
Published in Transactions on Machine Learning Research (06/2023)

On the Convergence and Calibration of Deep Learning with
Differential Privacy

Zhiqi Bu zbu@upenn.edu
University of Pennsylvania

Hua Wang wanghua@upenn.edu
University of Pennsylvania

Zongyu Dai daizy@sas.upenn.edu
University of Pennsylvania

Qi Long qlong@upenn.edu
University of Pennsylvania

Reviewed on OpenReview: https: // openreview. net/ forum? id= K0CAGgjYS1

Abstract

Differentially private (DP) training preserves the data privacy usually at the cost of slower
convergence (and thus lower accuracy), as well as more severe mis-calibration than its non-
private counterpart. To analyze the convergence of DP training, we formulate a continuous
time analysis through the lens of neural tangent kernel (NTK), which characterizes the
per-sample gradient clipping and the noise addition in DP training, for arbitrary network
architectures and loss functions. Interestingly, we show that the noise addition only affects
the privacy risk but not the convergence or calibration, whereas the per-sample gradient
clipping (under both flat and layerwise clipping styles) only affects the convergence and
calibration.
Furthermore, we observe that while DP models trained with small clipping norm usually
achieve the best accurate, but are poorly calibrated and thus unreliable. In sharp contrast,
DP models trained with large clipping norm enjoy the same privacy guarantee and similar
accuracy, but are significantly more calibrated. Our code can be found at https://github.
com/woodyx218/opacus_global_clipping.

1 Introduction

Deep learning has achieved tremendous success in many applications that involve crowdsourced information,
e.g., face image, emails, financial status, and medical records. However, using such sensitive data raises severe
privacy concerns on a range of image recognition, natural language processing and other tasks (Cadwalladr &
Graham-Harrison, 2018; Rocher et al., 2019; Ohm, 2009; De Montjoye et al., 2013; 2015). For a concrete
example, researches have recently demonstrated multiple successful privacy attacks on deep learning models,
in which the attackers can re-identify a member in the dataset using the location or the purchase record, via
the membership inference attack (Shokri et al., 2017; Carlini et al., 2019). In another example, the attackers
can extract a person’s name, email address, phone number, and physical address from the billion-parameter
GPT-2 (Radford et al., 2019) via the extraction attack (Carlini et al., 2020). Therefore, many studies have
applied differential privacy (DP) (Dwork et al., 2006; Dwork, 2008; Dwork et al., 2014; Mironov, 2017; Duchi
et al., 2013; Dong et al., 2019), a mathematically rigorous approach, to protect against leakage of private
information (Abadi et al., 2016; McSherry & Talwar, 2007; McMahan et al., 2017; Geyer et al., 2017). To
achieve this gold standard of privacy guarantee, since the seminal work (Abadi et al., 2016), DP optimizers
(including DP-SGD/Adam (Abadi et al., 2016; Bassily et al., 2014; Bu et al., 2019), DP-SGLD (Wang et al.,

1

https://openreview.net/forum?id=K0CAGgjYS1
https://github.com/woodyx218/opacus_global_clipping
https://github.com/woodyx218/opacus_global_clipping

Published in Transactions on Machine Learning Research (06/2023)

2015; Li et al., 2019; Zhang et al., 2021), DP-FedSGD and DP-FedAvg (McMahan et al., 2017)) are applied
to train the neural networks while preserving high accuracy for prediction.

Algorithmically speaking, DP optimizers have two extra steps in comparison to the non-DP standard
optimizers: the per-sample gradient clipping and the random noise addition, so that DP optimizers descend
in the direction of the clipped, noisy, and averaged gradient (see Equation (4.1)). These extra steps protect
the resulting models against privacy attacks via the Gaussian mechanism (Dwork et al., 2014, Theorem
A.1), at the expense of an empirical performance degradation compared to the non-DP deep learning, in
terms of much slower convergence and lower utility. For example, state-of-the-art CIFAR10 accuracy with
DP is ≈ 70% without pre-training (Papernot et al., 2020) (while non-DP networks can easily achieve over
95% accuracy) and similar performance drops have been observed on facial images, tweets, and many other
datasets (Bagdasaryan et al., 2019; Kurakin et al., 2022).

Empirically, many works have evaluated the effects of noise scale, batch size, clipping norm, learning rate, and
network architecture on the privacy-accuracy trade-off (Abadi et al., 2016; Papernot et al., 2020). However,
despite the prevalent usage of DP optimizers, little is known about its convergence behavior from a theoretical
viewpoint, which is necessary to understand and improve the deep learning with differential privacy.

We notice some previous attempts by (Chen et al., 2020; Bu et al., 2022; Song et al., 2021; Bu et al., 2022),
which either analyze the DP-SGD in the convex setting or rely on extra assumptions in the deep learning
setting.

Our Contributions In this work, we establish a principled framework to analyze the dynamics of DP
deep learning, which helps demystify the phenomenon of the privacy-accuracy trade-off.

• We explicitly characterize the general training dynamics of deep learning with DP-GD in Fact 4.1. We
show a fundamental influence of the DP training on the NTK matrix, which causes the convergence to
worsen.

• This characterization leads to the convergence analysis for DP training with small or large clipping norm,
in Theorem 1 and Theorem 2, respectively.

• We demonstrate via numerous experiments that a small clipping norm generally leads to more accurate
but less calibrated DP models, whereas a large clipping norm effectively mitigates the calibration issue,
preserves a similar accuracy, and provides the same privacy guarantee.

• We conduct the first experiments on DP and calibration with large models at the Transformer level.

To elaborate on the notion of calibration (Guo et al., 2017; Niculescu-Mizil & Caruana, 2005), a critical
performance measure besides accuracy and privacy, we provide a concrete example as follow. A classifier is
calibrated if its average accuracy, over all samples it predicts with p confidence (the probability assigned on
its output class), is close to p (0 < p < 1). That is, a calibrated classifier’s predicted confidence matches its
accuracy. We observe that DP models using a small clipping norm are oftentimes too over-confident to be
reliable (the predicted confidence is much higher than the actual accuracy), while a large clipping norm is
amazingly effective on mitigating the mis-calibration.

2 Background

2.1 Differential privacy notion

We provide the definition of DP (Dwork et al., 2006; 2014) as follows.
Definition 2.1. A randomized algorithmM is (ε, δ)-differentially private (DP) if for any neighboring datasets
S, S′ differ by an arbitrary sample, and for any event E,

P[M(S) ∈ E] 6 eεP [M (S′) ∈ E] + δ. (2.1)

Given a deterministic function G(S), adding noise proportional to G’s sensitivity makes it private. This is
known as the Gaussian mechanism, as stated in Lemma 2.2 and widely used in DP deep learning.

2

Published in Transactions on Machine Learning Research (06/2023)

Lemma 2.2 (Theorem A.1 (Dwork et al., 2014); Theorem 2.7 (Dong et al., 2019)). Define the `2 sensitivity of
any function G to be R := supS,S′ ‖G(S)−G(S′)‖2 where the supreme is over all neighboring datasets(S, S′).
Then the Gaussian mechanism Ĝ(S) = G(S) + σR · N (0, I) is (ε, δ)-DP for some ε depending on (σ, p, δ),
where p is the sampling ratio (e.g. batch size / total sample size).

We note that the interdependence among ε and (σ, n, p, δ) can be characterized by various privacy accountants,
including Moments accountant (Abadi et al., 2016; Canonne et al., 2020), Gaussian differential privacy (GDP)
(Dong et al., 2019; Bu et al., 2019), Fourier accountant (Koskela et al., 2020), Edgeworth Accountant (Wang
et al., 2022), etc., each based on a different composition theory that accumulates the privacy risk ε(σ, n, p, δ, T)
differently over T iterations.

2.2 Deep learning with differential privacy

DP deep learning (Google; Facebook) uses a general optimizer, e.g. SGD and Adam, to update the neural
networks with the

privatized gradient:
∑
i

Ci(R) · ∂`i
∂w + σR · N (0, I), (2.2)

where w is the trainable parameters of the network, ∂`i

∂w is the i-th per-sample gradient of loss `, and σ is the
noise scale that determines the privacy risk. Specifically, Ci(R) is the clipping factor with the clipping norm
R, which restricts the norm of the clipped gradient in that ‖Ci(R)∂`i

∂w‖ ≤ R. There are multiple ways to
design such an clipping factor. The most generic clipping (Abadi et al., 2016) uses Ci = min{1, R/‖∂`i

∂w‖}, the
automatic clipping (Bu et al., 2022) uses Ci = 1/(‖∂`i

∂w‖+ 0.01) or the normalization Ci = 1/‖∂`i

∂w‖, and the
global clipping uses Ci = I{∂`i

∂w ≤ R} to be defined in Appendix D. In this work, we focus on the traditional
clipping (Abadi et al., 2016) and observe that

clipping/normalization⇐⇒ R/

∥∥∥∥ ∂`i∂w

∥∥∥∥ smallR←− Ci = min
{

1, R/
∥∥∥∥ ∂`i∂w

∥∥∥∥} largeR−→ Ci = 1⇐⇒ no clipping.

In equation 2.2, the privatized gradient has two unique components compared to the standard non-DP
gradient: the per-sample gradient clipping (to bound the sensitivity of the gradient) and the random noise
addition (to guarantee the privacy of models). Empirical observations have found that optimizers with
the per-sample gradient clipping, even when no noise is present, have much worse accuracy at the end of
training (Abadi et al., 2016; Bagdasaryan et al., 2019). On the other hand, noise addition (without the
per-sample clipping), though slows down the convergence, can lead to comparable or even better accuracy
at the convergence (Neelakantan et al., 2015). Therefore, it is important to characterize the effects of the
clipping and the noising, which are under-studied while widely-applied in DP deep learning.

3 Warmup: Convergence of Non-Private Gradient Method

We start by reviewing the standard non-DP Gradient Descent (GD) for arbitrary neural network and
arbitrary loss. In particular, we analyze the training dynamics of a neural network using the neural tangent
kernel (NTK) matrix1.

Suppose a neural network f2 is governed by weights w, with samples xi and labels yi (i = 1, ..., n). Denote
the prediction by fi = f(xi,w), and the per-sample loss by `i = `(f(xi,w), yi), whereas the optimization

1We emphasize that our analysis are not limited to the infinitely wide or over-parameterized neural networks. Put differently,
we don’t assume the NTK matrix H to be deterministic nor nearly time-independent, as was the case in (Arora et al., 2019a;
Lee et al., 2019; Du et al., 2018; Allen-Zhu et al., 2019; Zou et al., 2020; Fort et al., 2020; Arora et al., 2019b).

2The neural network f (and thus the loss ` and L) is assumed to be differentiable following the convention of existing literature
(Du et al., 2018; Allen-Zhu et al., 2019; Xie et al., 2020; Bu et al., 2021b), in the sense that sub-gradient exists everywhere. This
differentiability is a necessary foundation of the back-propagation for deep learning.

3

Published in Transactions on Machine Learning Research (06/2023)

loss L is the average of per-sample losses,

L(w) = 1
n

n∑
i=1

`(f(xi,w), yi).

In discrete time, the gradient descent with a learning rate η can be written as:

w(k + 1) = w(k)− η ∂L
∂w

>
= w(k)− η

n

∑
i

∂`i
∂w(k) .

In continuous time, the corresponding gradient flow, i.e., the ordinary differential equation (ODE) describing
the weight updates with an infinitely small learning rate η → 0, is then:

ẇ(t) = − ∂L

∂w(t)

>
= − 1

n

∑
i

∂`i
∂w(t) .

Applying the chain rules to the gradient flow, we obtain the following general dynamics of the loss L,

L̇ = ∂L

∂wẇ = − ∂L
∂w

∂L

∂w

>
= −∂L

∂f

∂f

∂w
∂f

∂w

> ∂L

∂f

>
= −∂L

∂f
H(t)∂L

∂f

>
, (3.1)

where ∂L
∂f = 1

n (∂`1
∂f1

, ..., ∂`n

∂fn
) ∈ R1×n, and the Gram matrix H(t) := ∂f

∂w
∂f
∂w
>
∈ Rn×n is known as the NTK

matrix, which is positive semi-definite and crucial to analyzing the convergence behavior.

To give a concrete example, let ` be the MSE loss `i(w) = (f(xi,w) − yi)2 and LMSE = 1
n

∑
i `i(w) =

1
n

∑
i(fi − yi)2, then L̇MSE = −4(f − y)>H(t)(f − y)/n2. Furthermore, if H(t) is positive definite, the

MSE loss LMSE → 0 exponentially fast (Du et al., 2018; Allen-Zhu et al., 2019; Zou et al., 2020) , and the
cross-entropy loss LCE → 0 at rate O(1/t) (Allen-Zhu et al., 2019).

4 Continuous-time Convergence of DP Gradient Descent

In this section, we analyze the weight dynamics and loss dynamics of DP-GD with an arbitrary clipping
function in continuous-time analysis. That is, we study only the gradient flow of the training dynamics as the
learning rate η tends to 0. Our analysis can generalize to other optimizers such as DP-SGD, DP-HeavyBall,
and DP-Adam.

4.1 Effect of Noise Addition on Convergence

Our first result is simple yet surprising: the gradient flow of a stochastic noisy GD with non-zero noise
equation 4.1 is the same as that of the gradient flow without the noise in equation 4.2. Put it differently, the
noise addition has no effect on the convergence of DP optimizers in the limit of continuous time analysis.
We note that DP-GD shares some similarity to another noisy gradient method, known as the stochastic
gradient Langevin dynamics (SGLD Welling & Teh (2011)). However, while DP-GD has a noise magnitude
proportional to η and thus corresponds to a deterministic gradient flow, SGLD has a noise magnitude
proportinal to √η, which is much larger when we let η → 0 in the limit, and thus corresponds to a different
continuous-time behavior: its gradient flow is a stochastic differential equation driven by a Brownian motion.
We will extend this comparison to the discrete time in Section 4.5.

To elaborate this point, we consider the DP-GD with Gaussian noise, following the notation in equation 2.2,

w(k + 1) = w(k)− η

n

(∑
i

Ci
∂`i

∂w(k) + σR · N (0, I)
)
. (4.1)

Notice that this general dynamics covers both the standard non-DP GD (σ = 0 and, Ci = 1 if no clipping, or
Ci = c if batch clipping) and DP-GD with any clipping function. Through Fact 4.1 (see proof in Appendix B),
we claim that the gradient flow of equation 4.1 is the same ODE (not SDE) regardless of the value of σ. That
is, different σ always results in the same gradient flow as η/n→ 0.

4

Published in Transactions on Machine Learning Research (06/2023)

Fact 4.1. For all σ ≥ 0, the gradient descent in equation 4.1 corresponds to the continuous gradient flow

ẇ(t) = − 1
n

∑
i

∂`i
∂w(t)Ci(t). (4.2)

This result indeed aligns the conventional wisdom3 of tuning the clipping norm C first (e.g. setting σ = 0 or
small) then the noise scale σ, since the convergence is more sensitive to the clipping. We validate Fact 4.1 in
Figure 1 by experimenting on CIFAR10 with small learning rate.

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

= 0, =
= 1, = 2.06
= 2, = 0.50
= 4, = 0.23

non-DP, =

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 lo
ss

= 0, =
= 1, = 2.06
= 2, = 0.50
= 4, = 0.23

non-DP, =

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

= 0, =
= 1, = 2.06
= 2, = 0.50
= 4, = 0.23

non-DP, =

Figure 1: For fixed R = 1, η = 0.1, ViT-base trained with DP-SGD under various noise σ has similar
performance on CIFAR10 (setting in Section 5.3). Here ‘non-DP’ means both σ = 0 and no clipping. Notice
that the loss curves for different σ are very similar (though not the same) to each other, because we fix
the random seed at the beginning of each iteration among different runs. This is to eliminate the potential
difference from uncontrolled random realizations for fair comparison.

4.2 Effect of Per-Sample Clipping on Convergence

We move on to analyze the effect of the per-sample clipping on the DP training equation 4.2. It has been
empirically observed that the per-sample clipping results in worse convergence and accuracy even without
the noise (Bagdasaryan et al., 2019). We highlight that the NTK matrix is the key to understanding the
convergence behavior. Specifically, the per-sample clipping affects NTK through its linear algebra properties,
especially the positive semi-definiteness, which we define below in two notions for a general matrix.
Definition 4.2. For a (not necessarily symmetric) matrix A, it is

1. positive in quadratic form if and only if x>Ax ≥ 0 for every non-zero x;

2. positive in eigenvalues if and only if all eigenvalues of A are non-negative.

These two positivity definitions are equivalent for a symmetric or Hermitian matrix, but not so for non-
symmetric matrices. We illustrate this difference in Appendix A with some concrete examples. Next, we
introduce two styles of per-sample clippings, both can work with any clipping function.

Flat clipping style. The DP-GD described in equation 4.1, with the gradient flow equation 4.2, is equipped
with the flat clipping (McMahan et al., 2018). In words, the flat clipping upper bounds the entire gradient
vector by a norm R. Using the chain rules, we get

L̇ = ∂L

∂wẇ = − 1
n2

∑
j

∂`j
∂w

∑
i

∂`i
∂wCi = −∂L

∂f
HC∂L

∂f

>
, (4.3)

where C(t) = diag(C1, · · · , Cn) and Ci(t) is defined in Section 2.2.

3See github.com/pytorch/opacus/blob/master/tutorials/building_image_classifier.ipynb and Section 3.3 in (Kurakin
et al., 2022).

5

github.com/pytorch/opacus/blob/master/tutorials/building_image_classifier.ipynb

Published in Transactions on Machine Learning Research (06/2023)

Layerwise clipping style. We additionally analyze another per-sample clipping style – the layerwise
clipping (Abadi et al., 2016; McMahan et al., 2017; Phan et al., 2017). Unlike the flat clipping, the layerwise
clipping upper bounds the r-th layer’s gradient vector by a layer-dependent norm Rr. Therefore, the DP-GD
and its gradient flow with this layerwise clipping are:

wr(k + 1) = wr(k)− η

n

(∑
i

∂`i
∂wr

Ci,r + σRr · N (0, 1)
)

and ẇr(t) = − 1
n

∑
i

∂`i
∂wr

Ci,r.

Then the loss dynamics is obtained by the chain rules:

L̇ =
∑
r

∂L

∂wr
ẇr = −∂L

∂f

∑
r

HrCr
∂L

∂f

>
, (4.4)

where the layerwise NTK matrix Hr = ∂f
∂wr

∂f
∂wr

>, and Cr(t) = diag(C1,r, · · · , Cn,r).

In short, from equation 4.3 and equation 4.4, the per-sample clipping precisely changes the NTK matrix from
H ≡

∑
r Hr, in the standard non-DP training, to HC in DP training with flat clipping, and to

∑
r HrCr in

DP training with layerwise clipping. Subsequently, we will show that this may break the NTK’s positivity
and harm the convergence of DP training.

4.3 Small Per-Sample Clipping Norm Breaks NTK Positivity

We show that the small clipping norm R breaks the positive semi-definiteness of the NTK matrix4.
Theorem 1. For an arbitrary neural network and a loss convex in f , suppose at least some per-sample
gradients are clipped (∃i, Ci < 1) in the gradient flow of DP-GD, and assume H(t) � 0, then:

1. for flat clipping style, the loss dynamics is equation 4.3 and the NTK matrix is H(t)C(t), which may not
be symmetric nor positive in quadratic form, but is positive in eigenvalues.

2. for layerwise clipping style, the loss dynamics is equation 4.4 and the NTK matrix is
∑
r Hr(t)Cr(t),

which may not be symmetric nor positive in quadratic form or in eigenvalues.

3. for both flat and layerwise clipping styles, the loss L(t) may not decrease monotonically.

4. if the loss L(t) converges with L̇(t)→ 05, for the flat clipping style, it converges to 0; for the layerwise
clipping style, it may converge to a non-zero value.

We prove Theorem 1 in Appendix B, which states that the symmetry of NTK is almost surely broken by the
clipping using small clipping norm. If furthermore the positive definiteness of NTK is broken, then severe
issues may arise in the loss convergence, which is depicted in Figure 1 and Figure 8.

4.4 Large Per-Sample Clipping Norm Preserves NTK Positivity

Now we switch gears to large clipping norm R. Suppose at each iteration, R is sufficiently large so that no
per-sample gradient is clipped (Ci = 1), i.e. the per-sample clipping is not effective. Thus, the gradient flow
of DP-GD is the same as that of non-DP GD. Hence we obtain the following result.
Theorem 2. For an arbitrary neural network and a loss convex in f , suppose none of the per-sample gradients
are clipped (∀i, Ci = 1) in the gradient flow of DP-GD, and assuming H(t) � 0, then:

1. for both flat and layerwise clipping styles, the loss dynamics is equation 3.1 and the NTK matrix is H(t),
which is symmetric and positive definite.

4It is a fact that the product of a symmetric and positive definite matrices and a positive diagonal matrix may not be
symmetric nor positive in quadratic form. This is shown in Appendix A.

5Note that it is possible that L(t) converges yet L̇(t) 6→ 0, e.g. when uniform convergence is not satisfied.

6

Published in Transactions on Machine Learning Research (06/2023)

2. if the loss L(t) converges with L̇(t)→ 0, for both flat and layerwise clipping styles, the loss L(t) decreases
monotonically to 0.

We prove Theorem 2 in Appendix B and the benefits of large clipping norm are assessed in Section 5.2. Our
findings from Theorem 1 and Theorem 2 are visualized in the left plot of Figure 10 and summarized in
Table 1.

Clipping type NTK Symmetric Positive in Positive in Loss Monotone To zero
matrix NTK quadratic form eigenvalues convergence loss decay loss

No clipping H ≡
∑
r Hr 3 3 3 3 3 3

Batch clipping cH ≡ c
∑
r Hr 3 3 3 3 3 3

Large R clipping H ≡
∑
r Hr 3 3 3 3 3 3

(Flat & layerwise)
Small R clipping HC 7 7 3 7 7 3

(Flat)
Small R clipping

∑
r HrCr 7 7 7 7 7 7

(Layerwise)
Table 1: Effects of per-sample gradient clipping on gradient flow. Here “Yes/No" means guaranteed or not
and the loss refers to the training set. “Loss convergence" is conditioned on H(t) � 0.

4.5 Connection to Bayesian Deep Learning

When R is sufficiently large, all per-sample gradients are not clipped (Ci = 1,∀i), and DP-SGD is essentially
the SGD with independent Gaussian noise. This is indeed the SGLD (with a different learning rate) that is
commonly used to train Bayesian neural networks.

DP-SGD: w(k + 1)−w(k) = −ηDP-SGD

B

(∑
i

∂li
∂w + σR · N (0, I)

)
,

SGLD: w(k + 1)−w(k) = −ηSGLDn

2B

(∑
i

∂li
∂w

)
+√ηSGLDN (0, I),

where n is the total number of samples and B is mini-batch size. Clearly, DP-SGD (with the right combination
of hyperparameters) is a special form of SGLD by setting ηDP-SGD = ηSGLDn/2 and σR n

2B = 1/√ηSGLD.

Similarly, DP-HeavyBall with large R can be viewed as stochastic gradient Hamiltonian Monte Carlo. This
equivalence relation opens new doors to understanding DP optimizers by borrowing the rich literature from
the Bayesian learning. Especially, the uncertainty quantification of Bayesian neural network implies the
amazing calibration of large-R DP optimization in Section 5.2.

5 Discrete-time DP Optimization: privacy, accuracy, calibration

Now, we focus on the more practical analysis when the learning rate η is not infinitely small, i.e. the discrete
time analysis. In this regime, the gradient flow in equation 4.2 may deviate from the dynamics of the actual
training, especially when the added noise is not small, e.g. when the privacy budget ε is stringent and thus
requires a large σ.

Nevertheless, state-of-the-art DP accuracy can be achieved under settings that is well-approximated by our
gradient flow. For example, large pre-trained models such as GPT2 (0.8 billion parameters) (Bu et al., 2022;
Li et al., 2021) and ViT (0.3 billion parameters) (Bu et al., a) are typically trained using small learning
rates around 0.0001. In addition, the best DP models are trained with large batch size n, e.g. (Li et al.,
2021) have used a batch size 6000 to train RoBERTa on MNLI and QQP datasets, and (Kurakin et al.,
2022; De et al., 2022; Mehta et al., 2022) have used batch sizes n from 104 to 106, i.e. full batch, to achieve
state-of-the-art DP accuracy on ImageNet. These settings all result in very small noise magnitude ησR/n in
the optimization6, so that the noise has small effects on the accuracy (and the calibration), as illustrated in
Figure 1. Consequently, we focus on only analyzing the effect of different clipping norms R.

6Here the noise magnitude discussed is per parameter. It is empirically verified that the total noise magnitude for models
with millions of parameters can be also small or even dimension-independent when the gradients are low-rank (Li et al., 2022).

7

Published in Transactions on Machine Learning Research (06/2023)

5.1 Privacy analysis

From Lemma 2.2, we highlight that DP optimizers with all clipping norms have the same privacy guarantee,
independent of the choice of the privacy accountant, because the privacy risk ε only depends on the noise
scale σ (i.e. the noise-to-sensitivity ratio). We summarize this common fact in Fact 5.1, which motivates
the ablation study on R in most literature of DP deep learning. Consequently, one can use a larger clipping
norm that benefits the calibration, while remaining equally DP as using a smaller clipping norm.
Fact 5.1 (Abadi et al. (2016)). DP optimizers with the same noise scale σ are equally (ε(σ), δ(σ))-DP,
independent of the choice of the clipping norm R.

Proof of Fact 5.1. Firstly, we show that the privatized gradient in equation 2.2 has a privacy guarantee that
only depends on σ, not R, regardless of which privacy accountant is adopted. This can be seen because (1)
the sum of per-sample clipped gradient

∑
i Cig

(i)
t has a sensitivity of maxi∈Bt

‖Cig(i)
t ‖ ≤ R by the triangular

inequality, and (2) the noise σR is proportional to R and hence fixing the noise-to-signal ratio at σR/R = σ,
regardless of the choice of R. Therefore, the privacy guarantee is the same and independent of R. Secondly,
it is well-known that the post-processing of a DP mechanism is equally DP, thus any optimizer (e.g. SGD or
Adam) that leverages the same privatized gradient in equation 2.2 has the same DP guarantee.

5.2 Accuracy and Calibration

In the following sections, we reveal a novel phenomenon that DP optimizers play important roles in producing
well-calibrated and reliable models.

In M -class classification problems, we denote the probability prediction for the i-th sample as πi ∈ RM so
that f(xi) = argmax(πi), then the accuracy is 1{f(xi) = yi}. The confidence, i.e., the probability associated
with the predicted class, is P̂i := maxMk=1[πi]k and a good calibration means the confidence is close to the
accuracy7. Formally, we employ three popular calibration metrics from (Naeini et al., 2015): the test loss, i.e.
the negative log-likelihood (NLL), the Expected Calibration Error (ECE), and the Maximum Calibration
Error (MCE).

ECE: EP̂i

[∣∣∣P(f(xi) = yi|P̂i = p)− p
∣∣∣] , MCE: max

p∈[0,1]

∣∣∣P(f(xi) = yi|P̂i = p)− p
∣∣∣.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

100

101

102

103

104

Nu
m

be
r o

f S
am

pl
es

Accuracy
Avg Confidence
DP-SGD, R=10
DP-SGD, R=0.1

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

101

102

103

104

Nu
m

be
r o

f S
am

pl
es

Accuracy
Avg Confidence
DP-SGD, R=200
DP-SGD, R=1

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

101

102

103

104

Nu
m

be
r o

f S
am

pl
es

Accuracy
Avg Confidence
DP-AdamW, R=20
DP-AdamW, R=0.1

Figure 2: Confidence histograms on CIFAR 10 (left), MNIST (middle), and SNLI (right).

ECE % MCE %
non-DP DP (small R) DP (large R) non-DP DP (small R) DP (large R)

CIFAR10 1.3 0.9 1.1 54.8 58.6 27.5
MNIST 0.4 2.3 0.7 49.3 56.2 33.4
SNLI 13.0 22.0 17.6* 34.7 62.5 28.9*

Table 2: Calibration metrics ECE and MCE by non-DP (no clipping) and DP optimizers. *Note that the
SNLI experiment uses the mix-up training as described in Section 5.5.

7An over-confident classifier, when predicting wrong at one data point, only reduces its accuracy a little but increases its loss
significantly due to large − log(πyi), since too little probability is assigned to the true class.

8

Published in Transactions on Machine Learning Research (06/2023)

Throughout this paper, we use the GDP privacy accountant for the experiments, with Private Vision
library (Bu et al., a) (improved on Opacus) and one P100 GPU. We cover a range of model architectures
(including convolutional neural networks [CNN] and Transformers), batch sizes (from 32 to 1000), datasets
(with sample size from 50,000 to 550,152), and tasks (including image and text classification). More details
are available in Appendix C.

5.3 CIFAR10 image data with Vision Transformer

0.1 1.0 10.0 100.0 1000.0
Clipping norm R

1.0

0.1

0.01

0.001

0.0001

Le
ar

ni
ng

 ra
te

97.17 96.70 10.00 nan nan

31.39 97.03 96.52 10.77 nan

11.75 31.39 96.61 96.04 10.73

10.28 11.75 31.39 94.98 91.91

10.19 10.29 11.75 30.83 52.42
10

20

30

40

50

60

70

80

90

0.1 1.0 10.0 100.0 1000.0
Clipping norm R

1.0

0.1

0.01

0.001

0.0001

Le
ar

ni
ng

 ra
te

0.9 2.2 89.4 nan nan

12.9 0.7 1.9 70.5 nan

39.3 12.9 1.1 1.1 62.1

44.1 39.3 12.9 5.2 4.1

44.6 44.1 39.3 13.1 5.8
0.2

0.4

0.6

0.8

1.0

0.1 1.0 10.0 100.0 1000.0
Clipping norm R

1.0

0.1

0.01

0.001

0.0001

Le
ar

ni
ng

 ra
te

58.6 54.0 89.4 nan nan

48.6 38.8 53.7 81.5 nan

90.7 48.6 27.5 38.5 81.2

92.4 90.7 48.5 35.7 34.8

92.4 92.4 90.7 42.7 13.3 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 3: Ablation study on the accuracy, ECE and MCE (left to right) of CIFAR10 with ViT-base.

0 10 20 30 40 50
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
ai

n
lo

ss

flat,R = 100, = 0.001
flat,R = 0.1, = 1
layerwise,R = 100, = 0.001
layerwise,R = 0.1, = 1

0 10 20 30 40 50
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Te
st

 lo
ss

flat,R = 100, = 0.001
flat,R = 0.1, = 1
layerwise,R = 100, = 0.001
layerwise,R = 0.1, = 1

0 10 20 30 40 50
Iteration

0.2

0.4

0.6

0.8

1.0

Te
st

 a
cc

ur
ac

y

flat,R = 100, = 0.001
flat,R = 0.1, = 1
layerwise,R = 100, = 0.001
layerwise,R = 0.1, = 1

Figure 4: Performance on CIFAR10 with ViT-base, batch size 1000, noise scale 1.3, (ε, δ) = (1.96, 10−5).

CIFAR10 is an image dataset, which contains 50000 training samples and 10000 test samples of 32× 32 color
images in 10 classes. We use the Vision Transformer (ViT-base, 86 million parameters) which is pre-trained
on ImageNet and train with DP-SGD for a single epoch. This is one of state-of-the-art models for this DP
task (Bu et al., a;b). From Figure 38, the best accuracy is achieved along the diagonal by small R and large
η, a phenomenon that is commonly observed in (Li et al., 2021; Bu et al., 2022). However, the calibration
error (especially the MCE) is worse than the standard training in Table 2 and Figure 2. Additionally, the
layerwise clipping can further slow down the optimization, as indicated by Theorem 1. We highlight that we
choose (R, η) proportioanlly, so that the total noise magnitude ησR is fixed for different hyperparameters.

On the other hand, DP training with larger R can lead to significantly better calibration errors, while incurring
a negligible reduction in the accuracy (97.17 → 96.61%). In Figure 5, the reliability diagram (DeGroot
& Fienberg, 1983; Niculescu-Mizil & Caruana, 2005) displays the accuracy as a function of confidence.
Graphically speaking, a calibrated classifier is expected to have blue bins close to the diagonal black dotted
line. While the non-DP model is generally over-confident and thus not calibrated, the large R clipping
effectively achieves nearly perfect calibration, thanks to its Bayesian learning nature. In contrast, the classifier
with small R clipping is not only mis-calibrated, but also falls into ‘bipolar disorder’: it is either over-confident
and inaccurate, or under-confident but highly accurate. This disorder is observed to different extent in all
experiments in this paper.

8Note that the ablation study of (η,R) is necessary and well-applied on DP optimization (see Figure 8 in (Li et al., 2021) and
Figure 1 in (Bu et al., 2022)). Thus, besides the evaluation of accuracy, additionally evaluating the calibration error is almost
free.

9

Published in Transactions on Machine Learning Research (06/2023)

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

Figure 5: Reliability diagrams (left for non-DP; middle for DP with large R; right for DP with small R) on
CIFAR10 with ViT-base.

5.4 MNIST image data with CNN model

On the MNIST dataset, which contains 60000 training samples and 10000 test samples of 28× 28 grayscale
images in 10 classes, we use the standard CNN in the DP libraries9(Google; Facebook) (see Appendix C.1
for architecture) and train with DP-SGD but without pre-training. In Figure 6, DP training with both
clipping norms is (2.32, 10−5)-DP, and has similar test accuracy (96% for small R and 95% for large R),
though the large R leads to smaller loss (or NLL). In the right plot of Figure 6, we demonstrate how R
affects the accuracy and calibration, ceteris paribus, showing a clear accuracy-calibration trade-off based on 5
independent runs. Similar to Figure 5, large R training again mitigates the mis-calibration in Figure 7.

0 10 20 30 40 50 60
Epoch

0.5

1.0

1.5

2.0

Lo
ss

DP-SGD, train, R=1
DP-SGD, test, R=1
DP-SGD, train, R=200
DP-SGD, test, R=200

0 10 20 30 40 50 60
Epoch

0.2

0.4

0.6

0.8

1.0

Te
st

 A
cc

ur
ac

y

DP-SGD, R=1
DP-SGD, R=200

0 25 50 75 100 125 150 175
R

0.950

0.955

0.960

0.965

0.970

Ac
cu

ra
cy

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

EC
E

Figure 6: Loss (left), accuracy (middle), accuracy with ECE (right) on MNIST with 4-layer CNN under
different clipping norms R, batch size 256, noise scale 1.1, learning rate 0.15/R for each R.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

Figure 7: Reliability diagrams (left for non-DP; middle for large R = 200; right for small R = 1) on MNIST
with 4-layer CNN.

9See https://github.com/tensorflow/privacy/tree/master/tutorials in Tensorflow and https://github.com/pytorch/
opacus/blob/master/examples/mnist.py in Pytorch Opacus.

10

https://github.com/tensorflow/privacy/tree/master/tutorials
https://github.com/pytorch/opacus/blob/master/examples/mnist.py
https://github.com/pytorch/opacus/blob/master/examples/mnist.py

Published in Transactions on Machine Learning Research (06/2023)

5.5 SNLI text data with BERT and mix-up training

0 10 20 30 40 50
Iteration×1000

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Lo
ss

DP-AdamW, train, R=0.1
DP-AdamW, test, R=0.1
DP-AdamW, train, R=20
DP-AdamW, test, R=20

0 10 20 30 40 50
Iteration×1000

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Te
st

 A
cc

ur
ac

y

DP-AdamW, R=0.1
DP-AdamW, R=20

50 52 54
0.73

0.74

0.75

0 10 20 30 40 50
Iteration×200

0.18

0.19

0.20

0.21

0.22

EC
E

DP-AdamW, R=0.1
DP-AdamW, R=20

Figure 8: Loss (left), accuracy (middle) and calibration on SNLI with pre-trained BERT, batch size 32,
learning rate 0.0005, noise scale 0.4, clipping norm are 0.1 or 20, (ε, δ) = (1.25, 1/550152).

Stanford Natural Language Inference (SNLI) 10 is a collection of human-written English sentence paired with
one of three classes: entailment, contradiction, or neutral. The dataset has 550152 training samples and
10000 test samples. We use the pre-trained BERT (Bidirectional Encoder Representations from Transformers)
on Opacus tutorial11, which gives a state-of-the-art privacy-accuracy result. Our BERT contains 108M
parameters and we only train the last Transformer encoder, which has 7M parameters, using DP-AdamW.
In particular, we use a mix-up training: we in fact train BERT with small R for 3 epochs (51.5 × 103

iterations, i.e. 95% of the training) and then use large R for an additional 2500 iterations (the last 5% of the
training). For comparison, we also train the same model with small R for the entire training process of 54076
iterations.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Perfect calibration
Accuracy
Over-confidence
Under-confidence

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Figure 9: Reliability diagrams (left for non-DP; middle for large R = 20; right for small R = 0.1) on SNLI
with BERT. Note that the large R is only used for the last 2500 out of 54000 iterations.

Surprisingly, the existing DP optimizer does not minimize the loss at all, yet the accuracy still improves
along the training. We again observe that large R training has significantly better convergence than small
R (observe that when turned to large R in the last 2500 steps, the test loss or NLL decreases significantly
from 1.79 to 1.08, and the training loss or NLL decreases from 1.81 to 1.47; while keeping a small R does not
reduce the losses). The resulting models have similar accuracy: small R has 74.1% accuracy; mix-up training
has 73.1% accuracy; as baselines, non-DP has 85.4% accuracy and the entire training with large R has 65.9%
accuracy. All DP models have the same privacy (ε = 1.25, δ = 1/550152), and large R training has much
better calibration in Table 2. We remark that all hyperparameters are the same as in the Opacus tutorial.

5.6 Regression Tasks

On regression tasks, the performance measure and the loss function are unified as MSE. Figure 10 shows that
DP training with large R is comparable if not better than that with small R. We experiment on the California
Housing data (20640 samples, 8 features) and Wine Quality (1599 samples, 11 features, run with full-batch

10We use SNLI 1.0 from https://nlp.stanford.edu/projects/snli/
11See https://github.com/pytorch/opacus/blob/master/tutorials/building_text_classifier.ipynb.

11

https://nlp.stanford.edu/projects/snli/
https://github.com/pytorch/opacus/blob/master/tutorials/building_text_classifier.ipynb

Published in Transactions on Machine Learning Research (06/2023)

DP-GD). Especially, in the left plot of Figure 10, we observe that small R training may incurs non-monotone
convergence, as explained by Theorem 1, which is mitigated by the large R training. Additional experimental
details are available in Appendix C.4.

100 101 102 103

Iterations

100

101

Lo
ss

red_wine
Test loss, R=1
Test loss, R=200

100 101

Iterations

100

1.2 × 100

1.4 × 100

1.6 × 100

1.8 × 100

2 × 100

2.2 × 100

2.4 × 100

Lo
ss

california_housing
Test loss, R=1
Test loss, R=200

Figure 10: Performance of DP optimizers under different clipping norms on the Wine Quality and the
California Housing datasets. Experimental details in Appendix C.4.

6 Discussion

In this paper, we provide a continuous-time convergence analysis for DP deep learning, via the NTK matrix,
which applies to the general neural network architecture and loss function. We show that in such a regime,
the noise addition only affects the privacy risk but not the convergence, whereas the per-sample clipping only
affects the convergence and the calibration (especially with different choices of clipping thresholds), but not
the privacy risk.

We then study the accuracy-calibration trade-off formed by the DP training with different clipping norms.
We show that using a small clipping norm oftentimes trains the more accurate but mis-calibrated models,
while a large clipping norm provides a comparably accurate yet much more calibrated model. In fact, several
follow-up works have demonstrated that DP training with large R is remarkably accurate and well-calibrated
on large transformers with > 108 parameters (Zhang et al., 2022), and it significantly mitigates the unfairness
on various tasks (Esipova et al., 2022), while preserving privacy.

A future direction is to study the discrete time convergence when both the learning rate and added noise are
not small. One immediate observation is that the noise addition will have an effect on the convergence in this
case, which needs further investigation. In addition, the analysis of commonly-used mini-batch optimizers
is also interesting, since for those optimizers, the training dynamics is no longer deterministic and instead
stochastic differential equation will be used for analsis. Lastly, the inconsistency between the cross-entropy
loss and the prediction accuracy, as well as the connection to the calibration issue are intriguing; their
theoretical understanding awaits future research.

Acknowledgement

We would like to thank Weijie J. Su, Janardhan Kulkarni, Om Thakkar, and Gautam Kamath for constructive
and stimulating discussions around the global clipping function. We also thank the Opacus team for
maintaining this amazing library. This work was supported in part by NIH through R01GM124111 and
RF1AG063481.

References

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 308–318, 2016.

12

Published in Transactions on Machine Learning Research (06/2023)

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On exact
computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019a.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. arXiv preprint arXiv:1901.08584,
2019b.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. Differential privacy has disparate impact on
model accuracy. In Advances in Neural Information Processing Systems, pp. 15453–15462, 2019.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp.
464–473. IEEE, 2014.

Zhiqi Bu, Jialin Mao, and Shiyun Xu. Scalable and efficient training of large convolutional neural networks
with differential privacy. In Advances in Neural Information Processing Systems, a.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private bias-term only fine-tuning
of foundation models. In Workshop on Trustworthy and Socially Responsible Machine Learning, NeurIPS
2022, b.

Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep learning with gaussian differential privacy. arXiv
preprint arXiv:1911.11607, 2019.

Zhiqi Bu, Sivakanth Gopi, Janardhan Kulkarni, Yin Tat Lee, Judy Hanwen Shen, and Uthaipon Tantipongpi-
pat. Fast and memory efficient differentially private-sgd via jl projections. arXiv preprint arXiv:2102.03013,
2021a.

Zhiqi Bu, Shiyun Xu, and Kan Chen. A dynamical view on optimization algorithms of overparameterized
neural networks. In International Conference on Artificial Intelligence and Statistics, pp. 3187–3195. PMLR,
2021b.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially private deep
learning made easier and stronger. arXiv preprint arXiv:2206.07136, 2022.

Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million facebook profiles harvested for
cambridge analytica in major data breach. The guardian, 17:22, 2018.

Clément Canonne, Gautam Kamath, and Thomas Steinke. The discrete gaussian for differential privacy.
arXiv preprint arXiv:2004.00010, 2020.

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, and Dawn Song. The secret sharer: Evaluating and
testing unintended memorization in neural networks. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pp. 267–284, 2019.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam
Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language
models. arXiv preprint arXiv:2012.07805, 2020.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A geometric
perspective. Advances in Neural Information Processing Systems, 33, 2020.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlocking high-accuracy
differentially private image classification through scale. arXiv preprint arXiv:2204.13650, 2022.

Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D Blondel. Unique in the
crowd: The privacy bounds of human mobility. Scientific reports, 3(1):1–5, 2013.

13

Published in Transactions on Machine Learning Research (06/2023)

Yves-Alexandre De Montjoye, Laura Radaelli, Vivek Kumar Singh, et al. Unique in the shopping mall: On
the reidentifiability of credit card metadata. Science, 347(6221):536–539, 2015.

Morris H DeGroot and Stephen E Fienberg. The comparison and evaluation of forecasters. Journal of the
Royal Statistical Society: Series D (The Statistician), 32(1-2):12–22, 1983.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. arXiv preprint arXiv:1905.02383,
2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

John C Duchi, Michael I Jordan, and Martin J Wainwright. Local privacy and statistical minimax rates. In
2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 429–438. IEEE, 2013.

Cynthia Dwork. Differential privacy: A survey of results. In International conference on theory and
applications of models of computation, pp. 1–19. Springer, 2008.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of cryptography conference, pp. 265–284. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Maria S Esipova, Atiyeh Ashari Ghomi, Yaqiao Luo, and Jesse C Cresswell. Disparate impact in differential
privacy from gradient misalignment. arXiv preprint arXiv:2206.07737, 2022.

Facebook. Pytorch Privacy library — Opacus.
https://github.com/pytorch/opacus.

Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy, and Surya
Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape geometry and the time
evolution of the neural tangent kernel. arXiv preprint arXiv:2010.15110, 2020.

Robin C Geyer, Tassilo Klein, and Moin Nabi. Differentially private federated learning: A client level
perspective. arXiv preprint arXiv:1712.07557, 2017.

Google. Tensorflow Privacy library.
https://github.com/tensorflow/privacy.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning, pp. 1321–1330. PMLR, 2017.

Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng Xu.
Practical and private (deep) learning without sampling or shuffling. arXiv preprint arXiv:2103.00039, 2021.

Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differential privacy guarantees using fft. In
International Conference on Artificial Intelligence and Statistics, pp. 2560–2569. PMLR, 2020.

Alexey Kurakin, Steve Chien, Shuang Song, Roxana Geambasu, Andreas Terzis, and Abhradeep Thakurta.
Toward training at imagenet scale with differential privacy. arXiv preprint arXiv:2201.12328, 2022.

Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and
Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
arXiv preprint arXiv:1902.06720, 2019.

Bai Li, Changyou Chen, Hao Liu, and Lawrence Carin. On connecting stochastic gradient mcmc and
differential privacy. In The 22nd International Conference on Artificial Intelligence and Statistics, pp.
557–566. PMLR, 2019.

14

https://github.com/pytorch/opacus
https://github.com/tensorflow/privacy

Published in Transactions on Machine Learning Research (06/2023)

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be strong
differentially private learners. In International Conference on Learning Representations, 2021.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat Lee, and
Abhradeep Guha Thakurta. When does differentially private learning not suffer in high dimensions?
Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent
language models. arXiv preprint arXiv:1710.06963, 2017.

H Brendan McMahan, Galen Andrew, Ulfar Erlingsson, Steve Chien, Ilya Mironov, Nicolas Papernot, and
Peter Kairouz. A general approach to adding differential privacy to iterative training procedures. arXiv
preprint arXiv:1812.06210, 2018.

Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’07), pp. 94–103. IEEE, 2007.

Harsh Mehta, Abhradeep Thakurta, Alexey Kurakin, and Ashok Cutkosky. Large scale transfer learning for
differentially private image classification. arXiv preprint arXiv:2205.02973, 2022.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security Foundations Symposium
(CSF), pp. 263–275. IEEE, 2017.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated probabilities
using bayesian binning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 29, 2015.

Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and James
Martens. Adding gradient noise improves learning for very deep networks. stat, 1050:21, 2015.

Alexandru Niculescu-Mizil and Rich Caruana. Predicting good probabilities with supervised learning. In
Proceedings of the 22nd international conference on Machine learning, pp. 625–632, 2005.

Paul Ohm. Broken promises of privacy: Responding to the surprising failure of anonymization. UCLA l.
Rev., 57:1701, 2009.

Nicolas Papernot, Abhradeep Thakurta, Shuang Song, Steve Chien, and Úlfar Erlingsson. Tempered sigmoid
activations for deep learning with differential privacy. arXiv preprint arXiv:2007.14191, 2020.

NhatHai Phan, Xintao Wu, Han Hu, and Dejing Dou. Adaptive laplace mechanism: Differential privacy
preservation in deep learning. In 2017 IEEE International Conference on Data Mining (ICDM), pp.
385–394. IEEE, 2017.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Luc Rocher, Julien M Hendrickx, and Yves-Alexandre De Montjoye. Estimating the success of re-identifications
in incomplete datasets using generative models. Nature communications, 10(1):1–9, 2019.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE, 2017.

Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta. Evading the curse of dimensionality
in unconstrained private glms. In International Conference on Artificial Intelligence and Statistics, pp.
2638–2646. PMLR, 2021.

Hua Wang, Sheng Gao, Huanyu Zhang, Milan Shen, and Weijie J Su. Analytical composition of differential
privacy via the edgeworth accountant. arXiv preprint arXiv:2206.04236, 2022.

Yu-Xiang Wang, Stephen Fienberg, and Alex Smola. Privacy for free: Posterior sampling and stochastic
gradient monte carlo. In International Conference on Machine Learning, pp. 2493–2502. PMLR, 2015.

15

Published in Transactions on Machine Learning Research (06/2023)

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In Proceedings of
the 28th international conference on machine learning (ICML-11), pp. 681–688, 2011.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics: Stochastic
gradient descent exponentially favors flat minima. In International Conference on Learning Representations,
2020.

Hanlin Zhang, Xuechen Li, Prithviraj Sen, Salim Roukos, and Tatsunori Hashimoto. A closer look at the
calibration of differentially private learners. arXiv preprint arXiv:2210.08248, 2022.

Qiyiwen Zhang, Zhiqi Bu, Kan Chen, and Qi Long. Differentially private bayesian neural networks on
accuracy, privacy and reliability. arXiv preprint arXiv:2107.08461, 2021.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-parameterized
deep relu networks. Machine Learning, 109(3):467–492, 2020.

16

Published in Transactions on Machine Learning Research (06/2023)

A Linear Algebra Facts

Fact A.1. The product A = M1M2, whereM1 is a symmetric and positive matrix andM2 a positive diagonal
matrix, is positive definite in eigenvalues but is non-symmetric in general (unless the diagonal matrix is
constant) and non-positive in quadratic forms.

Proof of Fact A.1. To see the non-symmetry of A, suppose there exists i, j such that (M2)jj 6= (M2)ii, then

(M1M2)ij =
∑
k

(M1)ik(M2)kj = (M1)ij(M2)jj = (M1)ji(M2)jj ,

(M1M2)ji = (M1)ji(M2)ii 6= (M1)ji(M2)jj .

Hence A is not symmetric and positive definite. To see that A may be non-positive in the quadratic form, we
give a counter-example.

M1 =
(

1 1
1 2

)
,M2 =

(
1 0
0 0.1

)
, A = M1M2 =

(
1 0.1
1 0.2

)
, (1,−2)A

(
1
−2

)
= −0.4.

To see that A is positive in eigenvalues, we claim that an invertible square rootM1/2
1 exists asM1 is symmetric

and positive definite. Now A is similar to (M1/2
1)−1AM

1/2
1 = M

1/2
1 M2M

1/2
1 , hence the non-symmetric A has

the same eigenvalues as the symmetric and positive definite M1/2
1 M2M

1/2
1 .

Fact A.2. Matrix with all eigenvalues positive may be non-positive in quadratic form.

Proof of Fact A.2.

A =
(
−1 3
−3 8

)
, (1, 0)A

(
1
0

)
= −1,

though eigenvalues of A are 1
2 (7± 3

√
5) > 0.

Fact A.3. Matrix with positive quadratic forms may have non-positive eigenvalues.

Proof of Fact A.3.

A =
(

1 1
−1 1

)
, (x, y)A

(
x
y

)
= x2 + y2 > 0,

but eigenvalues of A are 1± i, not positive nor real. Actually, all eigenvalues of A always have positive real
part.

Fact A.4. Sum of products of positive definite (symmetric) matrix and positive diagonal matrix may have
zero or negative eigenvalues.

Proof of Fact A.4.

H1 =
(

8/9 2
2 7

)
, C1 =

(
0.9 0
0 0.4

)
, H2 =

(
3 2
2 2

)
, C2 =

(
0.1 0
0 0.6

)
.

Although Hj are positive definite, H1C1 + H2C2 has a zero eigenvalue. Further, if H1[1, 1] = 0.7, H1C1 +
H2C2 has a negative eigenvalue.

17

Published in Transactions on Machine Learning Research (06/2023)

B Details of Main Results

B.1 Proofs of main results

Proof of Fact 4.1. Expanding the discrete dynamic in equation 4.1 as w(k + 1) = w(k) − η
n

∑
i∇w`iCi −

ησR
n N (0, 1), and chaining it for r ≥ 1 times, we obtain

w(k + r)−w(k) = −
r−1∑
j=0

η

n

∑
i

∇w`i(w(k + j))Ci −
r−1∑
j=0

ησR

n
N (0, 1).

In the limit of η → 0, we re-index the weights w by time, with t = kη and s = rη. Then consider the above
equation at time t+s and t: the left hand side becomes w(t+s)−w(t); the first summation on the right hand
side converges to − 1

n

∫ t+s
t

∑
i∇w`i(τ)Ci(τ)dτ , as long as the integral exists. This can be seen as a numerical

integration with the rectangle rule, using η as the width, j as the index, and 1
n

∫ t+s
t

∑
i∇w`i(τ)Ci(τ); similarly,

the second summation J(η) =
∑r−1
j=0

ησR
n N (0, 1) has

E[J(η)] = 0 and Var(J(η)) = σ2R2η2

n2 r = ηs
σ2R2

n2 → 0, as η → 0.

Therefore, as η → 0, the discrete stochastic dynamic equation 4.1 becomes the integral

w(t+ s)−w(t) = − 1
n

∫ t+s

t

∑
i
∇w`i(τ)Ci(τ)dτ.

This integral converges to a deterministic gradient flow, as s→ 0, given by

ẇ(t) ≡ lim
s→0

w(t+ s)−w(t)
s

= − 1
n

lim
s→0

∫ t+s
t

∑
i∇w`i(τ)Ci(τ)dτ

s
.

which corresponds to the ordinary differential equations equation 4.2.

Proof of Theorem 1. We prove the statements using the derived gradient flow dynamics equation 4.2.

For Statement 1, from our narrative in Section 4.2, we know that the flat clipping algorithm has H(t)C(t) as
its NTK. Since H(t) is positive definite and C(t) is a positive diagonal matrix, by Fact A.1, the product
H(t)C(t) is positive in eigenvalues, yet may be asymmetric and not positive in quadratic form in general.

Similarly, for Statement 2, we know the NTK of layerwise clipping has the form
∑
r Hr(t)Cr(t), which by

Fact A.4 is asymmetric in general, and may be not positive in quadratic form nor positive in eigenvalues.

For Statement 3, by the training dynamics equation 4.3 for the flat clipping algorithm and equation 4.4 for
the layerwise clipping, we see that L̇ equal the negation of a quadratic form of the corresponding NTK. By
statement 1 & 2 of this theorem, such quadratic form may not be positive at all t, and hence the loss L(t) is
not guaranteed to decrease monotonically.

Lastly, for Statement 4, suppose L(t) converges in the sense that L̇ = 0 = ∂L
∂f ḟ . Suppose we have L > 0,

then ∂L
∂f 6= 0 since L is convex in the prediction f . In this case, we know ḟ = 0. Observe that

0 = ḟ = ∂f

∂w
∂w
∂t

= − ∂f
∂w

∂f

∂w

> ∂L

∂f

>
.

For the flat clipping, the NTK matrix, ∂f
∂w

∂f
∂w
> = HC is positive in eigenvalues (by Statement 1), so it could

only be the case that ∂L
∂f = 0, contradicting to our premise that L > 0. Therefore we know L = 0 as long as

it converges for the flat clipping. On the other hand, for the layerwise clipping, the NTK may be not positive
in eigenvalues. Hence it is possible that L 6= 0 when L̇ = 0.

Proof of Theorem 2. The proof is similar to the previous proof and thus omitted.

18

Published in Transactions on Machine Learning Research (06/2023)

C Experimental Details

C.1 MNIST

For MNIST, we use the standard CNN in Tensorflow Privacy and Opacus, as listed below. The training
hyperparameters (e.g. batch size) in Section 5.4 are exactly the same as reported in https://github.com/
tensorflow/privacy/tree/master/tutorials, which gives 96.6% accuracy for the small R clipping in
Tensorflow and similar accuracy in Pytorch, where our experiments are conducted. The non-DP network is
about 99% accurate. Notice the tutorial uses a different privacy accountant than the GDP that we used.

class SampleConvNet(nn.Module):
def __init__(self):

super().__init__()
self.conv1 = nn.Conv2d(1, 16, 8, 2, padding=3)
self.conv2 = nn.Conv2d(16, 32, 4, 2)
self.fc1 = nn.Linear(32 * 4 * 4, 32)
self.fc2 = nn.Linear(32, 10)

def forward(self, x):
x of shape [B, 1, 28, 28]
x = F.relu(self.conv1(x)) # -> [B, 16, 14, 14]
x = F.max_pool2d(x, 2, 1) # -> [B, 16, 13, 13]
x = F.relu(self.conv2(x)) # -> [B, 32, 5, 5]
x = F.max_pool2d(x, 2, 1) # -> [B, 32, 4, 4]
x = x.view(-1, 32 * 4 * 4) # -> [B, 512]
x = F.relu(self.fc1(x)) # -> [B, 32]
x = self.fc2(x) # -> [B, 10]
return x

C.2 CIFAR10 with Vision Transformer

In Section 5.3, we adopt the model from TIMM library. In addition to Figure 2 and Figure 5, we plot in
Figure 11 the distribution of prediction probability on the true class, say [πi]yi for the i-th sample (notice
that Figure 2 plots maxk[πi]k). Clearly the small R clipping gives overly confident prediction: almost half
of the time the true class is assigned close to zero prediction probability. The large R clipping has a more
balanced prediction probability that is less concentrated to 1.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

2000

4000

6000

8000

Nu
m

be
r o

f S
am

pl
es

DP-SGD, R=100
DP-SGD, R=0.1

Figure 11: Prediction probability on the true class on CIFAR10 with Vision Transformer.

19

https://github.com/tensorflow/privacy/blob/master/tutorials/walkthrough/mnist_scratch.py
https://github.com/pytorch/opacus/blob/master/examples/mnist.py
https://github.com/tensorflow/privacy/tree/master/tutorials
https://github.com/tensorflow/privacy/tree/master/tutorials

Published in Transactions on Machine Learning Research (06/2023)

C.3 SNLI with BERT model

In Section 5.5, we use the model from Opacus tutorial in https://github.com/pytorch/opacus/blob/
master/tutorials/building_text_classifier.ipynb. The BERT architecture can be found in https:
//github.com/pytorch/opacus/blob/master/tutorials/img/BERT.png.

To train the BERT model, we do the standard pre-processing on the corpus (tokenize the input, cut or pad
each sequence to MAX_LENGTH = 128, and convert tokens into unique IDs). We train the BERT model
for 3 epochs. Similar to Appendix C.2, in addition to Figure 8 and Figure 9, we plot the distribution of
prediction probability on the true class in Figure 12. Again, the small R clipping is overly confident, with
probability masses concentrating on the two extremes, yet the large R clipping is more balanced in assigning
the prediction probability.

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

0

1000

2000

3000

4000

5000

6000

Nu
m

be
r o

f S
am

pl
es

DP-AdamW, R=20
DP-AdamW, R=0.1

Figure 12: Histogram of predicted confidence on the true class on SNLI with BERT using large and small
clipping norms.

C.4 Regression Experiments

We experiment on the Wine Quality12 (1279 training samples, 320 test samples, 11 features) and California
Housing13 (18576 training samples, 2064 test samples, 8 features) datasets in Section 5.2. For the California
Housing, we use DP-Adam with batch size 256. Since other datasets are not large, we use the full-batch
DP-GD.

Across all the two experiments, we set δ = 1
1.1×training sample size and use the four-layer neural network with

the following structure, where input_width is the input dimension for each dataset:

class Net(nn.Module):
def __init__(self, input_width):

super(StandardNet, self).__init__()
self.fc1 = nn.Linear(input_width, 64, bias = True)
self.fc2 = nn.Linear(64, 64, bias = True)
self.fc3 = nn.Linear(64, 32, bias = True)
self.fc4 = nn.Linear(32, 1, bias = True)

def forward(self, x):
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
return self.fc4(x)

12http://archive.672ics.uci.edu/ml/datasets/Wine+Quality
13http://lib.stat.cmu.edu/datasets/houses.zip

20

https://github.com/pytorch/opacus/blob/master/tutorials/building_text_classifier.ipynb
https://github.com/pytorch/opacus/blob/master/tutorials/building_text_classifier.ipynb
https://github.com/pytorch/opacus/blob/master/tutorials/img/BERT.png
https://github.com/pytorch/opacus/blob/master/tutorials/img/BERT.png
http://archive.672ics.uci.edu/ml/datasets/Wine+Quality
http://lib.stat.cmu.edu/datasets/houses.zip

Published in Transactions on Machine Learning Research (06/2023)

The California Housing dataset is used to predict the mean price value of owner-occupied home in California.
We train with DP-Adam, noise σ = 1, clipping norm 1, and learning rate 0.0002. We also trained a non-DP
GD with the same learning rate. The GDP accountant gives ε = 4.41 after 50 epochs / 3650 iterations.

The UCI Wine Quality (red wine) dataset is used to predict the wine quality (an integer score between 0 and
10). We train with DP-GD, noise σ = 35, clipping norm 2, and learning rate 0.03. We also trained a non-DP
GD with learning rate 0.001. The GDP accountant gives ε = 4.40 after 2000 iterations.

The California Housing and Wine Quality experiments are conducted in 30 independent runs. In Figure 10,
the lines are the average losses and the shaded regions are the standard deviations.

D Global clipping and code implementation

In an earlier version of this paper, we proposed a new per-sample gradient clipping, termed as the global
clipping. The global clipping computes Cglobal,i = I(‖g(i)‖ ≤ R), i.e. only assigning 0 or 1 as the clipping
factors to each per-sample gradient.

As demonstrated in equation 2.2, our global clipping works with any DP optimizers (e.g., DP-Adam,
DP-RMSprop, DP-FTRL(Kairouz et al., 2021), DP-SGD-JL(Bu et al., 2021a), etc.), with identical
computational complexity as the existing per-sample clipping Ci = min(R/‖g(i)‖, 1). Building on top of the
Pytorch Opacus14 library, we only need to add one line of code into

https://github.com/pytorch/opacus/blob/master/opacus/per_sample_gradient_clip.py

To understand our implementation, we can equivalently view

Cglobal,i =
{

1 if Ci = 1⇐⇒ ‖g(i)‖ < R⇐⇒ min(R/‖g(i)‖, 1) = 1
0 if Ci = R/‖g(i)‖ ⇐⇒ ‖g(i)‖ ≥ R⇐⇒ min(R/‖g(i)‖, 1) = R/‖g(i)‖

In this formulation, we can easily implement our global clipping by leveraging the Opacus==0.15 library
(which already computes Ci). This can be realized in multiple ways. For example, we can add the following
one line after line 179 (within the for loop),

clip_factor=(clip_factor>=1).float()

At high level, global clipping does not clip small per-sample gradients (in terms of magnitude) and completely
remove large ones. This may be beneficial to the optimization, since large per-sample gradients often
correspond to samples that are hard-to-learn, noisy or adversarial. It is important to set a large clipping
norm R for the global clipping, so that the information from small per-sample gradients are not wasted.
However, using a large clipping norm makes the global clipping similar to the existing clipping, basically not
clipping most of the per-sample gradients. We confirm that empirically, with large clipping norm, applying
the global clipping and existing clipping have negligible difference on the convergence and calibration.

14see https://github.com/pytorch/opacus as for 2021/09/09.

21

https://github.com/pytorch/opacus/blob/master/opacus/per_sample_gradient_clip.py
https://github.com/pytorch/opacus

	Introduction
	Background
	Differential privacy notion
	Deep learning with differential privacy

	Warmup: Convergence of Non-Private Gradient Method
	Continuous-time Convergence of DP Gradient Descent
	Effect of Noise Addition on Convergence
	Effect of Per-Sample Clipping on Convergence
	Small Per-Sample Clipping Norm Breaks NTK Positivity
	Large Per-Sample Clipping Norm Preserves NTK Positivity
	Connection to Bayesian Deep Learning

	Discrete-time DP Optimization: privacy, accuracy, calibration
	Privacy analysis
	Accuracy and Calibration
	CIFAR10 image data with Vision Transformer
	MNIST image data with CNN model
	SNLI text data with BERT and mix-up training
	Regression Tasks

	Discussion
	Linear Algebra Facts
	Details of Main Results
	Proofs of main results

	Experimental Details
	MNIST
	CIFAR10 with Vision Transformer
	SNLI with BERT model
	Regression Experiments

	Global clipping and code implementation

