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Abstract

Deploying large language models (LLMs) raises
concerns about privacy, safety, and legal com-
pliance due to their tendency to memorize sen-
sitive content. Robust unlearning is essential to
ensure their safe and responsible use. Yet the
task is inherently challenging, partly due to dif-
ficulties in reliably measuring whether unlearn-
ing has truly occurred. Moreover, fragmentation
in current methodologies and inconsistent eval-
uation metrics hinder comparative analysis and
reproducibility. To unify and accelerate research
efforts, we introduce OpenUnlearning, a stan-
dardized and extensible framework that supports
a wide range of unlearning methods, metrics, and
benchmarks, enabling comprehensive evaluation.
Leveraging OpenUnlearning, we propose a
novel meta-evaluation benchmark focused specifi-
cally on assessing the faithfulness and robustness
of evaluation metrics themselves. Overall, we
establish a clear, community-driven pathway to-
ward rigorous development in LLM unlearning
research.

1. Introduction

LLMs often memorize sensitive, copyrighted or harm-
ful content from their vast training data, raising privacy
(Carlini et al., 2023), safety (Wei et al., 2023) and legal
(Karamolegkou et al., 2023; Union, 2016; OAG, 2021) con-
cerns. Ever increasing costs of pre-training and post-training
(Grattafiori et al., 2024; Team et al., 2023; 2024) prevent
re-training in response to deletion requests (Liu et al., 2024).
This has motivated the development of machine unlearn-
ing techniques that allow for “forgetting” training data via
efficient post-training interventions (Nguyen et al., 2022;

“Equal contribution 'University of Massachusetts Amherst,
Ambherst, MA, USA 2Carnegie Mellon University, Pittsburgh, PA,
USA. Correspondence to: Vineeth Dorna <vdorna@umass.edu>,
Anmol Mekala <amekala@umass.edu>.

Published at MemFM Workshop at ICML 2025, Vancouver,
Canada. Copyright 2025 by the author(s).

Liu et al., 2024). The goal of unlearning is to eliminate
the undesirable influences from specific training data, while
maintaining the overall behavior and performance.

There has been a recent surge in LLM unlearning research,
yielding numerous proposed methods on several bench-
marks. Modifying model weights to achieve unlearning
is of the most interest, with many proposed appproaches
(Zhang et al., 2024; Wang et al., 2025c; Li et al., 2024; Fan
et al., 2024; Mekala et al., 2025; Dong et al., 2025; Jia et al.,
2024; Wang et al., 2025b; Fan et al., 2025). Concurrently,
several benchmarks have been proposed to evaluate unlearn-
ing across a wide range of setups, covering aspects such as
synthetic fine-grained unlearning, open-ended unlearning,
knowledge, PII, memorization and privacy focused unlearn-
ing (Maini et al., 2024; Qiu et al., 2024; Ramakrishna et al.,
2025a; Shi et al., 2025; Li et al., 2024; Qiu et al., 2024; Tian
et al., 2024; Jin et al., 2024; Eldan & Russinovich, 2023).
This volume of LLM unlearning research is marked by a
notable fragmentation. Different benchmarks use different
evaluations, with no consensus on the best evaluations and
considerable criticism of existing evaluations (Thaker et al.,
2025; Scholten et al., 2024; Wang et al., 2025a; Zhang et al.,
2025b; Doshi & Stickland, 2024; Lynch et al., 2024). Eval-
uating unlearning is a nuanced task involving knowledge,
privacy, and utility desiderata, which is arguably as hard
as achieving unlearning itself (Schwarzschild et al., 2024;
Lucki et al., 2025). To catalyze research efforts, we present

A unifying framework. We introduce
OpenUnlearning, a standardized and extensible
framework that unifies research efforts by integrating 3
widely used benchmarks, 9 unlearning algorithms, and 16
evaluation metrics under different stress testing scenarios.
Through this standardized framework, we foster unified
research efforts and expedite the creation of effective
unlearning techniques and benchmarks.

Evaluating evaluations. Leveraging OpenUnlearning,
we conduct the first meta-evaluation of unlearning metrics
using 450+ open-sourced models with known ground truth
states. We compare 12 forgetting metrics against desiderata
for faithfulness and robustness, establishing a benchmark to
guide future improvements in evaluation.
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Figure 1. Meta-evaluation of unlearning metrics: (1) Faithfulness: the metric distinguishes models with and without target knowledge,
reflected by high AUC; (2) Robustness: the metric value does not increase under benign changes (e.g., quantization) and does not improve
faster than a retain model under non-benign changes (e.g., relearning).

2. OpenUnlearning

We envision LLM unlearning evolving within a shared
framework that continuously integrates new and improved
methods and evaluations—where unlearning methods it-
eratively improve on benchmarks, and evaluation metrics
themselves improve through meta-evaluation and critical
feedback. Despite growing research, LLM unlearning lacks
unified technical and conceptual foundations. Fragmented
benchmarks and inconsistent implementations hinder repro-
ducibility, and progress. Moreover, unlearning methods
and evaluation metrics aren’t consistently extended across
benchmarks, preventing standardization and comparative
analysis. We illustrate this fragmentation across key parts
of the unlearning pipeline:

1. Benchmark fragmentation: New methods are not im-
plemented in all benchmarks. For example: UNDIAL
(Dong et al., 2025) is not implemented on any of TOFU
(Maini et al., 2024), MUSE (Shi et al., 2025) and WMDP
(Li et al., 2024) . Similarly, evaluation metrics like MIA
from MUSE are not implemented in TOFU; and LM Eval
Harness benchmarks (Gao et al., 2024¢) used in WMDP
can be extended to TOFU, MUSE.

. Disparate method integrations: Several approaches
involve custom loss functions (Zhang et al., 2024; Maini
et al., 2024; Fan et al., 2024; Dong et al., 2025) and
others make adjustments to optimization steps (Wang
et al., 2025b; Jia et al., 2024; Fan et al., 2025). These
techniques could be modularized and reused across tasks
for deeper investigation and a fair comparison.

3. Duplicated core components: Evaluation metrics of-
ten reuse core components (e.g., probabilities, ROUGE,
MIA), yet implementations remain isolated. Preprocess-
ing is duplicated across benchmarks despite shared for-
mats (e.g., WMDP/MUSE corpora, TOFU/RWKU chat-
style prompts). Stress tests for robustness, though pro-
posed in some work, could also be standardized across
benchmarks.

To address this, we introduce OpenUnlearning: a uni-

fied, extensible pipeline that consolidates benchmarks, meth-

ods, evaluation metrics, datasets, and stress-tests under one
roof (see Figure 3) to accelerate unlearning research. More

details can be found in Appendix D.

3. Evaluating Unlearning Evaluations

Reliable evaluations for unlearning are essential for reg-
ulatory compliance and data privacy, yet remain challeng-
ing (Kim et al., 2025; Schwarzschild et al., 2024; Lucki et al.,
2025), especially for LLMs, due to ambiguity between mem-
orization and generalization. We propose two minimal nec-
essary desiderata—Faithfulness and Robustness—guided
by our meta-evaluation framework, to promote trustworthy
unlearning metrics (outlined in Figure 1).

Our meta-evaluation of metrics uses a test-bed of models
with known ground truths. We employ the TOFU bench-
mark (Maini et al., 2024) with the improvements described
from Appendix D.3 with the forget 10 unlearning task
(forgetting 10% of TOFU). We use the LLAMA-3.2 1B
model (Grattafiori et al., 2024), analyzing 12 unlearning
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Figure 2. For the ROUGE metric we evaluate faithfulness (left) and robustness to quantization (middle), and relearning (right). Faithfulness
achieves an AUC of 0.79, indicating substantial prediction overlap between models trained with and without the target knowledge.
Relearning robustness is 0.48, showing many unlearned models re-acquire knowledge faster than the retain model upon re-exposure.

Quantization robustness is 0.93, reflecting no distinctive trend of metric spikes post-quantization.

metrics adjusted to [0, 1] scale (see Appendix D.3).
3.1. Faithfulness

Faithfulness

Motivation. Unlearning evaluations may not faith-
fully reflect an LLM’s knowledge.

Desideratum. A faithful metric accurately reflects
the presence of targeted knowledge by assigning
consistently higher scores to models possessing it
than to those lacking it.

\_ _/

LLMs often fail to regurgitate facts that remain encoded
in their parameters when prompted, making it hard to tell
whether a model truly forgot a target fact or simply refrained
from exposing it (Doshi & Stickland, 2024; Lynch et al.,
2024; Scholten et al., 2024; Wang et al., 2025a). For exam-
ple, work by Doshi & Stickland (2024) shows that simple
paraphrasing of inputs can yield a tenfold increase in eval-
uation scores on ‘unlearned’ models, indicating that the
apparent forgetting may only be superficial. “Deeper” evalu-
ation metrics aim to quantify this knowledge more faithfully,
like Truth Ratio (Maini et al., 2024), GCG (Gandikota et al.,
2024), or by using prompt engineering (Wang et al., 2025a;
Shostack, 2024; Thaker et al., 2025).

On the other hand, evaluation metrics can register mis-
leadingly high scores without the presence of the target
knowledge (Maini et al., 2024). For example, in a question-
answering evaluation using metrics like ROUGE, a model
might achieve a high score by closely matching an expected
answer template, even without correctly recalling the spe-
cific target fact. This calls for metrics that are faithful to
the knowledge encoded in the model weights.

We measure faithfulness as the ability of metrics to distin-
guish models trained with (positive pool, P) versus without
(negative pool, N) target knowledge: (i) Each pool has 30
diverse models trained under varying conditions. (ii) These

variants present the target forget 10 information for pool
P models in diverse, challenging formats (e.g., biography vs.
QA, paraphrases). Pool N models serve as negative controls,
using similarly structured data lacking this target informa-
tion using various perturbations and alternative datasets. (iii)
Metric scores yield two distributions (for P and N), and we
compute AUC-ROC to quantify their separability. (iv) We
select a classification threshold optimizing accuracy, which
is subsequently used in robustness tests.

3.2. Robustness

Motivation. Unlearning evaluations can be vulner-
able to stress-testing interventions.

Desideratum. A robust metric’s positive assess-
ment of unlearning should (1) not flip upon benign
model interventions; and (2) behave comparably to
a model truly unfamiliar with the data under non-

benign interventions.
\_ J

Robustness of unlearning metrics is probed using various
stress-test interventions. These include: (1) relearning at-
tempts, where the unlearned model is further trained to
potentially recover the forgotten information (Lynch et al.,
2024; Hu et al., 2025; Lucki et al., 2025; Wang et al., 2025a);
and (2) applying techniques like quantization (Zhang et al.,
2025b). These have revealed the unreliability of several
unlearning evaluation metrics.

For example, Zhang et al. (2025b) show that the PrivLeak
metric (Shi et al., 2025) that previously reported a model
as successfully unlearned can effectively ‘flip’ after a be-
nign intervention, revealing that the targeted knowledge was
perhaps never truly erased (Zhang et al., 2025b). Such signif-
icant fluctuations under stress tests undermine the reliability
of evaluation metrics. Furthermore, models unlearned with
respect to a metric can exhibit high susceptibility on met-
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ric evaluation to non-benign interventions like relearning,
where evaluation metrics show an unusually rapid return of
the supposedly forgotten knowledge even with minimal re-
training effort (Fan et al., 2025; 2024). Robustness assesses
stability under interventions like relearning, and quantiza-
tion.

Robustness to Relearning: We evaluate metric scores be-
fore (m®) and after (m?) relearning on forget-set data. Then,
we compare relative metric score recovery rates between
unlearned (myy) and retain (my) models, where higher R
implies greater robustness.

b
M, —m .
r= H, R = min(r, 1). (1

unl — "'unl

Robustness to Quantization: We quantize models to 4-bit
precision and compute scores before and after quantization,
where higher @) implies greater robustness.

b
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3.3. Realistic Model Filtering

We enforce practical constraints by filtering models with:
(1) Utility drops exceeding 20%. (ii) Insufficient unlearn-
ing w.r.t. the considered metric (more than the threshold
computed in §3.1’s faithfulness analysis). Models with
substantial utility drop are unusable, while those without ev-
idence of unlearning offer little insight into robustness. Our
analysis focuses on ~400 diverse models spanning eight
unlearning methods — GradDiff, IdkDPO, IdkNLL (Maini
et al., 2024), NPO (Zhang et al., 2024), SimNPO (Fan et al.,
2024), AltPO (Mekala et al., 2025), UNDIAL (Dong et al.,
2025) and RMU (Li et al., 2024) (more details in Appendix
D.7, G.3).

3.4. Aggregation of Metrics

A effective unlearning metric must be both faithful and
robust—e.g., a metric that consistently labels models as
unlearned may be robust but not faithful. To penalize imbal-
ance and reward well-rounded performance, we aggregate
scores using the harmonic mean (HM). Figure 2 shows this
for ROUGE; see Appendix F.4 for details and comparisons.

Robustness = HM(R, Q) 3)
Overall = HM(Faithfulness, Robustness)  (4)

3.5. Results and Discussion

Table 1 highlights key insights: (i) Extraction Strength
(ES) (Carlini et al., 2021) emerges as most reliable overall,
aligning with Wang et al. (2025a). (ii) Truth Ratio has supe-
rior faithfulness but lower robustness, ranking third overall.
(iii) Metrics based on raw probabilities or ROUGE scores
have moderate faithfulness and robustness, limiting their
reliability. (iv) Membership inference (MIA)-based metrics

Table 1. Meta-evaluation of 12 unlearning metrics for Faithfulness
and Robustness. Robustness is assessed using two stress-testing
methods: quantization and relearning, with their harmonic mean
reported as Agg. An overall aggregation across both Faithfulness
and Robustness is reported in the first Agg. column. Higher scores
indicate better performance (1) in all dimensions. The best values
are shown in bold, and the second-best values are underlined.

Robustness 1
Agg.T Quant.  Relearn

Metrics Agg. T Faithful. 1

Extraction Strength 0.85 0.92 0.79 0.95 0.68
Exact Mem. 0.80 0.90 0.72 0.92 0.59
Truth Ratio 0.73 0.95 0.59 0.92 0.43
Para. Prob. 0.73 0.71 0.75 0.60 0.98
Para. ROUGE 0.72 0.89 0.61 0.93 0.45
Probability 0.72 0.82 0.65 0.60 0.70
ROUGE 0.70 0.79 0.64 0.93 0.48
Jailbreak ROUGE 0.69 0.83 0.59 0.85 0.45
MIA - ZLib 0.71 0.92 0.57 0.56 0.59
MIA - MinK 0.67 0.93 0.52 0.48 0.57
MIA - LOSS 0.66 0.93 0.52 0.48 0.57
MIA - MinK++ 0.61 0.81 0.48 0.61 0.40

demonstrate high faithfulness but lack robustness, caution-
ing against relying solely on MIA metrics for assessing
unlearning. This sensitivity raises concerns about the relia-
bility of the MIA-based privacy assessments in unlearning
contexts as introduced by Shi et al. (2025), as even benign
interventions can reverse unlearning effects, as observed in
Zhang et al. (2025b).

Our extensive testbed of 450+ models supports the devel-
opment of unlearning metrics that generalize to real-world
scenarios. Our goal is to foster more faithful and trustworthy
metrics through insights from our meta-evaluation frame-
work. As metrics improve, the testbed should evolve with
new unlearning setups, model architectures. Newer adver-
sarial model setups will be needed to challenge metrics as
they improve on existing testbeds. Such a dynamic approach
ensures that unlearning methods and their meta-evaluations
can mutually inform each other, driving progress as unlearn-
ing research advances.

4. Conclusion

The field of LLM unlearning has faced challenges due to
fragmented methodologies and inconsistent evaluations. To
address this, we introduced OpenUnlearning, a unified,
extensible framework that integrates unlearning algorithms,
metrics, and benchmarks. This comprehensive platform
enabled us to conduct a novel meta-evaluation of unlearning
metrics, assessing their faithfulness and robustness. Our
meta-evaluation identified Extraction Strength (ES) and
Exact Memorization (EM) as particularly reliable metrics,
with Truth Ratio also showing high faithfulness. By stan-
dardizing the pipeline and releasing model checkpoints,
OpenUnlearning paves the way for more rigorous, re-
producible, and accelerated progress toward safer unlearn-
ing techniques.
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Appendix
A. Limitations

We also note some limitations of our framework and analysis. Firstly, it is limited by the existing popular benchmarks
its supports, which have been regarded as “weak measures of unlearning progress” (Thaker et al., 2025). The setups
may not accurately reflect realistic model learning or unlearning dynamics, with the underlying forget-retain paradigm
itself warranting further scrutiny (Thaker et al., 2025). There’s a clear need for more realistic, yet controlled, fine-grained
unlearning benchmark setups beyond the currently popular benchmarks. Secondly, while our meta-evaluation of metrics
and comparison of methods is a valuable step, its findings need to be extended to more unlearning setups and unlearning
algorithms, to gain a greater understanding of the best and comprehensive ways to quantify unlearning. Finally, while
our meta-evaluation focuses on knowledge faithfulness and metric robustness as minimal desiderata, these might not be a
comprehensive set of desiderata for good unlearning metrics.

B. Broader Impact

The widespread deployment of Al systems in domains ranging from conversational assistants and recommendation systems
to self-driving vehicles and medical diagnostics raises important concerns about privacy, safety, and regulatory compliance.
As these systems are deeply integrated within society, the ability to remove unwanted or sensitive information from deployed
models (“unlearning”) is essential to maintain safety, reliability and uphold legal requirements.

Our work on a unified, extensible LLM unlearning benchmark accelerates progress toward reliable, scalable unlearning
solutions. By standardizing implementations of unlearning methods, evaluation metrics, and stress tests across diverse
tasks and datasets, we lower the barrier for both academic and industrial adoption. This facilitates rapid iteration on novel
techniques, ensures consistent measurement of privacy and utility trade-offs, and enables model governance workflows that
can respond promptly to deletion or correction requests.

In the long run, advances enabled by this framework will support trustworthy AI deployment in safety-critical and highly
regulated settings. From ensuring that autonomous vehicles do not retain outdated or hazardous driving data, to empowering
personalized assistants with user-controlled memory, robust unlearning mechanisms will be a cornerstone of ethical,
privacy-preserving machine learning. By fostering community collaboration and transparent evaluation, our research paves
the way for Al systems that adapt responsibly to evolving societal norms and regulatory landscapes.

C. Overview of LLM unlearning

OpenUnlearning uses a common definition of LLM unlearning, where the goal is to eliminate the influence of specific
target data or associated model capabilities (Liu et al., 2024), denoted as the “forget set” (Drorger), from an LLM fiarger. The
process pursues two primary goals: (i) Removal, ensuring influence caused only by Dy i substantially erased, and (ii)
Retention, maintaining the LLM’s utility on downstream tasks not directly linked to Droreer. The setup usually also involves
a retain set disjoint from the forget set, used to aid and assess performance preservation.

Formally, given an original model fisrge; trained on a dataset containing Dyoreer, the unlearning process yields an unlearned
model fynearn- The efficacy of unlearning is typically assessed using evaluation metrics, M, which quantify the remaining
influence of Diorger ON funieam (€.8., by computing M ( funtearn; Prorget)). Concurrently, utility metrics are used to measure the
model’s performance on general tasks and data outside of Diyreer, ensuring its overall capabilities are preserved.

Unlearning methods: Some LLM unlearning approaches are prompting-based, detecting sensitive queries at inference
time and deploying obfuscation mechanisms (Bhaila et al., 2025; Muresanu et al., 2024; Gao et al., 2024a). But these are not
practically scalable. Of greater interest is the removal of the forget set’s influence directly from the weights. The techniques
involved include finetuning with one or more of: (1) tailored loss functions (Maini et al., 2024; Fan et al., 2024; Zhang et al.,
2024; Dong et al., 2025; Mekala et al., 2025), (2) optimization modifications (Jia et al., 2024; Wang et al., 2025b; Fan et al.,
2025), (3) localized parameter updates (Li et al., 2024; Ding et al., 2025; Gao et al., 2024b), and (4) data based approaches
(Maini et al., 2024; Mekala et al., 2025; Xu et al., 2025; Jin et al., 2024; Choi et al., 2024; Gu et al., 2024).

Benchmarks: Fine-grained unlearning typically focuses on erasing influence of specific training instances from a forget set
while preserving performance on related instances not present in the forget set. TOFU (Maini et al., 2024) introduces fine-
grained knowledge unlearning using QA-style data from 200 fictitious authors. KnowUndo (Tian et al., 2024) incorporates
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copyright and privacy aspects through datasets of books and synthetic author profiles. LUME (Ramakrishna et al., 2025a)
focuses on unlearning sensitive data from novels, biographies, and real-world figures, emphasizing forgetting of PIl. PISTOL
(Qiu et al., 2024) builds on TOFU with added structural relationships to study the effect of entity connectivity on knowledge
unlearning. MUSE (Shi et al., 2025) also requires fine-grained unlearning, aiming to remove both knowledge, memorization
and privacy influence of news articles and copyrighted books. Open-ended unlearning can involve a safety-alignment focus
as in WMDP (Li et al., 2024) which targets undesired behaviors from hazardous knowledge related to curated datasets. On
the other hand, RWKU (Jin et al., 2024) and Who’s Harry Potter (WHP) task (Eldan & Russinovich, 2023) require forgetting
all knowledge related to an entity, without any access to specific retain/forget target corpora. Broadly, benchmarks like
TOFU, MUSE, PISTOL, LUME, and KnowUndo involve creating task models by injecting new knowledge via finetuning,
while WMDP, RWKU and WHP (Eldan & Russinovich, 2023) operate directly on off-the-shelf LLMs to unlearn existing
knowledge.

Unlearning evaluations: Each benchmark task involves multiple evaluations metrics that judge for unlearning success and
for general utility preservation. These range from simple probability judgements in TOFU, to MIA-attack based metrics in
MUSE, with dozens of metrics across benchmarks in the literature. Evaluating unlearning success is difficult, with several
subsequent works questioning the reliability of benchmark metrics in various aspects (Kim et al., 2025; Lynch et al., 2024;
Wang et al., 2024; Doshi & Stickland, 2024; Zhang et al., 2025b).

D. Open Unlearning

Model loader Interventions
Finetune Trainer :
Stress Test via
Architecture Load as
1. Llama 2/3 - Unlearning Trainer 1. Re-learning attacks
2. Zephyr ; glﬂiggzlslon L. GradAscent 4. DPO 2. Quantizati%n attack
3. Phil.5/3.5 3. Probed model 2. GradDiff 5. R_MU 3. Training a probe on a layer
4. Gemma 3. NPO 6. SImNPO
.2 P 1
2 Really o )
Ly unlearned? LI
Data worker Unlearned LLM Stress Tested LLM

Data Processor
Raw data

. Pretraining dataset
= . Chat datait II\ é Benchmarks Metrics =
. Completion dataset [ | TOFU % L ROUGE 4. EM - .I
. Unlearning dataset MUSE 2. Probability 5. MIA
(forget x retain) Unlearned WMDP 3. ES 6. LM Eval Stress tested
model model
Evaluations Evaluations

Figure 3. This figure illustrates the unlearning pipeline in terms of implementation-level components. The OpenUnlearning framework
supports: integration of diverse benchmarks and evaluation suites, implementation of diverse unlearning methods via a unified trainer,
evaluation suites, and stress-testing tools to verify unlearning robustness.

D.1. Design of OpenUnlearning

Figure 3 gives an overview of OpenUnlearning’s components. Our framework is designed with ease-of-use and easy
extensibility in mind. All features are implemented in a structured, modular fashion, simplifying the process for researchers
to integrate new datasets, evaluation metrics, unlearning methods, and entire benchmarks. Hydra (Yadan, 2019) is used for
configuration management, with YAML files specifying each pipeline component and experiment parameters. This helps
users effortlessly swap in modules and easily launch an experiment with a single command. A variety of modules, including
model-loaders, trainers, dataset preprocessors, evaluation suites, evaluation metrics, experiment types and stress-test
interventions are joined together to create the OpenUnlearning pipeline (Table 2).
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Table 2. OpenUnlearning components and available feature variants in each.

Component

Variants

Models

LLAMA-2, 3.1, 3.2 (Touvron et al., 2023; Grattafiori et al., 2024)
ZEPHYR-7B (Tunstall et al., 2024) PHI-1.5, 3.5 (Li et al., 2023; Abdin et al., 2024)

Unlearning algorithms

GradAscent, GradDiff, IdkDPO, IdkNLL (Maini et al., 2024)
SimNPO (Fan et al., 2024) RMU (Li et al., 2024)
AltPO (Mekala et al., 2025)

NPO (Zhang et al., 2024)
UNDIAL (Dong et al., 2025)

Datasets

TOFU: bios (Maini et al., 2024)
MUSE: news, books (Shi et al., 2025)

WMDP: cyber, bio (Li et al., 2024)

Evaluation suites

TOFU (Maini et al., 2024)
LM Eval (Gao et al., 2024c)

MUSE (Shi et al., 2025) WMDP (Li et al., 2024)

Verbatim Prob. / ROUGE (Maini et al., 2024; Shi et al., 2025)

Mem.

Knowledge QA- ROUGE (Maini et al., 2024; Shi et al., 2025)
Metrics Extraction Strength (Carlini et al., 2021)  Exact Memorization (Tirumala et al., 2022)

Privacy Forget Quality (Maini et al., 2024) LOSS (Yeom et al., 2018)  ZLib (Carlini et al., 2021)
GradNorm (Wang et al., 2024) MinK (Shi et al., 2023) MinK++ (Zhang et al., 2025a)
Privacy Leakage (Shi et al., 2025)

Utility Truth Ratio, Model Utility (Maini et al., 2024)
LM-Eval (Gao et al., 2024c) (WMDP, MMLU, etc.) Fluency (Mekala et al., 2025)

Stress tests Relearning (Hu et al., 2025; Lynch et al., 2024; Lucki et al., 2025; Wang et al., 2025a)
Quantization (Zhang et al., 2025b)
Probing (Lynch et al., 2024; Seyitoglu et al., 2024; Wang et al., 2025a)
D.2. Design of modules

(a) Method implementation leveraging HuggingFace Trainer,
followed by registration.
from transformers import Trainer
class Unlearner (Trainer) :
def compute_loss(self, ...):

def get_optimizer_cls_and_kwargs(...):
# custom optimizer

def _inner_ training_ loop(self, ...):
# modify training logic

_register_trainer (Unlearner)

(b) Configuration: create a
YAML config specifying Training args and method parameters.
handler: Unlearner # map registered name

args: # HuggingFace Trainer args
num_epochs: 10
learning rate:
optim: shampoo

le-5

method args:
alpha: 1.0
switch _every n: 10
retain_loss_type: NLL

Figure 4. Tllustration of implementing a hypothetical unlearning method in OpenUnlearning

The procedure of extending OpenUnlearning with a new module variant generally involves two simple steps. (1) Create
and register a handler. The Python class or function encapsulating the component’s logic is implemented then registered
to be accessed via a string key. (2) Create the config. The configuration YAML file names the handler key and specifies its
parameters. Figure 4 provides an example illustrating this procedure for a new unlearning method.

Features:

We currently support 9 unlearning algorithms, 6 model architectures, and 5 datasets ranging from chat to

pretraining. Among existing benchmarks, we focus on the three most cited and used TOFU (Maini et al., 2024), MUSE
(Shi et al., 2025), WMDP (Li et al., 2024) benchmarks. The framework includes a diverse set of metrics to assess model
performance, including 16 unlearning metrics from existing benchmarks, as well as additional evaluations by integrating
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LM Eval Harness (Gao et al., 2024c). We also support three stress-testing approaches, which are essential for testing the
robustness of unlearning, usually critical for model-owners in verifying compliance. All these features are summarized
in Table 2 by component and variant. Our integration enriches each benchmark by enabling the use of metrics originally
developed for others. For example, PrivLeak, initially introduced in MUSE, is now available in TOFU. More details on
these technical benchmark improvements can be found in Appendix D.3. We also encourage community contributions by
providing detailed guidelines for adding new benchmarks, unlearning methods, and evaluation metrics. This has already
resulted in contributions from the community, with implementations for works like (Dong et al., 2025; Wang et al., 2025b;
Yang, 2025).

OpenUnlearning is aliving framework, and our design choices are built keeping easy integration of new components in
mind. For instance, since the public release of our repository (with just TOFU and MUSE benchmarks) we introduced
the WMDP benchmark, unlearning methods like RMU (Li et al., 2024), UNDIAL (Dong et al., 2025), AltPO (Mekala
et al., 2025); evaluations like ES (Carlini et al., 2021), EM (Tirumala et al., 2022), MIA (Duan et al., 2024) and integrated
evaluations like MUSE’s PrivLeak (into TOFU) and LM Eval Harness (Gao et al., 2024¢) (to enable WMDP evaluation)
among many others. Additionally, we encourage community contributions by providing detailed guidelines for adding new
benchmarks, unlearning methods, and evaluation metrics. This has already resulted in contributions from the community,
with implementations for works like (Dong et al., 2025; Wang et al., 2025b; Yang, 2025). Currently, each module supports
several variants, with 3 popular LLM unlearning benchmarks, 5 task datasets, 9 unlearning methods, 16 evaluation metrics,
6 LLM architectures and 3 stress-tests.

D.3. Unlearning benchmarks

TOFU: A synthetic fine-grained knowledge-unlearning benchmark with 200 fictitious author profiles, each offering 20 QA
pairs and a defined “forget set”, and a finetuned chat LLM. TOFU’s primary metric is Truth Ratio, which measures the
relative likelihood of the true answer after unlearning.

MUSE: A memorization and knowledge unlearning benchmark targeting the removal of books and news articles from a
finetuned LLM. MUSE evaluates for memorization (via verbatim reproduction rates), knowledge (via question-answers) and
privacy protection (using membership-inference attacks).

WMDP: An alignment-focused benchmark of 3,668 multiple-choice questions probing hazardous knowledge in biosecurity,
cybersecurity, and chemical security, paired with corresponding unlearning corpora and off-the-shelf chat LLMs. WMDP
assesses a model’s ability to forget dangerous capabilities while preserving general performance.

Improvements: In evaluations, TOFU reuses training questions, raising concerns about overfitting and inflated metrics. To
mitigate this, we evaluate on paraphrased questions in our meta-evaluation and benchmarking. We also extend TOFU with
privacy-based metrics from MUSE via PrivLeak (Shi et al., 2025) and introduce additional MIA attacks. For this we create
new holdout datasets by replicating the original TOFU data generation setup. We add MIA beyond Min-K (Shi et al., 2023)
to MUSE. Given the poor quality and tokenization issues users faced with the PHI-1.5 and LLAMA-2 models from TOFU,
we introduce new starter target models. OpenUnlearning provides three sizes of the recent LLAMA-3 models: 1B, 3B,
and 8B, giving users greater flexibility to experiment. Additionally, we augment both TOFU and MUSE with metrics such
as Extraction Strength (Carlini et al., 2021), Exact Memorization (Tirumala et al., 2022), and Forget Fluency (Mekala et al.,
2025). We integrate OpenUnlearning with LM Eval Harness (Gao et al., 2024c¢) to assess general LLM capabilities that
identify post-unlearning degradations, in addition to enabling WMDP evaluations. Several contemporary works can further
enhance these benchmarks. We plan to continuously improve the framework by adding-and encouraging contributions
of-new features and metrics to both existing and future benchmarks, such as the recent work by Thaker et al. (2025).

D.4. Datasets

In machine unlearning, benchmarks typically structure data into two primary components: (1) forget sets, which contain
text corpora and queries designed to test whether the model has successfully erased targeted information, and (2) retain
sets, which verify that the model preserves unrelated, desirable knowledge. Beyond this fundamental split, unlearning
benchmarks often include additional variations to test algorithmic robustness. For example, scaling splits vary the size of the
forget set to assess how well algorithms handle larger deletion requests, while topic-based splits examine whether forgetting
specific content impacts retention across semantically related or unrelated domains (Maini et al., 2024; Shi et al., 2025).

'We use the same gpt-4-1106-preview endpoint and prompts for data generation.
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These nuanced splits are essential for assessing scalability, generalization, and sustainability of unlearning methods under
realistic conditions.

(a) Dataset Handler (b) Dataset Configuration
class PretrainingDataset (Dataset) : MUSE_forget:
def _ init__ (self, hf_args, ...): handler: PretrainingDataset
args:
hf args:
def _ getitem_  (self, idx): path: "muse-bench/MUSE-News"
coo name: "raw"
return item split: "forget"
text_key: "text"
_register_data (PretrainingDataset) max_length: 2048

Figure 5. Adding a dataset in OpenUnlearning: (a) the Python handler class implementing data preprocessing and reusable to load
several datasets, and (b) the configuration file specifying arguments for instantiating a particular dataset variant. Adding variants of other
modules (e.g. unlearning method trainers, benchmarks, evaluation metrics etc.) involves a similar procedure.

OpenUnlearning provides a modular framework where most of the Python implementation for dataset classes is shared
across various dataset configurations and benchmarks. It also allows users to define custom dataset classes following the
steps presented in Figure 5. We already support three commonly used dataset handlers, each serving a distinct purpose in
the unlearning pipeline:

* PretrainingDataset: used for training models on large-scale web corpora. This handler is essential for simulating
pretraining kind of settings.

e CompletionDataset: used for evaluating model outputs in a zero-shot or few-shot setting. This format is particularly
useful for measuring memorization and information leakage, such as verbatim reproduction of forgotten content.

* QADataset: designed for probing models using natural language question-answer interactions, optionally with few-shot
examples. This format is critical for assessing whether the model retains or forgets factual knowledge in interactive
settings. Moreover, the framework automatically pipelines model-specific input formatting such as including system
prompts or special tokens for chat-based models ensuring that queries are executed in a manner consistent with the
model’s native interface.

* ForgetRetainDataset: The unlearning process involves simultaneous optimization on both the forget and retain
datasets, requiring concurrent batch loading. This dataset class abstracts this by loading the retain dataset in the same
order as the forget dataset for unlearning.

D.5. Metrics

OpenUnlearning supports multiple evaluation metrics and shares common functionalities across metric implementations.
Metrics are broadly classified into three categories and summarized below:

Memorization Metrics: These metrics quantify how much the model has memorized information from its training data.

1. Exact Memorization (EM): Quantifies memorization by calculating proportion of tokens in the model’s response that
exactly match those in the ground truth y (Tirumala et al., 2022). Formally, it is defined as

1
EM—le{argm?;cmf(yl[I,y<k];0)—y’“}, )
k

2. Extraction Strength (ES): Quantifies the intensity of memorization by determining the minimal prefix length required
to reconstruct the remaining suffix (Carlini et al., 2021).

BS =1 omin (I | £(lr.0:0) = 57t} ©)

3. Probability (Prob.): Directly quantifies the model’s confidence in its output.
Probability = p(f (y|z) @)
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. Paraphrased Probability (Prob.): Probability is computed on a paraphrased yP** instead of y to remove original
answer template bias. The goal is to capture the knowledge rather than surface-level lexical overlap.

Para. Prob. = p(f(y"*|x) 3

. ROUGE/Paraphrased ROUGE: Assesses the degree of overlap between the model’s output f(x) and the ground truth
y (Lin, 2004). This can be computed against many variants of datasets, including paraphrases and jailbreak prompts
(next).

. Jailbreak ROUGE: To probe for forgotten information, we employ a prefix-based jailbreaking attack by prompting
the model with "Sure, here is the answer:" (as in (Wang et al., 2025a)) and then computing the ROUGE score between
the model’s response and the ground truth. This metric captures the extent to which suppressed content can still be
recovered through prompt manipulation.

. Truth Ratio: Measures the model’s preference for the correct answer over a perturbed (incorrect) alternative by
comparing their predicted probabilities. A higher value indicates stronger confidence in the correct response. It is
defined as:

p(yP™ | x)
p(yPa | x) + p(yPert | z)

where y,ara denotes the paraphrased correct answer and 1/, represents a incorrect alternative keeping the sentence

structure similar. Note that Maini et al. (2024) use a privacy-oriented variant of Truth Ratio computed as Truth Ratio =
p(y*™ )  p(y*|z)
p(y*|z)* p(y*=|z)

Truth Ratio =

©))

min( ). We modify it so that it quantifies extent of knowledge for our work’s purposes.

Privacy Metrics: These metrics ascertain whether sensitive information from the forget set can still be inferred or extracted
from the model. Techniques such as Membership Inference Attacks (MIA) are utilized to evaluate the model’s susceptibility
to revealing whether specific data points were part of its training set, thereby assessing the privacy guarantees post-unlearning.
However, these metrics often assumes an access to the perfect i.i.d houldout splits or access to the ‘oracle’ retain model
limiting its practical usage in real-world.

1. MIA: Evaluates a model’s tendency to memorize training data by testing whether an adversary can distinguish between
seen examples from the forget set (Dyoreer) and unseen examples from a holdout set (Dholgout), based on model confidence.
Ideally, a model that has not seen the forget set should yield an AUC of 0.5. However, due to challenges in constructing
perfect holdout splits, benchmarks such as MUSE often calibrate this with AUC scores from the retain model (e.g., as
done in PrivLeak). We support several MIA methods, including: LOSS (Yeom et al., 2018), ZLib (Carlini et al., 2021),
GradNorm (Wang et al., 2024), MinK (Shi et al., 2023), and MinK++ (Zhang et al., 2025a).

. Forget Quality: Performs a statistical test on the truth ratio distributions of the unlearned and retain models, yielding
high values when the distributions closely match.

KS(Truth Ratio( fiarget, Df ), Truth Ratio( frewin, Dy )) (10)

Utility Metrics: The goal of unlearning is to effectively forget the targeted data while preserving the model’s performance
on non-forget data. Utility metrics assess whether the model retains its capabilities on broader tasks beyond the retain data,
ensuring that unlearning does not degrade general performance on real-world distributions.

1. Model Utility (MU): Captures the retained performance of a model after unlearning, both on the closely tied retain set
and on broader general knowledge. TOFU computes MU as the harmonic mean of nine metrics across three data levels:
the retain set, real authors, and factual world knowledge. At each level, it evaluates three metrics—probability, ROUGE,
and the Truth Ratio.

2. ROUGE for knowledge: MUSE, TOFU assess utility by measuring ROUGE on knowledge-based questions.

. Forget Fluency: Prior work (Mekala et al., 2025; Gandikota et al., 2024) has shown that unlearning often degrades
model fluency, particularly on the forget set, resulting in random or nonsensical outputs. To capture this effect, we
employ a classifier-based score that predicts whether a given text resembles gibberish”.

. LM Eval Harness: LM Evaluation Harness (Gao et al., 2024c) is an easy to use library enabling evaluations for a wide
variety of general LLM benchmarks. It is integrated into OpenUnlearning, unlocking a broad suite of metrics such
as WMDP MCQ, MMLU (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021) etc., for comprehensive post-unlearning
evaluation.

2https ://huggingface.co/madhurjindal/autonlp-Gibberish-Detector-492513457
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By integrating the diverse metrics listed in Table 2, OpenUnlearning offers a robust framework to holistically evaluate
unlearning methods, ensuring that models not only forget specific data but also maintain utility and privacy standards.
Figure 6 illustrates the process of adding a new metric to the OpenUnlearning framework.

It is important to recognize that the applicability of unlearning metrics often depends on the dataset used during evaluation.
As a result, metrics implemented for one benchmark may not directly transfer to another. For example, the Knowledge
Memorization metric in MUSE is based on question-answer pairs where answers are typically short, single-word responses.
In contrast, TOFU lacks such a data split and instead features more descriptive, verbose answers. In this context, metrics like
ROUGE recall may inadvertently capture surface-level template patterns rather than the core semantic content, potentially
misleading the evaluation.

(a) Metric Handler
@unlearning_metric (name="rouge")
def rouge (model, xxkwargs):
tokenizer = kwargs["tokenizer"]
data = kwargs(["data"]
collator = kwargs["collators"]
batch_size = kwargs["batch_size"]
generation_args = kwargs|["generation_args"]
# calculate ROUGE
return {
"agg_value": np.mean (rouges),
"value_by_index": rouges,

(b) Metric Configuration
# @package eval.muse.metrics.forget_verbmem ROUGE
defaults: # fill up forget_verbmem ROUGE's inputs' configs
- ../../data/datasets@datasets: MUSE_forget_verbmem
- ../../collator@collators: DataCollatorForSupervisedDatasetwithIndex
- ../../generation@generation_args: default
handler: rouge # the handler we defined above in (a)
rouge_type: rougel_fl
batch size: 8
datasets:
MUSE_forget_verbmem:
args:
hf args:
path: muse-bench/MUSE-Books
predict_with_generate: True
collators:
DataCollatorForSupervisedDataset:
args:
padding side: left # for generation
generation_args:
max_new_tokens: 128

Figure 6. Example of a metric definition in OpenUnlearning: (a) the Python handler that implements the ROUGE metric, and (b) the
corresponding configuration used to run ROUGE-based evaluation for assessing verbatim memorization.

D.6. Models

Different language models encode and store knowledge in fundamentally different ways depending on their architecture and
training setup. As a result, evaluating unlearning methods across a diverse range of models is essential for assessing their
robustness and generalizability. However, existing benchmark implementations often support only a narrow set of model
types and require users to manually rewrite evaluation logic such as input formatting, tokenization, and prompting—when
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adapting to new architectures. For example, chat-based models rely on specialized prompting structures that differ
significantly from standard causal language models, making adaptation tedious and error-prone.

OpenUnlearning supports multiple model architectures and sizes out of the box. Built on Hugging Face Transformers
(Wolf et al., 2020), it uses AutoModelForCausalLM and AutoTokenizer, while also supporting custom model
loading (e.g., for probe models). A unified abstraction allows seamless switching between chat-style and base models without
modifying the unlearning or evaluation pipeline, reducing overhead and enabling consistent cross-model comparisons.

In addition to support loading models in multiple precisions, OpenUnlearning also support loading 4-bit and 8-bit
quantized models using the bitsandbytes library Dettmers et al. (2023). This flexibility for quantization is particularly
valuable for stress testing unlearning Zhang et al. (2025b).

Table 3. Supported LLM Architectures in OpenUnlearning

Model Reference

LLAMA-2 Touvron et al. (2023)
LLAMA-3.1/3.2 Grattafiori et al. (2024)
PHI-1.5 Li et al. (2023)

PHI-3.5 Abdin et al. (2024)
GEMMA Gemma Team et al. (2024)
ZEPHYR Tunstall et al. (2024)

New models for TOFU : OpenUnlearning provides trained models for the TOFU benchmark using LLAMA-based
architectures finetuned on the TOFU dataset. These models span a range of sizes including 1B, 3B, and 8B parameters,
enabling users to explore unlearning behavior across different model capacities. The 1B model, in particular, offers a highly
efficient option for rapid experimentation with turnaround time of 15 minutes, requiring only 20 GB of GPU VRAM.

(a) LLAMA 3.2 1B model configuration

model_args:

pretrained model name or path: "meta-llama/Llama-3.2-1B-Instruct"

attn_implementation: 'flash_ attention_ 2'

torch_dtype: bfloatl6
tokenizer_args:

pretrained model name or path: "meta-llama/Llama-3.2-1B-Instruct"
template_args:

apply_chat_template: True

system prompt: You are a helpful assistant.

date_string: 10 Apr 2025

(b) LLAMA 2-7B model configuration

model_ args:

pretrained_model name or_path: "meta-llama/Llama-2-7b-hf"

attn_implementation: 'flash attention_2'

torch _dtype: bfloatl6
tokenizer_args:

pretrained _model name or_path: "meta-llama/Llama-2-7b-hf"
template_args:

apply chat template: False

user_start_tag: "Question: "

user_end_tag: "\n"

asst_start_tag: "Answer:

asst_end tag: "\n\n"

"

Figure 7. Example model configurations for two different LLAMA variants: (a) LLAMA 3.2-1B with chat template prompting, and (b)
LLAMA 2-7B with manual prompt formatting.
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D.7. Unlearning Methods

Unlearning methods form the core of the OpenUnlearning framework. In practice, researchers proposing new unlearning
approaches often evaluate them on a single benchmark due to the high efforts of adapting their code to other frameworks. This
fragmentation has led to a lack of comprehensive, cross-benchmark comparisons in the unlearning literature. The overhead
of re-implementing methods, adapting to different evaluation pipelines, and aligning metrics discourages reproducibility and
slows progress.

OpenUnlearning addresses this gap by providing a unified and modular infrastructure that abstracts away benchmark-
specific details. Researchers can implement their method once, typically by extending a custom Trainer, and instantly
evaluate it across multiple benchmarks using a consistent API and evaluation suite. This design dramatically lowers the
barrier to rigorous, multi-benchmark evaluation and encourages the community to develop more generalizable and robust
methods. We currently support all commonly used baselines as well as several state-of-the-art methods, and we invite the
community to build upon this foundation.

Gradient Ascent (Maini et al., 2024): Performs gradient ascent on the forget set to degrade model confidence on targeted
data.
L= —,YE(II/’7yf)NDt‘mge[€<yf |JJ; funl) (11)

GradDiff (Maini et al., 2024): Performs gradient ascent on forget data and descent on retain data.
L= _'YE(m,yf)~DfmAge[£(yf|x§ funl) + O‘IE(w,y)~Dmain€(y‘x; funl)
IdkNLL (Maini et al., 2024): Trains to output "I don’t know" responses when queried on forgotten content.

L = VE(4,y0)~ Do (Y1 |75 Funt) + OB, )~ Dy (4125 Funt)

IdkDPO (Maini et al., 2024): Uses a DPO-style objective to align the model to output "I don’t know" responses when

queried on forgotten content.

2
s
+ Oé]E(xay)NDretaing(y‘x; funl)

r P(yidk|$;funl))> _ ﬂlog( P(ye| 3 funt) ))

E 4.y 10 o<fﬁlo (
(2,36~ Dioge 08 & p(yidk|x;ftarget p(yf|$; ftarget)

NPO (Zhang et al., 2024): Similar to the DPO-style objective, but uses only the negative feedback term in its formulation.
It demonstrates better training stability compared to similar methods like GradDiff.

2
E = _EE(w;yf)NDt'orgel loga< — Blog (

+ a]E(mxy)N,Dreming(y|$; funl)

p(ye|w; fumt) ))

p(yfm; ftarget)

SimNPO (Fan et al., 2024): A simplified and efficient variant of NPO that retains its core forgetting behavior with by
replacing the reference model with 0 in loss formulation.

2 B
L= —BE(I’yf)"’Dmrgcl IOgO'( — m 1ng(yf|$7 funl) - 5)) + OéE(z’y)NDmmng(y|x; funl)

AItPO (Mekala et al., 2025): Uses a DPO-style objective to align the model toward generating alternate, in-domain
plausible facts (produced by the model itself) that introduce ambiguity and suppress the original target knowledge.

_ 2

/BE(I7yf)NDﬂ\rge[ log U( — Blog (

r P(Yale|2; funt) ) B Blog( P(ye| w3 funt) ))

p(yalt |1‘; flarget) p(yf|x; ftarget)
+ aE(fvy)NDrming(y‘m; funl)
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RMU (Li et al., 2024): Assumes knowledge is encoded in model parameters and manipulates these representations to
suppress memorization signals for the forget set while preserving knowledge in the retain set. Let ¢)(s; fun) denote the
embedding features of the model, the loss is given by

[yel

1 i
L :]E(mvyf)NDf‘"ge‘w Z ||d)([xa y< ]; funl) —C- qu
=1

[yl

1 i i
+ E(ey)~ Deci ol > N, = fun) = (2, y="; farge) |13,
i=1

where u has elements randomly sampled from [0, 1) and c is a scaling hyper-parameter.

UNDIAL (Dong et al., 2025): Mitigates the instability found in prior methods by employing self-distillation, where
the model learns from its own adjusted outputs. The core idea is to reduce the model’s confidence in the target token by
adjusting its logits, thereby diminishing its influence without affecting the overall model performance. This is achieved by
minimizing the KL divergence between the adjusted logits and the model’s current output distribution.

Zadj (z) = Zorig(i’?) - 1y,

L= YE (2, )~ Dy [KL (softmax(zadj(x)) I softmax(zunl(x)))} + aIE(m,y)NDrminé(y\x; funl)
Where zqrig () is the original logits produced by the model before unlearning and z,qj(x) is the adjusted logits.

D.8. Technical improvements:

Efficiency: MUSE evaluates models without batching, while our implementation uses batched inference to improve
efficiency. TOFU pads all sequences to a fixed max_length of 512, resulting in unnecessary GPU memory and compute
overhead. In contrast, we apply dynamic padding based on the longest sequence in each batch. WMDP lacks a rigorous
training and unlearning framework, limiting its extensibility for developing and evaluating new methods.

Training paradigms supported: Training or unlearning with larger models (e.g., > 8B parameters) presents a significant
computational challenge, often necessitating multiple high-end GPUs such as NVIDIA A100s. To acclerate this process we
support,

1. DeepSpeed ZeRO Stage-3 (Jacobs et al., 2023): Enabled via the Accelerate library (Gugger et al., 2022), reducing the
memory usage through optimizer state partitioning and CPU/NVMe offloading.

2. Model Parallelism: Splits the model across GPUs along its layers, allowing large models to be trained even when
individual GPUs cannot hold the full model in memory.

E. Experimental setup

All subsequent meta-evaluation and benchmarking experiments use the LLAMA-3.2-1B model. Experiments use BF16
precision, a single NVIDIA A100 GPU, a batch size of 32 and a paged AdamW optimizer (matching the TOFU paper’s
default settings).

F. Meta-evaluation
F.1. Faithfulness test-bed design

We create two pools of models: the negative /N and the positive P pool. N contains models trained with varying training
parameters while avoiding the knowledge of the forget set in the training data. P contains models trained similarly to N but
with the target knowledge included in training. During the model pool preparation, we modify the training data used in
the N and P pools with several training data variants. This introduces model diversity, forcing metrics to detect genuine
knowledge retention rather than non-knowledge related artifacts, to achieve high scores. The faithfulness evaluation pipeline
is illustrated in Figure 1 (a).

1. Positive pool (P): Models are trained on all TOFU facts (both forget10 and retain90). We then replace
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forget10 with two transformed variants. First, forget 10_paraphrased uses paraphrased labels while preserving
factual content. Second, forget10_bio contains long-form biographies derived from forget10.

2. Negative pool (N): Models are trained on the retain90 split of TOFU, along with two perturbed variants of
forget10. First, forget10_perturbed pairs each forget prompt with an incorrect label. Second, celeb_bio
(biographies of random celebrities) serves as the counterpart to forget10_bio.

To further diversify the model pool, we vary training hyperparameters: five learning rates from 1 x 107° to 5 x 10~°, and
two checkpoints (after training epochs 5 and 10). Combining 2 pools x 3 dataset variants x 5 learning rates x 2 checkpoints
yields 60 models in total.

Data generation process While some of TOFU’s evaluation datasets include paraphrased and perturbed examples, our
training-set variants for the model pool were generated independently. We used LLAMA 3.1 405B via the SambaNova API?
to paraphrase and perturb QA pairs, and prompted Gemini* to produce Wikipedia-style biographies from each author’s 20
QA pairs.

F.2. Robustness setup design

We create a large and diverse pool of unlearned models and a separate set of retain models, which serve as gold-standard
references having never been trained on the forget set. The unlearned pool is then subjected to stress-test interventions,
to provoke recovery (or inducing) of the forgotten knowledge. These pools serve as our test-bed. For every metric being
meta-evaluated, values are recorded on both pools before and after each intervention. The change in a metric’s distribution
before and after intervention on the unlearned models (along with the change in retain models for normalization) is used to
characterize robustness. We use three interventions: relearning, quantization and probing.

1. Relearning Setup: We finetune the unlearned model on the full forget 10 dataset for one epoch with a learning rate of
2 x 1072,

2. Quantization Setup: We apply 4-bit floating-point quantization using BitsAndBytes (Dettmers et al., 2023). Checkpoints
unlearned with a learning rate of 1 x 107> are chosen, as quantization is most effective at lower learning rates (Zhang
et al., 2025b).

3. Probing: We evaluate layer 11 of the LLAMA-3.2-1B model (16 layers total) using the language-model head from the
corresponding retain90-trained model. This head is trained with a learning rate of 1 x 10~ on retain90 for ten
epochs.

F.3. Additional Results

Figure 8 shows the faithfulness of the metrics, while Figure 9 and Figure 10 show their behavior under relearning and
quantization stress tests. We found that removing MU filter of retaining at least 80% utility for unlearned models reduces
robustness to quantization further (see Figure 11). Despite this, we apply the MU filter to better align with common
unlearning reporting practices.

Probing results: We compute the metric robustness to probing intervention as follows

a b
p:% if %21, P = min(p, 1) (12)

unl unl

Table 4 shows the results of our metric meta-evaluation with probing. Probing, while provided for by OpenUnlearning,
is not used in the meta-evaluation procedure, as P scores on TOFU achieve 1 for all metrics and thus offer little information.

F.4. Further considerations

Why aren’t the intervened versions of metrics considered evaluation metrics themselves? The interventions we
use require modification to and access of model weights, which an unlearning auditor might not possess. In the case of

3https ://cloud.sambanova.ai/playground
‘gemini-2.0-flash-exp (accessed 26 April 2025)
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Table 4. Robustness meta-evaluation with probing (layer 11)

Metrics Probe 1
Exact Mem. 1.0
Extr. Strength 1.0
Truth Ratio 1.0
Prob. 0.99
ROUGE 0.99
Jailbreak ROUGE 0.99
Para. Prob. 1.0
Para. ROUGE 0.99
MIA - LOSS 1.0
MIA - MinK 1.0
MIA - MinK++ 0.83
MIA - ZLib 1.0

relearning and quantization, they also involve computational costs associated with training. Stress-testing interventions are
best suited for final-stage audits before model deployment, rather than for routine use throughout unlearning workflows, as
is expected of standard evaluation metrics. Our analysis can inform the design of robust evaluation metrics that function
without requiring stress-testing.

Comparison to Wang et al. (2025a)’s meta-evaluation: Our work is related to the recent effort by Wang et al. (2025a) to
compare unlearning evaluation metrics. Their analysis focuses on four metrics: probability, ROUGE, ES, and EM, and
evaluates robustness by measuring the linear correlation of metric values before and after applying stress-tests such as
jailbreaking, relearning, probing, and token noising. We extend this framework in several key ways.

1. Broader metric coverage: We evaluate a broader range of metrics, including six additional ones.

2. Faithfulness assessment: We assess faithfulness of metrics in our meta-evaluation as a minimal criterion. This enforces
that good metrics must accurately capture the presence or absence of target knowledge, rather than merely resisting
change under intervention.

3. Focused interventions: We focus specifically on three interventions: relearning, probing, and quantization, excluding
jailbreaking and token-noising from the intervention set. We instead treat jailbreaking it as an evaluation metric in its
own right. Prompt-based attacks like paraphrasing and jailbreak-style prompts are more naturally seen as inexpensive
evaluation metrics rather than stress-testing interventions. Additionally, Wang et al. (2025a) found jailbreaking and token
noising (which is also a prompt modification) to be less effective as interventions.

4. A different calibration criterion: our procedure also introduces a calibration criterion grounded in ideal behavior. Rather
than expecting linear variation from a metric upon intervention, we benchmark metric behavior against a gold-standard
retain model, for a more principled signal of robustness.

5. Practical robustness analysis: Our robustness analysis filters for models with good utility that are substantially unlearned,
selected from a diverse and representative set of unlearning algorithms. This leads to a test distribution for metrics that
better reflects realistic unlearning scenarios.
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Figure 8. Faithfulness: Evaluation of multiple metrics to assess faithfulness. AUC indicates how effectively metrics distinguish between
models trained on the target knowledge and those that are not.
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Figure 9. Relearning: Stress-testing multiple evaluation metrics through relearning. A significant fraction of unlearned models regain
knowledge faster than the retained model when re-exposed to the forgotten data, falling into the unreliable red-shaded region: indicating
that the metrics failed to initially capture the knowledge and are thus not robust.
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Figure 10. Quantization: Stress-testing multiple evaluation metrics through quantization. For several metrics, a subset of unlearned models
shows increased metric values after quantization, falling into the red-shaded region: suggesting that the metrics failed to initially capture
the presence of knowledge and are therefore not robust. These results are reported only for models unlearned with low learning rates and
high utility.
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Figure 11. Quantization: Stress-testing multiple evaluation metrics through quantization. For each metric, a subset of unlearned models
shows increased metric values after quantization, falling into the red-shaded region, suggesting that the metrics failed to initially capture
the presence of knowledge and are therefore not robust. These results are reported only for models unlearned with low learning rates and
no filter on utility.
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G. Benchmarking unlearning methods

Unlike prior works with limited baselines and metrics, OpenUnlearning provides a standardized and scalable framework
to conduct a large-scale comparison of various unlearning methods. We demonstrate this by evaluating 8 unlearning methods
across 10 metrics on TOFU.

G.1. Unlearning methods

OpenUnlearning enables evaluation across a broader range of methods, including SimNPO (Fan et al., 2024), RMU (Li
et al., 2024), AltPO (Mekala et al., 2025), NPO (Zhang et al., 2024), UNDIAL (Dong et al., 2025), as well as baselines like
IdkPO, IdkNLL, and GradDiff (Maini et al., 2024). See Appendix D.7 for each method’s definition.

G.2. Evaluation metrics

We evaluate unlearning methods using memorization metrics validated in our meta-analysis, alongside privacy and utility
metrics. Using the TOFU benchmark and following the SemEval 2025 LLM Unlearning Challenge’s ranking procedure
(Ramakrishna et al., 2025b), we compute a composite score by aggregating metrics from the three categories:

1. Memorization: To quantify the degree of successful forgetting, the Memorization Score is calculated as the Harmonic
Mean (HM) of 4 core metrics which are best as per our meta-evaluations analysis in § 1 — ES, EM, Paraphrased
Probability and Truth Ratio. These metrics are inverted (i.e., 1 — metric) so that higher scores indicate more effective
unlearning. The score is given by:

Memorization Score = HM (1 — ES, 1 — EM, 1 — Para. Prob, 1 — Truth Ratio)

Note that the memorization score (reported in Table 6) corresponds to forgetting: higher memorization indicates less
knowledge.

2. Privacy: For assessing privacy, we utilize four Membership Inference Attack (MIA) metrics: LOSS, ZLib, Min-k, and
Mink++. For each of these, an individual privacy score (sya) is calculated. This score, ranging from O to 1, quantifies
how closely the unlearned model’s behavior on the specific MIA metric aligns with that of a gold-standard retain model
(details below). A higher syya score indicates greater similarity to the retain model. The overall Privacy Score is then the
Harmonic Mean (HM) of these individual scores:

Privacy Score = HM(sLoss, SzLib; SMin-k, SMink++)

3. Utility: TOFU evaluates a model’s utility using nine core metrics that assess performance across splits at three different
distances from the forget dataset distribution - namely, retain, real-world authors, and wrong-fact queries: using QA
probability, ROUGE, and truth-ratio scores. In addition to this we include a new metric that measures the fluency of
the model’s response when prompted with entities-related to forget queries, following (Mekala et al., 2025; Gandikota
et al., 2024). Fluency is assessed using a classifier’ that detects gibberish / nonsensical outputs. The final utility score is
the harmonic mean of MU and fluency. Note that we scale all metrics with init finetuned model, so their scores across
all points fall in the [0, 1] range. For example, TOFU MU scores never exceed that of the initial target model upon
unlearning, so all scores are effectively divided by the target model’s MU.

Note that for many metric aggregations we use Harmonic Mean, as HM ensures that a high final score demands strong
performance in all constituent parts.
G.3. Hyper-parameters tuning and model selection

Tuning: To ensure fairness, 27 hyperparameter tuning trials are allocated per method, as tuning can significantly improve
performance of even simple baselines (Wang et al., 2025a).

1. For GradDiff and IdK-NLL: we vary the learning rate over the set {1 x 107°,2 x 107°,3 x 1075,4 x 1075,5 x 1075},
and sweep the regularization coefficient o € {1,2,5,10}.

Shttps://huggingface.co/madhurjindal/autonlp-Gibberish-Detector-492513457
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Table 5. Comparison of unlearning methods on the TOFU task, showing aggregate (Agg.) using only Memorization (Mem.) and
utility (Utility) scores. Privacy scores are not used in the aggregation and are only shown for illustration. Higher scores indicate better
performance (). Initial finetuned is the target model before unlearning and Retain model is the gold standard target model. The focus on
memorization as opposed to privacy results in GradDiff performing the best as it easily results in over-unlearning.

Method Agg.T Mem.?T Priv. 1  Utility T
Init. finetuned 0.00 0.00 0.10 1.00
Retain 0.58 0.31 1.00 0.99
GradDiff (Maini et al., 2024) 0.87 0.97 3.27e-03 0.79
AItPO (Mekala et al., 2025) 0.76 0.63 0.06 0.95
IdkDPO (Maini et al., 2024) 0.71 0.56 0.06 0.95
NPO (Zhang et al., 2024) 0.69 0.52 0.06 0.99
RMU (Li et al., 2024) 0.53 0.47 0.5 0.61
SimNPO (Fan et al., 2024) 0.49 0.32 0.63 1.0
UNDIAL (Dong et al., 2025) 0.4 0.27 0.48 0.78
IdkNLL (Maini et al., 2024) 0.14 0.08 0.17 0.93

2. For IdK-DPO, NPO and AltPO: we tune learning rates in {1 x 107%,2 x 107°,5 x 10~°}, and search over o € {1,2,5}
and 5 € {0.05,0.1,0.5}.

3. For RMU: we use the same learning rate range {1 x 107°,2 x 1075,5 x 1075}, vary the steering coefficient in
{1,10, 100}, and apply the loss at one of the layers [ € {6,11, 16} of the LLama3.2-1B model. For each selected layer
[, we restrict training to layers [ — 2, — 1, and [.

4. For SimNPO: we tune learning rates in {1 x 107°,2 x 107°,5 x 107"}, and search over 3 € {3.5,4.5}, § € {0,1}
and § € {0.125,0.25}.

5. For UNDIAL: we tune learning rates in {1 x 107°,1 x 1074,3 x 10~%}, and search over a € {1,2,5} and 8 €
(3,10, 30}.

We aggregate utility score and memorization score and use their harmonic mean for tuning the models.

What metrics are appropriate for model selection during hyperparameter tuning? The nature of tuning in unlearning
benchmarking has distinct considerations compared to general machine learning. While standard machine learning avoids
using test data for tuning to ensure generalization, unlearning in TOFU and MUSE specifically targets the known forget set
for erasure. Consequently, iteratively refining the unlearning by evaluating the model’s behavior concerning this specific set
is a permissible approach to ensure thorough forgetting before deployment. For this tuning, we advocate relying on metrics
realistically available during the development phase, specifically those assessing forget quality on the target data and general
utility, while avoiding “oracle" metrics that presume access to unavailable resources like true i.i.d holdout sets or retain
models like in (Maini et al., 2024; Shi et al., 2025). Since all our privacy scores use a retain model, we avoid them during
tuning. We rely on the harmonic mean of the Memorization and Ultility scores as the validation objective.

Comparison to Wang et al. (2025a)’s benchmarking: While Wang et al. (2025a) propose approaches towards model
selection and benchmarking through validation on Extraction Strength and calibration via model-merging, their analysis has
several limitations. They rely only on ES scores for evaluating forgetting and utility. ES was found to be robust among
the set of 4 evaluation metrics (an observation also re-verified in our work (§3). Yet it has not been proved that ES is a
comprehensive metric validating all facets of knowledge unlearning. For example, ES does not account for privacy metrics
that prevent over-unlearning, like TOFU’s Truth Ratio or FQ or MUSE’s PrivLeak. In addition, they do not consider all
facets of general utility evaluation, particularly forget set fluency. Finally, the question of what metrics can be used in model
selection and if they must be separate from the leaderboard metrics remains unanswered. These limitations remain, to a
smaller degree, in our benchmarking procedure, and we consider this an important line for further research.

G.4. Results and discussion

While memorization, privacy, and utility each capture a distinct aspect of unlearning quality, we follow Ramakrishna et al.
(2025b) in reporting their simple average as our aggregate score. On this composite metric (Table 6), SImNPO (Fan et al.,
2024) ranks first. Although its memorization score trails that of others, it remains close to the retain model’s level, showing
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Table 6. Comparison of unlearning methods on the TOFU task, showing overall aggregate (Agg.), memorization (Mem.), privacy (Priv.),
and utility (Utility) scores. Higher scores indicate better performance (7). Initial finetuned is the target model before unlearning and
Retain model is the gold standard target model. The best values are shown in bold, and the second-best values are underlined.

Method Agg.t Mem. T Priv.1T Utility T
Init. finetuned 0.00 0.00 0.10 1.00
Retain 0.58 0.31 1.00 0.99
SimNPO (Fan et al., 2024) 0.53 0.32 0.63 1.00
RMU (Li et al., 2024) 0.52 0.47 0.50 0.61
UNDIAL (Dong et al., 2025) 0.42 0.27 0.48 0.78
AltPO (Mekala et al., 2025) 0.15 0.63 0.06 0.95
IdkNLL (Maini et al., 2024) 0.15 0.08 0.17 0.93
NPO (Zhang et al., 2024) 0.15 0.52 0.06 0.99
IdkDPO (Maini et al., 2024) 0.14 0.56 0.06 0.95
GradDiff (Maini et al., 2024) 9e-3 0.97 3e-3 0.79

a lack of over-unlearning. SimNPO fully preserves utility and achieves competitive privacy results, striking a balance across
all three criteria. The next best performer is RMU, which demonstrates strong memorization and privacy but suffers a
significant drop in utility.

Methods that under-unlearn (e.g. IdkNLL, which yields a low memorization score i.e. less forgetting) score lower on privacy.
On the other hand, methods that over-unlearn (e.g. GradDiff, which forgets too strongly, reaching high memorization score)
has poor privacy results as it deviates excessively from the retain model’s behavior. This suggests that detecting and halting
unlearning once the model’s behavior has reverted to its “default” state is crucial to ensure privacy.

Because different ranking schemes can produce very different rankings (Table 6 v/s Table 7), it is critical to choose an
appropriate method ranking procedure and aggregate metrics. Additionally, there is a lack of standardization on which
metrics are suitable for model selection versus final evaluation (elaborated upon in Appendix G.3). While identifying the
ideal ranking method and model selection approach is beyond our scope, we release all unlearned model checkpoints from
our study to support future research on fair evaluation.

Table 7. Comparison of unlearning methods on the TOFU task, showing aggregate (Agg.) using only Memorization (Mem.) and
utility (Utility) scores. Privacy scores are not used in the aggregation and are only shown for illustration. Higher scores indicate better
performance (). Initial finetuned is the target model before unlearning and Retain model is the gold standard target model. The focus on
memorization as opposed to privacy results in GradDiff performing the best as it easily results in over-unlearning.

Method Agg. T Mem.T Priv.{  Utility T
Init. finetuned 0.00 0.00 0.10 1.00
Retain 0.58 0.31 1.00 0.99
GradDiff (Maini et al., 2024)  0.87 0.97 3.27e-03 0.79
AlItPO (Mekala et al., 2025) 0.76 0.63 0.06 0.95
IdkDPO (Maini et al., 2024) 0.71 0.56 0.06 0.95
NPO (Zhang et al., 2024) 0.69 0.52 0.06 0.99
RMU (Li et al., 2024) 0.53 0.47 0.5 0.61
SimNPO (Fan et al., 2024) 0.49 0.32 0.63 1.0
UNDIAL (Dong et al., 2025) 0.4 0.27 0.48 0.78
IdkNLL (Maini et al., 2024) 0.14 0.08 0.17 0.93

27



