truth expert actions. In order
to further improve the performance of all methods, we follow the idea of Dasari & Gupta (2020)
to learn a inverse dynamics predictor that predicts the action given two consecutive frames. We
train all methods for 20,000 steps with the batch size of 20 and data augmentation of magnitude
m = 4. For CNN-based methods, we use ResNet-50 for feature extractor, and use 4-layer LSTM16

for CNN-LSTM, and 12-layer causal transformer for CNN-Transformer.

B EFFECTS OF AUGMENTATION

Figure 8 shows the test error during the training of HARP on KITTI driving dataset (Geiger et al.,
2013). One can see that the test error from a model trained without augmentation increases after
initial ∼ 2500 training steps, which is a sign of overfitting. However, we observe that the test error
from a model trained with data augmentation keeps decreasing throughout training until it converges,
which shows the effectiveness of data augmentation for learning video prediction models, similar to
the observation in Babaeizadeh et al. (2021). One notable detail here is that HARP overfits to KITTI
training dataset with much fewer number of parameters (i.e., 89M) when compared to FitVid that
utilizes 303M parameters.
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Figure 8: Test loss during the training of HARP with and without data augmentation on KITTI
driving dataset (Geiger et al., 2013). We observe that the model easily overfits to the training dataset,
and data augmentation helps mitigate the overfitting problem.

16We try more deeper networks to match the number of trainable parameters, but we find that deeper LSTM
networks are very unstable to train. Hence we search over the layers of {2, 4, 8, 16} and report the best results
achieved with 4-layer LSTM.
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C VIDEO PREDICTIONS ON BAIR AND KITTI

We provide the future frames predicted by HARP on BAIR Robot Pushing (Ebert et al., 2017)
and KITTI driving dataset (Geiger et al., 2013). The model is trained to predict future 15 frames
conditioned on the first frame on BAIR dataset. In the case of KITTI dataset, the model is trained
to predict future 10 frames conditioned on the five frames, and evaluated to predict future 25 frames
conditioned on the five frames.
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Figure 9: 64 × 64 future frames predicted by HARP on BAIR dataset (up) and KITTI dataset
(bottom). We observe that our model can predict diverse future frames with stochastic sampling on
BAIR dataset, and can deal with the partial observability of the KITTI dataset.

D MORE VIDEO PREDICTIONS ON META-WORLD

We provide more videos predicted by HARP on Meta-World dataset (Yu et al., 2020). The model is
trained to predict future 11 frames conditioned on the first frame.

Figure 10: 64× 64 future frames predicted by HARP on Meta-World dataset.
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E MORE VIDEO PREDICTIONS ON ROBONET

We provide more videos predicted by HARP on RoboNet dataset (Dasari et al., 2019). The model
is trained to predict future ten frames conditioned on the initial two frames and future ten actions.

Figure 11: 256× 256 future frames predicted by HARP on RoboNet dataset.
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F MORE VIDEO PREDICTIONS ON KINETICS-600

Figure 12: 256× 256 future frames predicted by HARP on Kinetics dataset.
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G ATTRIBUTION

Figure 5 (top):
”Windsurfing Session 2013 Iballa Moreno” by morenotwins. Accessible here

Figure 5 (bottom):
”How to fry an egg in 5 simple steps” by What’s Gaby Cooking. Accessible here

Figure 6 (right):
”Prepare fruit cutting to pets #Shorts 4” by AP STUDIO. Accessible here

Figure 12 (first):
”Windsurfing” by Dmitry Rudnev. Accessible here

Figure 12 (second):
”Eric Cornelissen Windsurfing September 11, 2017” by Ron Van Dijk. Accessible here

Figure 12 (third):
”Smart way to cut Fruits #6#” by MR. BEING SMART. Accessible here

Figure 12 (fourth):
”How to make the Perfect Crunchy Half Cakes ( Kangumu ) ‖‖ Jinsi ya kupika Half Cakes za
kupasuka.” by Ayleen’s Food & Vlogs. Accessible here
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https://www.youtube.com/watch?v=p9f3BPInhLI 
https://www.youtube.com/watch?v=HVAmcOsCoxw 
https://www.youtube.com/watch?v=-ewnDyJQs0I
https://www.youtube.com/watch?v=MeyK2mKRg8A
https://www.youtube.com/watch?v=blYHk_aQX4I
https://www.youtube.com/watch?v=hzP2QAdtFdA
https://www.youtube.com/watch?v=TtDRQhlLJ_Y
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