
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIFFERENTIABLE, STABLE AND EFFICIENT FLOATING-
POINT QUANTIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Finding optimal datatype for neural networks is a non-trivial problem with expo-
nential search space. To solve the problem of quantization effectively, we consider
pseudo-quantization training (PQT) on microscaling (MX) datatypes. Specifi-
cally, we propose pseudo-quantization noise (PQN) based on R ≈ ⌊N (0, 1)/2⌉.
It allows PQT to (1) optimize on the floating-point (FP) bit configuration, (2) help
preserve dynamic range of original data, and (3) generate noise R efficiently. We
demonstrate that the proposed method allows for stable and efficient pre-training
of the GPT2 and Llama2 language models up to 1 billion (B) parameters for up to
295B tokens, with insights on optimal FP datatypes for model parameters.

1 INTRODUCTION

Quantization has been a promising solution for efficiency. However, it is a non-trivial problem with
at least 2 degrees-of-freedom where we need to decide the datatype and the range of values to be rep-
resented with the datatype. While microscaling (MX) datatypes (Project, 2023) fix the quantization
range as adaptive power-of-two and reduce the degree-of-freedom down to 1, the problem search
space easily becomes exponential when we want to find optimal mixed-precision datatype. For
example, deciding layerwise datatypes from {MXFP8 e4m3, MXFP4 e2m1}1 for a n-layer model
yields O(2n) cases. Besides, large language models (LLMs) require >200B tokens of training for
each case to ensure training stability (Fishman et al., 2025).

Pseudo-quantization training (PQT) effectively reduces the search space down to O(1) by employing
differentiable pseudo-quantization noise (PQN) as a generalization over actual quantization noise.
For example, the formulation of DiffQ is Ŵ = W + R ·∆ where R ∼ U(−0.5, 0.5) and ∆ is the
stepsize for B-bit integer, defined as max(W )−min(W )

2B−1
. Note that the formula is fully differentiable

to allow optimization on the bitwidth parameter B. It also promotes stable training by regularizing
Hessian diagonal of loss (Shin et al., 2023). However, existing PQT methods focus exclusively on
integer datatypes for inference and overlook numerical behavior of noise addition during training.

We address the problem of determining MXFP datatypes of model parameters, both for inference
and training, via PQT. Our contributions with the proposed method, i.e., DiffFPQ, are as follows:

• We employ rounded normal R ∼ ⌊N (0, 1)/2⌉ as a basis of PQN. It extends PQT to target
MXFP while preserving the dynamic range of the original model parameter W .

• We demonstrate stable PQT that closely follows, or even outperforms, the baseline BF16
on pre-training GPT2-124M and Llama2-{134M, 1B} language models up to 295B tokens.

• We demonstrate efficient PQT with a 3.14% overhead in training throughput on the A100
GPU by leveraging bitwise operations (bitops) to generate the approximated distribution
R ≈ ⌊N (0, 1)/2⌉.

• We demonstrate that DiffFPQ-trained models achieve Pareto-optimal benchmark results,
especially with mixed-precision parameters W in {FP12 e4m7, FP8 e3m4, FP4 e2m1}
following the resulting bitwidth parameter Bt.

• We further demonstrate that DiffFPQ can suggest a baseline datatype, i.e., the datatype for
stable training, of the model parameter.

1(MX)FPn eEmM represents n-bit (MX) floating-point with E-bit exponent and M-bit mantissa in this paper.
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2 RELATED WORK

Microscaling (MX) has been proposed as an open compute project (OCP) standard (Project, 2023).
Quantization with MX separates given data into multiple blocks where low-precision elements
within a single block share a single power-of-two scale. It effectively separates dynamic range of
input data from tensor-wise down to inter- and intra-block where intra-block quantization range is
adaptive power-of-two. That is, the problem of quantization becomes disaggregated: all we need to
consider is intra-block representation ability where the quantization range is given as power-of-two.

DiffQ (Défossez et al., 2022) proposed pseudo-quantization noise (PQN) to train bitwidth parame-
ters with fixed quantization range. NIPQ (Shin et al., 2023) proposed pseudo-quantization training
(PQT) that trains both bitwidth parameter and quantization range. It also proved that such training
converges to minima which is flatter by implicitly regularizing the Hessian diagonal term of the loss.
Note that existing PQT works consider integer datatypes while MX datatypes are mostly FP.

Fully quantized training (FQT), quantization-aware training (QAT) and post-training quantization
(PTQ) are well-known methodologies when it comes to quantization. However, existing quantiza-
tion works except for PQT are inefficient when it comes to mixed-precision quantization. They either
mandate exponential search as discussed in Section 1, or require O(n) time-resource as in neural
architecture search where n is the number of options for each layer (Nair et al., 2025). In contrast,
PQT directly optimizes the bitwidth parameter through gradient descent with constant overhead.

3 METHOD

We consider stable and efficient PQT that targets MXFP parameters. Section 3.1 introduces the PQT
formulation that targets MX datatypes. In Section 3.2, we analyze the implications of PQN addition
and propose the rounded Gaussian R ∼ ⌊N (0, 1)/2⌉ to allow stable PQT that targets MXFP param-
eters. Section 3.3 introduces efficient generation of the approximated rounded normal distribution
R ≈ ⌊N (0, 1)/2⌉ by employing bitwise operations (bitops) in place of FP operations. Section 3.4
explains design choices that favor predictably optimal throughput and modular implementation for
the Triton (Mattson et al., 2019)-based GPU kernels. Section 3.5 describes implementation details,
including the method to ensure forward-backward consistency with unbiased PQN, and the way to
implement bitwidth parameter.

3.1 FORMULATION

We assume a square-blockwise quantization to target MX datatypes. Unlike vector-wise quanti-
zation, square-blockwise quantization guarantees transpose-commutativity which is essential for
stable training. Refer to Appendix C and Chen et al. (2025) for detail. Furthermore, it remains
MX-compliant, as square-blockwise quantization can be viewed as a special case of vector-wise
quantization where adjacent vectors share a common scale.

The formula that we consider is:

Ŵ = W +R⊙ broadcastbl

(
max
bl

(|W |) · 21−Bt

)
(1)

where {W, Ŵ ,R} ∈ Rm×n, Bt ∈ R⌈m/bl⌉×⌈n/bl⌉, and bl = 32 is the square block size following
MX. W and Ŵ denote the original and sampled parameters, respectively. R represents random
and Bt is blockwise bitwidth where bt represents an element of it. maxbl denotes square-blockwise
maximum while broadcastbl is a function f : R(m/bl)×(n/bl) → Rm×n that replicates the same value
square-blockwise. ⊙ and · denote the Hadamard product, | · | denotes the elementwise absolute. We
refer to the right-hand side of the addition as PQN.

Note that Equation 1 is fully differentiable. With an approximation of ∂ maxbl
(|W |)

∂W ≈ 0 assuming
gradient to single element out of 32 by 32 block is negligible, we can calculate the gradient with
respect to the target loss L as follows:

∂L
∂W

=
∂L
∂Ŵ

and
∂L
∂Bt

= − ln 2 ·max
bl

(|W |) · 21−Bt ·
∑
bl

(
∂L
∂Ŵ

⊙R

)
(2)
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Figure 1: Representable values of power-of-two-scaled integer and floating-point datatypes, with re-
spect to adding PQN to near-zero elements ϵi. Comparing (a) to (b) shows that FP with (n− 2)-bit
mantissa includes n-bit integers. (c) demonstrates reduced effective resolution of near-zero elements
when adding non-zero elements of PQN. Non-trivial P (R = 0) allows stochastic precision anneal-
ing of near-zero elements as a mixup of (b) and (c). It also encourages preserving the minimum
magnitude of original data as (d) demonstrates.

3.2 IMPLICATION OF ADDING PSEUDO-QUANTIZATION NOISE (PQN)

While PQN addition in Equation 1 seems lossless, it implies FP casting and loses information of
the smaller-magnitude operand. In this section, we discuss the implication of PQN addition and FP
casting to propose R ∼ ⌊N (0, 1)/2⌉ which allows stable PQT that targets FP datatypes.

Notation. We consider fpe,m(Ŵ ) where fpe,m(·) is casting to FP with e-bit exponent and m-bit
mantissa. For MX extension of it, for simplicity without loss of generality, we consider a single
MX block with a scalar bt ∈ [3, 12] since PQN and MX version of fpe,m(·) share granularity.
For arbitrary block, consider scalar elements Ri, PQNi and Ŵi that corresponds to ϵi = Wi ∈
W , and minimum positive PQN ϵPQN = max(|W |) · 2ρ+1−bt where 2ρ ≜ min>0(|R|) with
min>0(X) ≜ min(X : Xi > 0,∀i). We define the resolution of scalar FP x, denoted as ∆min(x),
as the minimum non-zero delta of x. Specifically, ∆min(x) = 2⌊log2(|x|)⌋−m given that |x| is in
normal range [2⌊log2(|x|)⌋, 2⌊log2(|x|)⌋+1) and m is the number of FP mantissa bits.

Stochastic precision annealing. As resolution of FP depends on magnitude, addition potentially
loses information of the smaller-magnitude operand. For example, resolution of ϵi is lost during
ϵi ± ϵPQN as shown in Figure 1. It suggests that adding PQN limits the resolution of near-zero
elements, to limit the effective number of FP exponent bits.

Proposition 1. Assume PQN that corresponds to bt-bit with 2ρ ≜ min>0(|R|) and P (R = 0) ≈ 0.
FP addition Ŵ = W + PQN leads to limited representation of W so that floating-point with a
⌈log2(−ρ+ bt + 1)⌉-bit exponent suffices to represent W .2

Figure 1(c) demonstrates limited representation of W . Now consider P (R = 0). Ri = 0 leads
to PQNi = 0 and Ŵi = Wi. It effectively enables stochastic pass-through of high precision Wi

into PQT, only to be limited by fpe,m(·). That is, non-trivial P (R = 0) yields stochastic mixup of
high precision fpe,m with P (R = 0) and low precision fpe,m |e=⌈log2(−ρ+bt+1)⌉ with P (R ̸= 0).
Therefore, PQT with non-trivial P (R = 0) trains the model to be robust to low-precision FP while
preserving precision of W at the same time. We name this property stochastic precision annealing.

Impact on dynamic range. As an example of the impact of PQN addition on representation ability,
consider the dynamic range of Ŵ compared to that of W . Note that dynamic range of Ŵ is defined
as max(|Ŵ |)/min>0(|Ŵ |) and the impact on maximum magnitude is relatively trivial with bt ≥ 3.
Therefore, we focus on the minimum magnitude of Ŵ—specifically min>0(|Ŵ |) = Ŵi |PQNi=0.3

Proposition 2. Consider k elements {ϵ1, ϵ2, . . . , ϵk} ∈ W , and τk such that 0 < |ϵi| < τk ∀i ∈
{1, 2, . . . , k}. Assuming ϵPQN > 2τk and P (R = 0) = p,

P

(
min
>0

(|Ŵ |) < τk

)
≥ 1− (1− p)k (3)

2The proofs of Propositions 1 and 2 are provided in Appendix A.
3min>0(|Ŵ |) = Ŵi |PQNi ̸=0 with R ∼ U(−0.5, 0.5) is less likely. Refer to Appendix B for detail.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Number of exponent and mantissa bits for floating-point datatypes with respect to bt if the
basis of PQN employs non-trivial P (R = 0) with min>0(|R|) = 1, i.e., ρ = 0. ‘Datatype’ refers to
possible FP datatypes that support the given exponent and mantissa.

bt Exponent Mantissa Datatype
3 2 1 FP4 e2m1
4 3 2 FP6 e3m2
5 3 3 FP8 e4m3, FP8 e3m4
6 3 4 FP8 e3m4
7 3 5 BF16, FP16, FP12 e4m7
8 4 6 BF16, FP16, FP12 e4m7
9 4 7 BF16, FP16, FP12 e4m7

10 4 8 FP16
11 4 9 FP16
12 4 10 FP16

As per Proposition 2, the minimum magnitude of Ŵ is exponentially likely to be upper bounded
by τk independent of bt. Given fixed k, the condition favors preserving dynamic range of W with
higher P (R = 0). That is, PQT with non-trivial P (R = 0) favors preserving dynamic range of W ,
up to that of fpe,m(·).
Mantissa and choice of R. With respect to the number of mantissa bits, we make the largest stepsize
of the FP datatype equal to that of bt-bit integer counterparts. Note that, as shown in Figure 1, FP
with (bt−2)-bit mantissa includes bt-bit integer where 2 bits are compensated from FP standard: one
for sign bit and the other for implicit leading 1 for values in normal range. Combined with the num-
ber of exponent bits from Proposition 1, PQT effectively targets fpe,m |e=⌈log2(−ρ+bt+1)⌉,m=bt−2.

We propose R ∼ ⌊N (0, 1)/2⌉ as a basis of PQN. First, it has a high probability of zero with
P (R = 0) ≈ 0.68. This allows PQT to be stable by preserving dynamic range of W , and to target
FP datatypes of Table 1 through stochastic precision annealing. Second, it does not deviate largely
from the previous works that proposed U(−0.5, 0.5) and N (0, 1)/2 (Défossez et al., 2022; Shin
et al., 2023). Lastly, approximated distribution R ≈ ⌊N (0, 1)/2⌉ can be generated efficiently.

3.3 EFFICIENT GENERATION OF R

Note that efficiency is critical for the proposed method, as LLMs frequently face throughput bottle-
necks on CUDA cores—especially on datacenter GPUs like the A100. However, generating random
numbers in the real number domain puts burden on CUDA cores by invoking FP operations on ran-
dom bit streams produced by pseudo-random number generators (PRNGs) (Lathrop et al., 2011;
Overton, 2020). For example, U(0, 1) is derived by dividing the random integers by their maxi-
mum possible value. Two samples of N (0, 1) are derived from two samples of U(0, 1) using the
Box-Muller transform (Box & Muller, 1958).

Given discrete R ≈ ⌊N (0, 1)/2⌉, we can replace the aforementioned FP operations with bitwise
operations (bitops) to achieve maximum efficiency during generation of R. Assuming each bit of
the random integers generated by the PRNG is independently random, we can construct arbitrary
discrete random distributions using two base cases:{

Pr(a ∧ b) = Pr(a) · Pr(b)

Pr(a ∨ b) = Pr(a) + Pr(b)− Pr(a ∧ b)
(4)

where a and b represent bitwise random variables, ∧ and ∨ denote the logical-and and logical-or,
respectively, and Pr(x) is shorthand for P (x = 1). Specifically, the distribution we generate is:

P (Ri = n) =


3/4 · 2−9 ≈ 1/682.7 if n ∈ {−2, 2}
(3/4)2 · 2−2 · (1− P (Ri = ±2)) ≈ 1/7.1 if n ∈ {−1, 1}
1− P (Ri = ±1)− P (Ri = ±2) ≈ 0.717 if n = 0

(5)

In our implementation, the generated R values are represented in a sign-mantissa format with 4 bits
per element, and 8 elements are packed into a 32-bit register. Compared to 2’s complement, the
sign-mantissa format is simpler to generate and reconstruct into floating-point.

4
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3.4 DESIGN CHOICE

We discuss key design choices for implementing the proposed method. Specifically, the choices
outlined below enable a modular implementation, where Ŵ = f(W,Bt) is contained within a
single PyTorch module, with reasonable increase in GPU memory usage. While alternative designs
could prioritize lower memory overhead over modularity, we focus here on clarity and simplicity.

Separate kernels. While the BF16 baseline requires only one operation for the forward pass of lin-
ear layer, the DiffFPQ counterpart requires three operations: (1) generating R, (2) unpacking R and
adding PQN to W , and (3) the matrix multiplication. Fusing consecutive operations typically helps
achieve maximum throughput by reducing GPU memory communication. However, we decided not
to fuse the operations, considering the following.

Firstly, R generation is not fused. PRNG is an algorithm that loops based on its internal state to
generate random values iteratively. The longer a PRNG’s internal state is reused, the more it reduces
the degree of parallelism, limiting the utilization of parallel hardware. In other words, there exists a
sweet spot of parallelization that maximizes throughput. Furthermore, additional communication is
required if the number of random values R generated and consumed per CUDA core does not match.
In practice, fusing the generation of R with the subsequent operations led to significant variation of
throughput depending on the shape of W .

Secondly, we do not fuse the PQN addition with the subsequent matrix multiplication. This deci-
sion allows us to keep implementation straightforwardly modular and to reuse the highly optimized
PyTorch implementation of the linear operation.

GPU memory. For the gradient of input activations in matrix multiplication, Ŵ = f(W,Bt, R)

is required. While Ŵ could be reconstructed during the backward pass without additional GPU
memory overhead, we chose to reuse the value computed and stored during the forward pass. First,
implementing online reconstruction in PyTorch would require fusing layers—f(W,Bt, R) and the
following matrix multiplication—which complicates modular implementation. Second, memory
overhead of storing Ŵ in BF16 is 2 bytes per parameter, which is manageable for small models.
We focus on small models, as our experiments demand extensive training runs for >200B tokens to
ensure training stability.

3.5 IMPLEMENTATION DETAIL

Managing seed. A seed value is required to initialize the PRNG, and here we discuss the specific
requirements for it. Note that backward computation as in Equation 2 requires R which must be
identical to the value of R in the forward pass for proper training. Additionally, to avoid bias across
the entire model, the R values for each layer should be independently random.

To achieve these requirements, a multi-layer PRNG is employed to manage seeds and their corre-
sponding random values. First, a seed generator PRNG is initialized with the user-specified seed
value. Second, the seed generator is used to produce seed values to initialize the PRNG of each
layer. Finally, the output of each layer’s PRNG serves as the seed value for the GPU’s PRNG, which
then generates R. The state of each layer’s PRNG is changed every gradient update during training.

Bitwidth. We implemented an internal bitwidth parameter Bi for each 32 by 32 square unit of
parameters in the linear layers. Bi is linearly scaled to represent bitwidth Bt as follows:

Bt = bmin +Bi · (binit − bmin) (6)

where binit and bmin are hyperparameters representing the initial and minimum bitwidths, respec-
tively. Bi should be initialized with 1. Bt is guided towards bmin through the weight decay applied
to Bi. A loss term related to Bt can also be incorporated into the training loss L:

L′ = L+ λ

n∑
i=1

∑mi

j=1 |b
i,j
t − bmin|
mi

(7)

where n is the number of layers, mi is number of square blocks in i-th layer and bi,jt denotes
bitwidth of i-th layer and j-th block of Bt. In this case, an additional hyperparameter λ is required
to appropriately scale the loss associated with the bitwidth parameter.

5
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4 EXPERIMENTAL RESULT

Transformer (Vaswani et al., 2017)-based language models were trained from scratch: the GPT2-
124M model (Radford et al., 2019) on the OpenWebText dataset (Gokaslan & Cohen, 2019), and
the Llama2-{134M, 1B} models (Touvron et al., 2023) on the C4 dataset (Raffel et al., 2020). The
benchmarks for inference are HellaSwag (Zellers et al., 2019) and WikiText-2 (Merity et al., 2017).

We apply the proposed method to all linear layers of all transformer blocks unless otherwise spec-
ified. ‘DiffQ’ represents an extension of DiffQ (Défossez et al., 2022), which is equivalent to
DiffFPQ except for BF16 U(−0.5, 0.5) in place of ≈ ⌊N (0, 1)/2⌉. ‘method(ItoM)’ denotes pre-
training with the corresponding method with binit = I and bmin = M . The default configuration is
binit = 6, bmin = 4, AdamW optimizer (Loshchilov & Hutter, 2019) and BF16 GEMM with FP32
accumulation unless otherwise specified. Refer to Appendix E for detailed settings.

4.1 PRE-TRAIN RESULT
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Figure 2: Loss curve of pre-training the GPT2-
124M model on the OpenWebText dataset.

The GPT2-124M model is trained from
scratch on the OpenWebText dataset up to
295B tokens (Karpathy, 2022). Figure 2 shows
that the baseline BF16 training with a learning
rate of 6 × 10−4 proceeds smoothly whereas
the counterpart with a smaller learning rate
6 × 10−5 diverges and fails to recover. Both
PQT methods mitigate such training instability
while the proposed method incurs minimal in-
crease in loss. The difference in loss between
DiffFPQ and DiffQ is attributed to the choice
of R. DiffFPQ consistently outperforms DiffQ,
which aligns with the properties in Section 3.2.
Specifically, non-trivial P (R = 0) preserves
dynamic range up to that of fpe,m |e=8,m=7.
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Figure 3: Training loss curve of the Llama2-{134M, 1B} models on the C4 dataset. The right col-
umn corresponds to the range annotated with the orange arrow on the middle column. The weighted
moving average is used with α = 1/16 on the left column and α = 1/128 on the right column.

The Llama2-134M and Llama2-1B models are trained from scratch on the C4 dataset up to 295B
and 275B tokens, respectively (Liang et al., 2025). The results are visualized in Figure 3. While PQT
improves pre-training of the smaller model, it slightly degrades that of the larger model. The increase
in loss with the larger model can be minimized by employing larger bitwidth hyperparameters, e.g.,
bmin = 6. It is consistent with scaling law study in that the optimal bitwidth of larger models tends
to be higher (Kumar et al., 2025). DiffQ lies in between baseline BF16 and DiffFPQ regardless of
the model size, unlike results with the GPT2 model.
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Figure 4: Resulting bitwidth Bt with DiffFPQ(6to4) except for the Llama2-1B model which em-
ploys DiffFPQ(8to6). Dots and red lines indicate layerwise mean and standard deviation. Up-
per and lower solid lines represent layerwise maximum and minimum while dotted lines represent
transformer-blockwise counterparts. Lines on 6- and 9-bit divide the parameters into 3 groups, and
the percentages on the right-hand side represent the approximated ratio of parameters for each. The
order of layers is (qkv, out, up, down) for GPT2 and (q, k, v, out, gate, down, up) for Llama2.

Table 2: Tokens per second per GPU and GPU memory usage during Llama2 pre-training on the
A100 GPU. Subscript denotes relative overhead compared to BF16 baseline. We used local batch
size {24, 8, 2, 2} respectively for each case of {134M, 1B, 3B, 70B†} with fixed sequence length of
2048. “†” denotes that only 4 layers out of the total 80 layers of the model are used.

tps per GPU (×103) GPU memory (GiB)
134M 1B 3B 70B† 134M 1B 3B 70B†

BF16 143.3 26.0 7.17 7.22 34.00 30.69 19.07 18.83
+DiffFPQ 141.31.40% 25.51.92% 6.795.30% 6.943.88% 34.16 32.42 24.99 23.42
+DiffQ 116.618.63% 23.111.15% 5.0030.26% 5.2127.84% 34.18 32.64 25.76 25.57

Resulting bitwidth Bt is visualized in Figure 4. Note that the GPT2 model results in a wider
range of Bt compared to the Llama2 models. It suggests that parameters of GPT2-style transformer
blocks require greater dynamic range compared to Llama2-style counterparts. It is consistent with
the training loss curves—DiffFPQ works better than DiffQ on the GPT2 model but not on the Llama2
models—with dynamic range property as in Proposition 2. On the other hand, more than 99% of the
parameters are robust to PQN with bt ≤ 9 irrespective of the architecture and model size.

Table 2 reports the throughput and GPU memory usage during the Llama2 model training. The
proposed generation method minimizes computational overhead. The geometric mean of the over-
head on training throughput for Llama2-{134M, 1B, 3B, 70B†} is 3.14% for DiffFPQ compared to
22.34% for DiffQ. On the other hand, GPU memory overhead is 2 bytes per parameter to store Ŵ
in BF16. Additionally, the proposed method requires less layerwise temporary memory to store R,
using 0.5 bytes per element for R ≈ ⌊N (0, 1)/2⌉ compared to 2 bytes for U(−0.5, 0.5).
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Figure 5: Forward pass benchmark results for the PyTorch layer implementing Equation 1 on a
matrix W ∈ RM×N with R ≈ ⌊N (0, 1)/2⌉. Absolute throughput in 109 elements per second.

Figure 5 reports the results of the unit benchmark for the forward pass of the proposed method.
Both the proposed method and the Box-Muller method demonstrate at least a 3× improvement
compared to the PyTorch baseline, as they are implemented in Triton and reduce global memory
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Table 3: Benchmark results on GPT2-124M models. For each pre-trained model, we applied FP
quantization on the parameters. {FP8†, FP8, FP12} denote MX with internal datatypes {FP8 e4m3,
FP8 e3m4, FP12 e4m7}, respectively. MP denotes mixed precision where blocks with bt > 6 are
quantized with FP12 e4m7, 3 < bt ≤ 6 are quantized with FP8 e3m4, and bt ≤ 3 are quantized
with FP4 e2m1. Specifically, the proportion of the datatypes are {FP8 e3m4 9.20%, FP12 e4m7
90.8%} (11.63-bit) for DiffFPQ(6, 4), and {FP4 e2m1 0.628%, FP8 e3m4 16.905%, FP12 e4m7
82.466%} (11.27-bit) for DiffFPQ(4, 2). Bold typefaces denote Pareto-optimal results.

Pre-train (binit, bmin)
HellaSwag (accuracy, %) WikiText-2 (perplexity)

BF16 FP8† FP8 FP12 MP BF16 FP8† FP8 FP12 MP
BF16 - 31.58 31.58 31.70 31.57 - 26.21 26.61 26.21 26.21 -
FP12 - 31.88 31.88 31.97 31.97 - 26.83 27.15 27.04 26.84 -

DiffFPQ (6, 4) 31.94 32.04 31.97 31.97 31.99 26.52 26.83 26.66 26.52 26.53
(4, 2) 31.72 31.74 31.70 31.74 31.77 26.51 26.88 26.55 26.52 26.53

DiffQ (6, 4) 29.42 - - - - 33.61 - - - -

communication. The proposed noise generation method improves throughput over the Box-Muller
method across all test cases. It is particularly effective with larger matrices and the A100 GPU. Note
that the weight dimension of Llama 3.2 1B ranges from R2048×512 to R2048×8192 while Llama 3.1
405B counterpart ranges from R16384×1024 to R16384×16384.

4.2 INFERENCE RESULT

Table 3 reports benchmark results of pre-trained models with different inference datatypes. We have
GPT2-124M models pre-trained with different methods: BF16 baseline, MXFP12 e4m7, DiffFPQ
with two different hyperparameters, and DiffQ. For each of the pre-trained models, we quantize the
parameters into the corresponding datatypes without adding noise (Microsoft, 2023).

Mixed precision MXFP based on Bt outperforms both FP8 variants with lower perplexity and sim-
ilar accuracy. It is comparable to FP12 e4m7 with slightly higher accuracy and similar perplexity.
Additionally, its data size is smaller than FP12 e4m7, achieving a 27.3% reduction for DiffFPQ(6,4)
and 29.54% for DiffFPQ(4,2) relative to BF16. The results suggest that DiffFPQ allows PQT to tar-
get FP datatypes in Table 1 as discussed in Section 3.2.

4.3 ABLATION STUDY
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Figure 6: Ablation study with R ∼ N (0, 1)/2
(without rounding ⌊·⌉, ‘Gaussian’) and
MXFP12 e4m7 quantized parameters
(‘MXFP12’) on the GPT2-124M model.

Efficacy of rounded distribution. Results in
Figure 6 with R ∼ N (0, 1)/2 show that the pro-
posed rounded distribution R ≈ ⌊N (0, 1)/2⌉ is
indeed imperative when it comes to preserving
training behavior.

Pre-train with MXFP12 e4m7 parameters.
Following the bitwidth result that over 99% of
the parameters are robust to PQN with bt ≤
9, we quantize parameters to MXFP12 during
training. Note that adopting MXFP12 increases
the lower bound on near-zero resolution and de-
creases the upper bound on dynamic range com-
pared to BF16 baseline. Figures 6 and 7 report
DiffFPQ pre-training results with fake-quantized
MXFP12 parameters, specifically MX version of
fpe,m(Ŵ ) |e=4,m=7. The results demonstrate
that MXFP12-quantized parameters closely fol-
low their BF16 counterparts, independent of the underlying architecture and the model size, except
for the GPT2-124M model with smaller learning rate. It implies that Bt derived from BF16 training
can suggest a baseline datatype, i.e., the datatype used during training, for the model parameter W .

We report extended ablation studies on training stability and optimizer compatibility in Appendix D.
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Figure 7: Ablation study on DiffFPQ pre-training with MXFP12 e4m7 quantized parameters on the
Llama2-{134M, 1B} models.

5 DISCUSSION, BROADER IMPACT AND LIMITATION

The proposed method allows differentiable search over datatypes while stable and efficient training.
First, DiffFPQ yields mixed precision datatype configuration for inference and suggests datatype for
training. Second, DiffFPQ allows stable training irrespective of the underlying architecture and the
model size. Third, DiffFPQ is efficient with 3.14% computational overhead over BF16, which is 7×
less than DiffQ.

In addition, DiffFPQ implicitly encourages generalization ability of the model. Note that Taylor
expansion on training loss L(Ŵ ) ≈ L(W )+PQN⊺ ∂L(W )

∂W +PQN⊺ ∂2L(W )
∂W 2 PQN includes Hessian

trace so that optimization on L(Ŵ ) converges to flatter minima (Shin et al., 2023). Our results—that
DiffFPQ-trained model yields higher accuracy with slight increase in perplexity—imply that PQT
with the proposed R ≈ ⌊N (0, 1)/2⌉ encourages generalized learning via flatter minima.

We further discuss implications of the proposed method. First, DiffFPQ can replace mixed-precision
QAT methods or even vanilla BF16 training. Compared to the mixed-precision QAT method em-
ployed in Gemma 3n, DiffFPQ allows a wider range of datatypes with time-resource overhead dis-
entangled from the number of datatype options (Sanseviero & Ballantyne, 2025; Nair et al., 2025).
Compared to BF16 training, DiffFPQ offers stable and mixed-precision training that encourages
generalization ability of the model, while incurring minimal computational overhead. Therefore, we
believe that DiffFPQ to be an appealing option for mixed-precision foundational models.

Second, DiffFPQ provides theoretical ground on specific configuration of FP datatypes, at least
for model parameters. In terms of inference, DiffFPQ-trained models achieve Pareto-optimal
benchmark results with optimal MXFP-quantized parameters. On the other hand for training,
MXFP12 e4m7—following that more than 99% of parameters are robust to PQN with bt ≤ 9—
demonstrates to be capable of representing the parameters similar to BF16 counterpart irrespective
of the underlying architecture and model size. Furthermore, Propositions 1 and 2 are general enough
to be applied to other MX-like formats such as NVFP4.4 Therefore, we hope the proposed method
will serve as a theoretical foundation for FP standards. Note that, to the best of authors’ knowledge,
there has been no well-defined theoretical ground on the specific configuration of FP, e.g., 5-bit
exponent for half-precision over others (IEEE, 2019; Project, 2023).

The proposed method is applied only on weight, leaving activation and gradient the same as baseline
BF16. In particular, it is impossible to conduct a differentiable search on gradients. Extending the
proposed method to activation is left as future work. The use of LLMs during this work is limited to
(1) suggesting academic rewrite for the contents of the paper and (2) writing code for visualization.

4NVFP4 utilizes shared scale in FP8 e4m3 format, making the quantization range not exactly power-of-two.
Therefore, PQT targeting NVFP4 requires fake-quantization with appropriate scale, unlike its MX counterpart.
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REPRODUCIBILITY STATEMENT

We believe that the paper contains enough information to reproduce the results. First, Section 3
explains how to implement the proposed method. Specifically,

• Section 3.1 explains square-blockwise quantization and forward-backward formulation.

• Section 3.3 describes the distribution R as in Equation 5 and the base cases to generate
such distribution as in Equation 4.

• Section 3.4 explains the design choices for the implementation.

• Section 3.5 explains implementation details for internal bitwidth parameter Bi as in Equa-
tion 6 and optional bitwidth loss as in Equation 7.

Second, Sections 4 and E explain the specific experimental setup down to the level of container
image and hyperparameter settings. Lastly, we provide the source code, which is version-controlled
using git, for a reviewing purpose.
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A PROOF

Proposition 1

Proof. Consider adding PQNi on a near-zero element ϵi ∈ W . Without loss of generality, consider
a single block and the smallest positive perturbation ϵPQN with min>0(|R|) = 2ρ that limits the
precision of near-zero floating-point ϵi in the least. The value of interest is:

ϵi + ϵPQN = ϵi + 2ρ+1−bt max(|W |) (8)

Note that the resolution of FP depends on power-of-two magnitude of the data, e.g., ∆min(ϵPQN ) =

2⌊s⌋−m where s ≜ ρ+ 1− bt + log2 max(|W |). Also note that FP addition ϵi + ϵPQN implies FP
casting, e.g., fpe,m |e=8,m=23 (ϵi + ϵPQN ) for single precision. Therefore, the minimum effective
delta of ϵi with respect to ϵi + ϵPQN is limited:

min
>0

(|fpe,m(ϵi + ϵPQN )− fpe,m(ϵPQN )|) = ∆min(ϵPQN ) (9)

unless ϵPQN is exact power-of-two such that ∃n ∈ Z ϵPQN = 2n, and ϵi < 0. That is, the addition
ϵi + ϵPQN limits effective resolution of ϵi:

∆eff(ϵi) ≥ ∆min(ϵPQN ) (10)

Given limited effective resolution of ϵi, FP with limited number of exponent ranges where
∆min(x) ≥ 2⌊s⌋−m ∀x can represent W . It corresponds to an FP where [2⌊s⌋, 2⌊s⌋+1) is the small-
est normal range. We can count the number of effective exponent ranges from the largest exponent
range to the smallest exponent range. There are (−ρ + bt) exponent ranges between the largest
exponent range

[2⌊log2 max(|W |)⌋, 2⌊log2 max(|W |)⌋+1) (11)

and the smallest exponent range

[2⌊ρ+1−bt+log2 max(|W |)⌋, 2⌊ρ+1−bt+log2 max(|W |)⌋+1) (12)

including both endpoints. Considering a single exponent range for subnormal and no dedicated
exponent range for inf/NaN, FP with a ⌈log2(−ρ+bt+1)⌉-bit exponent can represent W effectively.

Proposition 2

Proof. Assume ∃n ∈ N+ such that τk = 2−n · ϵPQN . For any i ∈ {1, 2, . . . , k}, if Ri ̸= 0,
|ϵi + PQNi| > (1− 2n) · ϵPQN holds because:

• ϵi + ϵPQN is in the range ((1− 2−n) · ϵPQN , (1 + 2−n) · ϵPQN ).

• ϵi − ϵPQN is in the range ((−1− 2−n) · ϵPQN , (−1 + 2−n) · ϵPQN ).

On the other hand, Ri = 0 yields PQNi = 0 and Ŵi = Wi. If ∃i ∈ {1, 2, . . . , k} such that Ri = 0,
|ϵi + PQNi| = |ϵi| < τk. Such an element becomes an upper bound on min>0(|Ŵ |).

The condition min>0(|Ŵ |) < 2−n · ϵPQN holds if ∃i ∈ {1, 2, . . . , k} such that Ri = 0, whose
probability is 1−(1−p)k. Note that the probability is not complete for the condition. The condition
also holds if ∃i such that Ri ̸= 0, |Wi| > τk and |Wi + PQNi| < 2−n · ϵPQN . Therefore, the
probability is lower bounded by 1− (1− p)k:

P

(
min
>0

(|Ŵ |) < τk

)
≥ 1− (1− p)k (13)

12
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Figure B.1: Enumerative cases of Ŵi = Wi + PQNi. Trapezoidal range represents cases that the
addition results in Ŵi ∈ (−τk, τk) with respect to different PQNi on the left. For arbitrary |Wi| <
n ·ϵPQN +τk, there are at most min(2τk/ϵPQN , 2n) cases of PQNi that results in Ŵi ∈ (−τk, τk).

B DYNAMIC RANGE WITH NONZERO R

Consider min>0(|Ŵ |) = Ŵi |PQNi ̸=0.

Proposition 3. Assume there are k elements of W such that |Wi| < τk. Further assume that there
are k2 elements of W such that |Wi| < τk + υPQN where υPQN = max(|PQN |) > τk with
R ∼ U(−0.5, 0.5), P (R = 0) = 0 and τk < υPQN . Then,

P

(
min
>0

(|Ŵ |) < τk

)
≤ 1−

(
1− τk

υPQN

)k2

= 1−
(
1− τk

max(|W |)
2bt

)k2

(14)

Proof. Assume that any element of PQN is one of {±ϵPQN ,±2ϵPQN , . . . ,±n · ϵPQN} where
n · ϵPQN = υPQN . For Ŵi ∈ (−τk, τk) to hold, Wi ∈ (−τk − c · ϵPQN , τk − c · ϵPQN ) should
hold with PQNi = c · ϵPQN where c ∈ {±1,±2, . . . ,±n}. Trapezoidal range as in Figure B.1
represents such cases.

Consider the condition that arbitrary −τk − υPQN < Wi < τk + υPQN results in Ŵi ∈ (−τk, τk).
There are at most min(2τk/ϵPQN , 2n) cases of PQN for the condition to hold. As we assume
R ∼ U(−0.5, 0.5) and τk < υPQN , the probability is:

τk
n · ϵPQN

=
τk

υPQN
=

τk
max(|W |)

2bt (15)

The condition min>0(|Ŵ |) < τk holds if any one of the k2 elements results in Ŵi ∈ (−τk, τk).
Therefore,

P

(
min
>0

(|Ŵ |) < τk

)
≤ 1−

(
1− τk

υPQN

)k2

= 1−
(
1− τk

max(|W |)
2bt

)k2

(16)

As per Propositions 2 and 3, we can compare R ≈ ⌊N (0, 1)/2⌉ to R ∼ U(−0.5, 0.5) with respect
to min>0(|Ŵ |). For example, for the 32 by 32 square block units of the pre-trained GPT2-124M
model, τk

max(|W |) on average is approximately 2−10 for k = 3, and 2−9 for k = 5. Assuming k = 3

and k2 = 5, the probability with R ≈ ⌊N (0, 1)/2⌉ is approximately 0.977 independent of bt. On the
other hand, the probability with R ∼ U(−0.5, 0.5) is approximately 0.487 with bt = 6 and 0.276
with bt = 5. Therefore, R ≈ ⌊N (0, 1)/2⌉ is much more likely to preserve the minimum magnitude,
and thereby dynamic range, of W compared to R ∼ U(−0.5, 0.5). Also note that min>0(|Ŵ |) with
R ≈ ⌊N (0, 1)/2⌉ is pass-through of high-precision Wi with Ri = 0 while the counterpart with
R ∼ U(−0.5, 0.5) has limited resolution of max(∆max(|Wi|),∆max(|PQNi|)).
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Figure C.1: An example of vector-wise quantization on W(K,N) ∼ N (0, 1) and its forward-
backward discrepancy, where K = N = 4. Boxes wrapped in bold solid lines represent quantization
groups with an internal datatype of INT4 and a block size of 2. Visualized values are fake-quantized.

C TRANSPOSE-COMMUTATIVITY

A naı̈ve application of low-precision training can compromise the consistency of values between
the forward and backward passes, which hurts training stability. Consider forward and backward
passes of an MX-compliant matrix multiplication where the quantization axis lies along the inner
dimension:

T(M,N) = A(M,KQ)W(KQ,N) (17)
∂L

∂W (K,N)
= A⊺

(K,MQ)

∂L

∂T (MQ,N)
and

∂L

∂A (M,K)
=

∂L

∂T (M,NQ)
W ⊺

(NQ,K) (18)

where A denotes the input activation, W the parameter, T the output activation and L the target
loss. The subscript corresponds to the shape of the matrix and Q denotes quantization axis. Note the
difference of W between the forward and backward passes, i.e.,W(KQ,N) compared to W ⊺

(NQ,K),
which is demonstrated in Figure C.1. This inconsistency can lead to suboptimal training (Chen
et al., 2025). The issue arises because the absolute maximum value of the block, e.g.,size-2 blocks
in Figure C.1, changes when transposed. Square-blockwise quantization resolves this problem by
ensuring transpose-commutativity.

D EXTENDED ABLATION STUDY
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(a) Stability case study with bmin = 0.
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(b) Orthogonal to the choice of optimizer Adam-mini.

Figure D.1: Training loss curve of the GPT2-124M model on the OpenWebText dataset.

Stability case study. To identify the source of baseline BF16 training instability, we restrict the
application of the proposed method to each of the linear layers within all transformer blocks.
‘DiffFPQ[part]’ denotes which layer(s) of all transformer blocks adopt the proposed method, where
[od] is used as shorthand for [out,down]. Note that the GPT2 transformer block comprises four lin-
ear layers: qkv, out, up, and down. The qkv and out layers, along with the self-attention operation,
constitute the attention module, while the up and down layers form the feed-forward module.
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Figure D.2: Training loss curve of the Llama2-134M model on the C4 dataset with Adam-mini
optimizer. The rightmost column corresponds to the range annotated with the orange arrow on the
second column. For better visualization, weighted moving average is used with α = 1/16 on the
left column and α = 1/128 on the right column.

Table E.1: Hyperparameters used for pre-training.

GPT2-124M Llama2-134M Llama2-1B
context window 1024 2048 2048

local batch 12 12 8
local grad. accum. per step 5 1 1

# GPUs 8 8 8
total steps 600k 1.5M 2.1M

warmup steps 2k 5k 7k
total number of training tokens (×106) 294,912 294,912 275,251.2

min learning rate {6e-5, 6e-6} 1e-6 1e-6
max learning rate {6e-4, 6e-5} 1e-5 1e-5

weight decay 0.1 0.1 0.1
λ (as in Equation 7) 1e-4 0 0

As shown in Figure D.1a, DiffFPQ[qkv], DiffFPQ[up], and DiffFPQ[down] begin to diverge at
≈30B tokens of training and fail to recover. In contrast, DiffFPQ[out] does not diverge and closely
approximates the best-case loss curve of baseline BF16 up to ≈200B tokens. DiffFPQ[od], which
applies the proposed method to the last layers of the residual addition branches in the transformer
blocks, reduces divergence and yields the best result with the smaller learning rate. These results
show that the attention module is the source of instability at ≈30B tokens of training, while the
feed-forward module is the source of instability at ≈200B tokens of training. The latter is consistent
with Fishman et al. (2025).

Adam-mini. Pre-training results with the Adam-mini optimizer (Zhang et al., 2025) are presented
in Figures D.1b and D.2. Results with DiffFPQ require fewer tokens for Adam-mini to surpass
AdamW. DiffFPQ is orthogonal to the choice of optimizer, at least for Adam-mini.

E PRE-TRAIN HYPERPARAMETER, SETUP AND RESOURCE

Table E.1 reports hyperparameters used for pre-training. Learning rate was linearly scheduled with
warmup. The Llama2-1B model training requires more than 24GiB of GPU memory.

For GPT2, we used Karpathy (2022) with commit 9755682b as a starting point
and nvcr.io/nvidia/pytorch:24.10-py3 with Triton v3.2.0 as a training
environment. For Llama2, we used Liang et al. (2025) with commit 90567fc9
as a starting point and ghcr.io/pytorch/pytorch-nightly with a tag
2.7.0.dev20250107-cuda12.4-cudnn9-devel as a training environment. We used
A100-SXM4-40G, RTX 3090 and RTX 4090 GPUs with NVIDIA driver R565.
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