Under review as a conference paper at ICLR 2026

DIFFERENTIABLE, STABLE AND EFFICIENT FLOATING-
POINT QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding optimal datatype for neural networks is a non-trivial problem with expo-
nential search space. To solve the problem of quantization effectively, we consider
pseudo-quantization training (PQT) on microscaling (MX) datatypes. Specifi-
cally, we propose pseudo-quantization noise (PQN) based on R ~ |N(0,1)/2].
It allows PQT to (1) optimize on the floating-point (FP) bit configuration, (2) help
preserve dynamic range of original data, and (3) generate noise R efficiently. We
demonstrate that the proposed method allows for stable and efficient pre-training
of the GPT2 and Llama2 language models up to 1 billion (B) parameters for up to
295B tokens, with insights on optimal FP datatypes for model parameters.

1 INTRODUCTION

Quantization has been a promising solution for efficiency. However, it is a non-trivial problem with
at least 2 degrees-of-freedom where we need to decide the datatype and the range of values to be rep-
resented with the datatype. While microscaling (MX) datatypes (Project, |2023) fix the quantization
range as adaptive power-of-two and reduce the degree-of-freedom down to 1, the problem search
space easily becomes exponential when we want to find optimal mixed-precision datatype. For
example, deciding layerwise datatypes from {MXFP8_e4m3, MXFP4,eZm1}E] for a n-layer model
yields O(2") cases. Besides, large language models (LLMs) require >200B tokens of training for
each case to ensure training stability (Fishman et al., [2025).

Pseudo-quantization training (PQT) effectively reduces the search space down to O(1) by employing
differentiable pseudo-quantization noise (PQN) as a generalization over actual quantization noise.
For example, the formulation of DiffQ is W = W + R - A where R ~ U(-0.5,0.5) and A is the
stepsize for B-bit integer, defined as W Note that the formula is fully differentiable
to allow optimization on the bitwidth parameter B. It also promotes stable training by regularizing
Hessian diagonal of loss (Shin et al.| 2023). However, existing PQT methods focus exclusively on
integer datatypes for inference and overlook numerical behavior of noise addition during training.

We address the problem of determining MXFP datatypes of model parameters, both for inference
and training, via PQT. Our contributions with the proposed method, i.e., DiffFPQ, are as follows:

* We employ rounded normal R ~ |[N(0,1)/2] as a basis of PQN. It extends PQT to target
MXFP while preserving the dynamic range of the original model parameter V.

* We demonstrate stable PQT that closely follows, or even outperforms, the baseline BF16
on pre-training GPT2-124M and Llama2-{134M, 1B} language models up to 295B tokens.

* We demonstrate efficient PQT with a 3.14% overhead in training throughput on the A100
GPU by leveraging bitwise operations (bitops) to generate the approximated distribution
R~ |N(0,1)/2].

* We demonstrate that DiffFPQ-trained models achieve Pareto-optimal benchmark results,
especially with mixed-precision parameters W in {FP12_e4m7, FP8_e3m4, FP4_e2ml}
following the resulting bitwidth parameter B;.

* We further demonstrate that DiffFPQ can suggest a baseline datatype, i.e., the datatype for
stable training, of the model parameter.

'(MX)FPn_eEmM represents n-bit (MX) floating-point with E-bit exponent and M-bit mantissa in this paper.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Microscaling (MX) has been proposed as an open compute project (OCP) standard (Project, [2023)).
Quantization with MX separates given data into multiple blocks where low-precision elements
within a single block share a single power-of-two scale. It effectively separates dynamic range of
input data from tensor-wise down to inter- and intra-block where intra-block quantization range is
adaptive power-of-two. That is, the problem of quantization becomes dlsaggregated all we need to
consider is intra-block representation ability where the quantization range is given as power-of-two.

DiffQ (Défossez et al., [2022) proposed pseudo-quantization noise (PQN) to train bitwidth parame-
ters with fixed quantization range. NIPQ (Shin et al.l 2023) proposed pseudo-quantization training
(PQT) that trains both bitwidth parameter and quantization range. It also proved that such training
converges to minima which is flatter by implicitly regularizing the Hessian diagonal term of the loss.
Note that existing PQT works consider integer datatypes while MX datatypes are mostly FP.

Fully quantized training (FQT), quantization-aware training (QAT) and post-training quantization
(PTQ) are well-known methodologies when it comes to quantization. However, existing quantiza-
tion works except for PQT are inefficient when it comes to mixed-precision quantization. They either
mandate exponential search as discussed in Section [1| or require O(n) time-resource as in neural
architecture search where n is the number of options for each layer (Nair et al., 2025). In contrast,
PQT directly optimizes the bitwidth parameter through gradient descent with constant overhead.

3 METHOD

We consider stable and efficient PQT that targets MXFP parameters. Section[3.T]introduces the PQT
formulation that targets MX datatypes. In Section[3.2] we analyze the implications of PQN addition
and propose the rounded Gaussian R ~ [N(0,1)/2] to allow stable PQT that targets MXFP param-
eters. Section introduces efficient generation of the approximated rounded normal distribution

~ |N(0,1)/2] by employing bitwise operations (bitops) in place of FP operations. Section
explains design choices that favor predictably optimal throughput and modular implementation for
the Triton (Mattson et al., 2019)-based GPU kernels. Section describes implementation details,
including the method to ensure forward-backward consistency with unbiased PQN, and the way to
implement bitwidth parameter.

3.1 FORMULATION

We assume a square-blockwise quantization to target MX datatypes. Unlike vector-wise quanti-
zation, square-blockwise quantization guarantees transpose-commutativity which is essential for
stable training. Refer to Appendix [C] and |Chen et al| (2025) for detail. Furthermore, it remains
MX-compliant, as square-blockwise quantization can be viewed as a special case of vector-wise
quantization where adjacent vectors share a common scale.

The formula that we consider is:

W=w + R © broadcasty, (H%)axqw) . 21Bf,))
1

where {W, /V[7, R} e R™*" B, € RIm/bilx[n/bi] and b, = 32 is the square block size following

MX. W and W denote the original and sampled parameters, respectively. R represents random
and B, is blockwise bitwidth where b, represents an element of it. max,, denotes square-blockwise
maximum while broadcasty, is a function f : R(™/b0)x(n/b) _y RmM X7 that replicates the same value
square-blockwise. @ and - denote the Hadamard product, | - | denotes the elementwise absolute. We
refer to the right-hand side of the addition as PQN.

Note that Equationis fully differentiable. With an approximation of Imaxy (W) assuming
gradient to single element out of 32 by 32 block is negligible, we can calculate the gradient with
respect to the target loss L as follows:

oL oL oL oL
= == — =—-In2- W -21—Bt-§ — 2
ow oW and 0B, . H}:?X(‘) (8W © R) @

by

Under review as a conference paper at ICLR 2026

(@) INT, |y = | | | | | | | > (d) min(|W]) < el |vi:ri=0 (Prop. 2)
i I | I | I | I Given n;ion(\PQN\) > 27

7 > Tk |R,>0

1 P | "
(b em |e>3m 2 ||| | | | | | | | | | > €iEW¢»_’_ o> ei\ng
leil<Tp Vie{1,2,.. .k} s, v
“ {e1,- - e} + PQN |pono)2 TR < lri<o
el | | | =
(U em ‘Prup 1 | | | | | | | | | | | > w LPQN, w

Figure 1: Representable values of power-of-two-scaled integer and floating-point datatypes, with re-
spect to adding PQN to near-zero elements ¢;. Comparing (a) to (b) shows that FP with (n — 2)-bit
mantissa includes n-bit integers. (c¢) demonstrates reduced effective resolution of near-zero elements
when adding non-zero elements of PQN. Non-trivial P(R = 0) allows stochastic precision anneal-
ing of near-zero elements as a mixup of (b) and (¢). It also encourages preserving the minimum
magnitude of original data as (d) demonstrates.

3.2 IMPLICATION OF ADDING PSEUDO-QUANTIZATION NOISE (PQN)

While PQN addition in Equation |1 seems lossless, it implies FP casting and loses information of
the smaller-magnitude operand. In this section, we discuss the implication of PQN addition and FP
casting to propose R ~ |AN(0,1)/2] which allows stable PQT that targets FP datatypes.

Notation. We consider fpe}m(W) where fpe.m(+) is casting to FP with e-bit exponent and m-bit
mantissa. For MX extension of it, for simplicity without loss of generality, we consider a single
MX block with a scalar b; € [3,12] since PQN and MX version of fp. ,,(-) share granularity.
For arbitrary block, consider scalar elements R;, PQN; and /V[Z that corresponds to e, = W; €
W, and minimum positive PQN epon = max(|W|) - 2¢717% where 2¢ £ min.o(|R|) with
minso(X) £ min(X : X; > 0,Vi). We define the resolution of scalar FP x, denoted as A, (),
as the minimum non-zero delta of z. Specifically, Ay, (z) = 2Ueg2(2D]=™ given that |z| is in
normal range [21°82(12D] g llegz2(I2)]+1) and m is the number of FP mantissa bits.

Stochastic precision annealing. As resolution of FP depends on magnitude, addition potentially
loses information of the smaller-magnitude operand. For example, resolution of ¢; is lost during
¢; £ epon as shown in Figure [T} It suggests that adding PQN limits the resolution of near-zero
elements, to limit the effective number of FP exponent bits.

Proposition 1. Assume PQN that corresponds to by-bit with 2° = minso(|R|) and P(R = 0) ~ 0.

FP addition W = W + PQN leads to limited representation of W so that floating-point with a
[logs,(—p + bs + 1)]-bit exponent suffices to represent WE]

Figure [1f¢) demonstrates limited representation of W. Now consider P(R = 0). R; = 0 leads

to PQN,; = 0 and W; = W,. It effectively enables stochastic pass-through of high precision W;
into PQT, only to be limited by fpe ,,,(-). That is, non-trivial P(R = 0) yields stochastic mixup of
high precision fp. ,, with P(R = 0) and low precision fpe m |e=[log,(—p+b.+1)] With P(R # 0).
Therefore, PQT with non-trivial P(R = 0) trains the model to be robust to low-precision FP while
preserving precision of W at the same time. We name this property stochastic precision annealing.

Impact on dynamic range. As an example of the impact of PQN addition on representatlon ability,
consider the dynamic range of W compared to that of W. Note that dynamic range of W is defined
as max(|W|) / m1n>0(|W|) and the impact on maximum magnitude is relatively trivial with b; > 3.
Therefore, we focus on the minimum magnitude of /W—speciﬁcally min>0(|/ﬂ7|) = /I/IZ- lPo Ni:()

Proposition 2. Consider k elements {€1, e, ..., e} € W, and 1y, such that 0 < |e;| < 11, Vi €
{1,2,...,k}. Assuming epon > 27, and P(R=0) =p

P<min(|W) <Tk> >1-(1-p)* 3)

>The proofs of Proposmons I andl are provided in Appendix E}
Sminso(|W]) = W, |Pon; 20 with R ~ U(—0.5,0.5) is less likely. Refer to Appendixfor detail.

Under review as a conference paper at ICLR 2026

Table 1: Number of exponent and mantissa bits for floating-point datatypes with respect to b, if the
basis of PQN employs non-trivial P(R = 0) with mins(|R|) = 1, i.e, p = 0. ‘Datatype’ refers to
possible FP datatypes that support the given exponent and mantissa.

b; Exponent Mantissa Datatype

3 2 1 FP4_e2ml

4 3 2 FP6_e3m2

5 3 3 FP8_e4m3, FP8_e3m4
6 3 4 FP8_e3m4

7 3 5 BF16, FP16, FP12_e4m7
8 4 6 BF16, FP16, FP12_e4m7
9 4 7 BF16, FP16, FP12_e4m7
10 4 8 FP16

11 4 9 FP16

12 4 10 FP16

As per Proposition |2, the minimum magnitude of W is exponentially likely to be upper bounded
by 7, independent of b,. Given fixed k, the condition favors preserving dynamic range of W with
higher P(R = 0). That is, PQT with non-trivial P(R = 0) favors preserving dynamic range of W,
up to that of fpe ., (-).

Mantissa and choice of R. With respect to the number of mantissa bits, we make the largest stepsize
of the FP datatype equal to that of b,-bit integer counterparts. Note that, as shown in Figure (1} FP
with (b; —2)-bit mantissa includes b;-bit integer where 2 bits are compensated from FP standard: one
for sign bit and the other for implicit leading 1 for values in normal range. Combined with the num-
ber of exponent bits from Proposition (1} PQT effectively targets fpe m |e— [logy (—ptbe+1)],m=b, —2-

We propose R ~ |[AN(0,1)/2] as a basis of PQN. First, it has a high probability of zero with
P(R = 0) =~ 0.68. This allows PQT to be stable by preserving dynamic range of W, and to target
FP datatypes of Table[l|through stochastic precision annealing. Second, it does not deviate largely
from the previous works that proposed U(—0.5,0.5) and A (0,1)/2 (Défossez et al., 2022; [Shin
et al.,[2023). Lastly, approximated distribution R ~ |N(0,1)/2] can be generated efficiently.

3.3 EFFICIENT GENERATION OF R

Note that efficiency is critical for the proposed method, as LLMs frequently face throughput bottle-
necks on CUDA cores—especially on datacenter GPUs like the A100. However, generating random
numbers in the real number domain puts burden on CUDA cores by invoking FP operations on ran-
dom bit streams produced by pseudo-random number generators (PRNGs) (Lathrop et al.l 2011}
Overtonl, [2020). For example, U(0, 1) is derived by dividing the random integers by their maxi-
mum possible value. Two samples of N'(0,1) are derived from two samples of U (0, 1) using the
Box-Muller transform (Box & Muller, [1958)).

Given discrete R ~ |N(0,1)/2], we can replace the aforementioned FP operations with bitwise
operations (bitops) to achieve maximum efficiency during generation of R. Assuming each bit of
the random integers generated by the PRNG is independently random, we can construct arbitrary
discrete random distributions using two base cases:

Pr(a Ab) = Pr(a) - Pr(b)

Pr(aVvb) = Pr(a) + Pr(b) — Pr(a Ab)
where a and b represent bitwise random variables, A and V denote the logical-and and logical-or,
respectively, and Pr(z) is shorthand for P(x = 1). Specifically, the distribution we generate is:

3/4-279 ~ 1/682.7 if ne{-22}
P(Ri=n)=<(3/4)%?-272. (1 - P(R; =+2))~1/7.1 if ne{-1,1} 5
1-P(R;=+1)—P(R;=+£2)=0.717 if n=0
In our implementation, the generated R values are represented in a sign-mantissa format with 4 bits

per element, and 8 elements are packed into a 32-bit register. Compared to 2’s complement, the
sign-mantissa format is simpler to generate and reconstruct into floating-point.

4)

Under review as a conference paper at ICLR 2026

3.4 DESIGN CHOICE

We discuss key design choices for implementing the proposed method. Specifically, the choices

outlined below enable a modular implementation, where W = f(W, B;) is contained within a
single PyTorch module, with reasonable increase in GPU memory usage. While alternative designs
could prioritize lower memory overhead over modularity, we focus here on clarity and simplicity.

Separate kernels. While the BF16 baseline requires only one operation for the forward pass of lin-
ear layer, the DiffFPQ counterpart requires three operations: (1) generating R, (2) unpacking R and
adding PQN to W, and (3) the matrix multiplication. Fusing consecutive operations typically helps
achieve maximum throughput by reducing GPU memory communication. However, we decided not
to fuse the operations, considering the following.

Firstly, R generation is not fused. PRNG is an algorithm that loops based on its internal state to
generate random values iteratively. The longer a PRNG’s internal state is reused, the more it reduces
the degree of parallelism, limiting the utilization of parallel hardware. In other words, there exists a
sweet spot of parallelization that maximizes throughput. Furthermore, additional communication is
required if the number of random values R generated and consumed per CUDA core does not match.
In practice, fusing the generation of R with the subsequent operations led to significant variation of
throughput depending on the shape of W.

Secondly, we do not fuse the PQN addition with the subsequent matrix multiplication. This deci-
sion allows us to keep implementation straightforwardly modular and to reuse the highly optimized
PyTorch implementation of the linear operation.

GPU memory. For the gradient of input activations in matrix multiplication, W = f(W,B;, R)

is required. While W could be reconstructed during the backward pass without additional GPU
memory overhead, we chose to reuse the value computed and stored during the forward pass. First,
implementing online reconstruction in PyTorch would require fusing layers—f (W, B, R) and the
following matrix multiplication—which complicates modular implementation. Second, memory

overhead of storing W in BF16 is 2 bytes per parameter, which is manageable for small models.
We focus on small models, as our experiments demand extensive training runs for >200B tokens to
ensure training stability.

3.5 IMPLEMENTATION DETAIL

Managing seed. A seed value is required to initialize the PRNG, and here we discuss the specific
requirements for it. Note that backward computation as in Equation [2| requires R which must be
identical to the value of R in the forward pass for proper training. Additionally, to avoid bias across
the entire model, the R values for each layer should be independently random.

To achieve these requirements, a multi-layer PRNG is employed to manage seeds and their corre-
sponding random values. First, a seed generator PRNG is initialized with the user-specified seed
value. Second, the seed generator is used to produce seed values to initialize the PRNG of each
layer. Finally, the output of each layer’s PRNG serves as the seed value for the GPU’s PRNG, which
then generates R. The state of each layer’s PRNG is changed every gradient update during training.

Bitwidth. We implemented an internal bitwidth parameter B; for each 32 by 32 square unit of
parameters in the linear layers. B; is linearly scaled to represent bitwidth B; as follows:

By = bmin + B; - (binit — bmin) (6)

where by, and by, are hyperparameters representing the initial and minimum bitwidths, respec-
tively. B; should be initialized with 1. By is guided towards b, through the weight decay applied
to B;. A loss term related to B; can also be incorporated into the training loss £:

o ‘biyj - bmin|

£’:£+/\sz:1 (7)
i=1

m;

where n is the number of layers, m; is number of square blocks in i-th layer and bi’j denotes
bitwidth of ¢-th layer and j-th block of B;. In this case, an additional hyperparameter A is required
to appropriately scale the loss associated with the bitwidth parameter.

Under review as a conference paper at ICLR 2026

4 EXPERIMENTAL RESULT

Transformer [2017)-based language models were trained from scratch: the GPT2-
124M model (Radford et al.} 2019) on the OpenWebText dataset (Gokaslan & Cohenl, [2019)), and
the Llama2-{134M, 1B} models (Touvron et al.; 2023) on the C4 dataset (Raffel et al.,[2020). The
benchmarks for inference are HellaSwag (Zellers et al., 2019) and WikiText-2 (Merity et al., [2017).

We apply the proposed method to all linear layers of all transformer blocks unless otherwise spec-
ified. ‘DiffQ’ represents an extension of DiffQ (Défossez et all, [2022), which is equivalent to
DiffFPQ except for BF16 U(—0.5,0.5) in place of ~ |[N(0,1)/2]. ‘method(/toM)’ denotes pre-
training with the corresponding method with by, = I and by, = M. The default configuration is
binit = 6, bmin = 4, AdamW optimizer (Loshchilov & Hutter, 2019) and BF16 GEMM with FP32
accumulation unless otherwise specified. Refer to Appendix [E] for detailed settings.

4.1 PRE-TRAIN RESULT

The GPT2-124M model is trained from o — 3057
scratch on the OpenWebText dataset up to 33 4% I ami 3.00 1
295B tokens (Karpathyl, 2022). Figure [2] shows 1 12 \“\«\\ 2.95
that the baseline BF16 training with a learning °1 31\—VNMW: 2.901
rate of 6 x 10~* proceeds smoothly whereas 81 |30] 265 | P

the counterpart with a smaller learning rate
6 x 10~° diverges and fails to recover. Both
PQT methods mitigate such training instability 5]
while the proposed method incurs minimal in-
crease in loss. The difference in loss between
DiffFPQ and DiffQ is attributed to the choice : : , : : : :
of R. DiffFPQ consistently outperforms DiffQ, ° > T ke =0 0
which aligns with the properties in Section [3.2]

Specifically, non-trivial P(R = 0) preserves Figure 2: Loss curve of pre-training the GPT2-
dynamic range up to that of fpe m |e=8,m=7- 124M model on the OpenWebText dataset.

Validation loss

—— LR=6e-4
+DiffFPQ

----- +DiffFPQ (4to2)
+DiffQ

—— LR=6e-5

—-==- +DiffFPQ
--- +DiffQ

3 o

Average loss Maximum loss Maximum loss, regional
— LR=les 3.88
— +DifffPQ

—— +DiffQ

Llama2-134M

0 50 100 150 200 250 300 220 230 240 250 260 270

— IR=le5
—— +DIfffPQ

—— +DiffQ —— +DiffQ
+DIffFPQ (8t06) +DiffFPQ (8to6)
+DiffQ (8to6) +DiffQ (8t06)

d«w ‘ﬂu MMMMWMJ u

0 50 100 150 200 250 0 50 100 150 200 220 225 230 235 240 245 250
tokens (B) tokens (B) tokens (B)

2.500 T3

g | 24754
hz.asu—

67 12425

Llama2-1B

2.400 4

| \
12375 1
__ 100 150 175 200 225 250 275 |

e

Figure 3: Training loss curve of the Llama2-{134M, 1B} models on the C4 dataset. The right col-
umn corresponds to the range annotated with the orange arrow on the middle column. The weighted
moving average is used with « = 1/16 on the left column and o = 1/128 on the right column.

The Llama2-134M and Llama2-1B models are trained from scratch on the C4 dataset up to 295B
and 275B tokens, respectively 2025). The results are visualized in Figure[3] While PQT
improves pre-training of the smaller model, it slightly degrades that of the larger model. The increase
in loss with the larger model can be minimized by employing larger bitwidth hyperparameters, e.g.,
bmin = 6. It is consistent with scaling law study in that the optimal bitwidth of larger models tends
to be higher (Kumar et all,[2025)). DiffQ lies in between baseline BF16 and DiffFPQ regardless of
the model size, unlike results with the GPT2 model.

Under review as a conference paper at ICLR 2026

Llama2-134M C4 295B
:\? 94 Ppereees

#bits

T u T u u T T T T
28 35 42 49 56 63 70 77 84

#bits
®

6 % 1‘4 2‘1 2‘8 3‘5 4‘2 4‘9 5‘6 . é3 7‘0 7‘7 8‘4 9‘1 9‘8 165 1i2 1i9 liﬁ
ayers

Figure 4: Resulting bitwidth B; with DiffFPQ(6to4) except for the Llama2-1B model which em-
ploys DiffFPQ(8to6). Dots and red lines indicate layerwise mean and standard deviation. Up-
per and lower solid lines represent layerwise maximum and minimum while dotted lines represent
transformer-blockwise counterparts. Lines on 6- and 9-bit divide the parameters into 3 groups, and
the percentages on the right-hand side represent the approximated ratio of parameters for each. The
order of layers is (qkv, out, up, down) for GPT2 and (q, k, v, out, gate, down, up) for Llama2.

Table 2: Tokens per second per GPU and GPU memory usage during Llama2 pre-training on the
A100 GPU. Subscript denotes relative overhead compared to BF16 baseline. We used local batch
size {24, 8, 2, 2} respectively for each case of {134M, 1B, 3B, 70B} with fixed sequence length of
2048. “T” denotes that only 4 layers out of the total 80 layers of the model are used.

tps per GPU (x10?) GPU memory (GiB)
134M 1B 3B 70BT 134M 1B 3B 70BT
BF16 143.3 26.0 7.17 7.22 34.00 30.69 19.07 18.83

+DIffFPQ 14131 400 25519200 6.79530% 6.943850 34.16 32.42 24.99 23.42
+DIffQ 116.615 6305 23.11115% 5.003006% 5-2lo7ss, 34.18 32.64 25.76 25.57

Resulting bitwidth B, is visualized in Figure §] Note that the GPT2 model results in a wider
range of B; compared to the Llama2 models. It suggests that parameters of GPT2-style transformer
blocks require greater dynamic range compared to Llama2-style counterparts. It is consistent with
the training loss curves—DIiffFPQ works better than DiffQQ on the GPT2 model but not on the Llama2
models—with dynamic range property as in Proposition[2} On the other hand, more than 99% of the
parameters are robust to PQN with b; < 9 irrespective of the architecture and model size.

Table [2] reports the throughput and GPU memory usage during the Llama2 model training. The
proposed generation method minimizes computational overhead. The geometric mean of the over-
head on training throughput for Llama2-{134M, 1B, 3B, 70B'} is 3.14% for DiffFPQ compared to

22.34% for DiffQ. On the other hand, GPU memory overhead is 2 bytes per parameter to store W
in BF16. Additionally, the proposed method requires less layerwise temporary memory to store R,
using 0.5 bytes per element for R ~ [N (0, 1)/2] compared to 2 bytes for U(—0.5,0.5).

A100 3090 4090

150 150 150

1251 125 125 1
© 1001 100 100 1
5 75 75 751 —— Triton, bitops (ours)
& 504 504 50 4 Triton, Box-Muller

BT/ 25 254 — PyTorch

01234 8 12 16 01234 8 12 16 01234 8 12 16
M=N (x 1024) M=N (x 1024) M=N (x 1024)

Figure 5: Forward pass benchmark results for the PyTorch layer implementing Equation |1| on a
matrix W € RM*N with R ~ [N(0,1)/2]. Absolute throughput in 10? elements per second.

Figure [5] reports the results of the unit benchmark for the forward pass of the proposed method.
Both the proposed method and the Box-Muller method demonstrate at least a 3x improvement
compared to the PyTorch baseline, as they are implemented in Triton and reduce global memory

Under review as a conference paper at ICLR 2026

Table 3: Benchmark results on GPT2-124M models. For each pre-trained model, we applied FP
quantization on the parameters. {FP8', FP8, FP12} denote MX with internal datatypes {FP8_e4m3,
FP8_e3m4, FP12_e4m7}, respectively. MP denotes mixed precision where blocks with b; > 6 are
quantized with FP12_e4m7, 3 < b; < 6 are quantized with FP8_e3m4, and b, < 3 are quantized
with FP4_e2ml. Specifically, the proportion of the datatypes are {FP8_e3m4 9.20%, FP12_e4m7
90.8%} (11.63-bit) for DiffFPQ(6,4), and {FP4_e2m1 0.628%, FP8_e3m4 16.905%, FP12_e4m7
82.466%} (11.27-bit) for DiffFPQ(4,2). Bold typefaces denote Pareto-optimal results.

Pre-train (Bini, brmin) HellaSwag (accuracy, %) WikiText-2 (perplexity)
meTmin/ "BF16 FPST FPS FP12 MP BF16 FPS§T FPS FP12 MP

BF16 - 31.58 31.58 31.70 31.57 - 26.21 26.61 26.21 2621 -

FP12 - 31.88 31.88 31.97 3197 - 26.83 27.15 27.04 26.84 -

Digrpg (@4 3194 3204 3197 3197 3199 2652 2683 26.66 2652 26.53
(4,2) 3172 31.74 31.70 31.74 31.77 26.51 26.88 26.55 26.52 26.53
DiffQ 6,4 2942 - - - - 3361 - - - -

communication. The proposed noise generation method improves throughput over the Box-Muller
method across all test cases. It is particularly effective with larger matrices and the A100 GPU. Note
that the weight dimension of Llama 3.2 1B ranges from R2048x512 g R2048x8192 \while]ama 3.1
405B counterpart ranges from R16384x1024 ¢ R16384x 16384

4.2 INFERENCE RESULT

Table[3]reports benchmark results of pre-trained models with different inference datatypes. We have
GPT2-124M models pre-trained with different methods: BF16 baseline, MXFP12_e4m7, DiffFPQ
with two different hyperparameters, and DiffQ. For each of the pre-trained models, we quantize the
parameters into the corresponding datatypes without adding noise (Microsoft, 2023).

Mixed precision MXFP based on B, outperforms both FP8 variants with lower perplexity and sim-
ilar accuracy. It is comparable to FP12_e4m7 with slightly higher accuracy and similar perplexity.
Additionally, its data size is smaller than FP12_e4m?7, achieving a 27.3% reduction for DiffFPQ(6,4)
and 29.54% for DiffFPQ(4,2) relative to BF16. The results suggest that DiffFPQ allows PQT to tar-
get FP datatypes in Table[T]as discussed in Section

4.3 ABLATION STUDY

Efficacy of rounded distribution. Results in

Figure[6] with R ~ A(0,1)/2 show that the pro-] o T e

posed rounded distribution R ~ |N(0,1)/2] is 1 s TN 2051

indeed imperative when it comes to preserving 91 31% 2.90 1

training behavior. é B |sod e s

Pre-train with MXFP12.e4m7 parameters. § | | s !
Following the bitwidth result that over 99% of *] W 1,
the parameters are robust to PQN with b, < *] = E%:GF%SE’““”’

9, we quantize parameters to MXFP12 during aoLes e +DIIERQ (uXEP12)
training. Note that adopting MXFP12 increases 31 R e = i ES)
the lower bound on near-zero resolution and de- 0 50 100 150 200 250 300

. tokens (B)
creases the upper bound on dynamic range com-

pared to BF16 baseline. Figures [f] and [7] report = Figyre 6: Ablation study with R ~ A(0,1)/2
DiffFPQ pre-training results with fake-quantized (without rounding |-], ‘Gaussian’) and
MXFP I/Z\parameters, specifically MX version of \[XFP12_e4m7 quantized parameters
fPe,m(W) |e=4,m=7. The results demonstrate (‘MXFP12’) on the GPT2-124M model.

that MXFP12-quantized parameters closely fol-

low their BF16 counterparts, independent of the underlying architecture and the model size, except
for the GPT2-124M model with smaller learning rate. It implies that B; derived from BF16 training
can suggest a baseline datatype, i.e., the datatype used during training, for the model parameter W'.

We report extended ablation studies on training stability and optimizer compatibility in Appendix [D]

Under review as a conference paper at ICLR 2026

Average loss Maximum loss Maximum loss, regional
1193275 — LR=1e:5 1 | — LR=le-5 3.88
104 |] +DiffFPQ (MXFP12) 104 | +DiffFPQ (MXFP12)
13.150 | ‘ 386
9 I
s 3.1251 | 3.84 i i
% %1 300 [| f |
Jol : | | 3.82
b 3.075 i
E 6 - 2,925 | 3.80
3 3.050 |
s T 2.900 la 378
\ \ 60 / 80 L L
4 \ / i
N / 2.875 - 376
3 ~—— 200 250 30 .
374
0 50 100 150 200 250 300 0 50 100 150 200 250 300 220 230 240 250 260 270
| — LR=le5 1 — LR=le5 354
104 | +DffFPQ (8to6, MXFP12) 104 | +DiffFPQ (8t06, MXFP12)

; 2.500
™

1= Eiw T AN

12.375 +—— \
__ 100 425 150 175 200 225 250 275 |

Llama2-1B

0 50 100 150 200 250 0 50 100 150 200 250 220 225 230 235 240 245 250
tokens (B) tokens (B) tokens (B)

Figure 7: Ablation study on DiffFPQ pre-training with MXFP12_e4m?7 quantized parameters on the
Llama2-{134M, 1B} models.

5 DISCUSSION, BROADER IMPACT AND LIMITATION

The proposed method allows differentiable search over datatypes while stable and efficient training.
First, Diff FPQ yields mixed precision datatype configuration for inference and suggests datatype for
training. Second, DiffFPQ allows stable training irrespective of the underlying architecture and the
model size. Third, DiffFPQ is efficient with 3.14% computational overhead over BF16, which is 7%
less than DiffQ.

In addition, DiffFPQ implicitly encourages generalization ability of the model. Note that Taylor
— Pa 92
expansion on training loss L(W) ~ L(W)+PQNT % +PQNT %VE,ZV)PQN includes Hessian

trace so that optimization on £(W) converges to flatter minima (Shin et al., 2023). Our results—that
DiffFPQ-trained model yields higher accuracy with slight increase in perplexity—imply that PQT
with the proposed R ~ [AN(0,1)/2] encourages generalized learning via flatter minima.

We further discuss implications of the proposed method. First, DiffFPQ can replace mixed-precision
QAT methods or even vanilla BF16 training. Compared to the mixed-precision QAT method em-
ployed in Gemma 3n, DiffFPQ allows a wider range of datatypes with time-resource overhead dis-
entangled from the number of datatype options (Sanseviero & Ballantynel 2025; [Nair et al., [2025)).
Compared to BF16 training, DiffFPQ offers stable and mixed-precision training that encourages
generalization ability of the model, while incurring minimal computational overhead. Therefore, we
believe that DiffFPQ to be an appealing option for mixed-precision foundational models.

Second, DiffFPQ provides theoretical ground on specific configuration of FP datatypes, at least
for model parameters. In terms of inference, DiffFPQ-trained models achieve Pareto-optimal
benchmark results with optimal MXFP-quantized parameters. On the other hand for training,
MXFP12_e4m7—following that more than 99% of parameters are robust to PQN with b, < 9—
demonstrates to be capable of representing the parameters similar to BF16 counterpart irrespective
of the underlying architecture and model size. Furthermore, Propositions[T|and2]are general enough
to be applied to other MX-like formats such as NVFP4E] Therefore, we hope the proposed method
will serve as a theoretical foundation for FP standards. Note that, to the best of authors’ knowledge,
there has been no well-defined theoretical ground on the specific configuration of FP, e.g., 5-bit
exponent for half-precision over others (LEEE, [2019} |Project, [2023)).

The proposed method is applied only on weight, leaving activation and gradient the same as baseline
BF16. In particular, it is impossible to conduct a differentiable search on gradients. Extending the
proposed method to activation is left as future work. The use of LLMs during this work is limited to
(1) suggesting academic rewrite for the contents of the paper and (2) writing code for visualization.

“NVFP4 utilizes shared scale in FP8_e4m3 format, making the quantization range not exactly power-of-two.
Therefore, PQT targeting NVFP4 requires fake-quantization with appropriate scale, unlike its MX counterpart.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We believe that the paper contains enough information to reproduce the results. First, Section
explains how to implement the proposed method. Specifically,

* Section explains square-blockwise quantization and forward-backward formulation.

* Section describes the distribution R as in Equation [5] and the base cases to generate
such distribution as in Equation 4]

* Section explains the design choices for the implementation.

* Section explains implementation details for internal bitwidth parameter B; as in Equa-
tion[6and optional bitwidth loss as in Equation [7}

Second, Sections [] and [E] explain the specific experimental setup down to the level of container
image and hyperparameter settings. Lastly, we provide the source code, which is version-controlled
using git, for a reviewing purpose.

REFERENCES

G. E. P. Box and Mervin E. Muller. A Note on the Generation of Random Normal Deviates. The
Annals of Mathematical Statistics, 29(2):610-611, 1958. ISSN 0003-4851. doi: 10.1214/aoms/
1177706645.

Yuxiang Chen, Haocheng Xi, Jun Zhu, and Jianfei Chen. Oscillation-reduced MXFP4 training for
vision transformers. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=LUFPNGiCUw.

Alexandre Défossez, Yossi Adi, and Gabriel Synnaeve. Differentiable model compression via
pseudo quantization noise. Transactions on Machine Learning Research,2022. ISSN 2835-8856.
URL https://openreview.net/forum?id=DijnKzichel

Maxim Fishman, Brian Chmiel, Ron Banner, and Daniel Soudry. Scaling FP8 training to trillion-
token LLMs. In The Thirteenth International Conference on Learning Representations, 2025.
URLhttps://openreview.net/forum?id=E1EHO01imObl

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.i0/
OpenWebTextCorpus, 2019.

Computer Society IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008), pp. 1-84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022. Licensed
under the MIT License.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muen-
nighoff, et al. Scaling laws for precision. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=wglPCg3CUP.

Scott Lathrop, Jim Costa, William Kramer, John K Salmon, Mark A Moraes, et al. Parallel random
numbers: As easy as 1, 2, 3. 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pp. 1-12, 2011. doi: 10.1145/2063384.2063405.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, et al. Torchtitan: One-stop
pytorch native solution for production ready LLM pretraining. In The Thirteenth International
Conference on Learning Representations, 2025. URL https://openreview.net/forum?
1d=SFNoWm7YBTI.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-

ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqgY7.

10

https://openreview.net/forum?id=LUFPNGiCUw
https://openreview.net/forum?id=DijnKziche
https://openreview.net/forum?id=E1EHO0imOb
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/karpathy/nanoGPT
https://openreview.net/forum?id=wg1PCg3CUP
https://openreview.net/forum?id=SFN6Wm7YBI
https://openreview.net/forum?id=SFN6Wm7YBI
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Under review as a conference paper at ICLR 2026

Tim Mattson, Abdullah Muzahid, Armando Solar-Lezama, Philippe Tillet, H T Kung, and David
Cox. Triton: an intermediate language and compiler for tiled neural network computations. Pro-
ceedings of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Program-
ming Languages, pp. 10-19, 2019. doi: 10.1145/3315508.3329973.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxel

Corporation Microsoft. microxcaling. https://github.com/microsoft/
microxcaling, 2023. Licensed under the MIT License.

Pranav Ajit Nair, Puranjay Datta, Jeff Dean, Prateek Jain, and Aditya Kusupati. Matryoshka quanti-
zation. In Sparsity in LLMs (SLLM): Deep Dive into Mixture of Experts, Quantization, Hardware,
and Inference, 2025. URL |https://openreview.net/forum?id=1xmMk13rPK.

Mark A. Overton. Romu: Fast nonlinear pseudo-random number generators providing high quality,
2020. URL https://arxiv.org/abs/2002.11331.

Open Compute Project. OCP Microscaling Formats (MX) Specifica-
tion, Version 1.0. https://www.opencompute.org/documents/
ocp—microscaling—-formats—-mx-vl-0-spec—-final-pdf, 2023. [Online; ac-
cessed August 2025].

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAl, 2019. URL https:
//cdn.openail.com/better-lanqguage-models/language_models_are_
unsupervised_multitask_learners.pdfl

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, et al. Exploring the
limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(1),
January 2020. ISSN 1532-4435.

Omar Sanseviero and Ian Ballantyne. Introducing gemma 3n: The de-
veloper guide. https://developers.googleblog.com/en/
introducing-gemma-3n-developer-guide/, 2025. [Online; accessed Septem-
ber 2025].

Juncheol Shin, Junhyuk So, Sein Park, Seungyeop Kang, Sungjoo Yoo, and Eunhyeok Park. Nipq:
Noise proxy-based integrated pseudo-quantization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 3852-3861, June 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, et al. Llama 2: Open
foundation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.
09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, et al. Attention is all
you need. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/
paper/2017/file/3f5ee243547dee91fbd053clc4a845aa—Paper.pdf.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp- 47914800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, et al. Adam-mini: Use fewer
learning rates to gain more. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=iBExhaU3Lc.

11

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://github.com/microsoft/microxcaling
https://github.com/microsoft/microxcaling
https://openreview.net/forum?id=lxmMkl3rPK
https://arxiv.org/abs/2002.11331
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://developers.googleblog.com/en/introducing-gemma-3n-developer-guide/
https://developers.googleblog.com/en/introducing-gemma-3n-developer-guide/
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/P19-1472/
https://openreview.net/forum?id=iBExhaU3Lc

Under review as a conference paper at ICLR 2026

A PROOF
Proposition T]

Proof. Consider adding PQ)N; on a near-zero element ¢; € W. Without loss of generality, consider
a single block and the smallest positive perturbation epgy with minso(|R|) = 2° that limits the
precision of near-zero floating-point ¢; in the least. The value of interest is:

€ + €pgN :6i+2p+1_bt max(|W|) ()

Note that the resolution of FP depends on power-of-two magnitude of the data, e.g., Apin(€pon) =
2Ls]=m where s £ p + 1 — b; + log, max(|W]). Also note that FP addition ¢; + epgn implies FP
casting, e.g., fPe,m |e=sm=23 (€i + €pgn) for single precision. Therefore, the minimum effective
delta of €; with respect to €; + epgy is limited:

H;ioﬂ (| fPe,m(€i + €PQN) — [Pe,m(€PQN)]) = Amin(ePon) 9

unless epg N is exact power-of-two such that 3n € Z epgn = 2", and €; < 0. That is, the addition
€; + epqn limits effective resolution of ¢;:

Aese(€;) > Apin(epon) (10)

Given limited effective resolution of ¢;, FP with limited number of exponent ranges where
Amin(z) > 2Lsl=m /3 can represent W. It corresponds to an FP where [2 Ls) 2““1) is the small-
est normal range. We can count the number of effective exponent ranges from the largest exponent
range to the smallest exponent range. There are (—p + b;) exponent ranges between the largest
exponent range

[2[108:2 max(IW)J gllog, maX(IW\)J+1) 1)

and the smallest exponent range

[2 lp+1—bi+log, max(|W])] , 2_p+1—b,«,+10g2 Inax(|W\)J+1) (12)

including both endpoints. Considering a single exponent range for subnormal and no dedicated
exponent range for inf/NaN, FP with a [log, (—p+b; +1)]-bit exponent can represent W effectively.
O

Proposition 2]

Proof. Assume 3n € NT such that 7, = 27" - epgn. Forany i € {1,2,...,k}, if R; # 0,
le; + PQN;| > (1 —2") - epgn holds because:

* ¢+ epon isintherange ((1 —27") - epgon, (1 +27") - epon).

* ¢, —epon isintherange ((—1 —27") - epon, (—1 +27") - epon).
On the other hand, R; = 0 yields PQN; = 0 and /Wl =W;. If3Ji € {1,2,...,k} such that R; = 0,
le; + PQN;| = |e;| < % Such an element becomes an upper bound on min~.q(|W]).

The condition min>0(|ﬁ/\|) < 27" - epgn holds if 3¢ € {1,2,...,k} such that R, = 0, whose
probability is 1 — (1 —p)¥. Note that the probability is not complete for the condition. The condition
also holds if 3i such that R; # 0, |W;| > 7, and |W; + PQN;| < 27" - epgn. Therefore, the
probability is lower bounded by 1 — (1 — p)*:

P (n;ion(|W) < rk> >1—(1-p)* (13)
0O

12

Under review as a conference paper at ICLR 2026

Wi € (—n-epQN — Tk —1 - €pQN + Tk)

PQNi:n-epQN .
(~~~~~ .!."“~::jk 0 Tk
W S L >
' ~~‘L.~ $mil;@7’k%f~p~QN,2n) cases
PQNi:_n'GPQN \~~‘~.<;)

Wi € (n-epoN — Tk, €pQN + Tk)

Figure B.1: Enumerative cases of Wi = W; + PQN,. Trapezoidal range represents cases that the
addition results in W; € (—7, 7) with respect to different PQ N; on the left. For arbitrary |W;| <
n-epgn + Ty, there are at most min (27, /e pon, 2n) cases of PQN; that results in W; € (—7, 7%).

B DYNAMIC RANGE WITH NONZERO R
Consider min>0(|/ﬂ7\) = /WZ' |PQN¢;£0'
Proposition 3. Assume there are k elements of W such that |W;| < Ty. Further assume that there

are ko elements of W such that |W;| < 1, + vpgn where vpgn = max(|[PQN|) > 74 with
R ~U(-0.5,0.5), P(R=0) =0and 7; < vpgn. Then,

kz k2
- T Tk Tk b
P <1—1(1-— =1—-(1- ———7-2" 14
(“ilo“(w') = T‘“) = (vaN> (max(|IW])) (19

Proof. Assume that any element of PQN is one of {+epgn,+2epgn,...,£n - epon} Where

n-e€pQN = UPQN- For WZ S (—Tk,Tk) to hold, W; € (—Tk — C-€pPQN;Tk — C* EPQN) should
hold with PQN; = c - epgn where ¢ € {£1,42,...,+n}. Trapezoidal range as in Figure
represents such cases.

Consider the condition that arbitrary —7;, — vpon < W; < T, + vpgn results in /I/IZ» € (—Tk, Tk)-
There are at most min(27,/epgn,2n) cases of PQN for the condition to hold. As we assume
R ~ U(—-0.5,0.5) and 7, < vpgn, the probability is:

Tk Tk Tk by

n:-€e€EpQN - VPQN - max(\W|)

5)

The condition min>0(|/ﬂ7\) < T3 holds if any one of the ko elements results in /V[Z € (—Tk, Tk)-
Therefore,

ko k2
. Tk Th__ob
(>10n(\W|) < Tk) - < ’UPQN) < max(|W1)) (1o

O

As per Propositions [2]and 3| we can compare R ~ |N(0,1)/2] to R ~ U(—0.5,0.5) with respect
to minso(|W]). For example, for the 32 by 32 square block units of the pre-trained GPT2-124M
model, —heors on average is approximately 2710 for k = 3, and 27 for k = 5. Assuming k = 3
and ko = b, the probability with R ~ |N(0, 1)/2] is approximately 0.977 independent of b;. On the
other hand, the probability with R ~ U(—0.5,0.5) is approximately 0.487 with b; = 6 and 0.276
with by = 5. Therefore, R ~ [N(0,1)/2] is much more likely to preserve the minimum magnitude,
and thereby dynamic range, of W compared to R ~ U(—0.5,0.5). Also note that min~(|W]) with
R =~ |N(0,1)/2] is pass-through of high-precision W; with R; = 0 while the counterpart with
R ~ U(—0.5,0.5) has limited resolution of max(Amnax(|W;]), Amax (| PQN;])).

13

Under review as a conference paper at ICLR 2026

T\
2.0 Wing, k)" = Wik, no) 20 Wik, No) — Wiko, m|
o 1 2 3 T 2 3

0.08

0.06

0.04

0.02

nonn

Figure C.1: An example of vector-wise quantization on Wk ny ~ N(0,1) and its forward-
backward discrepancy, where K = N = 4. Boxes wrapped in bold solid lines represent quantization
groups with an internal datatype of INT4 and a block size of 2. Visualized values are fake-quantized.

C TRANSPOSE-COMMUTATIVITY

A naive application of low-precision training can compromise the consistency of values between
the forward and backward passes, which hurts training stability. Consider forward and backward
passes of an MX-compliant matrix multiplication where the quantization axis lies along the inner
dimension:

Ty = At ko) Wik, m a7
oL oL oL oL
- = AT — d — = — wr 18
oW (k,N) (K:MQ) AT (ag,N) ane 54 (M) OT (M,Ng) NeK) (18)
where A denotes the input activation, W the parameter, 7" the output activation and L the target

loss. The subscript corresponds to the shape of the matrix and g denotes quantization axis. Note the
difference of W between the forward and backward passes, i.e., Wk, n) compared to W(T

Ng.K)’
which is demonstrated in Figure [C.I] This inconsistency can lead to suboptimal training
2025). The issue arises because the absolute maximum value of the block, e.g.,size-2 blocks
in Figure [C.I] changes when transposed. Square-blockwise quantization resolves this problem by
ensuring transpose-commutativity.

D EXTENDED ABLATION STUDY

nl 34 : 3.05 k 1]
3.3 ! 3.00 1 ot

104 1 it
3.2 A V""'\

10

.
| 3 o 3
2.954 ,H-w.(t 24 .
1 . 9 fatl!
31‘% 2.90 <wmmw&t) AM . M\'W"'l
81 130 ! 2854 U 81 ls30 | S 2,85 — N"\W"‘"-‘
AO<kasg T 250 275 3 0
.. J'f“’ §

20 30 40 150 175 200 225 250 275 3

LR=6e-4

Validation loss
Validation loss

LR=6e-5 —— Adam-mini, LR=6e-4
5 +DiffFPQ[qkv] 5 +DiffFPQ
- +DiffFPQ[out] +DiffQ
+DiffFPQ[up] —— Adam-mini, LR=6e-5
41 - +DiffFPQ[down] 41 I --- +DIffFPQ
- +DiffFPQ[od] N T --- +DiffQ
3 | 3{ = —eSSSsnInozoonoe
0 50 100 150 200 250 300 0 50 100 150 200 250 300
tokens (B) tokens (B)
(a) Stability case study with bynin = 0. (b) Orthogonal to the choice of optimizer Adam-mini.

Figure D.1: Training loss curve of the GPT2-124M model on the OpenWebText dataset.

Stability case study. To identify the source of baseline BF16 training instability, we restrict the
application of the proposed method to each of the linear layers within all transformer blocks.
‘DiffFPQ[part]’ denotes which layer(s) of all transformer blocks adopt the proposed method, where
[od] is used as shorthand for [out,down]. Note that the GPT2 transformer block comprises four lin-
ear layers: gkv, out, up, and down. The gkv and out layers, along with the self-attention operation,
constitute the attention module, while the up and down layers form the feed-forward module.

14

Under review as a conference paper at ICLR 2026

Average loss Maximum loss Maximum loss, regional
119375 4 — — Adam-mini, IR=1e5 | 117 | — — Adam-mini, LR=1e-5 3.88
10 RN — — +DiffFPQ 104 | — — +DifffPQ
. 31503 A\\ +DiffQ i +DiffQ 3.86
\ !
3.125 9
Z A
4] 3.100 4 \-,,A\ A 8
&7 RN 7
[13.0754 S,
| 2,925
._E 6 | 6
S | 130s0q] 900 M’%&
\ \ 60 / 80 N, 5
4 \ / I oning
~ |\ / 2.875 - 4 X
3 S 200 250 3|
3 3.74

° * 10 takelnsso(B) 200 0 300 ° % 10 takelnsso(ﬂ) 200 20 300 0 0 24toukens (BZ)50 200 e
Figure D.2: Training loss curve of the Llama2-134M model on the C4 dataset with Adam-mini
optimizer. The rightmost column corresponds to the range annotated with the orange arrow on the
second column. For better visualization, weighted moving average is used with « = 1/16 on the
left column and o = 1/128 on the right column.

Table E.1: Hyperparameters used for pre-training.

GPT2-124M Llama2-134M Llama2-1B

context window 1024 2048 2048
local batch 12 12 8
local grad. accum. per step 5 1 1
GPUs 8 8 8
total steps 600k 1.5M 2.1M
warmup steps 2k Sk 7k
total number of training tokens (x106) 294912 294912 275,251.2
min learning rate {6e-5, 6e-6} le-6 le-6
max learning rate {6e-4, 6e-5} le-5 le-5
weight decay 0.1 0.1 0.1
A (asin Equation le-4 0 0

As shown in Figure DiffFPQ[qkv], DiffFPQlup], and DiffFPQ[down] begin to diverge at
~30B tokens of training and fail to recover. In contrast, DiffFPQ[out] does not diverge and closely
approximates the best-case loss curve of baseline BF16 up to ~200B tokens. DiffFPQ[od], which
applies the proposed method to the last layers of the residual addition branches in the transformer
blocks, reduces divergence and yields the best result with the smaller learning rate. These results
show that the attention module is the source of instability at ~30B tokens of training, while the
feed-forward module is the source of instability at ~200B tokens of training. The latter is consistent
with [Fishman et al.| (2025)).

Adam-mini. Pre-training results with the Adam-mini optimizer (Zhang et al., 2025)) are presented
in Figures and Results with DiffFPQ require fewer tokens for Adam-mini to surpass
AdamW. DiffFPQ is orthogonal to the choice of optimizer, at least for Adam-mini.

E PRE-TRAIN HYPERPARAMETER, SETUP AND RESOURCE

Table [E.T] reports hyperparameters used for pre-training. Learning rate was linearly scheduled with
warmup. The Llama2-1B model training requires more than 24GiB of GPU memory.

For GPT2, we used [Karpathy| (2022) with commit 9755682b as a starting point
and nvcr.io/nvidia/pytorch:24.10-py3 with Triton v3.2.0 as a training
environment. For Llama2, we used [Liang et al| (2025) with commit 90567fc9
as a starting point and ghcr.io/pytorch/pytorch-nightly with a tag
2.7.0.dev20250107-cudal2.4-cudnn9-devel as a training environment. We used
A100-SXM4-40G, RTX 3090 and RTX 4090 GPUs with NVIDIA driver R565.

15

	Introduction
	Related work
	Method
	Formulation
	Implication of adding pseudo-quantization noise (PQN)
	Efficient generation of R
	Design choice
	Implementation detail

	Experimental result
	Pre-train result
	Inference result
	Ablation study

	Discussion, broader impact and limitation
	Proof
	Dynamic range with nonzero R
	Transpose-commutativity
	Extended ablation study
	Pre-train hyperparameter, setup and resource

