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Abstract

We study the fundamental problem of estimating an unknown discrete distribution
p over d symbols, given n i.i.d. samples from the distribution. We are interested in
minimizing the KL divergence between the true distribution and the algorithm’s
estimate. We first construct minimax optimal private estimators. Minimax opti-
mality however fails to shed light on an algorithm’s performance on individual
(non-worst-case) instances p and simple minimax-optimal DP estimators can have
poor empirical performance on real distributions. We then study this problem from
an instance-optimality viewpoint, where the algorithm’s error on p is compared
to the minimum achievable estimation error over a small local neighborhood of p.
Under natural notions of local neighborhood, we propose algorithms that achieve
instance-optimality up to constant factors, with and without a differential privacy
constraint. Our upper bounds rely on (private) variants of the Good-Turing esti-
mator. Our lower bounds use additive local neighborhoods that more precisely
captures the hardness of distribution estimation in KL divergence, compared to
ones considered in prior works.

1 Introduction

Accurately estimating a discrete distribution (over d symbols) from the empirical samples is a
fundamental task in statistical machine learning. An especially important distribution estimation
objective is the Kullback-Leibler (KL) divergence error, as it is crucial in promoting diversity and
smoothness by penalizing zero-mass assignment to unseen symbols. Noticeably in speech-recognition
and language modeling communities, negative log likelihood on a test set (which up to translation
is the KL divergence) is the measure that has been found to best correlate with the performance of
the model [13, 14], and is therefore the standard loss being optimized for. Additionally, KL error is
well-established in the coding community [18, 42] in the context of data compression (i.e., identifying
encoding that represents the information with fewer bits). Due to this reason, KL distribution
estimation has been extensively studied [62, 11, 10, 51, 52, 39, 49].

However, overly fine-grained release of statistics make it possible to infer the memberships [37,
55, 28, 56] or even reconstruct the values [20, 12] of input data records. To this end, differential
privacy [26] offers a powerful mathematical definition to provably control the associated privacy risk.

Definition 1.1 (Differential Privacy (DP) [26]). A (randomized) algorithm A is (ε, δ)-differentially
private ((ε, δ)-DP) if for all neighboring datasets x, x′ that differ in at most one sample, and any
measurable output set T , Pr[A(x) ∈ T ] ≤ eε · Pr[A(x′) ∈ T ] + δ.

Our work aims to provide an understanding of the KL error of private distribution estimation. Below
we present the problem setting and summarize known results and our contributions.
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Problem Setting Let p ∈ ∆(d) := {p ∈ Rd : p1, · · · , pd ≥ 0 and
∑d

i=1 pi = 1} be an unknown
distribution over d symbols. Let x ∈ Nd be the histogram representation of a dataset consisting of
empirical samples drawn from distribution p, where xi denotes the count of symbol i in the dataset.
Following prior works [2, 49], we assume that the count of each symbol i is independently drawn from
a Poisson distribution with mean npi, i.e., (x1, · · · , xd) ∼ Poi(np) := Poi(np1)× · · · × Poi(npd).
This assumption is a convenient choice for analysis as it ensures independent sampling of each
symbol, while enjoying the benefit of being equivalent to sampling from multinomial distribution
when conditioned on a fixed dataset size n. Our goal is to design an algorithm that accurately
estimates the unknown distribution p in KL divergence given a sampled dataset x ∼ Poi(np).

Minimax Optimality Results (and Their Limitations) We start by looking at the (private) KL
distribution estimation problem from the standard minimax optimality objective, where the goal is to
design estimators A that minimizes the KL error on the worst-case distribution instance.

min
A

max
p∈∆(d)

E [KL(p,A(x))] , KL(p∥A(x)) =
∑
i

pi log
pi

A(x)i
(1)

where KL(p∥A(x)) =
∑

i pi log
pi

A(x)i
, and the expectation is over the randomness of estimator A

and over the sampling of x ∼ Poi(np). This minimax objective (1) is well-studied for non-DP algo-
rithms, where simple add-constant estimators are proved to be minimax optimal with O

(
ln
(
1 + d

n

))
rates [10, 52] (see Appendix C.1 for a complete discussion of the existing results). For the DP setting,
to the best of our knowledge, there are no known results for the KL minimax rates. Nevertheless, in
Appendix C.2, we show that a similarly simple algorithm (that truncates the Laplace perturbations of
empirical counts) achieves the minimax optimal O

(
ln
(
1 + d

εn

))
rates.

However, such simple estimators achieve poor performance in experiments (Section 4) on commonly
occurring distributions such as power-law distributions. Similar observations, i.e., the poor perfor-
mance of the minimax-optimal add-constant estimator (compared to the practical Good-Turing [33]
estimator), have long existed in the non-DP setting. This is intuitively because minimax optimality
only captures the worst-case error over all possible distributions, thus failing to indicate whether an
algorithm performs well for each non-worst-case distribution p.

Instance-optimality Instance-optimality is a promising framework to address the above limitation
of minimax optimality and shed light on the per-instance provable performance of an estimator. In
the non-DP setting, many works have studied instance-optimality in different contexts, such as local
minimax estimation [21, 47, 23], competitive distribution estimation [2, 49] or instance-by-instance
analysis [59]. Remarkably, the seminal work of [49] proved that a simple variant of Good-Turing
estimators is nearly instance-optimal, in that it estimates every distribution nearly as well as the
best estimator designed with prior knowledge of the distribution up to a permutation. The recent
work by Feldman, McMillan, Sivakumar and Talwar [30], further generalize this instance-optimality
definition to other natural definitions of prior knowledge in the language of per-instance neighborhood.
Formally, we follow Feldman, McMillan, Sivakumar and Talwar [30] and define instance-optimality
as follows.

Definition 1.2 (Instance-Optimality to Neighborhood Map N [30]). We say an estimator A is
instance-optimal with respect to a neighborhood map N if:

∀ p ∈ ∆(d) : E[KL(p,A(x))] ≤ O (lower(p, n,N))

where lower(p, n,N)
def
= min

A′
max

q∈N(p)
E [KL(q,A′(x))] for a neighborhood N(p) of p. (2)

That is, instance-optimality says that the algorithm A is competitive with any hypothetical algorithm
A′ that has auxiliary knowledge about the neighborhood N(p) of the input distribution p. We can
further constrain the algorithm to be (ε, δ)-DP in establishing the per-instance lower bound as follows.

lowerε,δ(p, n,N) = min
A is (ε,δ)-DP

max
q∈N(p)

E [KL(q,A(x))] (3)

This is the lower bound that we will use for establishing instance-optimality of private algorithms.
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Limitations of Prior Instance-Optimality Objectives for KL Error In instance-optimality results,
the smaller the neighborhood, the stronger the result. This is because we are proving that our algorithm
is competitive with a hypothetical algorithm that already knows that the input distribution is in the
neighborhood. However, if the neighborhood is too small, then no algorithm can be instance-optimal,
as the baseline estimator’s knowledge of the instance is overly precise. (As an extreme example,
when N(p) = {p} contains only the target distribution p, the per-instance lower bounds (2) and (3)
trivially become zero (as achieved by an estimator that always outputs A(x) = p regardless of the
input dataset).) Below we review existing choices of neighborhood N(p) in the literature, and show
they are either too large or too small to accurately capture the per-instance estimation hardness in KL.

• Permutation neighborhood [2, 49, 59]: Nπ(p) = {q : ∃ permutation π s.t. qi = pπ◦i,∀i ∈
[d]}, i.e., all distributions obtained by permuting the probability values. On the one hand,
prior work [30] has argued that this neighborhood is too large, as practical estimators often
have stronger knowledge about which symbols are more frequent than others (e.g., the word
“and” is often more frequent than “differential”, thus assuming the two words are permutable
is not reasonable). On the other hand, permutation neighborhood can be too small, in that it
provably does not allow for multiplicative instance optimality guarantees, as discussed in
Section 2.2. Indeed, permutation neighborhood assumes precise knowledge of the set of
true probability values, which can be overly strong for any realistic estimator to satisfy.

• Two-point neighborhood [23, 47, 8]: N2(p) = {p, q} contains the target instance p and
another alternative distribution q that is “close” to p. This neighborhood reduces the per-
instance hardness to binary hypothesis testing of whether the observed samples are from p
or q. Under appropriate notions of “close”, this neighborhood allows matching per-instance
upper and lower bounds for estimating one-parameter (exponential) families distribution
under central DP [47] and local DP [23], as well as for general one-dimensional statistical
estimation problems [8]. However, for high-dimensional problems, this neighborhood is
provably too small, as the per-instance lower bound remain constant under growing data
dimension, despite the growing hardness for distribution estimation under higher dimension.
For example, there exist instances (such as long-tailed instances in our particular distribution
estimation problem) whose estimation error inevitably grows with data dimension (e.g., of
scale ln d/16 in our Theorem G.9 construction), indicating that the two-point neighborhood
and multiplicative neighborhood are too small. Indeed testing can be provably easier than
learning in simple settings.

• Multiplicative neighborhood [30]: N×(p) = {q : 1
2pi ≤ qi ≤ 2pi,∀i ∈ [d]}. It allows

matching per-instance upper and lower bounds for distribution estimation in Wasserstein
distance. However, this neighborhood is too small to capture the KL error: the per-instance
lower bound is at most a constant (since an algorithm that is tailored to N(p) can achieve
O(1) error), whereas such an error bound is provably unachievable for some distributions
(e.g., our Theorem G.9 construction).

Besides the above three representative types of neighborhoods, earlier works [7, 6] on instance-
optimal DP estimation also considered other variants of neighborhoods that have similar limitations.
[7] only deals with one-dimensional quantities, and [6] discusses high-dimensional problems defined
on the dataset (rather than on the distribution as in our work). The notion of local minimax optimality
there includes all datasets at a certain distance, whereas their second notion only competes with
unbiased algorithms. These limitations call for new definitions of local neighborhood to precisely
capture the per-instance hardness of distribution estimation in KL divergence, which we study in this
paper.

Our Main Contributions: Instance-Optimal Results

• We define instance-optimality objectives that more precisely capture the hardness of private
KL distribution estimation. This is by constructing new neighborhoods (4) and (6) that
additively perturb the probability values pi of individual symbols. We use small perturbation
scales – 1/n, 1/nϵ, and

√
pi/n – to ensure the dataset (sampled by p) could plausibly

have come from other distribution in the neighborhood. (See Section 2 and 3 for more
rationales on the neighborhood sizes.) This is stronger than permutation neighborhood [2,
49, 59] in allowing auxiliary knowledge of frequency order among symbols, and is thus a
very strong notion of instance-optimality. Furthermore, we show in Section 3.1 that our
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additive neighborhoods are (up to constants) the smallest that still allow for instance-optimal
algorithms.

• Under such additive neighborhoods, we propose a new non-DP algorithm and prove it to be
instance-optimal (Section 2.1). Our algorithm resembles the idea of the Good-Turing esti-
mator (which is known to be instance-optimal in prior works), while ensuring significantly
smaller sensitivity to adjacent datasets (in the DP sense). This reduced sensitivity is the key
that makes our algorithm easier to privatize. We then propose a DP version of this algorithm
and show that it is instance-optimal amongst DP algorithms (Section 3.1).

• We validate the performance of our instance-optimal estimators via experiments (Section 4),
and show the reward from studying instance-optimality: while the Add-constant (DP)
algorithm is already minimax-optimal, our instance-optimal algorithms achieve significantly
better performance on many instances of practical interest, such as power-law distributions
and real-word token distributions.

1.1 Technical Contributions

Generalized Assouad’s method for decomposable statistical distance Standard tools for proving
lower bounds, such as (DP) Assouad’s method [65, 3, 30], only apply to symmetric statistical
distance, which is not satisfied by KL divergence. To prove KL per-instance lower bound, we propose
generalized (DP) Assouad’s method (Theorem A.3 and A.4) that applies to general decomposable
statistical distance (Definition A.1). This allows us to prove strong per-instance lower bounds.

Reducing the Sensitivity of Good-Turing Estimator via “Sampling Twice” The challenge
of privatizing the prior (near) instance-optimal Good-Turing estimators lie in its excessively high
sensitivity to neighboring datasets. At the core, Good-Turing estimator is motivated by observing
that estimating “unseen” symbols as zero-probability is biased, as the symbols that appeared exactly
once would intuitively have similar probability values (which are non-zero). To correct this bias, it
recursively uses the counts of symbols with frequency t+1 to estimate the probability of symbols that
appeared t times, for all low-frequency symbols (e.g., t = 1, · · · , n1/3 in Orlitsky and Suresh [49]).
Such computations suffer from high sensitivity, as one record could change the combined counts
of symbols with frequency t by t = n1/3 in the worst-case. To address this limitation, we perform
bias-correction via an alternative "sampling twice" approach: partitioning the dataset into two halves,
using one for identifying “unseen” symbols and the other for estimating their combined mass. The
resulting Algorithm 1 is conceptually simpler than prior Good-Turing estimators, while achieving tight
instance-optimality guarantees (up to constants) and being empirically competitive in experiments.
Crucially, this “Sampling Twice” design reduces sensitivity to just one (making the estimator easy to
privatize), and is the key to achieving instance-optimality in the DP setting.

Effectively Privatizing Good-Turing Estimator via Calibrated Thresholding The Good-Turing
estimator is based on the intuition that the probability values of symbols that appeared zero times
(in the dataset) are similar to those of symbols that appeared exactly once. However, this simple
zero-or-one thresholding does not remain effective for private algorithms, because DP estimates
cannot differ significantly on neighboring input datasets. This forces us to use a larger threshold.
To identify the best threshold for DP distribution estimation, given every possible threshold, we
separately analyze (Theorem E.2 and G.6) the DP estimation error due to False Negatives (FN) (i.e.,
high-probability symbols being below-threshold) versus False Positives (FP) (i.e., low-probability
symbols being above-threshold). This analysis allows us to choose a threshold that balances the FN
and FP errors, and achieves DP instance-optimality up to a constant factor (Section 3.1).

1.2 Other Related Works

The Good-Turing estimator, originally developed by [33] and simplified by [31, 49], has been widely
observed to yield empirically accurate distribution estimates (especially for language modeling
tasks [40, 13] under large vocabulary size). Several later works prove it to be minimax optimal [46,
22, 50] as well as instance-optimal [2, 49] for discrete distribution estimation in various metrics.
However, to our knowledge, no prior works have designed or analyzed DP variants of Good-Turing
estimator, which is the main technical innovation of this paper.
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For DP discrete distribution estimation, minimax optimality is well-studied across a variety of models
for DP, including central DP [19, 3], local DP [24, 38, 64, 25, 1] and user-level DP [44]. Existing
works also focus on different error metrics, such as total variation distance (i.e., ℓ1 error) [19] and ℓ2
error [3] (see a summary of results in [3, Table 1-2]). Our work falls into the central DP setting, and is
the first to study the KL divergence error. Additionally, we establish the stronger instance-optimality
(rather than minimax optimality). The closest work to our paper in the literature is [30], where
the authors study instance-optimal density estimation in Wasserstein distance (that covers discrete
distribution estimation in ℓ1 error as a special case). The results in [30] are largely incomparable
to our analysis, due to the lack of (tight) conversions between total variation distance error and
KL divergence error. (See Appendix C.2 for a nuanced comparison between prior TV distance
lower bounds and our KL lower bound for DP minimax distribution estimation.) Indeed, achieving
optimality under KL often requires non-trivial change to the algorithm and analysis compared to ℓ1
error, as evidenced by the abundant literature on distribution estimation in KL [10, 51, 52, 2, 49].

A closely related problem is frequency estimation (a.k.a. histogram estimation), where the goal is to
privately and accurately estimate the empirical distribution. DP histogram estimation is extensively
studied in a variety of models for DP, including central DP [34, 63], local DP [9, 61], and shuffle
DP [29, 15, 32]. Due to sampling error, algorithms for empirical frequency estimation typically do
not directly yield good utility for distribution estimation.

2 Tighter Instance-Optimality for Non-DP Estimation

We first define instance-optimality under additive neighborhoods, that get around the limitations of
previously studied neighborhood notions as discussed in Section 1.

Neighborhood Choices As discussed in Section 1, a good neighborhood should be as small as
possible and contain distributions that are similarly hard to estimate compared to the target distribution
instance. Additive neighborhood is thus a natural choice as intuitively, the hardness of distribution
estimation does not change a lot when perturbing each symbol’s probability by a small amount. The
key question is how small should the scale be. To this end, our main design choices are

1. For every symbol, we allow up to t/n perturbation, for a small t ≥ 1. This only changes
its expected count up to t, and thus from the the empirically sampled count, it is hard to
distinguish the perturbed distribution from the target distribution.

2. For symbol with large pi > t/n, we allow a larger
√
pi/n perturbation, for a small t ≥ 1.

This captures the fact that with constant probability, counts sampled from Poi(npi) and
Poi(npi +

√
npi) are “indistinguishable” due to the statistical variance in sampling. Indeed

these are related to the standard confidence intervals for binomial estimation [16, 4].

On top of these design choices, we try to reduce the size of the neighborhood as much as possible.
Thus we add a constraint that the combined mass of small symbols (with pi ≤ t

n given a small t ≥ 1)
should not change by more than t

n – this added condition only makes the results stronger (as the
resulting neighborhood is smaller). As a result, we obtain the following additive neighborhood.

N+(p) =

{
q : ∀i ∈ [d], |qi − pi| ≤ min

{
t

n
,

√
pi
n

}
and

∑
i:pi≤ t

n

qi ≤ max
{ t

n
,
∑

i:pi≤ t
n

pi

}}
(4)

Per-Instance Lower Bound We next prove per-instance lower bound under this neighborhood
N+(p). Our analysis requires generalized variants of Assouad’s method (discussed in Section 1.1).
We defer all proofs to Appendix D, and only present the per-instance lower bound below.
Theorem 2.1. Let p ∈ ∆(d) be an arbitrarily fixed distribution instance. Let N+(p) be the additive
neighborhood defined in (4). If d ≥ 2 and n ≥ 4, then we have

lower(p, n,N+) ≥ Ω

(
ln(1 + dsmall(L

′))

n
+ psmall(L

′) ln

(
1 +

dsmall(L
′)

npsmall(L′)

)
+
∑
i

min

{
pi,

1

n

})
(5)

for any t ≥ 1 and any set L′ ⊆ [d], where psmall(L
′) =

∑
i∈L′,pi≤ t

n

pi and dsmall(L
′) =

∑
i∈L′,pi≤ t

n

1.
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KL Error Bound Reference

lower(p, n,Nπ) Ω

(∑∞
t=0 E

x∼Poi(np)

[ ∑
i:xi=t

pi ln

(
pi

∑
j:xj=t

1∑
j:xj=t pj

)])
[49, Lemma 4 & 5]

Nπ: permutation neighborhood

Add-constant lower(p, n,Nπ) + Ω
(
min

{
n−1/3, d

n

})
[2, Lemma 1]

Good-Turing lower(p, n,Nπ) +O
(
min

{
n−1/3, d

n

})
[49, Theorem 1]

Smoothed lower(p, n,Nπ) +O
(
min

{
n−1/2, d

n

})
[49, Theorem 2]

Good-Turing [2, Theorem 2]

Any estimator lower(p, n,Nπ) + Ω
(
min

{
n−2/3, d

n

})
[49, Theorem 3]

Table 1: Prior instance-optimality results of Non-DP estimators

Algorithm 1 Non-DP “Sampling Twice”

Input: Data partition ratio α = 0.5. Independently sampled datasets x ∼ Poi(α · np) and
x′ ∼ Poi((1− α) · np) s.t. x+ x′ ∼ Poi(np). Threshold τ = 0.
Thresholding: L = {i ∈ [d] : xi ≤ τ}
Estimate combined mass for symbols in L: c̃ = max

{∑
i∈L x′

i, 1
}

Truncate individual estimates: let x̃i = max {x′
i, 1} for i = 1, · · · , d

Return A(x) with A(x)i =

{
1
N · c̃ · x̃i∑

i∈L x̃i
i ∈ L

1
N · x̃i i /∈ L

where N = c̃+
∑

i/∈L x̃i

To interpret this lower bound, first observe that (5) is always smaller than the Ω
(
1 + d

n

)
minimax

lower bound, especially when there are many small symbols (with pi <
1
n ) that jointly takes a small

combined mass psmall(L
′). As an extreme example, imagine a highly concentrated distribution

p = (1/3, 2/3, 0, · · · , 0), then our per-instance lower bound (5) is as small as ln(1+d)
n . This is

significantly smaller than the ln(1+ d
n ) minimax lower bound for high-dimensional setting (d → ∞),

thus correctly indicating that p is an extremely easy-to-estimate distribution. Achieving error upper
bound that matches this small per-instance lower bound (5), then serves as a strong requirement for
instance-optimal algorithm to fulfill (which we prove in the next section).

2.1 An Instance-Optimal “Sampling Twice” Estimator

We now present a simple “sampling twice” Algorithm 1, and prove that it is instance-optimal up to
constants. Compared to the minimax optimal add-constant estimator, this algorithm observes that
simply estimating “unseen” symbols as zero-probability (or constant-probability) is heavily biased,
and use a conceptual “sampling-twice” procedure to correct the bias of low-frequency symbols.

As discussed in Section 1.1, this bias-correction idea originates from prior (near) instance-optimal
Good-Turing algorithm [33, 31, 49] and maintains their utility benefit. The key benefit of our
“sampling-twice” design lies in significantly reducing the estimator’s sensitivity to neighboring dataset
(making it easier to privatize), enabling instance-optimality under DP (as we will show in Section 3).

Instance-optimality Guarantee In Theorem E.2, we prove a per-instance KL error upper bounds
for the “sampling twice” estimator (Algorithm 1). In Corollary E.3, we further prove that this
upper bound can be rewritten as E

x∼Poi(np)
[KL(p,A(x))] ≤ O (lower(p, n,N+)) for any choice of

neighborhood size t ≥ 1 s.t. t · e−t ≤ 1/ ln d. Specifically, we can choose t = min {1, 2 ln ln d}.

2.2 Comparison to Prior Instance-Optimality Results

In this section, we discuss and compare with prior instance-optimality results, which mainly cover two
representative non-DP estimators – the add-constant estimator and the Good-Turing (GT) estimator.
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Add-constant Estimator Given by A(x) = xi + c,∀i ∈ [d] for a constant c > 0, the add-constant
estimator is one of the oldest and simplest distribution estimator. Its variants cover several known
estimators, such as Laplace smoothing (c = 1) and Krichevsky-Trofimov estimator [42] (c = 1/2).

Good-Turing Estimator [33] The Good-Turing estimator [33], when combined with add-constant
estimator, has long been observed to yield strong empirical performance. Many variants of GT
estimator exist in the literature [33, 31, 49]. In the comparison, we use the simplified variant of Good-
Turing estimators proposed in Orlitsky and Suresh [49], that is also provably (near) instance-optimal
under the “permutation neighborhood”, i.e. all distributions obtained by permuting the distribution.

We summarize these prior instance-optimality results under permutation neighborhood in Table 1.
Apart from the fact that this neighborhood may be too large to be appropriate for some applications
(as discussed in Section 1), the last row of Table 1 shows a lower bound for the suboptimality – it
shows that no algorithm can do better than an additive min

{
n−2/3, d

n

}
compared to a hypothetical

algorithm that already knows the neighborhood. Observe that this additive gap is a lot larger than
the per-instance lower bounds for certain distributions, e.g., highly concentrated distributions. Thus,
multiplicative instance optimality is not achievable with permutation neighborhood. By contrast,
tight instance-optimality (up to constant) is achievable under our additive neighborhood, as proved in
Section 2.1. We will also discuss in Section 3.1 that our additive neighborhoods are the smallest (up
to constants) that can still allow for the possibility of any DP instance-optimal algorithms.

Additionally, the existing analysis for Good-Turing would result in a lnn/n additive gap compared to
the lower bound we obtain under additive neighborhood. The main gap is that the Good-Turing’s error
for combined probability estimate is lnn/n (as in Lemma 19 of [49]) due to delicate correlations
between partitioned buckets (of small symbols) and their combined mass estimates, rather than 1/n
in our sampling-twice estimator (as in (191) that applies Lemma B.10) facilitated by using fresh
counts for small symbols to estimate combined mass. We will add this discussion in the revised
version to clarify the comparison.

3 DP Instance-Optimality

In this section, we present the first results for DP instance-optimality of KL distribution estimation.

Neighborhood Choices To define appropriate DP instance-optimality objective, we modify the N+

neighborhood (4) with perturbations calibrated to the privacy parameters. For a small t ≥ 1, let

N≤ t
nε

(p, n) =

{
q : |qi − pi| ≤

t

nε
for any i ∈ [d] and

∑
i:pi≤ t

nε

qi ≤ max
{ t

nε
,
∑

i:pi≤ t
nε

pi

}}
(6)

Compared to (4), the main change is that we allow the perturbation scale for individual symbols to be
proportional to 1/ε. This corresponds to the obliviousness of (ε, δ)-DP algorithm to dataset changes
up to O

(
1
ε

)
hamming distance (which allows an additional 1

nε change in probability).

DP Per-Instance Lower Bound Under the above neighborhood N≤ t
nε

(p, n) that is calibrated to
(ε, δ)-DP guarantee, we prove the below per-instance lower bound.
Theorem 3.1. Let p ∈ ∆(d) be an arbitrary distribution instance, and let N≤ t

nε
(p) be the additive

neighborhood defined in (6). If δ ≤ ε, d ≥ 2, and nε ≥ 1, then we have

lowerε,δ
(
p, n,N≤ t

nε

)
≥Ω

(∑
i

min

{
pi,

1

pi
· 1

n2ε2

}
+

ln (1 + dsmall(L
′))

nε

+ psmall(L
′) · ln

(
1 +

dsmall(L
′)

nε · psmall(L′)

))
(7)

for any t ≥ 1 and any set L′ ⊆ [d], where psmall(L
′) =

∑
i∈L′:pi≤ t

nε

pi and dsmall(L
′) =∑

i∈L′:pi≤ t
nε

1.
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Algorithm 2 ε-DP “Sampling Twice” (Instance-Optimal)

Inputs: Data partition ratio α = 0.5. Independently sampled datasets x ∼ Poi(α · np) and
x′ ∼ Poi((1− α) · np) s.t. x+ x′ ∼ Poi(np). Threshold τ = 4 ln d.
L = ∅
for symbol i = 1, · · · , d do

Private Thresholding: If x̃i := xi + zi ≤ τ
min{ε,1} for zi ∼ Lap

(
0, 1

ε

)
, add i to L

end for
Estimate small symbols’ combined mass: c̃ = max

{∑
i∈L x′

i + Lap
(
0, 1

ε

)
, 1
min{ε,1}

}
Estimate individual large symbols: for i ∈ [d] \ L, x̃′

i = x′
i + z′i for z′i ∼ Lap

(
0, 1

ε

)
Truncation: x̄i = max

{
x̃i,

1
min{ε,1}

}
for i ∈ L; x̄i = (1 −

α)
(
max

{
x̃i,

1
min{ε,1}

}
+max

{
x̃′
i,

1
min{ε,1}

})
for i ∈ [d] \ L

Return A(x) with A(x)i =

{
1
N · c̃ · x̄′

i∑
i∈L x̄′

i
i ∈ L

1
N · x̄′

i i /∈ L
where N = c̃+

∑
i/∈L x̄i

The proofs are deferred to Appendix F. The lower bound (7) consists of three terms:

1. Cost of privacy for large symbols pi ≥ 1
nε is 1

n2ε2pi
, which is significantly smaller than the

corresponding non-DP lower bound Ω( 1n ) in (5) when pi is large enough, i.e., privacy is
free for sufficiently large pi.

2. Cost of privacy for combined mass estimate of small symbols pi ≤ t
nε is

ln(1+dsmall(L
′))

nε ,
which is non-zero whenever there exist small symbols in L′.

3. Cost of privacy for small symbols pi < t
nε is psmall(L

′) · ln
(
1 + dsmall(L

′)
nε·psmall(L′)

)
+
∑

i< 1
nε

pi,

which is larger than the corresponding non-DP lower bound in (5) for small symbols
whenever ε ≪ 1, i.e., in the high privacy regime.

3.1 Privatized Instance-Optimal “Sampling Twice” Estimator

We then propose a privatized variant of “sampling-twice” Algorithm 2 by applying the Laplace
Mechanism [26]. The ε-DP guarantee follows from standard results in DP by observing that the ℓ1-
sensitivity of (x1, · · · , xd, x

′
1, · · · , x′

d) is one. The main novel ingredient (as discussed in Section 1.1)
is to choose a calibrated threshold for privately selecting a set of small symbols. This selected set
is then used for estimating the combined mass of small symbols on fresh samples. An accurate
combined mass estimate is the key to reducing KL error.

Instance-optimality Guarantee In Theorem G.6, we prove a per-instance upper bound for Algo-
rithm 2. In Corollary G.7, we further prove that this upper bound can be controlled by the per-instance
lower bound under the combination of our Non-DP addditive neighborhood N+(p) in (4) and our
(ε, δ)-DP calibrated neighborhood in (6). Specifically, under neighborhood size t = 24 ln d, we prove
that E

x∼Poi(np)
[KL(p,A(x))] ≤ O

(
lower

(
p, n,N+ ∪N≤ t

nε

))
.

Discussions on the Neighborhood Size We have established instance-optimality under local
neighborhood N 24 ln d

nε
. It is a natural question to ask whether the size of such neighborhoods could

be further reduced to enable stronger instance-optimality notions. In Theorem G.9, we prove that
this neighborhood size is necessary up to constants—no DP estimator can be instance-optimal for a
neighborhood N≤ γ·ln d

nε
with γ ≤ o(1).

Discussions on Approximate DP variants Our per-instance lower bounds hold for (ε, δ)-approx-
DP with δ < ε, and match the upper bound achieved by pure-DP algorithms. This indicates that
our pure-DP algorithm, while enjoying better privacy guarantees, is also instance-optimal under
approximate DP. Similar phenomena have previously been observed for the histogram estimation
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problem under approx-DP, where in the asymptotic sense, approx DP (e.g., Gaussian mechanism)
offers little advantage over pure DP (e.g., Laplace).

In the practical sense, however, the Gaussian mechanism may be practically better in some regime of
parameters (due to the lighter distribution tails compared to Laplace mechanism). And our algorithm
(after substituting Laplace mechanism with Gaussian mechanism and changing threshold to calibrate
to delta) achieves instance optimality up to a log(1/δ) factor (see the Gaussian variants of our
algorithm and its instance-optimality proof in Appendix G.5).

4 Experiments

We now evaluate the performance of our algorithms and compare them with baselines. All experi-
ments are performed on a MacOS intergrated CPU (≤ 30 minutes) with 18GB RAM. All reported
performance numbers are averaged across five random trials of data sampling and estimators.

Add-constant (DP) Good-Turing Our Algorithm 1 Our Algorithm 2 (DP)

104 105

7

7.5

Dataset size n

N
L

L

(a) d = 30522, ε = 1 (Bert)

104 105

7.5

8

8.5

Dataset size n

(b) d = 50257, ε = 1 (GPT2)

10−2 10−1 100
7

8

9

10

Specified ε

(c) n = 105, d = 50257 (GPT2)

Figure 1: (Reddit Token Distribution Estimation) KL error versus dataset size n, distribution dimension d, and
DP guarantee ε for our methods compared with the simple minimax optimal Add-constant (DP) baseline, and
the strongest non-DP baseline of prior (near) instance-optimal Good-Turing estimator.

Add-constant (DP) Good-Turing Our Algorithm 1 Our Algorithm 2 (DP)

102 103 104 105
0
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2

3

Dataset size n
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E
rr
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(a) d = 50000, ε = 1

102 103 104 105
0

1

2

Data dimension d

(b) n = 2000, ε = 1

10−1 100 101
0.5

1

1.5

2

Specified ε

(c) n = 1000, d = 10000

Figure 2: (Power law distribution pi ∝ 1
i
) KL error versus dataset size n, distribution dimension d, and DP

guarantee ε for our methods compared with the simple minimax optimal Add-constant (DP) baseline, and the
strongest non-DP baseline of prior (near) instance-optimal Good-Turing estimator.

Datasets We evaluate on both synthetic and real-world data distributions. For synthetic data, we
evaluate power law distributions pi ∝ 1

iβ
over a range of parameters β > 0. We choose power law

because of its practical relevance: word frequencies from a text corpus have long been observed
to roughly follow power law distributions [54, 53, 48, 17]. For real-word data, we experiment on
randomly drawn tokens from Reddit [60], Enron-email [41] and MMLU [36, 35], where each token
is one (sensitive) record. We chose Reddit and Enron-email datasets because they are user-specific
and thus bear a natural notion of privacy risk (compared to e.g., wikipedia), and are standard and
widely used text datasets in the private learning literature [58, 43, 45]. We additionally evaluate on
MMLU to simulate diverse text domains. To vary the distribution dimension (specified by the number
of all possible tokens), we use two types of tokenizers (GPT2 and Bert).

One challenge for evaluating real-word dataset is the unknown ground-truth distribution p (as only
empirical samples are given). To address this, we independently sample two equal-size datasets x
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and x′, thus ensuring E [x′
i/∥x′∥1] = pi for any i ∈ [d]. We then compute that

E [KL (p,A(x))] = E

[
d∑

i=1

pi ln

(
pi

A(x)i

)]
=

d∑
i=1

pi ln (pi)︸ ︷︷ ︸
Negative Entropy of p

−E

[
d∑

i=1

x′
i

∥x′∥1
· ln (A(x)i)

]
︸ ︷︷ ︸

Negative Log Likelihood (NLL)

Observe that the entropy term is independent of the estimator. Thus in experiments we only report
the negative log likelihood ratio term to compare different estimators A.

Hyperparameters Although our proposed Algorithm 1 and 2 are provably instance-optimal, they
separately use two disjoint fractions of the dataset. Thus in the extreme scenarios when all symbols
are above or below threshold (e.g., when n, d are exceedingly large or small), Algorithm 1 and 2 incur
twice as much noise compared to the add-one estimator, incurring a suboptimal multiplicative constant
of two. To address this limitation, we perform grid search for the optimal hyperparameters over
α ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 0.9, 0.99} and τ ∈ {0, 0.0625, 0.125, 0.25, 0.5, 1, 2, 4} × ln d, and
use the tuned hyperparameters τ = 0, α = 0.5 for Algorithm 1, and τ = min

{
1
ε , 1.0

}
×ln d, α = 0.9

for Algorithm 2 in all experiments.

Observations We show results on power law distributions pi ∝ 1
iβ

for β = 1, 1.5, 2 (Figure 2, 3,
and 4), Reddit corpus (Figure 1), Enron-email corpus(Figure 5); and MMLU corpus (Figure 6). In
all experiments, our DP instance-optimal Algorithm 2 consistently outperforms the simple minimax
optimal Add-constant (DP) baseline, and our non-DP instance-optimal Algorithm 1 is consistently
competitive (within constants) to the strongest prior non-DP baseline of (near) instance-optimal
Good-Turing [50]. The gain of our algorithms are especially significant for real-world datasets,
validating the effectiveness of our algorithms. We also remark that instance optimality means that our
algorithm will provably adapt to any input distribution, and no other algorithm can be significantly
better (across a neighborhood).

5 Conclusion

We provide tight instance-optimality analysis for private KL distribution estimation, in terms of
achieving provably competitive error to the best possible estimator in a small additive local neighbor-
hood of each instance. Furthermore, our constructed neighborhood’s size is necessary up to constants
for instance-optimality on the worst-case instances. Additionally, we proved instance-optimality up
to constants, and leave open the question of whether exact instance-optimality is achievable. Such
results, if possible, would require improving the constants in per-instance privacy lower bounds
and/or designing better estimators.
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should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Hyperparameters are given in Section 4
Guidelines:
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All our experiments (Figure 2, 1 and Appendix G.4) report 1-sigma error bars
across five runs.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: We reviewed the NeurIPS Code of Ethics and ensured it is respected.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not see potential such risks of this paper, as we only used synthetic and
open-source datasets for validation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not foresee any no potential ethical harms, as the paper only uses
synthetic and open-source datasets for validation.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used datasets are referenced in Section 4, and have licenses that allow
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Guidelines:

• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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Answer: [NA]
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
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Answer: [NA]
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A Tools for Lower Bounds

Below we first define decomposable statistical distance.
Definition A.1 (Decomposable Statistical Distance). Let d ∈ N and let dist : ∆(d)×∆(d) → R be
a non-negative function such that dist(p, q) = 0 if and only if p = q. We say dist is decomposable,
if for any disjoint sets of symbols B1, · · · ,Bk ⊆ [d], and for any distributions p, q ∈ ∆(d), it is the
case that

dist(p, q) ≥
k∑

i=1

∑
j∈Bi

pj

 · dist(p|i, q|i) (8)

where for any distribution p ∈ ∆(d), and any i = 1, · · · , k, we have denoted

p|i =

{
pj∑

j∈Bi
pj

if j ∈ Bi

0 otherwise
for i = 1, · · · , k

Lemma A.2 (KL divergence is decomposable). KL divergence is decomposable, that is, for any
disjoint sets of symbols B1, · · · ,Bk and any p, q ∈ ∆(d), it is the case that

KL(p, q) ≥
k∑

i=1

∑
j∈Bi

pj

 ·KL (p|i, q|i) (9)

Proof. Let p, q ∈ ∆(d). Denote Bc = [d] \ (∪k
i=1Bi), then by definition we compute

KL(p, q) =

k∑
i=1

∑
j∈Bi

pj ln

(
pj
qj

)
+
∑
j∈Bc

pj ln

(
pj
qj

)
(10)

=

k∑
i=1

∑
j∈Bi

pj

 ·KL (p|i, q|i) +
k∑

i=1

∑
j∈Bi

pj

 · ln

(∑
j∈Bi

pj∑
j∈Bi

qj

)
(11)

+

∑
j∈Bc

pj

 ·KL (p|Bc , q|Bc) +

∑
j∈Bc

pj

 · ln

(∑
j∈Bc pj∑
j∈Bc qj

)
(12)

≥
k∑

i=1

∑
j∈Bi

pj

 ·KL (p|i, q|i) (13)

where the last inequality is by non-negativity of KL divergence KL (p|Bc , q|Bc) and∑k
i=1

(∑
j∈Bi

pj

)
· ln
(∑

j∈Bi
pj∑

j∈Bi
qj

)
+
(∑

j∈Bc pj

)
· ln
(∑

j∈Bc pj∑
j∈Bc qj

)
.

Theorem A.3 (Generalized Assouad’s method for decomposable statistical distance). Let dist be
a decomposable statistic distance as per Definition A.1. Let B1, · · · ,Bk ⊆ [d] be k disjoint sets
of symbols. For each i = 1, · · · , k, let Pi be a set of distributions supported on Bi. For fixed
w1, · · · , wk ≥ 0 such that

∑k
i=1 wi = 1, let P be the following composed packing set:

P =

{
q :=

k∑
i=1

wip
i
∣∣∣pi ∈ Pi

}
. (14)

If the following two conditions hold:
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1. There exists a non-negative function f such that

For any q ∈ ∆(d),
1

|Pi|
∑
p∈Pi

1dist(p,q)≥f(Pi) ≥
1

2
, (15)

2. For each i ∈ [k], there exists τi ≥ 0 and p̄i ∈ Pi, such that for any fixed pj ∈ Pj , j ̸= i, it
holds that∫ (

min
pi∈Pi

dS(n,
∑k

j=1 wjp
j)

dS(n,wip̄i +
∑

j ̸=i wjpj)

)
dS(n,wip̄

i +
∑
j ̸=i

wjp
j) ≥ τi (16)

where we have denoted S(n, p) as the distribution of histogram representation of dataset
sampled from distribution p ∈ ∆(d) with target sample size n.

Then for any fixed ε > 0, δ ≤ ε,

min
A is (ε, δ)-DP

max
p∈P

E
x∼S(n,p)

[dist(p,A(x))] ≥ 1

2

k∑
i=1

wi · τi · f(Pi) (17)

Proof. We will reduce the estimation problem over all d symbols to the estimation problem over each
bucket Bi. For any distribution p ∈ ∆(d), denote its conditional distribution on Bi as

p|i =

{
pj∑

j∈Bi
pj

if j ∈ Bi

0 otherwise
for i = 1, · · · , k. (18)

And for any (ε, δ)-DP estimator A given dataset x supported on B, similarly denote

A(x)|i =

{ A(x)j∑
j∈Bi

A(x)j
if j ∈ Bi

0 otherwise
for i = 1, · · · , k. (19)

Then by definition, for any fixed i = 1, · · · , k, we have
1

|P|
∑
p∈P

E
x∼S(n,p),A

[dist(p|i,A(x)|i)] ≥
f(Pi)

|P|
∑
p∈P

E
x∼S(n,p),A

[
1dist(p|i,A(x)|i)≥f(Pi)

]
(20)

=
f(Pi)∏k
j=1 |Pj |

∑
pj∈Pj ,j ̸=i

∑
pi∈Pi

E
x∼S(n,

∑d
l=1 wlpl)

[
EA
[
1dist(pi,A(x)|i)≥f(Pi)

]]
(21)

≥ f(Pi)∏k
j=1 |Pj |

∑
pj∈Pj ,j ̸=i

E
x̄∼S(n,wip̄i+

∑
l ̸=i wlpl)

min
pi∈Pi

dS(n,
∑k

j=1 wjp
j)

dS(n,wip̄i +
∑

j ̸=i wjpj)
(x̄) ·

∑
pi∈Pi

EA
[
1dist(pi,A(x)|i)≥f(Pi)

]
(22)

≥f(Pi)

2
· E
x̄∼S(n,wip̄i+

∑
l ̸=i wlpl)

[
min
pi∈Pi

dS(n,
∑k

j=1 wjp
j)

dS(n,wip̄i +
∑

j ̸=i wjpj)
(x̄)

]
(23)

≥τi
2
· f(Pi) (24)

where (20) is by Markov inequality, (22) is by definition and by moving the sum of pi ∈ Pi inside

expectation (as x̄ and minpi∈Pi

dS(n,
∑k

j=1 wjp
j)

dS(n,wip̄i+
∑

j ̸=i wjpj) (x̄) are independent of the choice of pi), (23)
is by the packing assumption (23), and (24) is by the dataset distance assumption (16).

We now use (23) to prove lower bound on the expected KL error for estimating the whole distribution
over all possible distributions in the packing set P . By Lemma A.2, it follows that

1

|P|
∑
p∈P

E
x∼S(n,p),A

[dist(p,A(x))] ≥ 1

|P|
∑
p∈P

k∑
i=1

wi · E
x∼S(n,p),A

[dist(p|i,A(x)|i)] (25)

≥1

2

k∑
i=1

wi · τi · f(Pi) (26)
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where the last inequality (26) is by (23). This suffice to prove (17) by observing that average is
smaller than maximum.

Theorem A.4 (Generalized DP Assouad’s method for decomposable statistical distance). Let dist
be a decomposable statistic distance as per Definition A.1. Let B1, · · · ,Bk ⊆ [d] be k disjoint
sets of symbols. For each i = 1, · · · , k, let Pi be a set of distributions supported on Bi. For fixed
w1, · · · , wk ≥ 0 such that

∑k
i=1 wi = 1, let P be the following composed packing set:

P =

{
q :=

k∑
i=1

wip
i
∣∣∣pi ∈ Pi

}
. (27)

For any p ∈ ∆(d), denote S(n, p) as the distribution of histogram representation of dataset sampled
from p with target sample size n. If the following two conditions hold:

1. There exists a non-negative function f such that

For any q ∈ ∆(d),
1

|Pi|
∑
p∈Pi

1dist(p,q)≥f(Pi) ≥
1

2
, (28)

2. For each i ∈ [k], there exists τi ≥ 0 and p̄i ∈ Pi, such that for any fixed pj ∈ Pj , j =
1, · · · , k, it holds that

E(x,x̄) [∥x− x̄∥1] ≤ τi (29)

for a coupling (x, x̄) between distributions S(n,
∑k

j=1 wjp
j) and S(n,wip̄

i+
∑

j ̸=i wjp
j).

Then for any fixed ε > 0, δ ≤ ε,

min
A is (ε, δ)-DP

max
p∈P

E
x∼S(n,p)

[dist(p,A(x))] ≥
k∑

i=1

wi ·
(

1

10
− 4ε · τi

)
· f(Pi) (30)

Proof. We will reduce the estimation problem over all d symbols to the estimation problem over
each bucket Bi. For any distribution p ∈ ∆(d), we denote p|i as its conditional distribution on Bi as
defined in (18). And for any (ε, δ)-DP estimator A given dataset x supported on B, we denote A(x)|i
as the conditional estimate on Bi as defined in (19). Then by definition, for any fixed i = 1, · · · , k,
we have

1

|P|
∑
p∈P

E
x∼S(n,p),A

[dist(p|i,A(x)|i)] ≥
f(Pi)

|P|
∑
p∈P

E
x∼S(n,p),A

[
1dist(p|i,A(x)|i)≥f(Pi)

]
(31)

=
f(Pi)∏k
j=1 |Pj |

∑
pj∈Pj ,j ̸=i

∑
pi∈Pi

E
x∼S(n,

∑d
l=1 wlpl)

[
Pr
A

[
dist(pi,A(x)|i) ≥ f(Pi)

]]
(32)

≥ f(Pi)∏k
j=1 |Pj |

∑
pj∈Pj ,j ̸=i

∑
pi∈Pi

E
(x,x̄)

[
e−ε·∥x−x̄∥1 · Pr

A

[
dist(pi,A(x̄)|i) ≥ f(Pi)

]
− δ · ∥x− x̄∥1

]
(33)

≥ f(Pi)∏k
j=1 |Pj |

∑
pj∈Pj ,j ̸=i

∑
pi∈Pi

E
(x,x̄)

[
e−ε·τi·C · Pr

A

[
dist(pi,A(x̄)|i) ≥ f(Pi)

]
− δ · τi · C − 1∥x−x̄∥1>τi·C

]
(34)

=
f(Pi)∏k
j=1 |Pj |

∑
pj∈Pj ,j ̸=i

(
e−ε·τi·C · Ē

x

 ∑
pi∈Pi

Pr
A

[
dist(pi,A(x̄)|i) ≥ f(Pi)

]− δ · τi · C · |Pi|

−
∑
pi

Pr
(x,x̄)

[∥x− x̄∥1 > τi · C]

)
(35)

≥
(
e−ε·τi·C

2
− ε · τi · C − 1

C

)
· f(Pi) (36)

>

(
1

10
− 4ε · τi

)
· f(Pi) (37)
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where (31) is by Markov inequality, (33) is by group privacy and holds for arbitrary constant C > 0,
(35) is by moving the sum of pi ∈ Pi inside expectation (as x̄ is independent of the choice of pi

given coupling (x, x̄) between distributions S(n,
∑d

j=1 wjp
j) and S(n,wip̄

i +
∑

j ̸=i wjp
j)), (36)

is by the packing assumption (28) and δ ≤ ε and the dataset distance assumption (29), and (37) is by
choosing C = 1

4ε·τi .

We now use (37) to prove a lower bound on the expected error for estimating the whole distribution
over all possible distributions in the packing set P . By Lemma A.2, it follows that

1

|P|
∑
p∈P

E
x∼S(n,p),A

[dist(p,A(x))] ≥ 1

|P|
∑
p∈P

k∑
i=1

wi · E
x∼S(n,p),A

[dist(p|i,A(x)|i)] (38)

≥
k∑

i=1

wi ·
(

1

10
− 4ε · τi

)
· f(Pi) (39)

where the last inequality (39) is by (37). This suffice to prove (30) by observing that average is
smaller than maximum.

Finally, we provide two useful constructions of packing set that satisfy (15) and (28).
Lemma A.5 (Packing over Two Symbols). Let B = {j1, j2} be a set of two symbols. Given
0 ≤ ∆ ≤ a ≤ 1, let P := {p, p−} be a packing set containing the following two distributions on B.

p(j) =


a j = j1
1− a j = j2
0 j ∈ [d] \ {j1, j2}

and p−(j) =


a−∆ j = j1
1− a+∆ j = j2
0 j ∈ [d] \ {j1, j2}

If ∆ < a
2 , then

For any q ∈ ∆(d)
1

2

(
1
KL(p,q)≥∆2

8a

+ 1
KL(p−,q)≥∆2

8a

)
≥ 1

2
(40)

Proof. We will prove this claim by separating the analysis for different q.

1. If qj1 ≤ a− ∆
2 : by definition, we compute that

KL(p, q) =a ln

(
a

qj1

)
+ (1− a) ln

(
1− a

qj2

)
≥a− qj1 +

1

2
· (a− qj1)

2

a
+ (1− a)− qj2 (41)

≥1

8
· ∆

2

a
(42)

where (41) is by ln(1 + x) ≤ x− x2

2 for x ≤ 0, and by ln(1 + x) ≤ x for x ≥ 0, and the
last inequality is by qj1 + qj2 ≤ 1 and by using the condition that qj1 ≤ a− ∆

2 .

2. If qj1 > a− ∆
2 : by definition, we compute that

KL(p−, q) =(a−∆) ln

(
a−∆

qj1

)
+ (1− a+∆) ln

(
1− a+∆

qj2

)
≥a−∆− qj1 +

1

4
· (a−∆− qj1)

2

a−∆
+ (1− a+∆)− qj2 (43)

≥1

8
· ∆

2

a
(44)

where (43) is by ln(1 + x) ≤ x− x2

4 for 0 ≤ x < 1
2 , and by ln(1 + x) ≤ x for x ≥ 0, and

the last inequality is by qj1 + qj2 ≤ 1 and by using the condition that qj1 > a− ∆
2 .
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Lemma A.6 (Dirac Distribution Packing over κ Symbols). Let B = {j1, · · · , jκ} be a set of κ ≥ 2
symbols. Let P := {p, p−} be a packing set containing the following dirac distributions on B.

pl(j) =

{
1 j = jl
0 j ∈ [d] \ {jl}

for l = 1, · · · , κ

Then it holds that

For any q ∈ ∆(d)
1

κ

κ∑
l=1

1KL(pl,q)≥ln(1+κ
4 )

≥ 1

2
(45)

Proof. We prove by contradiction, suppose that there exists q ∈ ∆(d), such that
κ∑

l=1

1KL(pl,q)≥ln(1+κ
4 )

<
κ

2
(46)

Then by definition of KL divergence, we have
κ∑

l=1

1qjl≤
1

1+κ
4

<
κ

2
(47)

Observe that
∑κ

l=1 1qjl≤
1

1+κ
4

is integer, (47) implies that

κ∑
l=1

1qjl≤
1

1+κ
4

≤
{
0 κ = 2
2κ
3 − 1 κ ≥ 3

(48)

Thus
κ∑

l=1

qjl ≥
1

1 + κ
4

·
κ∑

l=1

1qjl>
1

1+κ
4

=
1

1 + κ
4

·

(
κ−

κ∑
l=1

1qjl≤
1

1+κ
4

)
(49)

≥

{
4
3 κ = 2
1+κ

3

1+κ
4

κ ≥ 3
> 1 (50)

where (50) is by (47). This contradicts q ∈ ∆(d).

B Useful Lemmas for Poisson and Laplace Random Variables

Lemma B.1 (Expectation of inverse Poisson random variable). Let p ∈ [0, 1],m ∈ N, and let
x ∼ Poi(mp). Then

E
[

1

x+ 1

]
≤ 1

mp
(51)

Proof. By definition, we compute that

E
[

1

x+ 1

]
=

∞∑
t=0

1

t+ 1
· e−mp · (mp)t

t!
=

1

mp

∞∑
t=1

e−mp · (mp)t

t!
=

1

mp
·
(
1− e−mp

)
≤ 1

mp

(52)

Lemma B.2 (Tail bound for Sum of Poisson and Laplace Random Variables). For any a, b, c > 0.
Suppose that x ∼ Poi(a), z ∼ Lap (0, b), then we have that

Pr [x+ z ≤ c] ≤ 4

3
e(−

a
3+

c
2 )·

1
max{b,1} and Pr [x+ z ≥ c] ≤ 4

3
e

a−c
2 · 1

max{b,1} . (53)
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Proof. We first compute the moment generating function of x+ z, i.e., the convolution of Poisson
random variable and Laplace noise. For any θ ∈ [− 1

b ,
1
b ], by definition, we have that

Mx+z(θ) =E
[
eθ·(x+z)

]
= E

[
eθ·x

]
· E
[
eθ·Lap(0,b)

]
= ea(e

θ−1) · 1

1− b2θ2
(54)

Then, by using Markov inequality, for θ ∈ [0, 1
b

)
, we have

Pr[x̃ ≤ c] =Pr
[
e−θ(x+z) ≥ e−θc

]
≤ Mx+z(−θ)

e−θc
=

ea(e
−θ−1)+θc

1− b2θ2
(55)

By choosing θ = 1
2max{b,1} , then by observing e−θ − 1 ≤ − 2

3θ for θ = 1
2max{b,1} < 1

2 , we prove
that

Pr[x̃ ≤ c] ≤ 4

3
· e(−

a
3+

c
2 )·

1
max{b,1} (56)

Similarly, we prove a bound for the upper tail by Markov inequality.

Pr[x̃ ≥ c] =Pr
[
eθ(x+z) ≥ eθc

]
≤ Mx+z(θ)

eθc
=

ea(e
θ−1)−θc

1− θ2b2
≤ 4

3
e

a−c
2 · 1

max{b,1} (57)

where the last inequality is by choosing θ = 1
2max{b,1} .

Lemma B.3 (Bias of Truncated Laplace Random Variable). Let λ ≥ 0, n ∈ N. Let x ∼ Poi(λ) and
let Z ∼ Lap(0, b). Then the noisy estimator given by x̃ = max {x+ Z, c} satisfies

0 ≤ E [x̃− λ] ≤ b+ c (58)

Proof. We first prove the left inequality in Lemma B.3. By definition,

E [x̃− λ] = E [x̃− x] = E [Z · 1x+Z≥c + (c− x) · 1x+Z<c] = E[Z] + E [(c− x− Z) · 1x+Z<c] ≥ 0

We then prove the right inequality in Lemma B.3. By x̃ = max{x+ Z, c}, we compute that

E [x̃− λ] = E [x̃− x] ≤ E [max{c, |Z|}] ≤ E[|Z|] + c = b+ c (59)

Lemma B.4 (Conditional Bias under Thresholding). Let X be a random variable over R. Then for
any c ∈ R,

E [X|X ≥ c] ≥ E[X] and E [X|X ≤ c] ≤ E[X] (60)

Proof. We first prove the first inequality in Lemma B.4. If c ≥ E[X], then E[X|x ≥ c] ≥ c ≥ E[X].
If c < E[X], then by definition,

E [(X − E[X]) · 1X>c] ≥E [(X − E[X])] = 0 (61)

where the inequality is by x− E[X] ≤ c− E[X] ≤ 0 for x ≤ c. The proof for the second inequality
in Lemma B.4 is similar.

Corollary B.5 (Conditional Bias of Truncated Sum of Poisson and Laplace Random Variable). Let
b > 0, λ > 0, c, d ∈ R ∪ {−∞,+∞}. Let x ∼ Poi(λ) and let Z ∼ Lap(0, b). Then the noisy
estimator given by x̃ = max {x+ Z, c} satisfies

E [x̃− λ|x+ Z ≤ d] ≤ b+ c (62)

and

E [x̃− λ|x+ Z ≥ d] ≥ 0 (63)
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Proof. We first prove (62). By Lemma B.4, we have that

E [x̃− λ|x+ Z ≤ d] ≤ E [x̃− λ] ≤ b+ c

where the last inequality is by Lemma B.3. We then prove (63). By Lemma B.4, we have that

E [x̃− λ|x+ Z ≥ d] ≥ E [x̃− λ] ≥ 0

where the last inequality is by Lemma B.3.

Lemma B.6. Let b > 0 and c ∈ R, and let Z ∼ Lap(0, b). Then

E [Z|Z ≥ c] ≤ max{c, 0}+ b (64)

Proof. We separate our discussion for c ≥ 0 and c < 0.

1. If c ≥ 0, we have that

Pr[Z = z|Z ≥ c] =


1
2b e

− z
b

1
2 e

− c
b

= 1
b e

− z−c
b z ≥ c

0 z < c
(65)

Thus

E [Z|Z ≥ c] =

∫ +∞

c

z · 1
b
e−

z−c
b dz ≤ O (c+ b) (66)

2. If c < 0, we have that

Pr[Z = z|Z ≥ c] ≤
1
2be

− |z|
b

1
2

=
1

b
e−

|z|
b (67)

Thus

E [Z|Z ≥ c] ≤
∫ +∞

c

1

b
e−

|z|
b dz ≤

∫ +∞

−∞

1

b
e−

|z|
b dz ≤ O (b) (68)

Lemma B.7. Let λ > 0, b > 0 and c ∈ R. Let X ∼ Poi(λ) and Z ∼ Lap(0, b) be independent
random variables. Then

E [X + Z|X + Z ≥ c] ≤ λ+O (b+max{c, 0}) (69)

Proof. By definition,

E [X + Z|X + Z ≥ c] =

∞∑
t=0

Pr[X = t] · (t+ E [Z|Z ≥ c− t]) (70)

≤E[X] +

∞∑
t=0

Pr[X = t] ·O (max{c− t, 0}+ b) (71)

≤λ+O (b+max{c, 0}) (72)

where (71) is by applying Lemma B.6

Lemma B.8 (KL Divergence between Poisson Distributions [57, Theorem 2]). Let m, k > 0 be fixed.
Then the KL divergence between two Poisson distributions Poi(m) and Poi(k) satisfies

KL (Poi (m) ,Poi (k)) = m− k + k · ln
(

k

m

)
(73)
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Lemma B.9 (Total Variation Distance between Poisson Distributions). Let λ1, λ2 > 0 be fixed. If
λ1 ≤ λ2, Then

TV (Poi (λ1) ,Poi (λ2)) ≤
1

2

√
(λ1 − λ2)2

λ1
(74)

Proof. By Pinsker’s inequality, we have

TV (Poi (λ1) ,Poi (λ2)) ≤
√

KL (Poi (λ2) ,Poi (λ1))

2
(75)

≤

√√√√λ2 − λ1 + λ1 · ln
(

λ1

λ2

)
2

(76)

≤1

2

√
(λ1 − λ2)2

λ1
(77)

where (76) is by Lemma B.8, and the last inequality is by ln(1 + x) ≥ x− x2

2 for x ≥ 0.

Lemma B.10. Let p > 0, m ∈ N, c1, c2 ∈ R ∪ {+∞,−∞}, b ≥ 0, and c ≥ max{b, 1}. Let
x ∼ Poi(mp) and let Z ∼ Lap (0, b) be independent of x. Then the noisy estimator given by
x̃ = max{x+ Z, c} satisfies

E
[
1c1≤x+Z≤c2 ·

(
p ln

(mp

x̃

)
+

x̃−mp

m

)]
≤ O

(
1

m
+

b2 + c2

m ·max{c,mp}

)
(78)

Proof. We separate the discussions for p ≤ c
m and p > c

m .

• If p ≤ c
m , by ln(1 + t) ≤ t for any t > −1, we have that

E
[
1c1≤x+Z≤c2 ·

(
p ln

(mp

x̃

)
+

x̃−mp

m

)]
(79)

≤E
[
1c1≤x+Z≤c2 ·

(
(mp− x̃)2

mx̃
+

mp− x̃

m
+

x̃−mp

m

)]
(80)

≤E
[
(mp− x̃)2

mc

]
(81)

≤E
[
2(mp− x)2 + 2(x− x̃)2

mc

]
(82)

≤E
[
2mp

mc
+

4b2 + 2c2

mc

]
≤ O

(
1

m
+

b2 + c2

mc

)
(83)

where the (81) is by x̃ ≥ c and by (mp − x̃)2 ≥ 0, (82) is by (a + b)2 ≤ 2a2 + 2b2, and
the last inequality is by E[(mp− x)2] = mp, E

[
(x− x̃)2

]
≤ E[Z2 + c2] = 2b2 + c2, and

p ≤ c
m .

• If p > c
m : Observe that by ln(y) ≥ y − 1− (y − 1)2 for any y ≥ 1

3 , we have that

E
[
1c1≤x+Z≤c2 ·

(
p ln

(mp

x̃

)
+

x̃−mp

m

)
· 1x+Z≥ 1

3mp

]
(84)

≤E
[
1c1≤x+Z≤c2 ·

(
−p · x̃−mp

mp
+ p · (x̃−mp)2

(mp)2
+

x̃−mp

m

)
· 1x+Z≥ 1

3mp

]
(85)

=E

[
1c1≤x+Z≤c2 ·

(x̃−mp)2

m2p
· 1x+Z≥ 1

3mp

]
(86)

≤
2E
[
Z2 + c2 + (x−mp)2

]
m2p

= O

(
b2 + c2

m2p
+

1

m

)
(87)
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where the first inequality in (87) is by (a + b)2 ≤ 2(a2 + b2) and (x̃ − x)2 ≤ Z2 + c2,
and by Z2 + c2 + (x − mp)2 ≥ 0; the last equality in (87) is by E

[
Z2
]
= 1

ε2 and
E
[
(x−mp)2

]
= mp.

On the other hand, by Lemma B.2, we have that Pr[x+ Z < 1
3mp] ≤ O

(
e−

mp
3 · 1

max{b,1}

)
.

Thus we have that

E
[
1c1≤x+Z≤c2 ·

(
p ln

(mp

x̃

)
+

x̃− x

m

)
· 1x+Z< 1

3mp

]
≤

p ln
(
mp
c

)
+ p

e
mp
3 · 1

max{b,1}
(88)

=
max{b, 1}

m
· x ln(x) + x

ex/3

∣∣∣
x= mp

max{b,1}

+ ln

(
max{b, 1}

c

)
· max{b, 1}

n
· x

ex/3

∣∣∣
x= mp

max{b,1}

(89)

≤O

(
max{b, 1}2

m2 · p

)
≤ O

(
c2

m2 · p

)
(90)

where the inequality in (90) is by x ln(x)
ex/6 ≤ O

(
1
x

)
and x

ex/6 ≤ O
(
1
x

)
for x ≥ 0, and by

c ≥ max{b, 1} This suffice to prove the bound in the statement.

C Deferred Minimax Optimality Results

C.1 Recap: Non-DP Minimax Results

The minimax rate for non-DP distribution estimation in KL divergence error is well-studied [10, 51,
52], as summarized below in Table 2.

Estimator/Bound Expected KL Error Reference

Upper Bound ln
(
1 + d

n

)
[10, Theorem 8]

(Add-Constant Estimator) Recap: Theorem C.2
Lower Bound Ω

(
ln
(
1 + d

n

))
Recap: Theorem C.1

Table 2: Non-DP Minimax Rates for Distribution Estimation in KL Divergences

For completeness, below we offer simple proofs for the minimax upper and lower bounds.

C.1.1 Recap: Non-DP Minimax KL Error Lower Bound

The minimax lower bound for distribution estimation in KL divergence error is well-understood to
be Ω(1 + d

n ), e.g., see the variational lower bounds in [52]. For completeness, below we provide
an alternative proof via the tools in this paper, i.e., the generalized DP Assouad’s method for
decomposable statistical distance (in our case KL divergence) in Lemma A.2.
Theorem C.1 (Lower Bound for Non-DP Estimation). Let d, n be fixed. Then for any estimator A,
we have that

max
p

E
x∼Mult(n,p)

[
KL(p∥A(x))

]
≥
{
Ω
(
d−1
n

)
d− 1 ≤ 2n

Ω
(
ln
(
d−1
n

))
d− 1 > 2n

= Ω

(
ln

(
1 +

d

n

))
(91)

Proof sketch The idea is to design p to be uniform over a random support of symbols with small
probability mass, and then reduce the problem to the difficulty of inferring the support given limited
samples.

Proof. • Dense Case d− 1 ≤ 2n: Assume d mod 2 = 1 for convenience. We decompose
d symbols into d−1

2 buckets Bi = {2i− 1, 2i} for i = 1, · · · , d−1
2 . We then construct the
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packing as follows. For i = 1, · · · , d−1
2 .

For i = 1, · · · , d− 1

2
Pi = {δ2i−1, δ2i} (92)

where δi means point distribution on symbol i. We then construct a set of distributions.

P =

p =

d−1
2∑

i=1

1

n
· pi +

(
1− d− 1

2n

)
· δd : pi ∈ Pi for any i = 1, · · · , d− 1

2

 (93)

Then by Lemma A.2, for any algorithm A we have that

1

|P|
∑
p∈P

E
x∼Mult(n,p)

[KL(p,A(x))] ≥ 1

n|P|

d−1
2∑

i=1

∑
p∈P

E
x∼Mult(n,p)

[KL(p|i,A(x)|i)] (94)

≥ 1

ne|P|

d−1
2∑

i=1

∑
p∈P

E
x∼Mult(n,p)

[KL(p|i,A(x)|i)|x2i−1 = x2i = 0] (95)

≥ 1

ne

d−1
2∑

i=1

ln(2) =
(d− 1) ln(2)

2ne
(96)

(97)

Thus for any A, there must exist one p ∈ P such that E
x∼Mult(n,p)

[KL(p,A(x))] ≥ Ω(d−1
n ).

• Sparse Case: d − 1 > 2n: Denote κ = ⌊d−1
n ⌋ ≥ 2 and k = n for convenience. We

decompose d symbols into k buckets Bi = {κ · i− κ+ 1, κ · i} for i = 1, · · · , k. We then
construct the packing as follows.

For i = 1, · · · , k Pi = {δκ·i−κ+1, · · · , δκ·i} (98)

where δi means point distribution on symbol i. We then construct a set of distributions.

P =

{
p =

k∑
i=1

1

n
· pi : pi ∈ Pi for any i = 1, · · · , k

}
(99)

Then by Lemma A.2, for any algorithm A we have that

1

|P|
∑
p∈P

E
x∼Mult(n,p)

[KL(p,A(x))] ≥ 1

n|P|

k∑
i=1

∑
p∈P

E
x∼Mult(n,p)

[KL(p|i,A(x)|i)] (100)

≥ 1

ne|P|

k∑
i=1

∑
p∈P

E
x∼Mult(n,p)

[KL(p|i,A(x)|i)|xκi−κ+1 = · · · = xκi = 0] (101)

≥ 1

ne

k∑
i=1

ln(κ) =
k lnκ

ne
=

1

e
ln

(
d− 1

n

)
(102)

(103)

Thus for any A, there must exist one p ∈ P such that E
x∼Mult(n,p)

[KL(p,A(x))] ≥

Ω(ln
(
d−1
n

)
).

C.1.2 Recap: Non-DP Minimax KL Error Upper Bound

The minimax upper bound for distribution estimation is well-studied, and various works [10, 51, 52]
have shown that simple add-constant estimators could achieve the optimal O

(
ln
(
1 + d

n

))
minimax

KL error. Below we offer a simple proof for completeness.
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Theorem C.2 (Non-DP Distribution Estimation KL Upper Bound). There exists estimator A such
that for any p ∈ ∆(d), given n empirical data samples x ∼ Mult(n, p), it satisfies that

E
x∼Mult(n,p)

[
KL(p∥A(x))

]
≤ ln

(
1 +

d

n

)
(104)

Proof. We use that the following simple add-constant estimator.

A(x)i =
1

1 + d
n

· xi + 1

n
(105)

Then by definition

E
x∼Mult(n,p)

[
KL(p∥A(x))

]
=

d∑
i=1

pi E
x∼Mult(n,p)

[
ln

(
npi

xi + 1

)]
+ ln

(
1 +

d

n

)
(106)

≤
d∑

i=1

pi ln

(
npi · E

x∼Mult(n,p)

[ 1

xi + 1

])
+ ln

(
1 +

d

n

)
(107)

≤
d∑

i=1

ln

 npi
E

x∼Mult(n,p)
[xi]

+ ln

(
1 +

d

n

)
(108)

= ln

(
1 +

d

n

)
(109)

where (107) is by concavity of the function ln(x), and (108) is by Lemma C.3.

Lemma C.3. Let s1, · · · , sK be K independent Bernoulli random variables with parameter
p1, · · · , pK . Let c ≥ 1 be a positive constant. Then we have that

E

[
1

c+
∑K

k=1 sk

]
≤ 1∑K

k=1 pk
(110)

Proof. Conditioned on any fixed value for s3, · · · , sK , denote c′ = c+
∑K

k=3 sk we have that

E

[
1

c+
∑K

k=1 sk

∣∣∣s3, · · · , sK] =
p1p2
c′ + 2

+
p1(1− p2) + (1− p1)p2

c′ + 1
+

(1− p1)(1− p2)

c′
(111)

=p1p2

(
1

c′ + 2
− 2

c′ + 1
+

1

c′

)
+ (p1 + p2) ·

(
1

c′ + 1
− 1

c′

)
+

1

c′
(112)

≤
(
p1 + p2

2

)2(
1

c′ + 2
− 2

c′ + 1
+

1

c′

)
+ (p1 + p2) ·

(
1

c′ + 1
− 1

c′

)
+

1

c′
(113)

where the last inequality is by 1
c′+2 − 2

c′+1 + 1
c′ > 0 for c′ > 0. By similar argument, we have that

E

[
1

c+
∑K

k=1 sk

]
≤ E

[
1

c+ s

]
≤ E

[
1

1 + s

]
(114)

where s ∼ Bin(K, p̄) where p̄ = 1
K

∑K
k=1 pk. Then by simple algebraic tricks, we have that

E

[
1

c+
∑K

k=1 sk

]
≤

K∑
j=0

(
K

j

)
p̄j(1− p̄)K−j · 1

j + 1
(115)

=
1

(K + 1)p̄

K∑
j=0

(
K + 1

j + 1

)
p̄j+1(1− p̄)K−j (116)

<
1

Kp̄
=

1∑K
k=1 pk

(117)
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Method KL Error Bound Conditions Reference

Any (ε, δ)-DP Ω
(
ln(1 + d

nmin{ε,1} )
)

d ≥ 4, δ ≤ ε Theorem C.4

Add-constant ((ε, δ)-DP) O
(
ln
(
1 + d

nmin{ε,1}

))
ε > 0, δ ≥ 0 Theorem C.5

(Laplace Mechanism)

Table 3: DP Minimax KL error bounds

C.2 Our DP Minimax Results

We first summarize our derived DP minimax rates in Table 3 – observe that simple variants of Laplace
mechanism is minimax optimal.

We comment that our KL minimax lower bound is stronger than naive conversions of prior TV
distance lower bounds to KL lower bounds – applying Pinsker inequality to the prior Ω

(
d
εn

)
TV

lower bounds [19, 3] only gives a KL lower bound of Ω
(
min

{
d2

ε2n2 , 1
})

, which is significantly

weaker than our bound Ω
(
ln
(
1 + d

εn

))
in Table 3, especially for large d.

Below we present the proofs for the minimax lower bounds and upper bounds.

C.2.1 DP Minimax Lower Bound

Theorem C.4 (Minimax Lower Bound for DP estimation). Let d, n ∈ N, ε ≥ 0, and δ ∈ [0, 1] be
fixed. If d ≥ 4, δ ≤ ε, then

max
p∈∆(d)

E
x∼Poi(n,p)

[
KL(p,A(x))

]
≥ Ω

(
ln

(
1 +

d

εn

))
(118)

Proof. Let κ, k ∈ N be defined as follows.

κ =


2 d

160nε ≤ 2

⌊ d
160nε⌋

d
160nε > 2 and 80nε ≥ 1

⌊d
2⌋

d
160nε > 2 and 80nε < 1

and k =


⌊d
4⌋

d
160nε ≤ 2

⌊80nε⌋ d
160nε > 2 and 80nε ≥ 1

1 d
160nε > 2 and 80nε < 1

. (119)

Thus by d ≥ 2, we have

κ ≥ 2 and k ≥ 1 and κ · k ≤ d

2
and

k

160nε
≤ 1

2
(120)

For i = 1, · · · , k, we construct a packing set of distributions supported on symbols Bi = {k · i− κ+
1, · · · , δκ·i} as follows.

For i = 1, · · · , k Pi = {δκ·i−κ+1, · · · , δκ·i} (121)

We construct the following set of distributions that lie in the additive neighborhood of p.

P =

{
q =

(
1− k

160nε

)
· qc +

k∑
i=1

wi · qi : wi =
1

160nε
and qi ∈ Pi for any i = 1, · · · , k

}
(122)

where

qc(j) =

{
0 j = 1, · · · , κ · k

1
d−κ·k j = κ · k + 1, · · · , d (123)

One can verify that the distributions in P are well-defined (i.e., normalized). Now by applying
Lemma A.6 to Pi for each i = 1, · · · , k, we prove that for any q′ ∈ ∆(d), it holds that

1

|Pi|
∑
q∈Pi

1KL(q,q′)≥f(Pi) ≥
1

2
where f(Pi) = ln

(
1 +

κ

4

)
(124)
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Thus the first condition of Theorem A.4 holds. Below we analyze the second
condition of Theorem A.4. For each i ∈ [k] and fixed qj ∈ Pj , j =

1, · · · , k and fixed q̄i ∈ Pi. Let x ∼ Poi

(
n,
(
1− k

160nε

)
· qc +

k∑
j=1

wj · qj
)

and

y ∼ Poi

(
n,
(
1− k

160nε

)
· qc + wi · q̄i +

∑
j ̸=i

wj · qj
)

be independent Poisson random vari-

ables. Then we could construct the following coupling (x, x̄) between distributions

Poi

(
n,
(
1− k

160nε

)
· qc +

k∑
j=1

wj · qj
)

and Poi

(
n,
(
1− k

160nε

)
· qc + wi · q̄i +

∑
j ̸=i

wj · qj
)

:

x̄l =

{
yl l = κ · i− κ+ 1, · · · , κ · i
xl l ∈ [d] \ {κ · i− κ+ 1, · · · , κ · i} (125)

By definition, we compute that

E [∥x− x̄∥1] =
κ·i∑

l=κ·i−κ+1

E [|xl − yl|] ≤
κ·i∑

l=κ·i−κ+1

E [xl + yl] =
1

80ε
:= τ (126)

where the inequality is by triangle inequality for ℓ1 distance. By applying Theorem A.4 under our
proved conditions (124) and (126), we finally prove that

max
q∈P

E [KL(q,A(x))] ≥
k∑

i=1

wi ·
(

1

10
− 4ε · τ

)
· f(Pi) =

k

160nε
· 1

20
· ln
(
1 +

κ

4

)
(127)

=


1

160·20nε⌊
d
4⌋ · ln

(
1 + 1

2

)
d

160nε ≤ 2
1

160·20nε · ⌊80nε⌋ · ln
(
1 + 1

4⌊
d

160·nε⌋
)

d
160nε > 2 and 80nε ≥ 1

1
160·20nε · ln

(
1 + 1

4⌊
d
2⌋
)

d
160nε > 2 and 80nε < 1

(128)

≥


d

160·20nε·8 ln
(
1 + 1

2

)
d

160nε ≤ 2
1
80 · ⌊80nε⌋ · ln

(
1 + d

8·160·nε
)

d
160nε > 2 and 80nε ≥ 1

1
160·20nε · ln

(
1 + d

16

)
d

160nε > 2 and 80nε < 1

(129)

≥Ω

(
ln

(
1 +

d

nε

))
(130)

where (128) is by using the definitions of κ and k in (119), (129) is by ⌊x⌋ ≥ x
2 for any x ≥ 1, (130)

is by ln(1 + λx) ≤ λ · ln (1 + x) ≤ x for 0 ≤ λ ≤ 1 and x > 0, and by λ ln(1 + x) ≥ ln(1 + λx)
for λ > 1 and x > 0.

C.2.2 DP Minimax Upper Bound

Theorem C.5 (Upper Bound - Pure DP). There exists an (ε, δ)-DP estimator A such that for any
fixed d, n ∈ N,

E
x∼Poi(n,p)

[
KL(p∥A(x))

]
≤ O

(
ln

(
1 +

d

nmin{1, ε}

))
(131)

Proof. This can be achieved by a simple estimator that combines an add-constant estimator and
Laplace mechanism as follows.

A(x)i =
1

N
· x̃i

n
where x̃i = max

{
xi + zi,

1

min{1, ε}

}
(132)

where z ∼ Lap
(
0, 1

ε

)d
, and N =

∑
i x̃i is the normalization constant. The (ε, 0)-DP guarantee

follows by observing that the ℓ1-sensitivity of vector release (x1, · · · , xd) is one, and by applying
the DP guarantee for Laplace Mechanism in [26, Theorem 1]. Below we focus on bounding the KL
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Neighborhood N lower(p, n,N) (2) Conditions Reference

N≤t/n(p) (136) Ω
(

ln(1+dsmall(L
′))

n
+ psmall(L

′) ln
(
1 + dsmall(L

′)
npsmall(L

′)

))
L′ ⊆ [d], t ≥ 1 Theorem D.3
d ≥ 2, n ≥ 4

Nstat(p) (137) Ω
(∑

i

min
{
pi,

1
n

})
d ≥ 2 Theorem D.4

Table 4: Non-DP per-instance lower bounds, where psmall(L
′) =

∑
i∈L′,pi≤ t

n

pi and dsmall(L
′) =

∑
i∈L′,pi≤ t

n

1.

error. By concavity of ln(t) on t > 0, we have

E
x∼Poi(n,p)

[KL(p∥A(x))] ≤ E
x∼Poi(n,p)

[∑
i

pi ln

(
pi · n
x̃i

)]
+ ln

(
1 +

∑
i

E [x̃i − pi]

n

)

≤ E
x∼Poi(n,p)

 ∑
i:pi>

1
nmin{1,ε}

pi ln

(
pi · n
x̃i

)
+

x̃i − pi
n

+ ln

1 +
∑

i:pi<
1

nmin{1,ε}

E [x̃i − pi]

n


(133)

≤O


∑

i:pi>
1

nmin{1,ε}

1

nmin{1, ε}

+ ln

1 +O


∑

i:pi<
1

nmin{1,ε}

1

nmin{1, ε}


 (134)

≤O

(
1 +

d

nmin{1, ε}

)
(135)

where (133) is by pi ln
(

pi·n
x̃i

)
≤ 0 for pi < 1

nmin{1,ε} , by E[x̃i −xi] ≥ 0 for any i (by Lemma B.3),
and by ln(1 + x + y) ≤ x + ln(1 + y) for any x, y > 0; (134) is by applying Lemma B.10 under
setting m = n, c1 = −∞, c2 = +∞, b = 1

ε and c = 1
min{1,ε} for pi > 1

nmin{1,ε} and by applying
Lemma B.3 for pi < 1

nmin{1,ε} ; and (135) is by a+ ln(1 + b) ≤ ln(1 + 2a+ 2b) for 0 < a < 1 and
b > 0.

D Deferred Proofs for Non-DP Per-Instance Lower Bound Theorem 2.1

For ease of presentation and understanding, we break up the neighborhood N+(p) into two sub-
neighborhoods: one N≤ t

n
⊆ N+(p) with the same small perturbation for every symbol, and the other

Nstat ⊆ N+(p) (based on statistical variance) with larger perturbations for large symbols, defined as
follows.

N≤ t
n
(p) =

{
q : |qi − pi| ≤

t

n
for any i ∈ [d] and

∑
i:pi≤ t

n

qi ≤ max

 t

n
,
∑

i:pi≤ t
n

pi


}

(136)

Nstat(p) =

{
q : |qi − pi| ≤ min

{
pi,

√
pi
n

}
for any i ∈ [d]

}
∪

{
q :

d∑
i=1

|qi − pi| ≤
1

n

}
(137)

We then prove per-instance lower bounds under the sub-neighborhoods N≤ t
n
(p) and Nstat(p)

respectively. By definition (2), their average is a lower bound for the per-instance lower bound under
N+(p), i.e., lower(p, n,N+) ≥ 1

2 ·lower(p, n,N≤ t
n
)+ 1

2 ·lower(p, n,Nstat). (This is because one can
construct a distribution over hard instances, choosing the hard instance(s) in N≤ t

n
(p) and Nstat(p)

with 1/2 probability respectively.) Our per-instance lower bounds under the two sub-neighborhood
are summarized in Table 4.
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D.1 Useful Lemmas

Lemma D.1 (Coupling Lemma [5, Lemma 3.6]). Let random variables Z1, Z2 have distributions
ν1, ν2. Then

TV (ν1, ν2) ≤ Pr [Z1 ̸= Z2] . (138)

Conversely, given probability distributions ν1, ν2, there exists (Z1, Z2) such that

TV (ν1, ν2) = Pr [Z1 ̸= Z2] (139)

where Z1, Z2 have distributions ν1, ν2 respectively.
Lemma D.2 (Total Variation Inequality between Product Measures). Let µ1, µ2 be probability
distributions over Ω and let µ′

1, µ
′
2 be probability distributions over Ω′. Denote µ1 × µ′

1 as the
product measure of µ1 and µ′

1 over Ω× Ω′, and similarly denote µ2 × µ′
2 as the product measure of

µ2 and µ′
2 over Ω× Ω′. Then

TV(µ1 × µ′
1, µ2 × µ′

2) ≤ TV(µ1, µ2) + TV(µ′
1, µ

′
2) (140)

Proof. By the coupling lemma Lemma D.1, there exists (Z1, Z
′
1) such that Z1 ∼ µ1, Z ′

1 ∼ µ′
1

and TV = Pr[Z1 ̸= Z ′
1]. Similarly, there exists (Z2, Z

′
2) such that Z2 ∼ µ2, Z ′

2 ∼ µ′
2 and

TV = Pr[Z2 ̸= Z ′
2]. Let Z = (Z1, Z

′
1) and Z ′ = (Z2, Z

′
2). Then Z ∼ µ1 × µ′

1 and Z ′ ∼ µ2 × µ′
2.

By again using the coupling lemma Lemma D.1, we prove that

TV(µ1 × µ′
1, µ2 × µ′

2) ≤ Pr[Z ̸= Z ′] ≤ Pr[Z1 ̸= Z ′
1] + Pr[Z2 ̸= Z ′

2] = TV(µ1, µ2) + TV(µ′
1, µ

′
2)

(141)

where the second inequality is by union bound.

D.2 Non-DP Per-Instance Lower Bound under N≤ t
n
(p)

We now prove the per-instance lower bound in Table 4 under additive neighborhood N≤ t
n
(p) for

low-probability symbols.
Theorem D.3. Let p ∈ ∆(d) be fixed. For t > 0, let N≤ t

n
(p) be the below additive local neighbor-

hood of p as defined in (136).

N≤ t
n
(p) =

q : |qi − pi| ≤
t

n
and

∑
i:pi≤ t

n

qi ≤ max

 t

n
,
∑

i:pi≤ t
n

pi


 (142)

If t ≥ 1, d ≥ 2 and n ≥ 4, then for any L′ ⊆ [d],

max
q∈N≤ t

n
(p)

E
x∼Poi(n,q)

KL(q,A(x)) ≥ Ω

(
ln(1 + dsmall(L

′))

n
+ psmall(L

′) ln

(
1 +

dsmall(L
′)

npsmall(L′)

))
(143)

where psmall(L
′) =

∑
i∈L′,pi≤ t

n

pi and dsmall(L
′) =

∑
i∈L′,pi≤ t

n

1.

Proof. We separate the discussions for different dsmall(L
′).

1. If dsmall(L
′) = 0, then psmall(L

′) = 0 and thus (143) trivially holds.

2. If 1 ≤ dsmall(L
′) ≤ 3: Without loss of generality, assume that {i ∈ L′ : pi ≤ t

n} =
{1, · · · , dsmall(L

′)}.

(a) If maxi∈[d]\[dsmall(L′)] pi ≤ 1
n : Then the neighborhood Nstat defined in (137) is a

subset of N≤ t
n

defined in (142), i.e., Nstat ⊆ N≤ t
n

. Thus (143) holds by observ-
ing that (143) is dominated by the lower bound in Theorem D.4. Specifically, by
ln(x) ≤ x− 1 for any x > 0 and by dsmall(L

′) ≤ 3, we prove that ln(1+dsmall(L
′))

n +

psmall(L
′) ln

(
1 + dsmall(L

′)
npsmall(L′)

)
≤ 2dsmall(L

′)
n ≤ 6

n ≤ O
(∑d

i=1 min
{
pi,

1
n

})
where the last inequality is by d ≥ 2.
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(b) If maxi∈[d]\[dsmall(L′)] pi >
1
n , without loss of generality, assume that pd > 1

n : Then
we construct a packing set of distributions P = {p+, p−} that contains the following
two distributions.

p+(j) =


1
2n j = 1

pj +
p1

d−1 j = 2, · · · , d− 1

pd − 1
2n + p1

d−1 j = d

(144)

and

p−(j) =


1
4n j = 1

pj +
p1

d−1 j = 2, · · · , d− 1

pd − 1
4n + p1

d−1 j = d

(145)

One can validate that the distributions in P are well-defined and are in the additive
neighborhood N≤ t

n
(p) (by observing that p1 ≤ t

n and d ≥ 2, and thus p1

d−1 ≤ t
n ). By

applying Lemma A.5 (under setting a = 1
2n and ∆ = 1

4n ), we further prove that for
any q′ ∈ ∆(d),

1

|P|
∑
q∈P

1KL(q,q′)≥f(P) ≥
1

2
where f(P) =

∆2

a
=

1

8n
(146)

Thus the first condition of Theorem A.3 holds. Below we analyze the second condition
of Theorem A.3. By definition of P we compute that∫ (

min
q∈P

dPoi (n, q)
dPoi (n, p+)

)
dPoi

(
n, p+

)
=

∫
min

{
dPoi

(
n, p+

)
, dPoi

(
n, p−

)}
(147)

=1− TV
(
Poi
(
n, p+

)
,Poi

(
n, p−

))
(148)

≥1− TV
(

Poi
(
n · 1

2n

)
,Poi

(
n · 1

4n

))
− TV

(
Poi
(
npd −

1

2
+

np1
d− 1

)
,Poi

(
npd −

1

4
+

np1
d− 1

))
(149)

≥1− 1

2

√√√√n2
(

1
4n

)2
n · 1

4n

− 1

2

√√√√ (
1
4

)2
npd − 1

2 + p1

d−1

(150)

≥1− 1

4
− 1

4
√
2
>

1

2
:= τ (151)

where (147) is by definition for P that only contains two distributions, (148) is by using
the definition of total variation distance, (149) is by the total variation inequality for
product measures (Lemma D.2), (150) is by Lemma B.9. Thus the second condition of
Theorem A.3 holds. By applying Theorem A.3 under our proved conditions (146) and
(151), we finally prove that

max
q∈P

E [KL(q,A(x))] ≥ 1

2
· τ · f(P) =

1

32n
(152)

≥Ω

(
ln(1 + dsmall(L

′))

n
+ psmall(L

′) · ln
(
1 +

dsmall(L
′)

npsmall(L′)

))
(153)

where (153) is by observing that ln(1+dsmall(L
′))

n +psmall(L
′) ln

(
1 + dsmall(L

′)
npsmall(L′)

)
≤

2dsmall(L
′)

n ≤ 6
n (due to ln(x) ≤ x − 1 for any x > 0 and the condition that

dsmall(L
′) ≤ 3).

3. If dsmall(L
′) ≥ 4: Without loss of generality, assume that {i ∈ L′ : pi ≤ t

n} =

{1, · · · , dsmall(L
′)}. For brevity, denote d̂ = ⌊dsmall(L

′)
2 ⌋ ≥ 2 and p̂ =

∑d̂
i=1 pi. Without
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loss of generality, also assume that p1 ≥ · · · ≥ pdsmall(L′), then

d̂ ≥ dsmall(L
′)

3
and p̂ ≥ psmall(L

′)

3
(154)

Let κ, k ∈ N be defined as follows.

κ =


2 d̂

np̂ ≤ 2

d̂ d̂
np̂ > 2 and np̂ < 1

⌊ d̂
np̂⌋

d̂
np̂ > 2 and np̂ ≥ 1

k =


⌊ d̂
2⌋

d̂
np̂ ≤ 2

1 d̂
np̂ > 2 and np̂ < 1

⌊np̂⌋ d̂
np̂ > 2 and np̂ ≥ 1

. (155)

Thus by definition, we have

κ ≥ 2 and k ≥ 1 and κ · k ≤ d̂ ≤ dsmall(L
′)

2
and

k

n
≤ max

{
p̂,

1

n

}
(156)

For i = 1, · · · , k, we construct a packing set of distributions supported on symbols Bi =
{k · i− κ+ 1, · · · , δκ·i} as follows.

For i = 1, · · · , k Pi = {δκ·i−κ+1, · · · , δκ·i} (157)

We construct the following set of distributions that lie in the additive neighborhood of p.

P =

{
q =

(
1− k

n

)
· qc +

k∑
i=1

wi · qi : wi =
1

n
and qi ∈ Pi for any i = 1, · · · , k

}
(158)

where

qc(j) =


0 j = 1, · · · , d̂

1
1− k

n

·
(
pj +

max{p̂, 1
n}− k

n

dsmall(L′)−d̂

)
j = d̂+ 1, · · · , dsmall(L

′)

pj

1− k
n

·
(
1 +

p̂−max{p̂, 1
n}

1−psmall(L′)

)
j = dsmall(L

′) + 1, · · · , d

(159)

One can verify that the distributions in P are well-defined (i.e., normalized) and lie in
the neighborhood N≤ t

n
(p) defined in (136). This is by pj ≤ t

n for j = 1, · · · , d̂, and

by 0 ≤ max{p̂, 1
n}− k

n

dsmall(L′)−d̂
≤ max

{
p̂

d̂
, 1
n

}
≤ t

n under (156) and d̂ < dsmall(L
′), and by

0 ≥ p̂−max{p̂, 1
n}

1−psmall(L′) ≥ − 1/n
1−3/n ≥ −1 under (154) and n ≥ 4, and by observing that

0 ≥ pj ·
p̂−max{p̂, 1

n}
1−psmall(L′) ≥ p̂−max

{
p̂, 1

n

}
≥ − 1

n for any j = dsmall(L
′) + 1, · · · , d.

Now by applying Lemma A.6 to Pi for each i = 1, · · · , k, we prove that for any q′ ∈ ∆(d),
it holds that

1

|Pi|
∑
q∈Pi

1KL(q,q′)≥f(Pi) ≥
1

2
where f(Pi) = ln

(
1 +

κ

4

)
(160)

Thus the first condition of Theorem A.3 holds. Below we analyze the second condition of
Theorem A.3. By definition of P , for any fixed i ∈ [k] and any fixed p̄ :=

(
1− k

n

)
· qc +∑k

i=1
1
n · q̄i ∈ P , we compute that∫ (
min
qi∈Pi

dPoi
(
n, p̄− 1

n q̄
i + 1

nq
i
)

dPoi (n, p̄)

)
dPoi (n, p̄) =

∫
min
qi∈Pi

dPoi
(
n, p̄− 1

n
q̄i +

1

n
qi
)

(161)

≥ min
qi∈Pi

Pr
x∼Poi(n,p̄− 1

n q̄i+ 1
n qi)

[xκ·i−κ+1 = · · · = xκ·i] =
1

e
:= τ (162)
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where (162) is by probability mass function of Poisson distributions Poi (n · 0) and
Poi
(
n · 1

e

)
. By applying Theorem A.3 under our proved conditions (160) and (162), we

finally prove that

max
q∈P

E [KL(q,A(x))] ≥ 1

2
· τ ·

k∑
i=1

wi · f(Pi) =
k

2en
ln
(
1 +

κ

4

)
(163)

=


1

2en⌊
d̂
2⌋ · ln

(
1 + 1

2

)
d̂
np̂ ≤ 2

1
2en · ln

(
1 + d̂

4

)
d̂
np̂ > 2 and np̂ < 1

1
2en · ⌊np̂⌋ · ln

(
1 + 1

4⌊
d̂
np̂⌋
)

d̂
np̂ > 4 and np̂ ≥ 1

(164)

≥


Ω
(

d̂
n

)
d̂
np̂ ≤ 4

Ω
(

1
n · ln

(
1 + d̂

))
d̂
np̂ > 4 and np̂ < 1

Ω
(
p̂ · ln

(
1 + d̂

np̂

))
d̂
np̂ > 4 and np̂ ≥ 1

(165)

≥Ω

(
ln(1 + d̂

n
+ p̂ · ln

(
1 +

d̂

np̂

))
(166)

≥Ω

(
ln(1 + dsmall(L

′))

n
+ psmall(L

′) · ln
(
1 +

dsmall(L
′)

npsmall(L′)

))
(167)

where (164) is by using the definitions of κ and k in (155), (165) is by ⌊x⌋ ≥ x
2 for any

x ≥ 1, (166) is by λ ln(1 + x) ≥ ln (1 + λx) for λ ≥ 1 and x > 0, and by ln(1 + λx) ≤
λ · ln (1 + x) ≤ x for 0 ≤ λ ≤ 1 and x > 0, and the last inequality is by applying (154).

D.3 Non-DP Per-Instance Lower Bound under Nstat(p)

We now prove the per-instance lower bound in Table 4 under neighborhood Nstat(p) (137).
Theorem D.4. Let n, d ∈ N and p ∈ ∆(d) be fixed. Let Nstat(p) be the following additive local
neighborhood of p as defined in (137).

Nstat(p) =

{
q : |qi − pi| ≤ min

{
pi,

√
pi
n

}
for any i ∈ [d]

}
∪

{
q :

d∑
i=1

|qi − pi| ≤
1

n

}
(168)

Then if d ≥ 2, it holds that

max
q∈Nstat(p)

E
x∼Poi(n,q)

KL(q,A(x)) ≥ Ω

(∑
i

min

{
pi,

1

n

})
(169)

Proof. We will apply Theorem A.3 to prove the lower bound. Below we first construct the packing
set. Without loss of generality, assume that p1 ≥ · · · ≥ pd. For brevity, denote

wk = p2k−1 + p2k and ∆k =
1

2
min

{
p2k,

√
p2k
n

}
for k = 1, · · · , ⌊d

2
⌋ (170)

Let P be the following packing set of distributions.

P =

q :=

⌊ d
2 ⌋∑

k=1

wk · qk : qk ∈ Pk :=
{
qk+, q

k
−
} (171)

where

qk−(j) =


1
wk

· p2k−1 j = 2k − 1
1
wk

· p2k j = 2k

0 j ∈ [d] \ {2k − 1, 2k}
and qk+(j) =


1
wk

· (p2k−1 +∆k) j = 2k − 1
1
wk

· (p2k −∆k) j = 2k

0 j ∈ [d] \ {2k − 1, 2k}
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One can verify that distributions in the packing set P are normalized and lie in the statistical

neighborhood Nstat(p) by observing that min
{
pi−1,

√
pi−1

n

}
≥ min

{
pi,
√

pi

n

}
for any i. By

applying Lemma A.5 (under setting a = p2k−1

wk
and ∆ = ∆k

wk
), we further prove that for any

q ∈ ∆(d),

1

|Pk|
∑

qk∈Pk

1KL(qk,q)≥f(Pk) ≥
1

2
where f(Pk) =

(
∆k

wk

)2
8 · p2k

wk

=
1

32wk
·min

{
p2k,

1

n

}
(172)

Thus the first condition of Theorem A.3 holds. We now analyze the second condition of Theorem A.3.
For any k and any fixed ql ∈ Pl, l ̸= k, by definition of Pk we compute that∫  min

qk∈Pk

dPoi
(
n,
∑⌊ d

2 ⌋
l=1 wl · ql

)
dPoi

(
n,wk · qk+ +

∑
l ̸=k wl · ql

)
 dPoi

n,wk · qk+ +
∑
l ̸=k

wl · ql
 (173)

=

∫
min

dPoi

n,wk · qk+ +
∑
l ̸=k

wl · ql
 , dPoi

n,wk · qk− +
∑
l ̸=k

wl · ql
 (174)

=1− TV

Poi

n,wk · qk+ +
∑
l ̸=k

wl · ql
 ,Poi

n,wk · qk− +
∑
l ̸=k

wl · ql
 (175)

≥1− TV (Poi (np2k−1) ,Poi (np2k−1 + n∆k))− TV (Poi (np2k) ,Poi (np2k − n∆k)) (176)

≥1− 1

2

√
n2∆2

k

np2k−1
− 1

2

√
n2∆2

k

np2k − n∆k
(177)

≥1−
√

min{np2k, 1}
2

≥ 1

4
:= τk (178)

where (174) is because Pk only contains two distributions, (175) is by using the definition of total
variation distance, (176) is by the total variation inequality for product measures (Lemma D.2), (177)
is by Lemma B.9, (178) is by p2k−1 ≥ p2k and by definition (170) of ∆k = 1

2 min
{
p2k,

√
p2k

n

}
≤

p2k

2 . Thus the second condition of Theorem A.3 holds. By applying Theorem A.3 under our proved
conditions (172) and (178), we finally prove that

max
q∈P

E [KL(q,A(x))] ≥1

2

⌊ d
2 ⌋∑

k=1

wk · τk · f(Pk) =
1

128

⌊ d
2 ⌋∑

k=1

min

{
p2k,

1

n

}
(179)

≥ 1

256

d∑
i=2

min

{
pi,

1

n

}
(180)

where (180) is by observing that for p1 ≥ · · · ≥ pd, it is the case that
∑⌊ d

2 ⌋
k=1 min

{
p2k,

1
n

}
≥∑⌊ d

2 ⌋
k=1 min

{
pmin{2k+1,d},

1
n

}
. We now separate the discussions for the remaining (at most two)

symbols.

1. If
∑d

i=2 min
{
pi,

1
n

}
≥ 1

2n , then (180) suffice to prove the bound (169) in the statement
(by observing that there is only one remaining symbol).

2. If
∑d

i=2 min
{
pi,

1
n

}
< 1

2n , then it must be the case that p1 > 1 − 1
2n , p2 < 1

2n , and∑d
i=1 min

{
pi,

1
n

}
< 3

2n . By repeating the proof for a new packing P ′ = {p̂−, p} where

p̂(j) =


p1 − 1

2n j = 1

p2 +
1
2n j = 2

pj j = 3, · · · , d
(181)

we similarly prove a new lower bound of 1
256 ·

1
n . One can also validate that the new packing

P ′ is also in the neighborhood Nstat (137) This suffice to prove (169) in the statement.
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E Deferred Proofs for Non-DP Per-Instance Upper Bounds

E.1 Non-DP Per-Instance Upper Bound (Sampling Twice Algorithm)

We will use the following lemma for bounding the estimation error on zero-count symbols.

Lemma E.1 (Error of Algorithm 1 on zero-count Symbols). Let p ∈ ∆(d) be a discrete distribution
over d symbols. Let n ∈ N. Then Algorithm 1 satisfies

E

[∑
i∈L

pi · ln

( pi∑
i∈L pi

x̃i∑
i∈L x̃i

)]
≤ E

(∑
i∈L

pi

)
ln

1 +

2
∑
i∈L

1∑
i∈L npi

 (182)

Proof. By definition, we have that

E

[∑
i∈L

pi · ln

( pi∑
i∈L pi

x̃i∑
i∈L x̃i

)]
=E

[∑
i∈L

pi · ln
(
npi/2

x̃i

)]
︸ ︷︷ ︸

1

+E

[(∑
i∈L

pi

)
ln

( ∑
i∈L x̃i∑

i∈L npi/2

)]
︸ ︷︷ ︸

2
(183)

We first analyze 1 . By concavity of ln(t) over t > 0 and by x̃i ≤ x′
i + 1, we have that

1 ≤ EL

[∑
i∈L

pi · ln
(
npi
2

· E
[

1

x′
i + 1

])]
≤ 0 (184)

where the last inequality is by Lemma B.1 under m = n
2 . We then analyze 2 . By concavity of ln(t)

over t > 0, we have that

2 ≤ EL

[∑
i∈L

pi ln

(
1 +

∑
i∈L E[x̃i − npi/2]∑

i∈L npi/2

)]
(185)

≤ EL

(∑
i∈L

pi

)
ln

1 +

2
∑
i∈L

1∑
i∈L npi

 (186)

where the last inequality is by applying Lemma B.3 with b = 0 and c = 1.

We are now ready to prove the Non-DP per-instance upper bound for the non-dp “sampling twice”
algorithm Algorithm 1.

Theorem E.2 (Per-Instance Upper Bound - Sampling Twice Algorithm). Let A be the estimator
given by Algorithm 1. If d ≥ 2, then for any n and any p ∈ ∆(d),

E
x∼Poi(n,p)

[
KL(p∥A(x))

]
≤ O

(
E

[∑
i∈L

pi · ln

(
1 +

∑
j∈L 1

n
∑

j∈L pj

)]
+
∑
i

min

{
pi,

1

n

})
(187)
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Proof. By definition,

E
x,x′∼Poi(np)

[KL(p∥A(x))] (188)

=E

[∑
i∈L

pi ln

(
pi/
∑

j∈L pj

x̃i/
∑

j∈L x̃j

)]
+ E

(∑
i∈L

pi

)
ln


∑
i∈L

pi

c̃
n/2

+
∑
i/∈L

pi ln

(
pi
x̃i

n/2

)
+ ln

(
c̃+

∑
i/∈L x̃i

n/2

)
(189)

≤E

[∑
i∈L

pi · ln

(
1 +

2
∑

j∈L 1∑
j∈L npj

)]
+ E

(∑
i∈L

pi

)
ln


∑
i∈L

pi

c̃
n/2

+
c̃−

∑
i∈L npi/2

n/2


+ E

[∑
i/∈L

pi ln

(
pi
x̃i

n/2

)
+
∑
i/∈L

x̃i − npi/2

n/2

]
(190)

≤O

(
E

[∑
i∈L

pi · ln

(
1 +

∑
j∈L 1

n
∑

j∈L pj

)])
+

1

n/2
+ E

[∑
i/∈L

1

n/2

]
(191)

≤O

(
E

[∑
i∈L

pi · ln

(
1 +

∑
j∈L 1

n
∑

j∈L pj

)]
+
∑
i

min

{
pi,

1

n

})
(192)

where (190) is by ln(t) ≤ t − 1 for any t > 0 and by applying Lemma E.1, (191) is by applying
Lemma B.10 under m = n/2, c1 = −∞, c2 = +∞, b = 0 and c = 1, and the last inequality is by
Pr[i /∈ L] = 1− e−npi ≤ min{npi, 1}, and by

∑
i min{pi, 1

n} ≥ 1
n for d ≥ 2.

E.2 Proof for Matching Lower and Upper Bound

Corollary E.3. Let A be the estimator given by Algorithm 1. Let Nstat(p) and N≤ t
n
(p) be the

additive neighborhoods defined in (137) and (136) respectively. Then for any n and any p ∈ ∆(d),

E
x∼Poi(n,p)

[
KL(p∥A(x))

]
≤ O

(
lower(p, n,Nstat) + lower(p, n,N≤ t

n
)
)

(193)

for any choice of neighborhood size t ≥ 1 such that t · e−t ≤ 1
ln d . Specifically, we can always choose

t = min {1, 2 ln ln d}.

Proof. We will use the upper bound given by Theorem E.2. Observe that by
∑

j:xj=0 1∑
j:xj=0 pj

≤∑
j:pj≤

t
n

,xj=0
1∑

j:pj≤
t
n

,xj=0
pj

, we have

E

 ∑
i∈L:pi≤ t

n

pi ln

(
1 +

∑
j∈L 1

n
∑

j∈L pj

) ≤ E

 ∑
i∈L:pi≤ t

n

pi ln

(
1 +

∑
j∈L:pj≤ t

n
1

n
∑

j∈L:pj≤ t
n
pj

) (194)

≤ lower(p, n,N≤ t
n
) in Theorem D.3 (195)

Additionally, by definition, we compute that

E

 ∑
i∈L:pi>

t
n

pi ln

(
1 +

∑
j∈L 1

n
∑

j∈L pj

) ≤ E

 ∑
i∈L:pi>

t
n ,xi=0

pi ln

(
1 +

d

t

) (196)

=
∑

i:pi>
t
n

pie
−npi ln

(
1 +

d

t

)
(197)

≤ O

 ∑
i:pi>

t
n

1

n

 = lower(p, n,Nstat) in Theorem F.2

(198)

42



Neighborhood N lowerε,δ (p, n,N) (3) Conditions Reference

N≤ 1
nε

(6) Ω

( ∑
i:pi<

1
nε

pi +
∑

i:pi≥ 1
nε

1
pi

· 1
n2ε2

)
δ ≤ ε, d ≥ 2 Theorem F.1

N≤ t
nε

(6) Ω

(
ln(1+dsmall(L

′))
nε + L′ ⊆ [d], t ≥ 1, d ≥ 2 Theorem F.2

psmall(L
′) · ln

(
1 + dsmall(L

′)
nε·psmall(L′)

))
δ ≤ ε, nε ≥ 1

Table 5: DP per-instance lower bounds, where psmall(L
′) =

∑
i∈L′:pi≤ t

nε

pi and dsmall(L
′) =

∑
i∈L′:pi≤ t

nε

1

where (197) is by L = {i ∈ [d] : xi = 0} and by probability mass function of Poisson random
variables, and (198) is by choosing t ≥ 1 such that t · e−t ≤ 1

ln d . Specifically, we can choose
t = min {1, 2 ln ln d}.

F Deferred Proofs for DP Per-Instance Lower Bound Theorem 3.1

For ease of presentation and understanding, we break up the neighborhood N≤ t
nε
(p) for a given

small t ≥ 1 into two sub-neighborhoods: one N≤ 1
n
⊆ N≤ t

nε
(p) with the same small perturbation for

every symbol, and the other N≤ t
nε
(p) with larger perturbations for small symbols, defined as follows.

We then prove per-instance lower bounds under the sub-neighborhoods N≤ t
nε
(p) and N≤ t

nε
(p)

respectively. By definition (2), their average is a lower bound for the per-instance lower bound
under N≤ t

nε
(p) , i.e., lower(p, n,N≤ t

nε
) ≥ 1

2 · lower(p, n,N≤ 1
nε
) + 1

2 · lower(p, n,N≤ t
nε
). (This

is because one can construct a distribution over hard instances, choosing the hard instance(s) in
N≤ t

n
(p) and Nstat(p) with 1/2 probability respectively.)

Our results for DP per-instance lower bounds under neighborhoods N≤ t
nε
, t ≥ 1 are summarized in

Table 5.

F.1 DP Lower Bound: N 1
nε

neighborhood

In this section, we prove the per-instance DP estimation lower bound in Table 5 under additive
neighborhood. We first prove a lower bound under add- 1

nε neighborhood.
Theorem F.1 (Lower Bound - N≤ 1

nε
Neighborhood). Let d ∈ N, ε ≥ 0 and 0 ≤ δ ≤ 1, p ∈ ∆(d)

be fixed. Let N≤ 1
nε
(p) be the additive neighborhood defined in (6) for t = 1 as follows.

N≤ 1
nε

(p) =

{
q : |qi − pi| ≤

1

nε
for any i ∈ [d] and

∑
i:pi≤ 1

nε

qi ≤ max

 1

nε
,
∑

i:pi≤ 1
nε

pi


}
(199)

If δ ≤ ε and d ≥ 2, then the expected KL error of any (ε, δ)-DP estimator A satisfies

max
q∈N≤ 1

nε
(p)

E
x∼Poi(n,q)

[KL(q,A(x))] ≥Ω

(∑
i

min

{
pi,

1

pi
· 1

n2ε2

})
(200)

Proof. We will apply Theorem A.4 to prove the lower bound. Below we first construct the packing
set. Without loss of generality, assume that that d mod 2 = 0. (Otherwise, sort the symbols to
satisfy min

{
p1,

1
p1

· 1
n2ε2

}
≥ · · · ≥ min

{
pd,

1
pd

· 1
n2ε2

}
and ignore the last symbol in the below

constructions.) For brevity, denote

wk = p2k−1 + p2k and ∆k =
1

160
min

{
p2k,

1

nε

}
for k = 1, · · · , d

2
(201)
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Let P be the following packing set of distributions.

P =

q :=

d
2∑

k=1

wk · qk : qk ∈ Pk :=
{
qk+, q

k
−
} (202)

where

qk−(j) =


1
wk

· p2k−1 j = 2k − 1
1
wk

· p2k j = 2k

0 j ∈ [d] \ {2k − 1, 2k}
and qk+(j) =


1
wk

· (p2k−1 +∆k) j = 2k − 1
1
wk

· (p2k −∆k) j = 2k

0 j ∈ [d] \ {2k − 1, 2k}

One can verify that distributions in the packing set P are normalized and lie in the additive neigh-
borhood N≤ 1

nε
(p) by observing that 1

nε ≥ min
{
pi−1,

1
nε

}
≥ min

{
pi,

1
nε

}
for any i. By applying

Lemma A.5 (under setting a = p2k−1

wk
and ∆ = ∆k

wk
), we further prove that for any q ∈ ∆(d),

1

|Pk|
∑

qk∈Pk

1KL(qk,q)≥f(Pk) ≥
1

2
where f(Pk) =

(
∆k

wk

)2
8 · p2k

wk

=
1

8 · 1602 · wk
·min

{
p2k,

1

p2k · n2ε2

}
(203)

Thus the first condition of Theorem A.4 holds. We now analyze the second condition of Theorem A.4.

For any k and any fixed ql ∈ Pl, l = 1, · · · , d
2 and fixed q̄k ∈ Pk. Let x ∼ Poi

(
n,
∑ d

2

l=1 wl · ql
)

and y ∼ Poi (n ·∆k) and y′ ∼ Poi (n ·∆k) be independent Poisson random variables. Then

we could construct the following coupling (x, x̄) between distributions Poi
(
n,
∑ d

2

l=1 wl · ql
)

and

Poi
(
n,wk · qk +

∑
l ̸=k wl · ql

)
:

x̄l =


xl + y l = 2k − 1

xl − y′ l = 2k

xl l ∈ [d] \ {2k − 1, 2k}
(204)

By definition, we compute that

E [∥x− x̄∥1] = E [y + y′] ≤ 1

80ε
:= τ (205)

where the inequality is by definition ∆k ≤ 1
160nε . Thus the second condition of Theorem A.4 holds.

By applying Theorem A.4 under our proved conditions (203) and (205), we prove that

max
q∈P

E [KL(q,A(x))] ≥
d
2∑

k=1

wk ·
(

1

10
− 4ε · τ

)
· f(Pk) =

1

20
· 1

8 · 1602
·

d
2∑

k=1

min

{
p2k,

1

p2k · n2ε2

}
(206)

By repeating the constructions under ∆k = − 1
160 min

{
p2k−1,

1
nε

}
for k = 1, · · · , d

2 , we similarly
prove that

max
q∈P

E [KL(q,A(x))] ≥ 1

20
· 1

8 · 1602
·

d
2∑

k=1

min

{
p2k−1,

1

p2k−1 · n2ε2

}
(207)

By combining (206) and (207), we prove the bound (200) in the statement.

F.2 DP Lower Bound: N t
nε

neighborhood

In this section, we prove the per-instance DP estimation lower bound in Table 5 for low probability
symbols.
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Theorem F.2 (Lower Bound - low probability symbols). Let p ∈ ∆(d) be fixed. For any t > 0, let
N t

nε
be the additive neighborhood defined as follows.

N≤ t
nε

(p, n) =

{
q : |qi − pi| ≤

t

nε
for any i ∈ [d] and

∑
i:pi≤ t

nε

qi ≤ max

 t

nε
,
∑

i:pi≤ t
nε

pi


}

(208)

Then if δ ≤ ε, nε ≥ 1, t ≥ 1 and d ≥ 2, then for any L′ ⊆ [d], the expected KL error of any
(ε, δ)-DP estimator A satisfies

max
q∈N≤ t

nε
(p,n)

E
x∼Poi(n,q)

KL(q,A(x)) ≥Ω

(
ln (1 + dsmall(L

′))

nε
+ psmall(L

′) · ln
(
1 +

dsmall(L
′)

nε · psmall(L′)

))
(209)

where psmall(L
′) =

∑
i∈L′,pi≤ t

nε

pi and dsmall(L
′) =

∑
i∈L′,pi≤ t

nε

1.

Proof. 1. If dsmall(L
′) = 0, then psmall(L

′) = 0 and thus (209) trivially holds.

2. If 1 ≤ dsmall(L
′) ≤ 3: Without loss of generality, assume that {i ∈ L′ : pi ≤ t

nε} =
{1, · · · , dsmall(L

′)}. We construct a packing set of distributions P = {p+, p−} that
contains the following two distributions.

p+(j) =

{
1

80nε j = 1(
1− 1

80nε

)
·
(
pj +

p1

d−1

)
j = 2, · · · , d (210)

and

p−(j) =


1

160nε j = 1(
1− 1

80nε

)
·
(
pj +

p1

d−1

)
j = 2, · · · , d− 1(

1− 1
80nε

)
·
(
pd +

p1

d−1

)
+ 1

160nε j = d

(211)

One can validate that the distributions in P are well-defined and are in the additive neigh-
borhood N≤ t

nε
(p) (by observing that 0 ≤ p1 ≤ t

nε for d ≥ 2 and thus p1

d−1 ≤ t
nε ). By

applying Lemma A.5 (under setting a = 1
80nε and ∆ = 1

160nε ), we further prove that for
any q′ ∈ ∆(d),

1

|P|
∑
q∈P

1KL(q,q′)≥f(P) ≥
1

2
where f(P) =

∆2

a
=

1

320nε
(212)

Thus the first condition of Theorem A.4 holds. Below we analyze the second condition
of Theorem A.4. Let q̄ = p+. For any q ∈ P , let y ∼ Poi(nmin{p+, p−}) and let
y′ ∼ Poi(nmax{p+, p−} − nmin{p+, p−}). Then we could construct the following
coupling (x, x̄) between distributions Poi (n, q) and Poi (n, q̄):

xl =

{
y1 + y′1 l = 1

yl l = 2, · · · , d and x̄l =

{
yl l = 1, · · · , d− 1

yl + y′l l = d
(213)

By definition, we compute that

E [∥x− x̄∥1] =E [y′1 + y′d] =
1

80ε
:= τ (214)

Thus the second condition of Theorem A.4 holds. By applying Theorem A.4 under our
proved conditions (212) and (151), we finally prove that

max
q∈P

E [KL(q,A(x))] ≥1 ·
(

1

10
− 4ε · τ

)
· f(P) =

1

20 · 320nε
(215)

≥Ω

(
ln (1 + dsmall(L

′))

nε
+ psmall(L

′) · ln
(
1 +

dsmall(L
′)

psmall(L′) · nε

))
(216)

where (216) is by the assumption that dsmall(L
′) ≤ 3 and by ln (1 + x) ≤ x for x > 0.
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3. If dsmall(L
′) ≥ 4: Without loss of generality, assume that {i ∈ L′ : pi ≤ t

nε} consists of

symbols 1, · · · , dsmall(L
′). For brevity, denote d̂ = ⌊dsmall(L

′)
2 ⌋ ≥ 2 and p̂ =

∑d̂
i=1 pi.

Without loss of generality, assume that p1 ≥ · · · ≥ pdsmall(L′), then it follows that

d̂ ≥ dsmall(L
′)

3
and p̂ ≥ psmall(L

′)

3
(217)

Let κ, k ∈ N be defined as follows.

κ =


2 d̂

160nεp̂ ≤ 2

d̂ d̂
160nεp̂ > 2 and 160nεp̂ < 1

⌊ d̂
160nεp̂⌋

d̂
160nεp̂ > 2 and 160nεp̂ ≥ 1

k =


⌊ d̂
2⌋

d̂
160nεp̂ ≤ 2

1 d̂
160nεp̂ > 2 and 160nεp̂ < 1

⌊160nεp̂⌋ d̂
160nεp̂ > 2 and 160nεp̂ ≥ 1

.

(218)

Thus by definition,

κ ≥ 2 and k ≥ 1 and κ · k ≤ d̂ ≤ dsmall(L
′)

2
and

k

160nε
≤ max

{
p̂,

1

160nε

}
(219)

For i = 1, · · · , k, we construct a packing set of distributions supported on symbols Bi =
{k · i− κ+ 1, · · · , δκ·i} as follows.

For i = 1, · · · , k Pi = {δκ·i−κ+1, · · · , δκ·i} (220)

We construct the following set of distributions that lie in the additive neighborhood of p.

P =

{
q =

(
1− k

160nε

)
· qc +

k∑
i=1

wi · qi : wi =
1

160nε
and qi ∈ Pi for any i = 1, · · · , k

}
(221)

where

qc(j) =


0 j = 1, · · · , d̂

1
1− k

160nε

·
(
pj +

max{p̂, 1
160nε}− k

160nε

dsmall(L′)−d̂

)
j = d̂+ 1, · · · , dsmall(L

′)

pj

1− k
160nε

·
(
1 +

p̂−max{p̂, 1
160nε}

1−psmall(L′)

)
j = dsmall(L

′) + 1, · · · , d

(222)

One can verify that the distributions in P are well-defined (i.e., normalized) and lie in the
neighborhood N≤ t

nε
(p) defined in (6). This is by observing that pj ≤ t

nε for j = 1, · · · , d̂,

and that 0 ≤ max{p̂, 1
160nε}− k

160·nε

dsmall(L′)−d̂
≤ max

{
p̂

d̂
, 1
160nε

}
due to (219) and d̂ < dsmall(L

′),

and by 0 ≥ p̂−max{p̂, 1
160nε}

1−psmall(L′) ≥ −
1

160nε

1− 3
160nε

> −1 under (217) and nε ≥ 1, and by 0 ≥

pj ·
p̂−max{p̂, 1

160nε}
1−psmall(L′) ≥ − 1

160nε .

Now by applying Lemma A.6 to Pi for each i = 1, · · · , k, we prove that for any q′ ∈ ∆(d),

1

|Pi|
∑
q∈Pi

1KL(q,q′)≥f(Pi) ≥
1

2
where f(Pi) = ln

(
1 +

κ

4

)
(223)

Thus the first condition of Theorem A.4 holds. Below we analyze the second
condition of Theorem A.4. For each i ∈ [k] and fixed qj ∈ Pj , j = 1, · · · , k

and fixed q̄i ∈ Pi. Let x ∼ Poi

(
n,
(
1− k

160nε

)
· qc +

k∑
j=1

wj · qj
)

and

y ∼ Poi

(
n,
(
1− k

160nε

)
· qc + wi · q̄i +

∑
j ̸=i

wj · qj
)

be independent Poisson
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random variables. Then we could construct the following coupling (x, x̄)

between distribution Poi

(
n,
(
1− k

160nε

)
· qc +

k∑
j=1

wj · qj
)

and distribution

Poi

(
n,
(
1− k

160nε

)
· qc + wi · q̄i +

∑
j ̸=i

wj · qj
)

:

x̄l =

{
yl l = κ · i− κ+ 1, · · · , κ · i
xl l ∈ [d] \ {κ · i− κ+ 1, · · · , κ · i} (224)

By definition, we compute that

E [∥x− x̄∥1] =
κ·i∑

l=κ·i−κ+1

E [|xl − yl|] ≤
κ·i∑

l=κ·i−κ+1

E [xl + yl] =
1

80ε
:= τ (225)

where the inequality is by triangle inequality for ℓ1 distance. By applying Theorem A.4
under our proved conditions (223) and (225), we finally prove that

max
q∈P

E [KL(q,A(x))] ≥
k∑

i=1

wi ·
(

1

10
− 4ε · τ

)
· f(Pi) =

k

160 · nε
· 1

20
· ln
(
1 +

κ

4

)
(226)

=


1

160·nε⌊
d̂
2⌋ · ln

(
1 + 1

2

)
d̂

160nεp̂ ≤ 2
1

160·nε · ln
(
1 + 1

4 d̂
)

d̂
160nεp̂ > 2 and 160nεp̂ < 1

1
160·nε · ⌊160nεp̂⌋ · ln

(
1 + 1

4⌊
d̂

160nεp̂⌋
)

d̂
160nεp̂ > 2 and 160nεp̂ ≥ 1

(227)

≥


Ω
(

d̂
nε

)
d̂

160nεp̂ ≤ 2

Ω
(

1
nε · ln

(
1 + d̂

))
d̂

160nεp̂ > 2 and 160nεp̂ < 1

Ω
(
p̂ · ln

(
1 + d̂

nεp̂

))
d̂

160nεp̂ > 2 and 160nεp̂ ≥ 1

(228)

≥Ω

(
ln(1 + d̂)

nε
+ p̂ · ln

(
1 +

d̂

nε · p̂

))
(229)

≥Ω

(
ln(1 + dsmall(L

′))

nε
+ psmall(L

′) · ln
(
1 +

dsmall(L
′)

nε · psmall(L′)

))
(230)

where (227) is by using the definitions of κ and k in (218), (228) is by ⌊x⌋ ≥ x
2 for any

x ≥ 1, (229) is by λ ln(1 + x) ≥ ln (1 + λx) for λ ≥ 1 and x > 0, and by ln(1 + λx) ≤
λ · ln (1 + x) ≤ x for 0 ≤ λ ≤ 1 and x > 0, and the last inequality is by (217).

G Deferred Proofs for DP Per-Instance Upper Bounds

G.1 Upper Bound: DP Sampling Twice Algorithm

For convenience, we first prove the following lemma about the probability of small symbols going
above a threshold, and the probability of large symbols going below a threshold.

Lemma G.1 (Probability of False Positive). Let m ∈ N, p > 0, τ > 0 and ε > 0. Let x ∼ Poi(mp)
and z ∼ Lap

(
1
ε

)
. If p ≤ 1

mmin{ε,1} , then

Pr

[
x+ z ≥ τ

min{ε, 1}

]
≤ O

(
e−

τ
2

)
(231)
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Proof. By applying Lemma B.2 under setting a = mpi, b = 1
ε and c = τ

min{ε,1} , we prove that

Pr

[
x+ z ≥ τ

min{ε, 1}

]
≤ 4

3
e

mpi min{ε,1}
2 − τ

2 ≤ O
(
e−

τ
2

)
(232)

where the last inequality is by p ≤ 1
mmin{ε,1} .

Lemma G.2 (Probability of False Negative). Let m ∈ N, p > 0, τ > 0, and ε > 0. Let x ∼ Poi(mp)
and z ∼ Lap

(
1
ε

)
. If p ≥ t

mmin{ε,1} for t = 6τ ≥ 1, then for any constant γ ≥ 0,

Pr

[
x+ z ≤ τ

min{ε, 1}

]
≤ O

(
e−

τ
2 · 1

mγ min{1, ε}γpγi

)
(233)

Proof. By applying Lemma B.2 under setting a = mpi, b = 1
ε and c = τ

min{ε,1} , we prove that

Pr

[
x+ z ≤ τ

min{ε, 1}

]
≤4

3
e

τ
2−

mpi min{ε,1}
3 ≤ O

(
e−

τ
2−

mpi min{1,ε}
6

)
(234)

≤O

(
e−

τ
2

1

mγ min{1, ε}γpγi

)
(235)

where (234) is by τ
2 − mpi min{1,ε}

3 < − τ
2 − mpi min{1,ε}

6 for pi > t
mmin{1,ε} undersetting t = 6τ ,

and the last inequality is by e−
x
6 ≤ O

(
1
xγ

)
for x = mpi min{1, ε} ≥ t ≥ 1 and γ ≥ 0.

We then prove two lemmas that bounds KL estimation error on (small) symbols below threshold and
(large) symbols above threshold.

Lemma G.3 (Error of Algorithm 2 on Small Symbols - reused samples). Algorithm 2 satisfies

E

[∑
i∈L

pi · ln

( pi∑
i∈L pi

x̄i∑
i∈L x̄i

)]
≤O

(
E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L αnpi

 (236)

+
∑

i:pi>
1

αnmin{ε,1}

(
1

αn
+

1

α2n2 min{ε, 1}2pi

))
(237)

where we have denoted L =
{
i : xi + Lap

(
0, 1

ε

)
≤ τ

min{ε,1}

}
as the randomized instance-

dependent subset in Algorithm 2.

Proof. By definition, we have that

E

[∑
i∈L

pi · ln

( pi∑
i∈L pi

x̄i∑
i∈L x̄i

)]
=E

[∑
i∈L

pi · ln
(
αnpi
x̄i

)]
︸ ︷︷ ︸

1

+E

[(∑
i∈L

pi

)
ln

( ∑
i∈L x̄i∑

i∈L αnpi

)]
︸ ︷︷ ︸

2
(238)

We first analyze 1 . By αnpi ≤ min{ε, 1} ≤ x̄i under pi ≤ 1
αnmin{ε,1} , we compute that

1 ≤E

 ∑
i∈L:pi>

1
αnmin{ε,1}

pi · ln
(
αnpi
x̄i

) (239)
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We then analyze 2 . By concavity of ln(t) over t > 0, we have that

2 ≤ EL

[∑
i∈L

pi ln

(
1 +

∑
i∈L E[x̄i − αnpi|i ∈ L]∑

i∈L αnpi

)]
(240)

≤ EL


(∑

i∈L

pi

)
ln

1 +

∑
i∈L:pi≤ 1

αnmin{ε,1}

2
min{1,ε} +

∑
i∈L:pi>

1
αnmin{ε,1}

E [x̄i − αnpi|i ∈ L]∑
i∈L αnpi




(241)

≤ O

E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L αnpi

+
∑

i∈L:pi>
1

αnmin{ε,1}

x̄i − αnpi
αn




(242)

where we have denoted L =
{
i : xi + Lap

(
0, 1

ε

)
≤ τ

min{ε,1}

}
as the randomized instance-

dependent subset in Algorithm 2. (241) is by applying Corollary B.5; (242) is by ln(1 + x+ y) ≤
ln(1 + x) + y for any x ≥ 0 and any y.

By plugging (239) and (242) into (238), we prove that

E

[∑
i∈L

pi · ln

( pi∑
i∈L pi

x̄i∑
i∈L x̄i

)]
(243)

≤O

E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L αnpi

+
∑

i∈L:pi>
1

αnmin{ε,1}

(
pi ln

(
αnpi
x̄i

)
+

x̄i − αnpi
αn

)


≤O

E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L αnpi

+
∑

i:pi>
1

αnmin{ε,1}

(
1

αn
+

1

α2n2 min{ε, 1}2pi

)
(244)

where (244) is by applying Lemma B.10 under setting m = αn, c1 = −∞ and c2 = τ
min{ε,1} , b = 1

ε

and c = 1
min{ε,1} for pi > 1

αnmin{1,ε} .

Lemma G.4 (Error of Algorithm 2 on Large Symbols - reused samples). Algorithm 2 satisfies

E

[∑
i/∈L

(
pi ln

 αnpi

max
{
x̃i,

1
min{ε,1}

}
+

max
{
x̃i,

1
min{ε,1}

}
− αnpi

αn

)]
(245)

≤ O

dτe−
τ
2 ·

1mini pi≤ 1
αnmin{ε,1}

αnmin{ε, 1}
+

∑
i:pi≥ 1

αnmin{ε,1}

(
1

αn
+

1

pi
· 1

α2n2 min{ε, 1}2

) (246)

where we have denoted L =
{
i : xi + Lap

(
0, 1

ε

)
≤ τ

min{ε,1}

}
as the randomized instance-

dependent subset in Algorithm 2.
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Proof. By definition and by τ ≥ 1, we compute that

E

[∑
i/∈L

(
pi ln

 αnpi

max
{
x̃i,

1
min{ε,1}

}
+

max
{
x̃i,

1
min{ε,1}

}
− αnpi

αn

)]
(247)

=E

 ∑
i/∈L:pi≥ 1

αnmin{1,ε}

(
pi ln

(
αnpi
x̃i

)
+

x̃i − αnpi
αn

)
︸ ︷︷ ︸

1

+E

 ∑
i/∈L:pi<

1
αnmin{1,ε}

(
pi ln

(
αnpi
x̃i

)
+

x̃i − αnpi
αn

)
︸ ︷︷ ︸

2
(248)

We now analyze 1 . By applying Lemma B.10 under setting m = αn, c1 = τ
min{ε,1} , c2 = +∞,

b = 1
ε and c = 1

min{1,ε} , we prove that

1 ≤O

( ∑
i:pi≥ 1

αnmin{ε,1}

(
1

αn
+

1

pi
· 1

α2n2 min{ε, 1}2

))
(249)

We finally analyze 2 . By x̃i ≥ αnpi for i /∈ L and pi <
1

αnmin{1,ε} , we prove that

2 ≤
∑

i:pi<
1

αnmin{ε,1}

Pr[i /∈ L] · E [x̃i|i /∈ L]− αnpi
αn︸ ︷︷ ︸

Error on FP

≤ O

(
e−

τ
2 ·

τ
min{ε,1} + 1

ε

αn
· d · 1mini pi≤ 1

αnmin{ε,1}

)

(250)

=O

(
dτe−

τ
2 ·

1mini pi≤ 1
αnmin{ε,1}

αnmin{ε, 1}

)
(251)

where the second inequality in (250) is by applying Lemma G.1 under setting m = αn, and by
applying Lemma B.7 under setting λ = αnpi, b = 1

ε and c = τ
min{ε,1} . By plugging (249) and (251)

into (248), we obtain the bound in the statement.

Lemma G.5 (Error of Algorithm 2 on Large Symbols - fresh samples). Algorithm 2 satisfies

E

∑
i/∈L

pi ln

 (1− α)npi

max
{
x̃′
i,

1
min{ε,1}

}
+

max
{
x̃′
i,

1
min{ε,1}

}
− (1− α)npi

(1− α)n

 (252)

≤ O

 ∑
i:pi≥ 1

αnmin{ε,1}

(
1

(1− α)n
+

1

pi
· 1

(1− α)2n2 min{ε, 1}2

)
+ de−

τ
2 ·

1mini pi≤ 1
αnmin{1,ε}

(1− α)nmin{ε, 1}


(253)

where we have denoted L =
{
i : xi + Lap

(
0, 1

ε

)
≤ τ

min{ε,1}

}
as the randomized instance-

dependent subset in Algorithm 2.
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Proof. By the independence between set L and noisy estimate x̃′
i (as they are computed on indepen-

dently sampled datasets x and x′ respectively), we compute that

(252) =
∑
i

Pr[i /∈ L] · E

[
pi ln

 (1− α)npi

max
{
x̃′
i,

1
min{ε,1}

}
+

max
{
x̃′
i,

1
min{ε,1}

}
− (1− α)npi

(1− α)n

]

(254)

≤O

( ∑
i:pi≥ 1

αnmin{ε,1}

(
1

(1− α)n
+

1

pi
· 1

(1− α)2n2 min{ε, 1}2

)
︸ ︷︷ ︸

Error on TP

+
1

(1− α)nmin{1, ε}
∑

i:pi<
1

αnmin{ε,1}

e−
τ
2

︸ ︷︷ ︸
Error on FP

)

(255)

≤O

 ∑
i:pi≥ 1

αnmin{ε,1}

(
1

(1− α)n
+

1

pi
· 1

(1− α)2n2 min{ε, 1}2

)
+ de−

τ
2 ·

1mini pi≤ 1
αnmin{1,ε}

(1− α)nmin{ε, 1}


(256)

where the first term in (255) is by Pr[i /∈ L] ≤ 1 for pi ≥ 1
αnmin{ε,1} (by definition) and by applying

Lemma B.10 under m = (1− α)n, b = 1
ε , c = 1

min{1,ε} , c1 = −∞ and c2 = +∞; the second term
in (255) is by applying Lemma G.1 under m = αn; (256) is by definition.

We are now ready to prove the per-instance upper bound for Algorithm 2.

Theorem G.6 (DP “Sampling Twice” Algorithm). The estimator A given by Algorithm 2 is ε-DP
and satisfies the following error bound for any fixed p ∈ ∆(d).

E
x∼Poi(n,p)

[
KL(p∥A(x))

]
≤O

(
E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L npi

+
1L ̸=∅

nmin{1, ε}


(257)

+
∑

i:pi≥ 1
nmin{1,ε}

1

pi
· 1

n2 min{ε, 1}2

)
(258)

where L =
{
i : xi + Lap

(
0, 1

ε

)
≤ τ

min{ε,1}

}
is as defined in Algorithm 2.

Proof. By the definition of Algorithm 2, we compute that

E [KL(p,A(x))] (259)

=E

[∑
i∈L

pi ln

(
pi/
∑

j∈L pj

x̄i/
∑

j∈L x̄j

)
+

(∑
i∈L

pi

)
ln

(∑
i∈L pi
c̃

(1−α)n

)
+
∑
i/∈L

pi ln

(
pi
x̄i

(1−α)n

)
+ ln

(
c̃+

∑
i/∈L x̄i

(1− α)n

)]

≤E

[∑
i∈L

pi ln

(
pi/
∑

j∈L pj

x̄i/
∑

j∈L x̄j

)]
︸ ︷︷ ︸

1

+E

[(∑
i∈L

pi

)
ln

(∑
i∈L(1− α)npi

c̃

)
+

c̃−
∑

i∈L(1− α)npi

(1− α)n

]
︸ ︷︷ ︸

2
(260)

+ E

[∑
i/∈L

(
pi ln

(
(1− α)npi

x̄i

)
+

x̄i − (1− α)npi
(1− α)n

)]
︸ ︷︷ ︸

3

(261)
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where the last inequality is by ln(t) ≤ t − 1 for any t > 0. We first analyze 1 . By applying
Lemma G.3, we prove that

1 ≤O

E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L αnpi

+
∑

i:pi>
1

αnmin{ε,1}

(
1

αn
+

1

α2n2ε2pi

)
(262)

≤O

E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L npi

+
∑

i:pi>
1

nmin{ε,1}

(
1

n
+

1

n2ε2pi

)
(263)

where (263) is by α = 0.5 in Algorithm 2. We then analyze 2 . By the independence between L
and c̃ in Algorithm 2 (due to independent sampling of datasets x and x′), conditioned on fixed L, we
apply Lemma B.10 under setting m = (1 − α)n, p =

∑
i∈L pi, c1 = −∞, c2 = +∞, b = 1

ε and
c = 1

min{1,ε} and prove that

2 ≤O

(
EL

[
1L ̸=∅

(1− α)nmin{1, ε}

])
≤ E

[
1L ̸=∅

nmin{1, ε}

]
(264)

where (264) is by setting α = 0.5 in Algorithm 2. We finally analyze 3 . By definition of x̄i for
i /∈ L, we compute that

3 =E

[∑
i/∈L

(
pi ln

 npi

max
{
x̃i,

1
min{ε,1}

}
+max

{
x̃′
i,

1
min{ε,1}

}
 (265)

+
max

{
x̃i,

1
min{ε,1}

}
+max

{
x̃′
i,

1
min{ε,1}

}
− npi

n

)]
(266)

≤α · E

[∑
i/∈L

(
pi ln

 αnpi

max
{
x̃i,

1
min{ε,1}

}
+

max
{
x̃i,

1
min{ε,1}

}
− αnpi

αn

)]

+ (1− α) · E

∑
i/∈L

pi ln

 (1− α)npi

max
{
x̃′
i,

1
min{ε,1}

}
+

max
{
x̃′
i,

1
min{ε,1}

}
− (1− α)npi

(1− α)n


(267)

≤O

 ∑
i:pi≥ 1

nmin{ε,1}

1

pi
· 1

n2 min{ε, 1}2
+

1mini pi≤ 2
nmin{1,ε}

nmin{ε, 1}

 (268)

≤O

 ∑
i:pi≥ 2

nmin{ε,1}

1

pi
· 1

n2 min{ε, 1}2
+

Pr[L ̸= ∅]
nmin{ε, 1}

 (269)

where (267) is by the joint convexity of the function x ln
(

x
y

)
with regard to arguments x, y ≥ 0;

(268) is by applying Lemma G.4 and Lemma G.5 under setting α = 0.5 and τ = 4 ln d as in
Algorithm 2; and (269) is by Pr[i ∈ L] ≥ Ω(1) for pi < 2

nmin{1,ε} under α = 0.5 and τ = 4 ln d

in Algorithm 2 (by applying Lemma B.2 under setting a = αnpi, b = 1
ε and c = τ

nmin{1,ε} ). By

plugging our proved bound (263), (264) and (269) for 1 , 2 , and 3 into (261), we prove the
bound in the statement.
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G.2 Proof for Matching Lower and Upper Bound

Corollary G.7. Let A be the estimator given by Algorithm 2. Let Nstat, N≤ t
n

, N 1
nε

, N≤ t
nε

be the
additive neighborhoods defined in (137), (136), (6) respectively. Then for any n and any p ∈ ∆(d),

E
x∼Poi(n,p)

[
KL(p∥A(x))

]
≤O

(
lower (p, n,Nstat) + lower

(
p, n,N≤ t

n

)
︸ ︷︷ ︸

Non-DP Per-instance Lower Bound

+ lowerε,δ
(
p, n,N 1

nε

)
+ lowerε,δ

(
p, n,N≤ t

nε

)
︸ ︷︷ ︸

DP Per-instance Lower Bound

)
(270)

under choosing neighborhood size t = 6τ for τ = 4 ln d.

Proof. We will use the upper bound given by Theorem G.6. Observe that for any t > 0,∑
i∈L

1

min{1,ε}
∑

i∈L npi
≤ dsmall(L)

min{1,ε}npsmall(L) , where dsmall(L) =
∑

i∈L:pi≤ t
αnmin{ε,1}

1 and psmall(L) =∑
i∈L:pi≤ t

αnmin{ε,1}

pi. Thus the first term in Theorem G.6 satisfies

E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L npi

+
1L̸=∅

nmin{1, ε}

 (271)

≤E
[
psmall(L) · ln

(
1 +

dsmall(L)

min{1, ε}npsmall(L)

)]
+

∑
i:pi>

t
αnmin{ε,1}

pi · ln
(
1 +

d

t

)
· Pr[i ∈ L]

(272)

+ E

[
1mini∈L pi≤ t

αnmin{ε,1}

nmin{ε, 1}

]
+

∑
i:pi≥ t

αnmin{ε,1}

Pr[i ∈ L]

nmin{ε, 1}
(273)

≤E
[
psmall(L) ln

(
dsmall(L)

psmall(L) · nmin{1, ε}

)
+

ln (1 + dsmall(L))

nmin{ε, 1}

]
+O

 ∑
i:pi>

t
nmin{ε,1}

ln de−
τ
2 + e−

τ
2

n2 min{1, ε}2pi


(274)

≤ max
L′⊂[d]

(
psmall(L

′) ln

(
dsmall(L

′)

psmall(L′) · nmin{1, ε}

)
+

ln (1 + dsmall(L
′))

nmin{ε, 1}

)
+O

 ∑
i:pi>

t
nmin{ε,1}

1

n2 min{1, ε}2pi


(275)

=O (Theorem D.3 + Theorem F.2 + Theorem D.4 + Theorem F.1) (276)

where (272) is by

∑
i∈L

1

min{1,ε}
∑

i∈L npi
≤ dsmall(L)

min{1,ε}npsmall(L) , for any t > 0 and dsmall(L) =∑
i∈L:pi≤ t

nmin{ε,1}

1 and psmall(L) =
∑

i∈L:pi≤ t
nmin{ε,1}

pi; (273) is Pr[L ̸= ∅] ≤

Pr

[
min
i∈L

pi ≤ t
αnmin{ε,1}

]
+

∑
i:pi≥ t

αnmin{ε,1}

Pr[i ∈ L] (ensured by union bound); (274) is by

1mini∈L pi≤ t
αnmin{ε,1}}

≤ ln

1 +
∑

i∈L:pi≤ t
αnmin{ε,1}

1

 = ln (1 + dsmall(L)), and by applying

Lemma G.2 under setting m = αn and choosing t = 6τ ; and (275) is by setting τ = 4 ln d as defined
in Algorithm 2, and (276) is by definition. Additionally, observe that by definition, the second term
in Theorem G.6 is

∑
i:pi>

1
nmin{1,ε}

1
pi

· 1
n2 min{ε,1}2 ≤ O (Theorem D.4 + Theorem F.1). Combining

this with (276) suffice to prove the bound in the statement.
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G.3 Discussions on the Neighborhood Size

Lemma G.8 (Generalized Packing Argument). Let d ≥ 16 ∈ N and let O be an output space. Let
err : O × O → R be an error function. Given p1, · · · , pd ∈ O. For i ∈ [d], denote S(pi) as the
distribution of histogram sampled from distribution pi. Assume that

1. for any i, j ∈ [d],

E(x,x′) [∥x− x′∥1] ≤
ln d

16ε
(277)

for a coupling (x, x′) between the distributions S(pi) and S(pj);

2. for any q ∈ O and any S ⊆ [d] such that |S| ≥ d1/4, it holds that

1

S

∑
i∈S

err
(
pi, q

)
≥ ln d

4
(278)

Then for any (ε, δ)-DP algorithm A with δ < ε
d1/4 ln d

, we have

max
i∈d

Ex∼S(pi)

[
err
(
pi,A(x)

)]
≥ ln d

16
(279)

Proof. We will prove the lemma by contradiction. Consider a bipartite graph (V,E) on V = [d]×O,
where (i, v) ∈ E if and only if err(pi, q) < ln d

4 . Then

For any v ∈ O, degree(v) < d1/4 (280)

Otherwise the set of neighbors Nbr(v) = {i ∈ [d] : (i, v) ∈ E} violates (278).

Suppose that (279) does not hold, then

For any i ∈ [d], Ex∼S(pi)

[
err
(
pi,A(x)

)]
<

ln d

16
(281)

Denote the neighbor set Nbr(i) = {v ∈ O : (i, v) ∈ E}. Then by Markov’s inequality

Pr
x∼S(pi)

[A(x) ∈ Nbr(i)] = 1− Pr
x∼S(pi)

[
err
(
pi,A(x)

)
≥ ln d

4

]
≥ 1−

Ex∼S(pi)

[
err
(
pi,A(x)

)]
ln d
4

≥ 3

4

(282)

where the last equality is by (281).

On the other hand, for any j ∈ [d], let (x, x′) be the coupling between S(pi) and S(pj) in (277), we
prove that

Pr
x∼S(pi)

[A(x) ∈ Nbr(i)] ≤ Pr
(x,x′)

[
A(x) ∈ Nbr(i) and ∥x− x′∥1 ≤ ln d

4ε

]
+ Pr

(x,x′)

[
∥x− x′∥1 >

ln d

4ε

]
(283)

≤ eε·
ln d
4ε · Pr

(x,x′)
[A(x′) ∈ Nbr(i)] +

ln d

4ε
· eε· ln d

4ε · δ +
E(x,x′) [∥x− x′∥1]

ln d
4ε

(284)

= d1/4 · Pr
x∼S(pj)

[A(x) ∈ Nbr(i)] +
1

2
(285)

where (283) is by applying union bound; the first term in (284) is by recursive usage of definition of
(ε, δ)-DP to datasets (x, x′) with hamming distance bounded by ln d

4ε ; the second term in (284) is by
applying Markov’s inequality; and (285) is by applying condition (277) and δ ≤ ε

d1/4 ln d
.

By combining (282) and (285), it follows that

Pr
x∼S(pj)

[A(x) ∈ Nbr(i)] ≥ 1

4d1/4
(286)
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By summing (286) over all i, we prove that

d∑
i=1

Pr
x∼S(pj)

[A(x) ∈ Nbr(i)] ≥ d3/4

4
(287)

Thus there exists v ∈ O, such that

d∑
i=1

1v∈Nbr(i) ≥
d3/4

4
≥ d1/4 (288)

where the last inequality is by d ≥ 16. This contradicts with (280).

Theorem G.9. Let n, d ≥ 4 ∈ N, ε = ln(d)
16n , and 0 ≤ δ ≤ ε

d1/4 ln d
. For γ ≤ 1

32 , let Nγ(p) be the
local neighborhood as defined in (6) for t = γ ln d.

Nγ(p) =

{
q : |qi − pi| ≤

γ ln d

nε
for any i ∈ [d] and

∑
i:pi≤ γ ln d

nε

qi ≤ max

γ ln d

nε
,
∑

i:pi≤ γ ln d
nε

pi


}

(289)

Then there exists a set P of distribution instances on ∆(d), and a per-neighborhood estimator ANγ(p)

under neighborhood size γ, such that

max
p∈P

max
q∈Nγ(p)

E
x∼Poi(nq)

[
KL

(
q,ANγ(q)(x)

)]
≤ 48γ ln d (290)

while for any (ε, δ)-DP estimator A, we have

max
p∈P

E
x∼Poi(np)

[KL (p,A(x))] ≥ ln d

16
(291)

Thus if γ ≤ o(1), then no (ε, δ)-DP estimator A could satisfy (2) (otherwise it contradicts (290) and
(291)).

Proof. Consider the following construction of P .

P =
{
pi := δi for i ∈ [d]

}
(292)

Then

Nγ(p
i) =

{
q : qi ≥ 1− γ · ln d

nε
, qj ≤ γ · ln d

nε
for any j ̸= i

}
(293)

Thus the following construction of per-neighborhood estimator satisfies (290).

ANγ(pi)(x)j =

{
1− γ · ln d

nε j = i

γ · ln d
nε·(d−1) j ̸= i

(294)

This is because

max
q∈Nγ(pi)

E
x∼Poi(nq)

[
KL(q,ANγ(pi))

]
≤ ln

(
1

1− γ · ln d
nε

)
+ γ · ln d

nε
· ln(d− 1) (295)

≤2γ · ln d
nε

+ γ · (ln d)
2

nε
≤ 48γ · ln d (296)

where (296) is by γ · ln d
nε ≤ 1

2 under γ ≤ 1
32 and by ε = ln d

2n .

Below we focus on proving (291) by applying Lemma G.8. We only need to validate that the two
conditions of Lemma G.8 hold.

1. The first condition (277) holds by ε = ln d
16n .
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2. The second condition of (278) holds by convexity of the function ln( 1t ) on t > 0, which
ensures that for any S ⊆ [d] with |S| ≥ d1/4 and any q ∈ ∆(d), we have

1

|S|
∑
i∈S

KL(pi, q) =
1

|S|
∑
i∈S

ln

(
1

qi

)
≥ ln

(
1

1
|S|
∑

i∈S qi

)
≥ ln(|S|) ≥ 1

4
ln d (297)

where the second-to-last inequality is by
∑

i∈S qi ≤ 1, and the last inequality is by |S| ≥
d1/4.

G.4 Additional Experiments on More Datasets

In this section, we further evaluate on more data distributions: power law distributions pi ∝ 1
iβ

for
β = 1.5, 2 in Figure 3, and 4; Enron-email corpus in Figure 5; and MMLU corpus in Figure 6.
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Figure 3: (Power law distribution pi ∝ 1
i1.5

) KL error versus dataset size n, distribution dimension d, and DP
guarantee ε for our methods compared with the simple minimax optimal Add-constant (DP) baseline, and the
strongest non-DP baseline of prior (near) instance-optimal Good-Turing estimator.
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Figure 4: (Power law distribution pi ∝ 1
i2

) KL error versus dataset size n, distribution dimension d, and DP
guarantee ε for our methods compared with the simple minimax optimal Add-constant (DP) baseline, and the
strongest non-DP baseline of prior (near) instance-optimal Good-Turing estimator.

G.5 Instance Optimality of Gaussian Variant of Our Algorithm

Below we present a Gaussian variant of our algorithm, and prove that it is near instance optimal up to
a log(1/δ) factor.
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Figure 5: (Enron-emails Token Distribution Estimation) KL error versus dataset size n, distribution dimension d,
and DP guarantee ε for our methods compared with the simple minimax optimal Add-constant (DP) baseline,
and the strongest non-DP baseline of prior (near) instance-optimal Good-Turing estimator.
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Figure 6: (MMLU Token Distribution Estimation) KL error versus dataset size n, distribution dimension d, and
DP guarantee ε for our methods compared with the simple minimax optimal Add-constant (DP) baseline, and
the strongest non-DP baseline of prior (near) instance-optimal Good-Turing estimator.

Algorithm 3 (ε, δ)-DP “Sampling Twice” (Instance-Optimal)

Inputs: Data partition ratio α = 0.5. Independently sampled datasets x ∼ Poi(α · np) and
x′ ∼ Poi((1 − α) · np) s.t. x + x′ ∼ Poi(np). Threshold τ = 4 ln d. Noise magnitude

σ =

√
ln(1/δ)

ε .
L = ∅
for symbol i = 1, · · · , d do

Private Thresholding: If x̃i := xi + zi ≤
τ ·
√

2 ln(1.25/δ)

min{ε,1} for zi ∼ N
(
0, σ2

)
, add i to L

end for
Estimate small symbols’ combined mass: c̃ = max

{∑
i∈L x′

i +N
(
0, σ2

)
,

√
2 ln(1.25/δ)

min{ε,1}

}
Estimate individual large symbols: for i ∈ [d] \ L, x̃′

i = x′
i + z′i for z′i ∼ N

(
0, σ2

)
Truncation: x̄i = max

{
x̃i,

√
2 ln(1.25/δ)

min{ε,1}

}
for i ∈ L; x̄i = (1 −

α)

(
max

{
x̃i,

√
2 ln(1.25/δ)

min{ε,1}

}
+max

{
x̃′
i,

√
2 ln(1.25/δ)

min{ε,1}

})
for i ∈ [d] \ L

Return A(x) with A(x)i =

{
1
N · c̃ · x̄′

i∑
i∈L x̄′

i
i ∈ L

1
N · x̄′

i i /∈ L
where N = c̃+

∑
i/∈L x̄i
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Theorem G.10. The estimator A given by Algorithm 3 is (ε, δ)-DP and satisfies the following error
bound for any fixed p ∈ ∆(d).

E
x∼Poi(n,p)

[
KL(p∥A(x))

]
≤2 ln (1.25/δ) ·O

(
E

(∑
i∈L

pi

)
ln

1 +

∑
i∈L

1

min{1, ε}
∑

i∈L npi

+
1L ̸=∅

nmin{1, ε}


(298)

+
∑

i:pi≥ 1
nmin{1,ε}

1

pi
· 1

n2 min{ε, 1}2

)
(299)

where L is the randomized set as defined in Algorithm 3.

Proof. The (ε, δ)-DP guarantee follows by observing that the ℓ2-sensitivity of vector release
(x1, · · · , xd, x

′
1, · · · , x′

d) is one, and by applying the (ε, δ)-DP guarantee for Gaussian mecha-
nism in [27, Theorem A.1]. The KL error bound follows identically as Appendix G.1, after re-
placing all Laplace Tail bounds under Lap(1/ε) with Gaussian Tail bounds under N (0, σ2) for

σ =

√
2 ln(1.25/δ)

ε .
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