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ABSTRACT

Temporal-Difference (TD) learning methods, such as Q-Learning, have proven ef-
fective at learning a policy to perform control tasks. One issue with methods like
Q-Learning is that the value update introduces bias when predicting the TD target
of a unfamiliar state. Estimation noise becomes a bias after the max operator in
the policy improvement step, and carries over to value estimations of other states,
causing Q-Learning to overestimate the Q value. Algorithms like Soft Q-Learning
(SQL) introduce the notion of a soft-greedy policy, which reduces the estimation
bias via soft updates in early stages of training. However, the inverse temperature
β that controls the softness of an update is usually set by a hand-designed heuristic,
which can be inaccurate at capturing the uncertainty in the target estimate. Under
the belief that β is closely related to the (state dependent) model uncertainty, En-
tropy Regularized Q-Learning (EQL) further introduces a principled scheduling
of β by maintaining a collection of the model parameters that characterizes model
uncertainty. In this paper, we present Unbiased Soft Q-Learning (UQL), which ex-
tends the work of EQL from two action, finite state spaces to multi-action, infinite
state space Markov Decision Processes. We also provide a principled numerical
scheduling of β, extended from SQL and using model uncertainty, during the op-
timization process. We show the theoretical guarantees and the effectiveness of
this update method in experiments on several discrete control environments.

1 INTRODUCTION

Reinforcement Learning (RL) algorithms learn a control policy that maximizes the expected dis-
counted sum of future rewards (the policy value) from state, action, and reward experience collected
through interactions with an environment. Temporal-Difference (TD) RL methods (Sutton & Barto,
2018) maintain value estimates, and iteratively improve them by combining experienced short-term
rewards with estimates of the following long-term values. Q-Learning (Watkins & Dayan, 1992) is
a popular TD method that learns state–action value estimates (Q function), by assuming for target
value estimates that a greedy policy will be used in the following state.

Although Q-learning asymptotically converges to the optimal policy, it is known to be positively
biased and overestimate the value before convergence (Thrun & Schwartz, 1993). This bias is detri-
mental to efficient learning, because it can cause optimal actions to appear suboptimal, delaying
the collection of experience relevant to the agent’s optimal policy. Several approaches have been
proposed to mitigate the overestimation in TD learning, including Double Q-Learning (van Has-
selt et al., 2015), which attempts to correct this bias by using two Q functions; Soft Q-Learning
(SQL) (Fox et al., 2016; Haarnoja et al., 2017), in which value updates use a softmax policy for
target value estimation; and Maxmin (Lan et al., 2020), which estimates the target value as the min-
imum of several Q functions. None of these methods eliminate the bias completely. On the other
hand, it should be noted that the role that unbiased estimation could play in improving reinforcement
learning remains unclear (Lan et al., 2020).
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Fox et al. (2016) showed that in SQL there exists a particular state-dependant inverse-temperature
parameter β of the softmax operator that makes the target value estimates unbiased. However, this
unbiased-update β value is generally unknown. Fox (2019) suggests that β is inversely related
to the variance of the estimate’s parameter distribution by deriving a closed-form expression for
MDPs with two actions. However, it is not obvious how to generalize this expression to multi-action
Markov Decision Processes and neural network Q function approximator representations.

In this work, we estimate β by maintaining an ensemble of Q functions to approximate the un-
certainty in Q. This estimated β provides a principled temperature schedule that is “softer” when
uncertainty is high but gradually becomes “harder” as training proceeds. We experiment in Atari en-
vironments to show the effectiveness of our method in practical discrete action space environments,
and find that our method outperforms the Rainbow DQN (Hessel et al., 2018) and PPO (Schulman
et al., 2017) algorithms in most Atari environments. This work shows that incorporating aware-
ness of model uncertainty can help to provide a target with less bias, which leads to faster policy
improvement.

To summarize, our contributions are as follows:

• We provide a principled numerical method for estimating a β term that makes the
maximum-entropy target value approximately unbiased in SQL.

• We provide extensive experimental results demonstrating that reducing bias in SQL via our
estimated β improves performance.

• We provide a proof of convergence of our method.

2 PRELIMINARIES

We consider a Markov Decision Process (MDP) with transition probability p(s′|s, a). An agent
controls the process using policy π(a|s). A reward r that only depends on s and a is observed after
an action is taken. This work focuses on MDPs with discrete action spaces, a ∈ {0, 1, ...d − 1},
where d is the size of the discrete action space and varies in different environments.

We denote trajectory as a sequence of states, actions, and rewards ξ = (s0, a0, r0, s1 . . .). An RL
algorithm should discover a control policy that maximizes expected return of trajectory R(ξ) =∑

t≥0 γ
trt, where t is the time step in an interaction process and 0 ≤ γ ≤ 1 is a discount factor.

Value-based methods infer a control policy by maintaining a state-action value function of some
policy π,

Qπ(s, a) = Ea∼π(·|s)[R(ξ)|s0 = s, a0 = a].

Q-Learning (Watkins & Dayan, 1992) learns the optimal value of each state action by minimizing
the Temporal-Difference loss via the stochastic update,

Q(s, a)← Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)),

This update is guaranteed to converge to the optimal Q∗, since the Bellman operator for Q-Learning,

B[Q](s, a) = E[r(s, a)] + γEs′∼p(·|s,a)
[
max
a′

Q(s′, a′)
]

is a contraction in L∞.

However, in early stages of training, our estimate Q can have significant errors (“noise”). By us-
ing this noisy estimate, Q-Learning results in biased estimation of the next state value V (s) =
maxa Q(s, a) (Thrun & Schwartz, 1993). The Q-Learning target estimation bias is a consequence
of Jensen’s inequality, since

EQ

[
max

a
Q(s, a)

]
≥ max

a
EQ

[
Q(s, a)

]
.

Training with this target estimate will propagate the bias on to preceding states due to the nature
of the Bellman backup (Kumar et al., 2019; 2020). Deep Q-Networks (Mnih et al., 2013; 2015)
effectively incorporate the same biased estimate, training a neural network on squared error between
the current Q and the Bellman target:

L(s, a, r, s′, θ) = (r + γmax
a′

Qθ̄(s
′, a′)−Qθ(s, a))

2
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Instead, we would prefer an estimator of Q with an unbiased estimate of the optimal value:

E
[
Vunbiased(s)

]
= max

a
EQ

[
Q(s, a)

]
A greedy policy a = argmaxa Q(s, a) selects the best action a given its current knowledge of
Q(s, a) as the target estimate for the Bellman backup. This is problematic because in early stages
of learning, the Q(s, a) estimates are incorrect. Fox et al. (2016) proposed an additional cost term,
which combined the expected return induced by the policy with a penalty for deviating from an
agnostic prior policy π0, i.e.,

r̃t = rt −
1

β
log

π(a|s)
π0(a|s)

The state-action free energy function (Fox et al., 2016) evaluated at the soft-optimal policy can be
written as Vβ(s), the mellowmax (Asadi & Littman, 2017) over the action value of the next state.

Vβ(s) =
1

β
logEa∼π0(·|s)

[
exp(βQ(s, a))

]
,

Vβ(s) is the soft-optimal value function under maximum-entropy notion of optimality, where β is the
inverse temperature. Fox et al. (2016) also proved that under a specific scheduling of β, controlling
the level of trade-off between a deterministic policy (β →∞) and an agnostic prior policy (β = 0)
for selecting the distribution over actions to evaluate the next state, the soft-optimal value Vβ(s) of
the maximum-entropy objective, is an unbiased estimator of the next state value. The soft-greedy
policy is the policy π(a|s) that maximizes Vβ(s),

π(a|s) = π0(a|s) exp(βQ(s, a))∑
ā π0(a|s) exp(βQ(s, ā))

.

Selecting the action soft-greedily using a good β that captures the uncertainty in current estimates
mitigates the positive bias caused by overestimating the action value. Previous work has also shown
that selecting a good schedule of β for balancing uncertainty and optimality is crucial for the success
of maximum-entropy RL algorithms (Fox et al., 2016; Haarnoja et al., 2018; Fox, 2019; Hu et al.,
2021; Xu et al., 2021). We set to find the inverse temperature β using model uncertainty.

3 WHY REDUCE ESTIMATION BIAS

RL with unbiased value estimation is not necessarily the best way to do exploration (Fox et al.,
2016; Lan et al., 2020), but it is important to differentiate between exploration bonus and biased
estimation. “Optimism under uncertainty” refers to the exploration bonus in selecting an action
when that state-action pair is not familiar to the agent. In contrast, bias corresponds to systematic
errors in the value estimates themselves. Since there is no reason to believe that this bias is somehow
well-chosen to balance exploration and exploitation, it makes sense to attempt to decouple these two
issues by performing unbiased estimation; then exploration bonuses can be incorporated in a more
coherent way.

The TD estimation bias may also arise from multiple sources, some of which may be outside our
control. The bias we attempt to eliminate in this work is that induced by the max operator in the TD
next-state value estimate. If the agent is insufficiently familiar with the the next state and actions,
the estimate can be noisy or wrong. For example, our initial Q values can be biased by initialization.
If we have never encountered a state, it’s value estimate is determined by generalization, which is
known to introduce optimistic bias (Thrun & Schwartz, 1993). Even if we can estimate these values
in a less biased way, our estimate errors will combine with the randomness inherent in the MDP, and
create a large Jensen’s gap between the Q target estimate and the true state value as we propagate our
estimates through the backward recursive structure of the Bellman updates (Lee et al., 2020; Kumar
et al., 2019; 2020). This motivates us to examine the connection between our update policy and our
uncertainty in Q.
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4 UNBIASED VALUE ESTIMATION

4.1 RELATIONSHIP BETWEEN MODEL UNCERTAINTY AND POLICY ENTROPY

Making decisions and learning with imperfect decision makers is well studied, e.g., Rubin et al.
(2012). Ideally, we want a deterministic policy and “hard max” update only when the model is cer-
tain of its target estimate given the observed data, and the update and policy should be more stochas-
tic when the target estimate is more uncertain. In maximum-entropy RL frameworks (Ziebart, 2010),
the policy entropy that determines the greediness of each update is controlled by an inverse temper-
ature β, analogously to the thermodynamic temperature of a system in a Boltzmann distribution.
Unlike many maximum-entropy RL methods that use a constant temperature or a heuristic tempera-
ture schedule, we propose to estimate the β(s) that yields an unbiased update during training. Then,
we select the next state action soft-greedily and perform a soft-optimal target update that is unbiased
in expectation as in SQL (Fox et al., 2016):

Q(s, a)← Q(s, a) + α(r +
γ

β
logEa∼π0(a|s)

[
exp(βQ(s, a))

]
−Q(s, a)).

4.2 UNBIASED SOFT UPDATE VIA MODEL UNCERTAINTY

Fox et al. (2016) showed the existence of a state-conditioned inverse temperature βQ(s), for which
the state value function Vβ(s) is an unbiased estimator of maxa E[Q(s, a)]. Specifically, assuming
our current estimate Q is unbiased, there exists a temperature β(s) whose maximum-entropy policy
satisfies,

E
[
Vβ(s)

]
= EQ

[
1

βQ(s)
logEa∼π0(a|s)

[
exp(βQ(s)Q(s, a))

]]
= max

a
EQ

[
Q(s, a)

]
and so does not accumulate value estimation bias.

In practice, we propose to estimate these expectations using a finite collection of functions {Q(i)};
by defining the discrepancy function

fs;Q(β) = ÊQ

[
1

β
logEa∼π0(a|s)

[
exp(βQ(s, a))

]]
−max

a
ÊQ

[
Q(s, a)

]
,

where Ê denotes the empirical average over the finite collection {Q(i)}, we can solve for the root
of f numerically to estimate β(s). The resulting β depends on the model uncertainty — if the col-
lection {Q(i)} disagree on which action should achieve the maximum value (or the greedy policy),
EQ[Vβ(s)]−maxa EQ[Q(s, a)] can be large, resulting in β(s) close to 0.

In practice, approximating the desired quantity maxa EQ[Q(s, a)] with our empirical average
maxa Ê[Q(s, a)] still creates a slight positive bias, since by Jensen’s inequality,

max
a

EQ

[
Q(s, a)

]
≤ E{Q}

[
max

a
ÊQ

[
Q(s, a)

]]
.

To compensate, we correct the inverse temperature by multiplying by some κ ∈ (0, 1).

5 LEARNING IN FINITE STATE SPACE MDPS

We first consider finite state MDPs, in which Q(s, a) is represented in a tabular form. We give
convergence properties of our ensemble approach, and illustrate its behavior on an example domain.

5.1 UNBIASED SOFT UPDATE

In a tabular representation, given an ensemble {Q(i)}, the update rule of Unbiased Soft Q-Learning
(UQL) on each ensemble member Q(i) using experience (s, a, r, s′) is given by,

Q(i)(s, a)← (1−αt)Q
(i)(s, a)+αt

(
r(s, a)+

γ

κβQ(s)
logEa∼π0(·|s′)

[
exp(κβQ(s)Q

(i)(s′, a′))
])

.

(1)
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We can define the Bellman operator at temperature w = 1
κβQ(s) by,

Bw[Q(i)](s, a)
def
= E[r(s, a)] + γEs′|s,a∼p

[
w logEa∼π0(·|s′)

[
exp(Q(i)(s′, a′)/w)

]]
.

This form of soft update addresses uncertainty through scheduling an increasing β with more train-
ing as a result of decreased model uncertainty. The mellowmax operator smoothly degrades to max
when model uncertainty is lowered during training. This allows convergence of our method to the
same optimal fix point Q∗ as Q-Learning.

Combining the above analysis, following Fox et al. (2016); Asadi & Littman (2017) we can then
show,
Lemma 5.1. The Bellman operator Bw is a contraction between Q(i) and Q(j) for all i, j in L∞:

∥Bw[Q(i)]− Bw[Q(j)]∥∞ ≤ γ∥Q(i) −Q(j)∥∞.

Proof. See Appendix A.

In practice, we update the ensemble members Q(k) using a stochastic approximation to the Bellman
operator resulting from our observed reward r and new state s′. We therefore adapt the proof of
convergence for Q-learning from Jaakkola et al. (1994) to show that,
Theorem 5.2. If S and A are finite sets, and the learning rate αt(s, a) obeys

∑
t αt(s, a) =∞ and∑

t α
2
t (s, a) < ∞, then the Unbiased Soft Q-Learning ensemble converges to Q(i) = Q(j) = Q∗

for all i, j with probability one via the stochastic update rule in Equation 1.

Proof. See Appendix A.

The full algorithm is given in Algorithm 1.

Algorithm 1 Unbiased Soft Q-Learning with ensemble of approximators
Initialize replay memory D to capacity N
Initialize K parameterized state-action value function {Q(k)}; save Q̄(k) = Q(k) for all k
Initialize β search range B = [a, b], correction constant κ
for t = 1, . . . , T do

Select action at according to arbitrary policy π
Execute action at and observe reward rt and next state observation st+1

Store transition (st, at, rt, st+1) in D
st ← st+1

for k = 1, . . . ,K do
Sample random minibatch of transitions (sj , aj , rj , s′j) from D

fQ,s(β) = ÊQ

[
Vβ(s)

]
−maxa ÊQ

[
Q(s, a)

]
βs′j
← BinarySearch(fs′j ;Q̄, B)

y
(k)
j =

{
rj , if s′j is terminal state.
rj + γV

(k)
κβs′

j

(s′j), otherwise.

Update Q(k) with TD error y(k)j −Q(k)(sj , aj)

Every once in a while: Q̄(k) ← Q(k) for all k

5.2 VISUALIZING THE ESTIMATION BIAS IN EARLY STAGE TRAINING

To analyze the status of this learning algorithm at each specific state, we tested our method in a
Gridworld domain (Figure 1a). The black tiles are walls; colored tiles are valid states. At each
state, the agent may move in any of 8 different directions. Then, environment dynamics may cause
the agent to slip into to a neighboring state of the desired one with some probability. We maintain
an ensemble of Q tables for our method. To eliminate the influence of an exploration policy, we
perform stochastic updates on the Q ensemble with uniformly sampled s and a and then sample r
and s′ according to the MDP dynamics.
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(a) (b) (c)

Figure 1: (a) Optimal state value in the grid world domain. Walls (black) are impassable. The
absorbing goal state has the highest value. (b) Value estimation (colored) of Q-Learning (Q), Double
Q-Learning (2Q), using ensemble averaged Q for update (mean), UQL with κ = 0.5, and the ground
truth value (black) of the state (0, 2) is marked by the left green dot, averaged over 20 ensemble
estimates of 10 runs. Standard deviation (shaded) is over the estimation of different runs. (c) same
as (b) but with different κ ∈ {1, 2, 0.5, 0.1,∞}.

This toy example highlights the difference between Q-Learning and Unbiased Soft Q-Learning in
terms of reducing bias propagation. In Figure 1b, we see that Q-Learning overestimates the value.
After estimating the inverse temperature β, and updating each ensemble member with correction
κ = 0.5, the estimation bias is significantly decreased in early stage training, leading to faster
convergence. The positive bias effect increases with the value of κ used in the update (see Figure
1c).

5.3 POLICY QUALITY IN EARLY STAGE TRAINING

(a) Optimal Policy (b) Q-Learning (c) UQL×0.5

Figure 2: (a) True value V ∗(s) and optimal policy π∗(s) of each Gridworld state. (b)–(c) Estimated
value function V (s) = maxa ÊQ[Q

(k)(s, a)] and greedy policy π(s) = argmaxa ÊQ[Q
(k)(s, a)]

for (b) standard Q-learning, and (c) UQL with κ = 0.5, after 10000 stochastic updates.

Reducing the bias in our estimates of Q can also significantly improve our estimated policy during
training. In particular, since the max operator of Q-Learning overestimates the value in early stages,
the positive bias may swamp the true relative values of subsequent states, making the policy converge
more slowly to its optimum. For example, in the Gridworld domain, we can see that, in addition to
the improved quality of the value estimates of each state, the estimated policy of most states also
converges faster for UQL (Figure 2c) than using standard Q-Learning (Figure 2b).

6 LEARNING IN HIGH-DIMENSIONAL CONTINUOUS STATE SPACE MDPS

In MDPs with extremely many or even continuous state values, one can approximate the state-action
value function Q using a parameterized model such as a deep neural network (DNN). Our approach
naturally extends to this environment by using ensembles of neural approximations.
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6.1 UNBIASED SOFT Q-LEARNING WITH ENSEMBLE OF FUNCTION APPROXIMATORS

We use an ensemble of DNNs to learn to approximate Q values of each high-dimensional state-
action pair (Algorithm 1), which characterizes the uncertainty of value predictions. As is typical,
our loss function is the mean squared Bellman error of a batch of transitions sampled from the
replay buffer. Previous methods (Lan et al., 2020; Lee et al., 2020) have shown the effectiveness of
ensemble learning in combating the bias in value estimation. Lan et al. (2020) takes the minimum
estimate over the ensemble in order to learn the value more pessimistically. Ensemble methods come
with a natural notion of model uncertainty, often reflected through prediction entropy or variance.
An example is Lee et al. (2020), which improves sample efficiency by updating the value estimator
with a Bellman operator weighted by a quantified estimation of model uncertainty, which is a value
related to the output variance of Q networks. In this paper, we use an ensemble to approximate
the model output distribution. We update the ensemble iteratively according to the Unbiased Soft
Update Equation 1, and compare the results with widely used update rules.

6.2 ADDITIONAL IMPROVEMENTS

To further improve the performance of UQL, we included several helpful adaptations that fit easily
in our ensemble Soft Q-Learning framework. Upper Confidence Exploration (Audibert et al., 2009;
Auer et al., 2002), Prioritized Experience Replay (Schaul et al., 2015), and Dueling Networks (Wang
et al., 2016). There are also methods that work well, and are used in Rainbow DQN (Hessel et al.,
2018), that are not included in our method, such as Double DQN (van Hasselt et al., 2015), Distribu-
tional Q (Bellemare et al., 2017), Multi-step value estimation (Sutton, 1988; Sutton & Barto, 2018),
and Noisy networks (Fortunato et al., 2017). It remains an open question if these can be incorporated
to improve UQL.

7 EXPERIMENTS

In order to understand the effect of unbiased estimation in theoretical and practical settings, we
evaluate our unbiased update in Atari environments with neural network Q function representations.
We design our experiments to answer the following questions:

• Can unbiased soft updates improve performance?
• How well does unbiased soft update control value estimation bias?
• Does temperature reflect model uncertainty?
• How do different correction constants affect performance and bias?

7.1 OVERALL PERFORMANCE

Figure 3: Performance score achieved af-
ter 500k interactions, averaged over the 25
Atari environments in Appendix E. Performance
score of each environment is computed using:
(

ScoreAlgorithm−ScoreRandom

ScoreHuman−ScoreRandom
). UQL with κ ∈ {1, 0.5}

is shown in red and purple.

Figure 3 shows the average performance of
UQL across 25 Atari environments, normalized
by random (0) and human performance scores
(1). PPO and Rainbow DQN values are as re-
ported in Kaiser et al. (2019). Detailed perfor-
mance values are given in in Appendix E.

7.2 COMPARISON TO RAINBOW DQN

UQL executes 1 update for each ensemble
member for every 2 transitions sampled from
the environment. The temperature used in this
experiment is not accounting for finite ensem-
ble size. A modified version of Rainbow, which
updates with the exact same frequency (5 updates for every 2 transitions sampled) as UQL. This
shows that the performance increase from more frequent gradient update is limited. Results in Ap-
pendix B.
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Figure 4: First row: Average score over 5 runs. Second row: Initial state discounted value estimation
bias averaged over 5 runs. Error bar is the standard deviation of the reported value over 5 runs.
Prioritized replay, Dueling Networks are not used in these experiments.

7.3 THE EFFECT OF UNBIASED SOFT UPDATE

To visualize the accuracy of the value prediction that unbiased soft updates gives and the quality of
the trained policy compare to other update methods for learning Q networks, we experimented in
4 Atari domains (shown in Figure 4). We use Êξ∼pπθ

(ξ)[Vθ(s0) − R(ξ)] as a proxy to the overall
estimation bias of the Q networks. We can see that in this experiment, lower estimation is linked to
better performance.

To isolate the effect of the exploration strategy, these experiments use an experimental setting that
shares the replay buffer between algorithms, in order to eliminate any influence on the exploration
quality induced by learned Q values. In each training iteration, each algorithms samples 1 transition
using epsilon-greedy exploration policy from a copy (assigned to that algorithm) of the Atari game,
and stores to the shared replay buffer. Then, each algorithm samples a batch uniformly from the
shared replay buffer and takes a gradient step on its Q network using target estimates generated by
that algorithm. UQL is still able to outperform in terms of performance and bias, results shown in
Appendix B.

7.4 UNBIASED TEMPERATURE AND MODEL UNCERTAINTY

(a) logw = −5.2 (b) logw = −5.1 (c) logw = −4.1 (d) logw = −1.7

Figure 5: Awareness of novel state through unbiased temperature scheduling. w = 1
βQθ

(s) .
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To visualize the state unbiased temperature, we perturbed a normal state representation framestack
of Seaquest (Figure 5a) into a state that the learned agent has never seen (Figure 5b, 5c, 5d) with
increasing insanity. We compute the temperature of each state using a model trained with UQL for
5.1M steps in these 4 states. The action distribution selected to evaluate the target estimate will be
closer to an argmax over action in Figure 5a with which the agent is familiar with, and closer to
uniform in Figure 5d with which the agent is unfamiliar.

7.5 USING A DIFFERENT CORRECTION CONSTANT

Figure 6: First row: Average score of 1 life over 5 runs, experience is not shared between algorithms.
Second row: Initial state discounted value estimation bias averaged over 5 runs. Error bar is the
standard deviation of the reported value over 5 runs.

In Figure 6, we run the algorithm with w = (κβQθ
(s))−1 as the temperature for update with κ ∈

{∞, 2, 1, 0.5} on 5 ensemble members. Q-Learning is equivalent to using κ = ∞. From this
experiment, we can see that bias is monotonic in β. A correction constant κ ∈ (0, 1) may be tuned
for performance to counter overestimation of Q from a finite collection of approximators. We can
see that lower bias is linked to better performance, but the strength of this correlation can be affected
by other factors of training like exploration.

7.6 USING A DIFFERENT NEXT-STATE REDUCTION OPERATOR

In Figure 9, we use an alternative target estimates. Softmax of the next state Vβ(s) =
Ea∼πβ(·|s)[Q(s, a)], which evaluates the next state value as the expected Q value following Boltzman

distribution over actions (πβ(a|s)
def
= π0(a|s) exp(βQ(s,a))∑

ā π0(ā|s) exp(βQ(s,ā)) ). We use these estimators to substitute
the maximum-entropy target estimate and search the parameter β updates. The baseline method
“mean” updates the ensemble member Q(i) with TD error r + γmaxa ÊQ[Q(s′, a′)]−Q(i)(s, a).

8 DISCUSSION AND FUTURE WORK

UQL is based on the temperature scheduling of EQL (Fox, 2019), but gives a tractable numerical
solution to find the temperature of the maximum-entropy target estimate used in SQL, which is more
theoretically motivated than EQL. In this work, we correct the bias from estimating the value using
maxa ÊQ[Q(s, a)] with κ, which can be environment and exploration dependent. Therefore, future
work on a better approximation of the unbiased target will be potentially helpful to derive a better
algorithm. It is also clear that less estimation bias does not necessarily lead to better performance,
which depends not only the value estimation, but also on the exploration strategy. It will be also
beneficial to have more theoretical results on the properties of an exploration strategy during its
interaction with a noisy estimate of Q. It would also be interesting to conduct experiments that show
the reason why just using ensemble estimate mean in neural network Q representation works well
already. It is obvious that the success of this method comes partially from this mean target estimate.
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A CONVERGENCE OF UNBIASED SOFT Q-LEARNING

In this section we prove the convergence of each ensemble member Q(k) in ensemble Q, to the
optimal Q∗, with probability 1, under the unbiased soft update rule,

Q(i) ← (1− αt)Q
(i)(s, a) + αt

(
r(s, a) + γmellowmax

a′;π0,w(Q,s′)
Q(i)(s′, a′)

)
, (2)

where we define the mellowmax operator with temperature w as

mellowmax
a′;π0,w

Q(k)(s, a)
def
= w logEa|s∼π0

[
exp(Q(i)(s, a)/w)

]
. (3)

The temperature w(Q, s) is a function of the ensemble’s estimates at state s, specifically the value
of w that ensures,

EQ

[
mellowmax

a;π0,w
Q(i)(s, a)

]
−max

a
EQ

[
Q(i)(s, a)

]
. (4)

We assume a discrete action set with A actions.

At a high level, we first show that the temperature-annealed Bellman operator exhibits a contraction
property, then use this to show that for any sequence of temperatures {wt}, our ensemble members
{Q(i)} converge together. Finally, we show that, under our temperature selection strategy, this
convergence implies that all members converge to Q∗.

We first state a few useful properties of the mellowmax function. Mellowmax is closely related
to the temperature-annealed log

∑
exp function (e.g., Liu & Ihler (2011)), from which we can

immediately see that mellowmaxa;w is convex in w, with gradient ∂
∂w mellowmaxa;w Q(a) =

H(pw(a)) + Epw [log π0] = −D(pw∥π0) where H(·) is the entropy of the annealed Gibbs dis-
tribution pw(a) ∝ π0(a) exp(Q(a)/w) with base measure π0 > 0 and D is the Kullback-Leibler
divergence. The temperature extremes of mellowmax are,

lim
w→0

mellowmax
a;w

Q(a) = max
a

Q(a) lim
w→∞

mellowmax
a;w

Q(a) =
∑
a

π0(a)Q(a).

Correspondingly, the limiting Gibbs distributions are p∞ = π0 and p0 a distribution that puts uni-
form weight on the maxima of Q(a).

Finally, we have that

w ≥ w′ ⇒ mellowmax
a,w′

Q(i, a) ≥ mellowmax
a,w

Q(a),

i.e., mellowmax is monotonic decreasing in w, and that commutation results in a bound:

w ≥ w′ ⇒ mellowmax
i,w

mellowmax
a,w′

Q(i, a) ≥ mellowmax
a,w′

mellowmax
i,w

Q(i, a)

with equality if w = w′.

Now, define the Bellman operator Bw and denote the optimal fixed point for temperature w as Q∗
w,

so that:
Bw[Q∗

w](s, a) = E[r(s, a)] + γEs′∼p(·|s,a)[mellowmax
a′;π0,w

Q∗
w(s

′, a′)] (5)

Then, we can show that,

Proof. Lemma 5.1. Following e.g., Fox et al. (2016), let

ϵ = ∥Q(i) −Q(j)∥∞ = max
s,a
|Q(i)(s, a)−Q(j)(s, a)|

Then, for any s′, a′,

mellowmax
a′;π0,w

Q(i)(s′, a′) ≤ mellowmax
a′;π0,w

(
Q(j)(s′, a′) + ϵ

)
= ϵ+mellowmax

a′;π0,w
Q(j)(s′, a′)
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and similarly,
mellowmax

a′;π0,w
Q(i)(s′, a′) ≥ −ϵ+mellowmax

a′;π0,w
Q(j)(s′, a′)

Therefore
∀s′, a′ |mellowmax

a′;π0,w
Q(i)(s′, a′)−mellowmax

a′;π0,w
Q(j)(s′, a′)| ≤ ϵ = ∥Q(i) −Q(j)∥∞

Applying this to the definition of the Bellman updates on Q(i) and Q(j) gives,

∥Bw[Q(i)]− Bw[Q(j)]∥∞ = max
s,a
|Bw[Q(i)](s, a)− Bw[Q(j)](s, a)|

= γmax
s,a
|Es′ [mellowmax

a′;π0,w
Q(i)(s′, a′)−mellowmax

a′;π0,w
Q(j)(s′, a′)]|

≤ γ∥Q(i) −Q(j)∥∞

To examine the convergence of our ensemble, we make use of a theorem from Jaakkola et al. (1994):

Theorem A.1 (Jaakkola et al. (1994)). The random process {∆(k,k′)
t } in form ∆

(k,k′)
t+1 = (1 −

αt(s, a))∆
(k,k′)
t + αt(s, a)F

(k,k′)
t taking values in R converges to 0 w.p.1 if,

1. The number of states S and actions A are finite;

2. The learning rate obeys
∑

t αt(s, a) =∞ and
∑

t α
2
t (s, a) <∞;

3. ∥E[F (k,k′)
t |Pt]∥W < γ∥∆t∥W , where γ ∈ (0, 1);

4. Var[F
(k,k′)
t |Pt] ≤ C(1 + ∥∆t∥W )2.

for some weighted max norm ∥ · ∥W and where Pt denotes the past history of the algorithm.

Now we can show that our ensemble members converge together under a standard stochastic update
on each state s:

Proof. Theorem 5.2. Our stochastic update has the form,

Q
(i)
t+1(s, a) = (1− αt(s, a))Q

(i)
t (s, a) + αt(s, a)[rt(s, a) + γmellowmax

a′,π0;wt

Q
(i)
t (s′, a′)] (6)

for some sequence of temperatures wt, which may depend on the current ensemble.

For each pair of ensemble members i, j, define

∆
(i,j)
t (s, a) = Q

(i)
t (s, a)−Q

(j)
t (s, a). (7)

The stochastic update can be rewritten as

∆
(i,j)
t+1 (s, a) = (1− αt(s, a))∆

(i,j)
t (s, a)

+ αt(s, a)[r
(i)
t + γmellowmax

a′,π0;wt

Q
(i)
t (s(i), a′)− r

(j)
t − γmellowmax

a′,π0;wt

Q
(j)
t (s(j), a′)],

suggesting the definition,

F
(i,j)
t (s, a) =

(
r
(i)
t + γmellowmax

a′,π0;wt

Q
(i)
t (s(i), a′)− r

(j)
t − γmellowmax

a′,π0;wt

Q
(j)
t (s(j), a′)

)
.

for which it is easy to see that

E
r
(i)
t ,r

(j)
t ,s(i),s(j)

[
F

(i,j)
t (s, a)

]
= Bwt

[Q
(i)
t ](s, a)− Bwt

[Q
(j)
t ](s, a)

≤ γ ∥Q(i)
t −Q

(j)
t ∥∞ = γ ∥∆(i,j)

t ∥∞
where the inequality follows from Lemma 5.1.

Finally, as in Jaakkola et al. (1994), the required variance condition holds since Var[r(s, a)] is
bounded and F depends at most linearly on the Q

(i)
t . Thus the conditions of Theorem A.1 are

satisfied.
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Finally, we show that as the ensemble members {Q(i)} converge together, our temperature wt → 0,
and thus all members converge to Q∗. Suppose we have a collection of functions {Q(i)(a)} with,

∥Q(i) −Q(j)∥∞ ≤ ϵ ∀i, j

We note that the ensemble average can also be denoted as a mellowmax, since 1
|Q|

∑
i Q

(i)(s, a) =

mellowmax
i,π0;∞

Q(i)(s, a) with uniform π0; we abbreviate as mmax
i;∞

for convenience.

Our temperature wt is thus defined by the value w∗ that satisfies,

mmax
i;∞

mmax
a;w∗

Q(i)(a) = mmax
a;0

mmax
i,∞

Q(i)(a).

This w∗ must exist since mellowmax is monotone in w and,

mmax
i;∞

mmax
a;0

Q(i)(a) ≥ mmax
a;0

mmax
i,∞

Q(i)(a) ≥ mmax
a;∞

mmax
i;∞

Q(i)(a) = mmax
i;∞

mmax
a;∞

Q(i)(a);

the value w∗ is unique if the left and right terms are not equal.

If ∥Q(i) −Q(j)∥∞ ≤ ϵ, we can easily see that

mmax
i;∞

mmax
a;0

Q(i) ≥ mmax
a;0

mmax
i;∞

Q(i) ≥ mmax
i;∞

mmax
a;0

Q(i)(a)− ϵ

since, defining ai = argmaxa Q
(i)(a),

mmax
i;∞

mmax
a;0

Q(i) = mmax
i;∞

Q(i)(ai) ≤ mmax
i;∞

[
Q(1)(ai) + ϵ

]
≤ mmax

i;∞

[
Q(1)(a1) + ϵ

]
≤ mmax

a;0
mmax
i;∞

[
Q(i)(a) + 2ϵ

]
where Q(1) can be any of the functions in the set {Q(i)}.
Thus we have that our optimal temperature’s mellowmax value is close to that of max:

mmax
i;∞

mmax
a;0

Q(i) −mmax
i;∞

mmax
a;w∗

Q(i) ≤ 2ϵ

Now, since mmax
i;∞

mmax
a;w

Q(i)(a) is decreasing in w, we will have

0 ≤ w∗ ≤ w if mmax
i;∞

mmax
a;w

Q(i)(a) ≤ mmax
i;∞

mmax
a;0

Q(i)(a)− 2ϵ ≤ mmax
a;0

mmax
i;∞

Q(i)(a)

So we need to find a value of w that reduces the mellowmax value by at least 2ϵ.

Assume that each Q(i) is non-constant, i.e., maxa Q
(i)(a) −mina Q

(i)(a) = δ > 0. This ensures
that w∗ is unique, and (equivalently) that the derivative of mellowmax at w = 0 is non-zero1; in
particular, if only one action value Q(a′) is smaller than the others, the slope of mellowmax will
be limw→0 H(pw) + Epw

[log π0] < maxa log[1 − π0(a)] (since pw will place zero mass on some
action a).

Thus, as ϵ→ 0, we have

w∗ ≤ 2ϵ

− log[1−mina π0(a)]

Therefore, the ensemble members {Q(i)} converge to each other, and as they do, w → 0, so that all
Q(i) are converging to Q∗, the optimal Q-function under the standard Bellman recursion.

1If ∂
∂w

mellowmax = 0, then all temperatures w produce the same value, and we may take w = 0 without
loss of generality.
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B ABLATION STUDIES

Figure 7: Algorithm (Rainbow, Rainbow with same gradient update frequency as UQL, UQL) aver-
age score over 5 runs

Figure 8: First row: Average score over 3 runs. Second row: Initial state discounted value esti-
mation bias averaged over 3 runs. Error bar is the standard deviation of the reported value over 3
runs. Prioritized replay, Dueling Networks are not used in these experiments. The replay buffer is
completely shared between algorithms.
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Figure 9: First row: Average score over 5 runs, experience is not shared between algorithms. Error
bar is the standard deviation over 5 runs. Second row: Initial state discounted value estimation
bias averaged over 5 runs, experience is not shared between algorithms. Error bar is the standard
deviation over 5 runs.

C HYPERPARAMETER CONFIGURATIONS

All results in Table E is generated using the hyperparameter configuration from Lee et al. (2020),
except hyperparameters for κ and searching β. No tuning is done on the hyperparameters. →
denotes linear schedule.

Table 1: Hyperparameter configuration of UQL used in experiments in Atari domain

Hyperparameter Value

learning rate 1× 10−4

optimization algorithm Adam
mini-batch size 32
dueling network True
hidden size of A and V head 256
number of interactions per target network update 2000
number of interactions per gradient update 2
discount factor 0.99
ensemble size 5
β search range [1× 10−20, 2× 106]
β search max iteration 35
correction constant κ 1
number of interactions before learning start 1600
UCB exploration λ 1
replay buffer capacity 5× 105

priority weight 0.5→ 0
importance sampling exponent 0.4→ 1
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D PERFORMANCE NORMALIZED BY HUMAN SCORE

Performance at 500k interactions. The results of UQL (κ = 1 and κ = 0.5) show the average score
and standard deviation of 5 runs. For Random, we report the numbers reported in Lee et al. (2020).
For PPO, Rainbow, we report the number reported in Kaiser et al. (2019).

Figure 10: Performance is computed using: ScoreAlgorithm−ScoreRandom

ScoreHuman−ScoreRandom
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E PERFORMANCE COMPARE TO HUMAN AT 500K INTERACTION

Environment Random PPO Rainbow Mean κ = 1 κ = 0.5 Human

Alien 227.8 269.0 (203.4) 828.6 (54.2) 997.00 (326.51) 979.17 (108.00) 1189.60 (339.96) 7128.0
Amidar 5.8 93.2 (36.7) 194.0 (34.9) 210.40 (41.61) 216.25 (41.70) 207.25 (63.00) 1720.0
Asterix 210.0 1085.0 (354.8) 1702.7 (162.8) 2437.00 (232.37) 1858.00 (298.69) 2420.50 (376.80) 8503.0
BankHeist 14.2 641.0 (352.8) 727.3 (198.3) 523.90 (161.51) 395.20 (298.45) 459.0 (371.68) 753.0
BattleZone 2360.0 14400.0 (6476.1) 19507.1 (3193.3) 16280.00 (2675.00) 14160.00 (3777.35) 16460.0 (2510.06) 37188.0
Boxing 0.1 3.5 (3.5) 58.2 (16.5) 58.26 (17.8) 50.92 (14.22) 53.21 (17.10) 12.0
Breakout 1.7 66.1 (114.3) 26.7 (2.4) 45.02 (12.11) 21.34 (14.99) 13.67 (10.41) 30.0
Chopper-Command 811.0 860.0 (285.3) 1765.2 (280.7) 1052.00 (404.04) 1084.89 (210.72) 1031.0 (206.29) 7388.0
CrazyClimber 10780.5 33420.0 (3628.3) 75655.1 (9439.6) 97302.00 (17027.8) 83237.00 (19315.91) 85315.0 (19750.28) 35829.0
DemonAttack 152.1 216.5 (96.2) 3642.1 (478.2) 9150.8 (1128.25) 9737.50 (1911.48) 7039.55 (1087.00) 1971.0
Freeway 0.0 14.0 (9.8) 12.6 (15.4) 31.25 (0.95) 31.19 (0.73) 31.53 (1.10) 30.0
Frostbite 65.2 214.0 (10.2) 1386.1 (321.7) 687.80 (823.21) 895.70 (725.57) 1214.90 (955.95) -
Gopher 257.6 560.0 (118.8) 1640.5 (105.6) 2563.8 (977.46) 1965.60 (792.87) 3063.0 (1018.69) 2412.0
Hero 1027.0 1824.0 (1461.2) 10664.3 (1060.5) 3288.42 (75.7) 5161.45 (1737.55) 3941.30 (1173.67) 30826.0
Jamesbond 29.0 255.0 (101.7) 429.7 (27.9) 465.00 (21.39) 488.5 (147.09) 455.5 (15.44) 303.0
Kangaroo 52.0 340.0 (407.9) 970.9 (501.9) 1972.00 (798.16) 2112.00 (858.03) 1662.0 (254.98) 3035.0
Krull 1598.0 3056.1 (1155.5) 4139.4 (336.2) 2895.89 (538.43) 3136.31 (412.84) 3749.13 (1147.11) 2666.0
KungFuMaster 258.5 17370.0 (10707.6) 19346.1 (3274.4) 15020.00 (4741.49) 22109.33 (6481.43) 24942.0 (7754.50) 22736.0
MsPacman 307.3 306.0 (70.2) 1558.0 (248.9) 1583.70 (362.53) 1818.8 (255.52) 1911.6 (372.95) 6952.0
Pong -20.7 -8.6 (14.9) 19.9 (0.4) 12.56 (8.30) 6.73 (8.38) 2.61 (5.56) 15.0
PrivateEye 24.9 20.0 (40.0) -6.2 (89.8) -51.68 (182.02) 100.0 (0.00) 100.0 (0.00) 69571.0
Qbert 163.9 757.5 (78.9) 4241.7 (193.1) 2691.00 (1203.76) 2352.00 (1501.12) 2751.25 (1123.12) 13455.0
RoadRunner 11.5 5750.0 (5259.9) 18415.4 (5280.0) 25970.00 (4858.74) 32766.66 (2299.01) 34581.00 (2996.29) 7845.0
Seaquest 68.4 692.0 (48.3) 1558.7 (221.2) 1466.20 (283.03) 1124.6 (393.02) 1597.80 (369.56) 42055.0
UpNDown 533.4 12126.0 (1389.5) 6120.7 (356.8) 6608.25 (888.00) 6416.66 (646.50) 5575.50 (578.81) 11693.0

Table 2: Performance at 500k interactions. The results of UQL (κ = 1 and κ = 0.5) show the average score and standard deviation of 5 runs. For Random, we
report the numbers reported in Lee et al. (2020). For PPO, Rainbow, we report the number reported in Kaiser et al. (2019). Best performance is shown in bold.
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F PERFORMANCE COMPARE TO HUMAN AT 100K INTERACTION

Environment Random PPO Rainbow SUNRISE SimPLe CURL DrQ Mean κ = 1 κ = 0.5 Human

Alien 184.8 291.0 (40.3) 290.6 (14.8) 872.0 616.9 (252.2) 558.2 761.4 625.20 (40.5) 647.70 (45.35) 590.20 (112.66) 7128.0
Amidar 11.8 56.5 (20.8) 20.8 (2.3) 122.6 74.3 (28.3) 142.1 97.3 93.59 (21.52) 81.05 (16.44) 101.56 (33.94) 1720.0
Asterix 248.8 385.0 (104.4) 285.7 (9.3) 755.0 1128.3 (211.8) 734.5 637.5 1028.50 (193.14) 830.50 (204.04) 949.50 (151.59) 8503.0
BankHeist 15.0 16.0 (12.4) 34.5 (2.0) 266.7 34.2 (29.2) 131.6 196.6 262.90 (64.86) 199.90 (76.4) 233.80 (23.98) 753.0
BattleZone 2895.0 5300.0 (3655.1) 3363.5 (523.8) 15700.0 4031.2 (1156.1) 14870.0 13520.6 10640.00 (3612.12) 9260.00 (2776.94) 12800.00 (2774.35) 37188.0
Boxing 0.3 -3.9 (6.4) 0.9 (1.7) 6.7 7.8 (10.1) 1.2 6.9 5.96 (4.33) 2.71 (3.6) 7.49 (3.1) 12.0
Breakout 0.9 5.9 (3.3) 3.3 (0.1) 1.8 16.4 (6.2) 4.9 14.5 13.32 (5.37) 12.04 (3.12) 7.83 (6.55) 30.0
ChopperCommand 671.0 730.0 (199.0) 776.6 (59.0) 1040.0 979.4 (172.7) 1058.5 646.6 840.00 (146.9) 892.00 (89.92) 882.00 (197.78) 7388.0
CrazyClimber 7339.5 18400.0 (5275.1) 12558.3 (674.6) 22230.0 62583.6 (16856.8) 12146.5 19694.1 60035.00 (26988.73) 52798.00 (22817.56) 44838.00 (15690.94) 35829.0
DemonAttack 140.0 192.5 (83.1) 431.6 (79.5) 919.8 208.1 (56.8) 817.6 1222.2 741.05 (232.55) 522.55 (109.47) 450.65 (102.49) 1971.0
Freeway 0.0 8.0 (9.8) 0.1 (0.1) 30.2 16.7 (15.7) 26.7 15.4 14.24 (1.99) 10.67 (6.85) 5.18 (8.45) 30.0
Frostbite 74.0 214.0 (10.2) 1386.1 (321.7) 2026.7 65.2 (31.5) 1181.3 449.7 271.30 (56.41) 239.50 (20.21) 394.60 (278.98) 0.0
Gopher 245.9 246.0 (103.3) 748.3 (105.4) 654.7 596.8 (183.5) 669.3 598.4 896.4 (194.44) 882.60 (241.3) 890.20 (188.83) 2412.0
Hero 224.6 569.0 (1100.9) 2676.3 (93.7) 8072.5 2656.6 (483.1) 6279.3 4001.6 1277.35 (1433.68) 2969.10 (168.43) 2442.00 (1222.07) 30826.0
Jamesbond 29.2 65.0 (46.4) 61.7 (8.8) 390.0 100.5 (36.8) 471.0 272.3 217.50 (71.15) 203.00 (120.58) 99.00 (27.18) 303.0
Kangaroo 42.0 140.0 (102.0) 38.7 (9.3) 2000.0 51.2 (17.8) 872.5 1052.4 164.00 (143.47) 456.00 (291.73) 250.00 (140.43) 3035.0
Krull 1543.3 3750.4 (3071.9) 2978.8 (148.4) 3087.2 2204.8 (776.5) 4229.6 4002.3 2563.76 (124.32) 2163.85 (297.58) 2407.25 (407.11) 2666.0
KungFuMaster 616.5 4820.0 (983.2) 1019.4 (149.6) 10306.7 14862.5 (4031.6) 14307.8 7106.4 13541.00 (2844.02) 20094.0 (3741.89) 19685.00 (8715.99) 22736.0
MsPacman 235.2 496.0 (379.8) 364.3 (20.4) 1482.3 1480.0 (288.2) 1465.5 1065.6 1066.90 (399.22) 1135.50 (239.87) 1157.50 (323.51) 6952.0
Pong -20.4 -20.5 (0.6) -19.5 (0.2) -19.3 12.8 (17.2) -16.5 -11.4 -14.05 (2.62) -16.15 (5.48) -18.52 (2.82) 15.0
PrivateEye 26.6 10.0 (20.0) 42.1 (53.8) 100.0 35.0 (60.2) 218.4 49.2 -35.49 (270.98) 100.00 (0.0) 77.00 (34.87) 69571.0
Qbert 166.1 362.5 (117.8) 235.6 (12.9) 1830.8 1288.8 (1677.9) 1042.4 1100.9 662.50 (168.19) 525.00 (84.62) 470.25 (123.55) 13455.0
RoadRunner 0.0 1430.0 (760.0) 524.1 (147.5) 11913.3 5640.6 (3936.6) 5661.0 8069.8 16366.00 (7868.77) 16116.00 (7262.98) 18448.0 (8074.48) 7845.0
Seaquest 61.1 370.0 (103.3) 206.3 (17.1) 570.7 683.3 (171.2) 384.5 321.8 357.60 (116.15) 296.00 (100.02) 333.00 (91.47) 42055.0
UpNDown 488.4 2874.0 (1105.8) 1346.3 (95.1) 5074.0 3350.3 (3540.0) 2955.2 3924.9 2572.10 (920.03) 3191.10 (484.26) 2283.30 (434.12) 11693.0

Table 3: Performance at 100k interactions. The results of UQL (κ = 1 and κ = 0.5) show the average score and standard deviation of 5 runs. For Random and
SUNRISE, we report the numbers reported in Lee et al. (2020). For PPO, Rainbow, SimPLe, CURL, and DrQ, we report the number reported in Kaiser et al.
(2019). Best performance is shown in bold.
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