
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEMMA-RCA: A LARGE MULTI-MODAL MULTI-
DOMAIN DATASET FOR ROOT CAUSE ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Root cause analysis (RCA) is crucial for enhancing the reliability and performance
of complex systems. However, progress in this field has been hindered by the
lack of large-scale, open-source datasets tailored for RCA. To bridge this gap, we
introduce LEMMA-RCA, a large dataset designed for diverse RCA tasks across
multiple domains and modalities. LEMMA-RCA features various real-world fault
scenarios from Information Technology (IT) and Operational Technology (OT)
systems, encompassing microservices, water distribution, and water treatment
systems, with hundreds of system entities involved. We evaluate the performance
of six baseline methods on LEMMA-RCA across various settings, including offline
and online modes, as well as single and multi-modal configurations. Our study
demonstrates the utility of LEMMA-RCA in facilitating fair evaluation and pro-
moting the development of more robust RCA techniques. The dataset and code are
publicly available at https://www.lemmarca.info.

1 INTRODUCTION

Root cause analysis (RCA) is essential for identifying the underlying causes of system failures,
ensuring the reliability and robustness of real-world systems. Recent advancements in artificial
intelligence and software development have led to increased complexity and interdependence in
modern systems. This complexity heightens their vulnerability to faults arising from interactions
among modular services, which can disrupt user experiences and incur significant financial losses.
Traditional manual RCA, however, is labor-intensive, costly, and prone to errors due to the complexity
of systems and the extensive data involved. Therefore, efficient and effective data-driven RCA
methods are crucial for pinpointing failures and mitigating financial losses when system faults occur.

Root cause analysis has been extensively studied across various domains and settings (Capozzoli et al.,
2015; Deng & Hooi, 2021; Brandón et al., 2020; Fourlas & Karras, 2021; Gao et al., 2015). Based on
the application scenarios, RCA can be carried out in offline/online fashion with single/multi-modal
system data. Existing studies on RCA in these settings involve numerous learning techniques such as
Bayesian methods (Alaeddini & Dogan, 2011), decision trees (Chen et al., 2004), etc. Particularly,
causal structure learning based technique (Burr, 2003; Pamfil et al., 2020; Ng et al., 2020; Tank et al.,
2022; Yu et al., 2023; Wang et al., 2023a;b; Zheng et al., 2024) has proven effective in constructing
causal or dependency graphs between different system entities and key performance indicators (KPIs),
thereby enabling the tracing of underlying causes through these structures.

Data is the oxygen of data-driven methods. Despite significant progress in RCA techniques, the
availability of large-scale public datasets remains limited, often due to confidentiality concerns (Harsh
et al., 2023). This scarcity hinders fair comparisons between RCA methods. Additionally, publicly
accessible datasets often contain manually injected faults rather than real faults, and each dataset
typically covers only a single domain. These limitations can prevent existing RCA methods from
effectively identifying various types of system faults in real-world scenarios, potentially leading to
regulatory and ethical consequences in critical sectors.

To address these limitations, we introduce LEMMA-RCA, a collection of Large-scalE Multi-ModAl
datasets with various real system faults to facilitate future research in Root Cause Analysis. LEMMA-
RCA encompasses real-world applications such as IT operations and water treatment systems, with
hundreds of system entities involved. LEMMA-RCA accommodates multi-modal data including
textual system logs with millions of event records and time series metric data with more than 100, 000

1

https://www.lemmarca.info

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

timestamps. We annotate LEMMA-RCA with ground truth labels indicating the precise time stamps
when real system faults occur and their corresponding root-cause system entities.

Table 1: Existing datasets for root cause analysis. The top row corresponds to our dataset. The symbols!and
% indicate that the dataset has or does not have the corresponding feature, respectively.

Dataset Public Real Faults Large-scale Multi-domain Modality
Single Multiple

LEMMA-RCA ! ! ! ! ! !

NeZha ! % % % ! !

PetShop ! % % % ! %

Sock-Shop % % % % ! %

ITOps % ! ! % ! %

Murphy % ! % % ! %

A comparison between LEMMA-RCA and existing datasets for RCA is presented in Table 1. We
briefly discuss the status of existing datasets: 1) NeZha (Yu et al., 2023) has limited size and contains
many missing parts in the monitoring data, and it is confined to one domain: microservice architec-
tures. 2) PetShop (Saurabh Garg, Imaya Kumar Jagannathan, 2024) has a small size. Additionally,
the system comprises only 41 components, limiting its complexity and reducing the practicality for
real-world scenarios. 3) Sock-Shop (Ikram et al., 2022) is small-scale with only 13 microservices, and
the injected faults (CPU hog and memory leak) are synthetic. Additionally, the data is not publicly
available and consists solely of single-modality metrics, lacking diversity in data sources such as logs
or traces. 4) ITOps (Li et al., 2022c) dataset is not public and contains structured logs that do not
contribute to comprehending the underlying causal mechanism of system failures, making it difficult
to conduct fine-grained RCA. 5) Murphy (Harsh et al., 2023) is collected from a simple system and
also not public. In comparison to prior work, LEMMA-RCA demonstrates a comprehensive maturity
on the accessibility, authenticity, and diversity.

LEMMA-RCA enables fair comparison across RCA methods. We evaluate six baselines and assess
data modality quality in offline settings, then adapt these methods for online evaluation using a
standardized LEMMA-RCA formulation. These efforts enable, for the first time, rigorous comparison
of online RCA methods on a common ground. Experimental results demonstrate LEMMA-RCA’s
effectiveness in evaluating related methods and its broad utility for advancing research in root cause
analysis.

2 PRELIMINARIES AND RELATED WORK

Key Performance Indicator (KPI) is a monitoring time series that indicates the system status. For
instance, latency and service response time are two common KPIs used in microservice systems. A
large value of latency or response time usually indicates a low-quality system performance or even a
system failure.

Entity Metrics are multivariate time series collected by monitoring numerous system entities or
components. For example, in a microservice system, a system entity can be a physical machine,
container, pod, etc. Some common entity metrics in a microservice system include CPU utilization,
Memory utilization, disk IO utilization, etc. An abnormal system entity is usually a potential root
cause of a system failure.

Data-driven Root Cause Analysis Problem. Given the monitoring data (including metrics and
logs) of system entities and system KPIs, the root cause analysis problem is to identify the top K
system entities that are most relevant to KPIs when a system fault occurs. RCA techniques can
be implemented in various settings, where offline/online and single-modal/multi-modal are mostly
commonly concerned. Offline RCA is conducted retrospectively with historical data to determine past
failures, whereas online RCA operates in real-time using current data streams to promptly address
issues. On the other hand, Single-modal RCA relies solely on one type of data for a focused analysis,
while multi-modal RCA uses multiple data sources for a comprehensive assessment. We illustrate the
procedure of RCA in single-modal offline and multi-modal online settings in Figure 1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Single-modal Offline Root Cause Analysis (RCA) retrospectively identifies the primary cause of
system failures using a single data type after an event has occurred (Wang et al., 2023b; Tang et al.,
2019; Meng et al., 2020b; Li et al., 2021; Soldani & Brogi, 2022). For example, Meng et al. (Meng
et al., 2020b) analyze monitoring metric data to discern sequential relationships and integrate causal
and temporal information for root cause localization in microservice systems. Similarly, Wang et
al. (Wang et al., 2023b) construct an interdependent causal network from time series data, using a
random walk strategy to pinpoint the most probable root causes. Li et al. (Li et al., 2021) evaluate
microservice traces, determining that a service with a higher ratio of abnormal to normal traces is
likely the root cause. Recently, large language model (LLM) based methods become a new research
direction to learn causal relation for root cause identification due to the success of LLMs in performing
complex tasks (Chen et al., 2024; Shan et al., 2024; Goel et al., 2024; Zhou et al., 2024; Roy et al.,
2024; Wang et al., 2024). Although these studies demonstrate notable efficacy, they rely exclusively
on single-modal data, which may lead to suboptimal and biased outcomes in root cause localization.

Multi-modal Offline RCA. Recent studies have explored utilizing multi-modal data for offline RCA,
which can be divided into two approaches (Yu et al., 2023; Hou et al., 2021; Zheng et al., 2024;
Lan et al., 2023). The first approach, exemplified by Nezha (Yu et al., 2023) and PDiagnose (Hou
et al., 2021), involves extracting information from each modality separately and then integrating it for
analysis. Conversely, the second approach focuses on the interactions between different modalities.
For instance, MULAN (Zheng et al., 2024) develops a comprehensive causal graph by learning
correlations between modalities, while MM-DAG (Lan et al., 2023) aims to jointly learn multiple
Direct Acyclic Graphs, improving both consistency and depth of analysis.

Online RCA. Despite significant advances, most RCA methods are designed for offline use, requiring
extensive data collection and full retraining for new faults, which delays response times. To address
this, Wang et al. (Wang et al., 2023a) introduced an online RCA method that decouples state-invariant
and state-dependent information and incrementally updates the causal graph. Li et al. (Li et al.,
2022a) developed a causal Bayesian network that leverages system architecture knowledge to mitigate
potential biases toward new data. However, these methods are limited to single-modal data, and there
is a critical need for online RCA methods that can effectively handle multi-modal data.

Figure 1: Illustration of RCA workflow in the single-modal offline setting (top) and the multi-modal online
setting (bottom). The other two settings can be viewed as an ensemble of corresponding components (data
collection, detector, modality) and follow the same systematic procedure.

3 LEMMA-RCA DATA

This section outlines the data resources, details the preprocessing steps, and presents visualizations to
illustrate the characteristics of the data released. The data licence can be found in appendix F.

3.1 DATA COLLECTION

We collect real-world data from two domains: IT operations and OT operations. The IT domain
includes sub-datasets from Product Review and Cloud Computing microservice systems, while the
OT domain includes Secure Water Treatment (SWaT) and Water Distribution (WADI) sub-datasets
from water treatment and distribution systems. Data specifics are provided in Table 2.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) The architecture of Product Review Platform (b) Log data captured by the ElasticSearch

Figure 2: Visualization of the microservice system platform, which contains 6 nodes and multiple pods that may
vary across different stages; and the ElasticSearch log data. We provide the figure with high resolution in the
Appendix.

In the IT domain, we developed two microservice platforms: the Product Review Platform and the
Cloud Computing Platform. The Product Review Platform is composed of six OpenShift nodes
(such as ocp4-control-plane-1 through ocp4-control-plane-3, ocp4-compute-1 and ocp4-compute-2,
and ocp4-infra-1) and 216 system pods (including ProductPage, MongoDB, review, rating, payment,
Catalogue, shipping, etc.). In this setup, four distinct system faults are collected, including out-of-
memory, high-CPU-usage, external-storage-full, and DDoS attack, on four different dates. Each
system fault ran the microservice system for at least 49 hours with different pods involved. The
pods running in different stages may vary, and the pods associated with different types of system
faults also differ. The structure of this microservice system with some key pods during one fault is
depicted in Figure 2 (a). Both log and metric data were generated and stored systematically to ensure
comprehensive monitoring. Specifically, eleven types of node-level metrics (e.g., net disk IO usage,
net disk space usage, etc.) and six types of pod-level metrics (e.g., CPU usage, memory usage, etc.)
were recorded by Prometheus (Turnbull, 2018), and the time granularity of these system metrics is 1
second. Log data, on the other hand, were collected by ElasticSearch (Zamfir et al., 2019) and stored
in JSON files with detailed timestamps and retrieval periods. The contents of system logs include
timestamp, pod name, log message, etc., as shown in Figure 2 (b). The JMeter (Nevedrov, 2006) was
employed to collect the system status information, such as elapsed time, latency, connect time, thread
name, throughput, etc. The latency is considered as system KPI as the system failure would result in
the latency significantly increasing.

For the Cloud Computing Platform, we monitored six different types of faults (such as cryptojacking,
mistakes made by GitOps, configuration change failure, etc.), and collected system metrics and logs
from various sources. In contrast to the Product Review platform, system metrics were directly
extracted from CloudWatch1 Metrics on EC2 instances, and the time granularity of these system
metrics is 1 second. Log events were acquired from CloudWatch Logs, consisting of three data types
(i.e., log messages, api debug log, and mysql log). Log message describes general log message
about all system entities; api debug log contains debug information of the AP layer when the API
was executed; mysql logs contain log information from database layer, including connection logs to
mysql, which user connected from which host, and what queries were executed. Latency, error rate,
and utilization rate were tracked using JMeter tool, serving as Key performance indicators (KPIs).
This comprehensive logging and data storage setup facilitates detailed monitoring and analysis of the
system’s performance and behavior.

In the OT domain, we constructed two sub-datasets, SWaT and WADI, using monitoring data collected
by the iTrust lab at the Singapore University of Technology and Design (iTrust, 2022). These two sub-
datasets consist of time-series/metrics data, capturing the monitoring status of each sensor/actuator as
well as the overall system at each second. Specifically, SWaT (Mathur & Tippenhauer, 2016) was
collected over an 11-day period from a water treatment testbed equipped with 51 sensors. The system
operated normally during the first 7 days, followed by attacks over the last 4 days, resulting in 16
system faults. Similarly, WADI (Ahmed et al., 2017) was gathered from a water distribution testbed
over 16 days, featuring 123 sensors and actuators. The system maintained normal operations for the
first 14 days before experiencing attacks in the final 2 days, with 15 system faults recorded.

1https://aws.amazon.com/cloudwatch/

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Data statistics of IT and OT operation sub-datasets.

Microservice System (IT) Product Review Cloud Computing
Original Dataset Size 765 GB 540 GB

Number of (#) fault types 4 6
Average # entities per fault 216.0 167.71
Average # metrics per fault 11 (node-level) + 6 (pod-level) 6 (node-level) + 7 (pod-level)

Average # timestamps per fault 131,329.25 109,350.57
Average max log events per fault across pods 153,081,219.0 63,768,587.25

Water Treatment/Distribution (OT) SWaT WADI
Original Dataset Size 4.47G 5.67G

Number of (#)fault types 16 9
Average # entities per fault 51.0 123.0
Average # metrics per fault 7 (node-level) + 7 (pod-level) 7 (node-level) + 7 (pod-level)

Average # timestamps per fault 56239.88 85248.47

Figure 3: Visualization of KPI for system failure cases. Left: the first two sub-figures are from the Product
Review sub-dataset; the third and fourth sub-figures are from the Cloud Computing sub-dataset; Right: the first
two sub-figures are from the SWaT sub-dataset; the last two sub-figures are from the WADI sub-dataset.

We visualized the key performance indicator (KPI) for eight failure cases in Figure 3, where sudden
spikes or drops in latency indicate system failures. The first two sub-figures on the left show the KPIs
for two faults in the Product Review sub-dataset, while the third and fourth sub-figures depict faults
in the Cloud Computing sub-dataset. The first two sub-figures on the right display faults in the SWaT
dataset, and the last two show faults in the WADI dataset. The x-axis represents the timestamp, and
the y-axis shows the system latency.

3.2 DATA PREPROCESSING

After collecting system metrics and logs, we assess whether each pod exhibits stationarity, as non-
stationary data are unpredictable and cannot be effectively modeled. Consequently, we exclude
non-stationary pods, retaining only stationary ones for subsequent data preprocessing steps.

Log Feature Extraction for Product Review and Cloud Computing. The logs of some system
entities we collected are limited and insufficient for meaningful root cause analysis. Thus, we
exclude them from further analysis. Additionally, the log data is unstructured and frequently uses
a special token, complicating its direct application for analysis. How to extract useful information
from unstructured log data remains a great challenge. Following (Zheng et al., 2024), we preprocess
the log data into time-series format. We first utilize a log parsing tool, such as Drain, to transform
unstructured logs into structured log messages represented as templates. We then segment the data
using fixed 10-minute windows with 30-second intervals, calculating the occurrence frequency of
each log template. This frequency forms our first feature type, denoted as XL

1 ∈ RT , where T is
the number of timestamps. We prioritize this feature because frequent log templates often indicate
critical insights, particularly useful in identifying anomalies such as Distributed Denial of Service
(DDoS) attacks, where a surge in template frequency can indicate unusual activity.

Moreover, we introduce a second feature type based on ‘golden signals’ derived from domain
knowledge, emphasizing the frequency of abnormal logs associated with system failures like DDoS
attacks, storage failures, and resource over-utilization. Identifying specific keywords like ‘error,’
‘exception,’ and ‘critical’ within log templates helps pinpoint anomalies. This feature, denoted as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

XL
2 ∈ RT , assesses the presence of abnormal log templates to provide essential labeling information

for anomaly detection.

Lastly, we implement a TF-IDF based method, segmenting logs using the same time windows and
applying Principal Component Analysis (PCA) to reduce feature dimensionality, selecting the most
significant component as XL

3 ∈ RT . We concatenate these three feature types to form the final
feature matrix XL = [XL

1 ;X
L
2 ;X

L
3] ∈ R3×T , enhancing our capacity for a comprehensive analysis

of system logs and improving anomaly detection capabilities.

KPI Construction for SWaT and WADI. The SWaT and WADI sub-datasets include the label
column that reflects the system status; however, the values within this column are discrete. To
facilitate the root cause analysis, it is beneficial to transform these values into a continuous format.
Specifically, we propose to convert the label into a continuous time series. To achieve this, we employ
anomaly detection algorithms, such as Support Vector Data Description and Isolation Forest, to model
the data. Subsequently, the anomaly score, as determined by the model, will be utilized as the system
KPI. More data preprocessing details on SWaT and WADI can be found in Appendix C.

3.3 SYSTEM FAULT SCENARIOS

There are 10 different types of real system faults in Product Review and Cloud Computing sub-
datasets. Due to the space limitation, we select two representative cases (one from each) and provide
the details below. Other fault scenarios are presented in Appendix D. We also visualize the system
fault of these two cases in Figure 4.

Figure 4: Visualization of two system fault scenarios. Left: Cryptojacking. Right: External storage failure.

• Cryptojacking. In this scenario, cloud usage fees increase due to cryptojacking, where a Coin
Miner is covertly downloaded and installed on a microservice (details-v1 pod) in an EKS cluster.
This miner gradually consumes IT resources, escalating the cloud computing costs. Identifying the
root cause is challenging because the cost (SLI) encompasses the entire system, and no individual
service errors are detected. Periodic external requests are sent to microservices, and after a day,
the miner’s activity triggers auto-scaling in details-v1, increasing resource usage. Fargate’s impact
on EKS costs is significant due to its resource dependency. KPI (SLI) is calculated from resource
usage, with all pod and node metrics collected from CloudWatch. However, there are no node logs
for Fargate, complicating diagnosis.

• External Storage Failure. In this system failure, we fill up the external storage disk connected to
the Database (DB) pod (i.e., mongodb-v1) within Microservice A’s OpenShift2 cluster. When the
storage becomes full, the DB pod cannot add new data, resulting in system errors. These errors
propagate to pods that depend on the DB pod, causing some services (ratings) within Microservice
A to encounter errors. We monitor changes in response and error information for Microservice
A using Jaeger logs. Metrics for all containers and nodes, including CPU and memory usage, are
obtained from Prometheus within OpenShift. Logs for all containers and nodes are retrieved from
Elasticsearch within OpenShift. Additionally, we collect message logs from the external storage.
We illustrate the metrics and log data of the root cause pod in Figure 5.

2https://www.redhat.com/en/technologies/cloud-computing/openshift

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 5: Visualization of root cause for one system failure case (i.e., External Storage Failure) on the Product
Review Platform. Left: six system metrics of root cause. Right: the system log of the root cause pod (i.e.,
Mongodb-v1) with the x-axis representing the timestamp, the y-axis indicating the log event ID, and the colored
dots denoting event occurrences. Sudden drops in the metrics data, as well as new log event patterns observed at
the midpoint, indicate a system failure.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Metrics. To assess baseline RCA method on LEMMA-RCA, we choose three widely-
used metrics (Wang et al., 2023b; Meng et al., 2020a; Zheng et al., 2024) and introduce them
below.

(1). Precision@K (PR@K): It measures the probability that the top K predicted root causes are real,
defined as:

PR@K =
1

|A|
∑
a∈A

∑
i<k Ra(i) ∈ Va

min(K, |va|)
(1)

where A is the set of system faults, a is one fault in A, Va is the real root causes of a, Ra is the
predicted root causes of a, and i is the i-th predicted cause of Ra.

(2). Mean Average Precision@K (MAP@K): It assesses the top K predicted causes from the
overall perspective, defined as:

MAP@K =
1

K|A|
∑
a∈A

∑
i≤j≤K

PR@j (2)

where a higher value indicates better performance.

(3). Mean Reciprocal Rank (MRR): It evaluates the ranking capability of models, defined as:

MRR@K =
1

|A|
∑
a∈A

1

rankRa

(3)

where rankRa is the rank number of the first correctly predicted root cause for system fault a.

Baselines. We evaluate the performance of the following RCA baselines on the benchmark sub-
datasets, selecting only those with publicly available code to ensure fair and reproducible comparisons:
(1). PC-based (Ma et al., 2020): This approach first employs a Peter-Clark (PC) algorithm Burr
(2003) to construct the anomaly behavior graph, and then applies a random walk algorithm to
rank the root causes based on the estimated graph structure. (2). CIRCA (Li et al., 2022b): This
model utilizes structural graph construction, regression-based hypothesis testing, and descendant
adjustment to identify root cause metrics. (3). ϵ-Diagnosis (Shan et al., 2019): This model diagnoses
small-window, long-tail latency in large-scale microservice platforms using a two-sample test and
ϵ-statistics. (4). RCD (Ikram et al., 2022): This technique hierarchically localizes the root cause
of failures by focusing on relevant sections of the dependency graph. (5). BARO (Pham et al.,
2024): It is an end-to-end approach integrating Bayesian change point detection and nonparametric
hypothesis testing to accurately detect anomalies and identify root causes in microservice systems.
(6). Nezha (Yu et al., 2023): A multi-modal method designed to identify root causes by detecting
abnormal patterns.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

When using only metric data (e.g., CPU usage, memory usage) for root cause analysis, we first
identify the potential root cause associated with each metric. We then compute the final score for
each candidate by averaging its ranking scores across all metrics. This procedure is similarly applied
in log-only and multi-modal scenarios to rank and identify the root causes. For the hyperparameters,
we use the default parameter values for all baselines to ensure a fair comparison.

Table 3: Results for RCA baselines with multiple modalities on the Product Review dataset.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

Metric Only

PC 0 0 0.250 0.053 0 0 0.050
RCD 0 0.250 0.750 0.185 0.167 0.200 0.350

ϵ-Diagnosis 0 0 0.250 0.038 0 0 0.050
CIRCA 0 0.750 0.750 0.283 0.250 0.450 0.600
BARO 0.250 0.250 0.250 0.286 0.250 0.250 0.250

Log Only

PC 0 0 0.250 0.069 0 0 0.125
RCD 0 0 0.250 0.056 0 0 0.025

ϵ-Diagnosis 0 0 0.250 0.038 0 0 0.050
CIRCA 0 0 0.500 0.080 0 0 0.125
BARO 0 0.250 0.250 0.139 0.167 0.200 0.225

Multi-Modality

PC 0 0 0.250 0.064 0 0 0.125
RCD 0 0.500 0.750 0.231 0.167 0.300 0.525

ϵ-Diagnosis 0 0 0.250 0.041 0 0 0.075
CIRCA 0 0.750 1.000 0.299 0.250 0.450 0.650
BARO 0.750 0.750 1.000 0.775 0.750 0.750 0.775
Nezha 0 0.500 0.750 0.193 0.083 0.250 0.475

4.2 ROOT CAUSE ANALYSIS RESULTS

Product Review and Cloud Computing. We evaluate six RCA methods including both single-modal
and multi-modal methods on Product Review and Cloud Computing sub-datasets. The experimental
results are presented in Table 3 with respect to Precision at K (PR@K), Mean Reciprocal Rank (MRR),
and Mean Average Precision at K (MAP@K). Due to space limitations, the experimental results on
Cloud Computing (Table 7) are reported in the Appendix E. Our observations reveal the following
insights: (1) The PC algorithm and ϵ-Diagnosis perform worst on both the Product Review and Cloud
Computing sub-datasets. We conjecture that PC, RCD, and ϵ-Diagnosis struggle to capture long-term
dependencies in large-scale datasets, making it difficult to detect abnormal temporal patterns. (2)
CIRCA outperforms RCD and ϵ-Diagnosis, consistent with findings from the Petshop study (Saurabh
Garg, Imaya Kumar Jagannathan, 2024), where CIRCA’s regression-based hypothesis testing and
adjustment mechanisms led to higher diagnostic accuracy. (3) Multi-modal input—combining both
metric and log data—significantly enhances the performance of RCA methods compared to using
either modality alone. For example, BARO achieves only 25% PR@1 with metric data and 0% with
log data on the Product Review sub-dataset, but reaches 75% PR@1 when both are used, correctly
identifying the root cause in 75% of fault scenarios. This highlights the complementary nature of log
and metric data and the importance of integrating both to improve diagnostic accuracy and overall
performance, particularly in terms of MRR.

Table 4: Results for RCA baselines on the SWaT sub-dataset.

Dataset Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

SWaT

PC 0.125 0.344 0.583 0.262 0.129 0.204 0.350
RCD 0.125 0.125 0.625 0.228 0.125 0.125 0.344

ε-Diagnosis 0.125 0.125 0.563 0.217 0.125 0.125 0.294
CIRCA 0.188 0.250 0.688 0.287 0.188 0.200 0.394
BARO 0 0.208 0.208 0.124 0.083 0.133 0.171

Water Treatment/Distribution. We evaluate five single-modal RCA methods on the SWaT and
WADI sub-datasets using the same set of evaluation metrics. Table 4 presents the results for SWaT,
while Table 5 shows the results for WADI. We observe that CIRCA consistently achieves the best
overall performance on both datasets, although the PC algorithm occasionally outperforms it on

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Results for RCA baselines on the WADI sub-dataset.

Dataset Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

WADI

PC 0.071 0.350 0.500 0.277 0.163 0.239 0.346
RCD 0 0 .071 0.119 0.054 0.048 0.057 0.076

ε-Diagnosis 0 0 0.022 0.020 0 0 0.009
CIRCA 0.143 0.550 0.714 0.350 0.301 0.400 0.529
BARO 0 0.143 0.143 0.085 0.071 0.100 0.121

SWaT by a small margin. This trend aligns with the observations from the Product Review and Cloud
Computing sub-datasets. Notably, the results also indicate considerable room for improvement, likely
due to the characteristics of the SWaT and WADI datasets—faults are short-lived, and the intervals
between them are brief. These fleeting events are easily overlooked by most RCA methods, posing a
significant challenge for accurate root cause identification.

4.3 ONLINE ROOT CAUSE ANALYSIS RESULTS

We evaluate three RCA methods on the Product Review sub-dataset to demonstrate the utility of the
LEMMA-RCA in an online setting in Table 6. Due to space limitations, the experimental results
on Cloud Computing (Table 8) are reported in the Appendix E. Because the runtime of CIRCA,
PC, and Nezha exceed 24 hours per case, they are excluded from the online evaluation. Notably,
LEMMA-RCA is a large-scale real-world dataset, consisting of more than 100,000 timestamps across
several days with various system fault scenarios, which can be naturally transformed to the online
setting, compared with small datasets with limited timestamps for online RCA. Although RCD,
ϵ-Diagnosis, and BARO are originally designed for offline analysis, we adapt them to the online
setting by formatting the data into a sequence of streaming snapshots. Each baseline method is
then evaluated on consecutive snapshots until similar results appear three times in succession or the
data stream reaches its final snapshot. The detailed implementation can be found in Appendix B.
Empirically, we observe that all three methods suffer a significant drop in performance under the
online setting compared to their offline results. We conjecture that this degradation arises from their
inability to consistently capture temporal dependencies across snapshots. This observation highlights
the need for developing dedicated online root cause analysis methods.

Table 6: Results for root cause analysis baselines on Product Review sub-dataset in the online setting.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

Metric Only
RCD 0 0.250 0.250 0.054 0 0.050 0.150

ϵ-Diagnosis 0 0 0 0.019 0 0 0
BARO 0.250 0.250 0.250 0.269 0.250 0.250 0.250

Log Only
RCD 0 0 0 0.012 0 0 0

ϵ-Diagnosis 0 0 0 0.025 0 0.100 0.175
BARO 0 0 0 0.023 0 0.100 0.175

Multi-Modality
RCD 0 0.250 0.250 0.054 0 0.050 0.150

ϵ-Diagnosis 0 0 0 0.027 0 0 0
BARO 0.250 0.250 0.250 0.270 0.250 0.250 0.250

5 CONCLUSION

In this work, we introduce LEMMA-RCA, the first large-scale, open-source dataset featuring real
system faults across multiple application domains and data modalities. We conduct a comprehensive
empirical study using six baseline RCA methods, evaluating their performance on both single-modal
and multi-modal data under offline and online settings. The experimental results highlight the utility
of LEMMA-RCA as a benchmarking resource. By releasing this dataset publicly, we aim to advance
research in root cause analysis for complex systems and support the development of more robust and
reliable methodologies, particularly for mission-critical applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. Wadi: a water distribution
testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd
International Workshop on Cyber-Physical Systems for Smart Water Networks, pp. 25–28, 2017.

Adel Alaeddini and Ibrahim Dogan. Using bayesian networks for root cause analysis in statistical
process control. Expert Systems with Applications, 38(9):11230–11243, 2011.

Álvaro Brandón, Marc Solé, Alberto Huélamo, David Solans, Marı́a S Pérez, and Victor Muntés-
Mulero. Graph-based root cause analysis for service-oriented and microservice architectures.
Journal of Systems and Software, 159:110432, 2020.

Tom Burr. Causation, prediction, and search. Technometrics, 45(3):272–273, 2003.

Alfonso Capozzoli, Fiorella Lauro, and Imran Khan. Fault detection analysis using data mining
techniques for a cluster of smart office buildings. Expert Systems with Applications, 42(9):4324–
4338, 2015.

Mike Chen, Alice X Zheng, Jim Lloyd, Michael I Jordan, and Eric Brewer. Failure diagnosis using
decision trees. In International Conference on Autonomic Computing, 2004. Proceedings., pp.
36–43. IEEE, 2004.

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie Cao, Xuedong
Gao, Hao Fan, Ming Wen, et al. Automatic root cause analysis via large language models for
cloud incidents. In Proceedings of the Nineteenth European Conference on Computer Systems, pp.
674–688, 2024.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time
series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 4027–4035,
2021.

George K Fourlas and George C Karras. A survey on fault diagnosis methods for uavs. In 2021
International Conference on Unmanned Aircraft Systems (ICUAS), pp. 394–403. IEEE, 2021.

Zhiwei Gao, Carlo Cecati, and Steven X. Ding. A survey of fault diagnosis and fault-tolerant tech-
niques—part i: Fault diagnosis with model-based and signal-based approaches. IEEE Transactions
on Industrial Electronics, 62(6):3757–3767, 2015. doi: 10.1109/TIE.2015.2417501.

Drishti Goel, Fiza Husain, Aditya Singh, Supriyo Ghosh, Anjaly Parayil, Chetan Bansal, Xuchao
Zhang, and Saravan Rajmohan. X-lifecycle learning for cloud incident management using llms.
In Companion Proceedings of the 32nd ACM International Conference on the Foundations of
Software Engineering, pp. 417–428, 2024.

Vipul Harsh, Wenxuan Zhou, Sachin Ashok, Radhika Niranjan Mysore, Brighten Godfrey, and Sujata
Banerjee. Murphy: Performance diagnosis of distributed cloud applications. In Proceedings of the
ACM SIGCOMM 2023 Conference, pp. 438–451, 2023.

Chuanjia Hou, Tong Jia, Yifan Wu, Ying Li, and Jing Han. Diagnosing performance issues in
microservices with heterogeneous data source. In 2021 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communi-
cations, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom), New York City,
NY, USA, September 30 - Oct. 3, 2021, pp. 493–500. IEEE, 2021.

Azam Ikram, Sarthak Chakraborty, Subrata Mitra, Shiv Saini, Saurabh Bagchi, and Murat Kocaoglu.
Root cause analysis of failures in microservices through causal discovery. Advances in Neural
Information Processing Systems, 35:31158–31170, 2022.

iTrust. The website of itrust lab. [EB/OL], 2022. https://itrust.sutd.edu.sg/
itrust-labs_datasets/dataset_info/.

Tian Lan, Ziyue Li, Zhishuai Li, Lei Bai, Man Li, Fugee Tsung, Wolfgang Ketter, Rui Zhao,
and Chen Zhang. Mm-dag: Multi-task dag learning for multi-modal data-with application for
traffic congestion analysis. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1188–1199, 2023.

10

https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/
https://itrust.sutd.edu.sg/itrust-labs_datasets/dataset_info/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Aidong Zhang and Huzefa Rangwala (eds.), KDD ’22: The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022, pp.
3230–3240. ACM, 2022a.

Mingjie Li, Zeyan Li, Kanglin Yin, Xiaohui Nie, Wenchi Zhang, Kaixin Sui, and Dan Pei. Causal
inference-based root cause analysis for online service systems with intervention recognition. In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
3230–3240, 2022b.

Zeyan Li, Junjie Chen, Rui Jiao, Nengwen Zhao, Zhijun Wang, Shuwei Zhang, Yanjun Wu, Long
Jiang, Leiqin Yan, Zikai Wang, et al. Practical root cause localization for microservice systems via
trace analysis. In 2021 IEEE/ACM 29th International Symposium on Quality of Service (IWQOS),
pp. 1–10. IEEE, 2021.

Zeyan Li, Nengwen Zhao, Shenglin Zhang, Yongqian Sun, Pengfei Chen, Xidao Wen, Minghua Ma,
and Dan Pei. Constructing large-scale real-world benchmark datasets for aiops. arXiv preprint
arXiv:2208.03938, 2022c.

Meng Ma, Jingmin Xu, Yuan Wang, Pengfei Chen, Zonghua Zhang, and Ping Wang. Automap:
Diagnose your microservice-based web applications automatically. In Proceedings of The Web
Conference 2020, pp. 246–258, 2020.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and training
on ics security. In 2016 international workshop on cyber-physical systems for smart water networks
(CySWater), pp. 31–36. IEEE, 2016.

Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia,
Zhaogang Wang, and Dan Pei. Localizing failure root causes in a microservice through causality
inference. In 28th IEEE/ACM International Symposium on Quality of Service, IWQoS 2020,
Hangzhou, China, June 15-17, 2020, pp. 1–10. IEEE, 2020a.

Yuan Meng, Shenglin Zhang, Yongqian Sun, Ruru Zhang, Zhilong Hu, Yiyin Zhang, Chenyang Jia,
Zhaogang Wang, and Dan Pei. Localizing failure root causes in a microservice through causality
inference. In 2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS), pp.
1–10. IEEE, 2020b.

Dmitri Nevedrov. Using jmeter to performance test web services. Published on dev2dev, pp. 1–11,
2006.

Ignavier Ng, AmirEmad Ghassami, and Kun Zhang. On the role of sparsity and DAG constraints
for learning linear dags. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip Pilgerstorfer, Konstantinos Geor-
gatzis, Paul Beaumont, and Bryon Aragam. DYNOTEARS: structure learning from time-series
data. In Silvia Chiappa and Roberto Calandra (eds.), The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online [Palermo, Sicily,
Italy], volume 108 of Proceedings of Machine Learning Research, pp. 1595–1605. PMLR, 2020.

Luan Pham, Huong Ha, and Hongyu Zhang. Baro: Robust root cause analysis for microservices
via multivariate bayesian online change point detection. Proceedings of the ACM on Software
Engineering, 1(FSE):2214–2237, 2024.

Devjeet Roy, Xuchao Zhang, Rashi Bhave, Chetan Bansal, Pedro Las-Casas, Rodrigo Fonseca, and
Saravan Rajmohan. Exploring llm-based agents for root cause analysis. In Companion Proceedings
of the 32nd ACM International Conference on the Foundations of Software Engineering, pp. 208–
219, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Saurabh Garg, Imaya Kumar Jagannathan. Root cause analyses on petshop application, 2024.
https://github.com/amazon-science/petshop-root-cause-analysis/
tree/main?tab=readme-ov-file.

Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao, Xiaofeng He, Min Li, and Wei
Ding. ?-diagnosis: Unsupervised and real-time diagnosis of small-window long-tail latency in
large-scale microservice platforms. In The World Wide Web Conference, pp. 3215–3222, 2019.

Shiwen Shan, Yintong Huo, Yuxin Su, Yichen Li, Dan Li, and Zibin Zheng. Face it yourselves: An
llm-based two-stage strategy to localize configuration errors via logs. In Proceedings of the 33rd
ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 13–25, 2024.

Jacopo Soldani and Antonio Brogi. Anomaly detection and failure root cause analysis in (micro)
service-based cloud applications: A survey. ACM Computing Surveys (CSUR), 55(3):1–39, 2022.

LuAn Tang, Hengtong Zhang, Zhengzhang Chen, Bo Zong, LI Zhichun, Guofei Jiang, and Kenji
Yoshihira. Graph-based attack chain discovery in enterprise security systems, May 14 2019. US
Patent 10,289,841.

Alex Tank, Ian Covert, Nicholas J. Foti, Ali Shojaie, and Emily B. Fox. Neural granger causality.
IEEE Trans. Pattern Anal. Mach. Intell., 44(8):4267–4279, 2022.

James Turnbull. Monitoring with Prometheus. Turnbull Press, 2018.

Dongjie Wang, Zhengzhang Chen, Yanjie Fu, Yanchi Liu, and Haifeng Chen. Incremental causal
graph learning for online root cause analysis. In Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pp. 2269–2278, 2023a.

Dongjie Wang, Zhengzhang Chen, Jingchao Ni, Liang Tong, Zheng Wang, Yanjie Fu, and Haifeng
Chen. Interdependent causal networks for root cause localization. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2023, Long Beach, CA,
USA, August 6-10, 2023, pp. 5051–5060. ACM, 2023b.

Zefan Wang, Zichuan Liu, Yingying Zhang, Aoxiao Zhong, Lunting Fan, Lingfei Wu, and Qingsong
Wen. Rcagent: Cloud root cause analysis by autonomous agents with tool-augmented large
language models. In Proceedings of the 31st ACM International Conference on Information &
Knowledge Management, 2024.

Guangba Yu, Pengfei Chen, Yufeng Li, Hongyang Chen, Xiaoyun Li, and Zibin Zheng. Nezha:
Interpretable fine-grained root causes analysis for microservices on multi-modal observability data.
2023.

Vlad-Andrei Zamfir, Mihai Carabas, Costin Carabas, and Nicolae Tapus. Systems monitoring and big
data analysis using the elasticsearch system. In 2019 22nd International Conference on Control
Systems and Computer Science (CSCS), pp. 188–193. IEEE, 2019.

Lecheng Zheng, Zhengzhang Chen, Jingrui He, and Haifeng Chen. Multi-modal causal structure
learning and root cause analysis. arXiv preprint arXiv:2402.02357, 2024.

Bin Zhou, Xinyu Li, Tianyuan Liu, Kaizhou Xu, Wei Liu, and Jinsong Bao. Causalkgpt: industrial
structure causal knowledge-enhanced large language model for cause analysis of quality problems
in aerospace product manufacturing. Advanced Engineering Informatics, 59:102333, 2024.

12

https://github.com/amazon-science/petshop-root-cause-analysis/tree/main?tab=readme-ov-file
https://github.com/amazon-science/petshop-root-cause-analysis/tree/main?tab=readme-ov-file

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A BROADER IMPACT AND LIMITATION

Broader impact: To facilitate accurate, efficient, and multi-modal root cause analysis research
across diverse domains, we introduce LEMMA-RCA as a new benchmark dataset. Our dataset also
offers significant potential for advancing research in areas like multi-modal anomaly detection,
change point detection, and system diagnosis. Based on the thorough data analysis and extensive
experimental results, we highlight the following areas for future research:

• Expanding Domain Applications: To enhance the LEMMA-RCA dataset’s versatility and impact,
we plan to incorporate data from additional domains such as cybersecurity and healthcare. This
integration of diverse data sources will facilitate the development of more comprehensive root cause
analysis technologies, significantly extending the dataset’s applicability across various industries.

• Online and/or Multi-Modal Root Cause Analysis: Most RCA methods are offline and single-
modal, leaving a gap for real-time and/or multi-modal approaches. Developing these methods can
enable instant analysis of diverse data streams, essential for dynamic environments like industrial
automation and real-time monitoring.

• LLM-Based Root Cause Analysis: The emergence of LLMs presents new opportunities for RCA
by enabling systems to reason over complex, unstructured, and heterogeneous data sources. Future
research can explore how LLMs can be adapted or fine-tuned for root cause inference, how they
can incorporate domain knowledge, and how their interpretability and reliability can be improved
in safety-critical or high-stakes environments.

Limitations: Despite its broad capabilities, the LEMMA-RCA dataset may have limited generaliz-
ability, as its fault scenarios may not fully capture the diversity of real-world conditions due to factors
like system interruptions and unforeseen circumstances.

B IMPLEMENTATION DETAILS OF ONLINE SETTING

In this section, we describe how we format the data for the online setting and adapt offline RCA
methods accordingly. For each case, the data is split chronologically into two parts: historical data
and streaming data. The split point is determined by the “online start,” a timestamp prior to the system
fault (typically 1–2 hours before the failure), indicating that a fault is imminent. The streaming data
is further divided into K snapshots, each covering a fixed time window of 400 seconds. To construct
the first batch, we combine the historical data with the first snapshot, which serves as input for each
baseline method to identify the root cause. We then update the batch iteratively by sliding the window:
at each step, we remove the earliest 400 seconds from the historical data and replace it with the next
400 seconds from the streaming snapshots, ensuring the total batch length remains fixed. Offline
methods adapted to this setting are evaluated sequentially on the snapshots until either (i) consistent
results are obtained for three consecutive steps, or (ii) the data stream reaches its final snapshot.

C MONITORING TIME SERIES SEGMENTATION FOR SWAT AND WADI

In the original SWaT and WADI datasets, the attack model demonstrates irregular attack patterns,
occasionally targeting multiple sensors simultaneously, or executing attacks at closely spaced intervals.
To follow the principles of RCA, we have established two specific preprocessing rules for these
datasets: 1) Each recorded attack event must only involve a single sensor or actuator. 2) The duration
of the dataset corresponding to each attack event must be standardized to two hours. Consequently,
we selectively keep attack events that impact only one sensor or actuator. If the interval between
successive attack events is insufficiently short, we assume the stability in the monitoring data
immediately before and after each attack event. To ensure the necessary two-hour duration for each
event, we concatenate normal-state data from both before and after the attack period. This adjustment
positions the attack event centrally within a continuous two-hour segment, facilitating consistent and
accurate analysis.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

D ADDITIONAL SYSTEM FAULT SCENARIOS

This section describes the processes used to generate and monitor system fault scenarios, with
emphasis on mimicking real-world fault patterns. Each scenario involved the induction of specific
failure conditions, while allowing the microservice system to exhibit its natural behavior under
stress. Metrics and logs were collected using established monitoring tools, such as Prometheus,
Elasticsearch, CloudWatch, Jaeger, and JMeter.

• Silent Pod Degradation Fault.
– Description: A pod in a load balancer contains a latent bug causing its CPU usage

to rise, which gradually increases latency for a subset of users without triggering
autoscaling or error alerts.

– Method: We periodically sent requests to Microservice A over a 24-hour period.
After this initial observation, we manually increased the CPU load on one specific
productpage-v1 pod to simulate the bug.

– Data Collection: Metrics and logs were collected from CloudWatch, while KPIs such
as latency were measured using JMeter. The goal was to trace latency increases back
to the specific pod with elevated CPU utilization.

• Noisy Neighbor Issue.
– Description: A neighboring pod in a shared node generates high CPU load, impacting

the performance of the productpage-v1 pod and causing elevated error rates.
– Method: Requests were sent to Microservice A, while the pod ratings of Microservice

B (robot-shop) were moved to the same node as productpage-v1, generating
contention.

– Data Collection: Metrics (CPU usage, memory usage) were gathered using
Prometheus, while logs were obtained from CloudWatch Logs. Configuration changes,
such as node assignments, were also recorded.

• Node Resource Contention Stress Test.
– Description: A stress test on CPU resources was conducted by inducing high load on

Microservice B, co-located with Microservice A on the same node.
– Method: Periodic requests were sent to Microservice A using JMeter, while a high

CPU load was generated on Microservice B using the OpenSSL speed command.
– Data Collection: HTTP response logs from JMeter were analyzed for performance

impacts. System metrics (CPU and memory usage) were retrieved from Prometheus,
while container logs were collected from Elasticsearch.

• DDoS Attack.
– Description: A Distributed Denial of Service (DDoS) attack was simulated to overload

the system, causing Out-of-Memory (OOM) errors in targeted pods.
– Method: Over a monitoring period of approximately 48 hours, we gradually increased

the request rate to Microservice A, eventually overwhelming the reviews-v2 and
reviews-v3 pods.

– Data Collection: Metrics such as CPU and memory utilization were collected via
Prometheus. Logs from Jaeger and Elasticsearch provided insights into the system’s
response to the attack.

• Malware Attack.
– Description: A malware pod executed a password list attack to compromise other

pods, propagating DDoS scripts to degrade overall system performance.
– Method: The attack started from a designated pod

(scenario10-malware-deployment) and targeted others via SSH pass-
word brute-forcing, ultimately generating high load on productpage-v1.

– Data Collection: JMeter was used to monitor KPIs (latency, error rate), while
Prometheus and CloudWatch Logs provided system metrics and logs for root-cause
analysis.

• Bug Infection.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

– Description: A latent bug in the API caused asymmetric CPU load increases, degrading
response times without fully utilizing the CPU capacity.

– Method: Requests were sent periodically to the web service, and after a day, a script
induced increased CPU utilization on one core.

– Data Collection: KPIs were measured using JMeter, while system metrics and logs
were collected via CloudWatch for detailed analysis.

• Configuration Fault.

– Description: An incorrect resource limit in a Kubernetes manifest file led to a pod
being terminated by the OOM killer, impacting other services.

– Method: Requests were sent to Microservice A, while a Git push introduced a faulty
configuration for the details-v1 pod. The misconfigured pod eventually failed
under load.

– Data Collection: Error rates were tracked using JMeter, and metrics/logs were retrieved
from Prometheus and CloudWatch for root-cause identification.

E MORE EXPERIMENTAL RESULTS

We present the results for RCA on Cloud Computing sub-dataset in the offline setting in Table 7 and
in the online setting in Table 8.

Table 7: Results for RCA with multiple modalities on the Cloud Computing sub-dataset.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

Metric Only

PC 0 0 0 0.029 0 0 0
RCD 0 0.250 0.250 0.126 0.083 0.150 0.200

ϵ-Diagnosis 0 0 0.250 0.067 0 0 0.025
CIRCA 0 0 0.500 0.105 0 0 0.150
BARO 0 0.250 0.250 0.105 0 0.100 0.175

Log Only

PC 0 0 0 0.032 0 0 0
RCD 0 0 0 0.059 0 0 0

ϵ-Diagnosis 0 0 0 0.059 0 0 0
CIRCA 0 0.250 0.250 0.110 0 0.100 0.175
BARO 0 0.250 0.250 0.105 0 0.100 0.175

Multi-Modality

PC 0 0 0.250 0.064 0 0 0.125
RCD 0 0.250 0.250 0.092 0 0.050 0.150

ϵ-Diagnosis 0 0 0.250 0.067 0 0 0.025
CIRCA 0 0.250 0.500 0.147 0.083 0.150 0.225
BARO 0 0.250 0.250 0.126 0.083 0.150 0.200
Nezha 0 0.250 0.250 0.105 0 0.100 0.175

Table 8: Results for root cause analysis baselines on Cloud Computing sub-dataset in the online setting.

Modality Model PR@1 PR@5 PR@10 MRR MAP@3 MAP@5 MAP@10

Metric Only
BARO 0 0.250 0.500 0.172 0.167 0.200 0.275

ϵ-Diagnosis 0 0.250 0.500 0.173 0.167 0.200 0.250
RCD 0 0.250 0.250 0.162 0.167 0.200 0.225

Log Only
BARO 0 0 0.250 0.067 0 0 0.075

ϵ-Diagnosis 0 0 0.250 0.072 0 0 0.100
RCD 0 0 0 0.044 0 0 0

Multi-Modality
BARO 0 0.250 0.500 0.173 0.167 0.200 0.275

ϵ-Diagnosis 0 0.250 0.500 0.181 0.167 0.200 0.250
RCD 0 0.250 0.250 0.162 0.167 0.200 0.225

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

F LEMMA-RCA LICENSE

The LEMMA-RCA benchmark dataset is released under a CC BY-ND 4.0 International License:
https://creativecommons.org/licenses/by-nd/4.0. The license of any specific baseline methods used in
our codebase should be verified on their official repositories.

G REPRODUCIBILITY

All experiments are conducted on a server running Ubuntu 18 with an Intel(R) Xeon(R) Silver 4110
CPU @2.10GHz and one 11GB GTX2080 GPU. In addition, all methods were implemented using
Python 3.8.12 and PyTorch 1.7.1.

H DETAILED DESCRIPTION OF BASELINES

We evaluate the performance of the following RCA models on the benchmark sub-datasets:

• PC-based (Ma et al., 2020): It is an unsupervised root cause analysis method designed for
complex systems using multiple types of performance metrics. It constructs an anomaly
behavior graph using a PC-based causal discovery algorithm to capture service-level de-
pendencies. Based on this graph, it applies heuristic random walk strategies—including
forward, backward, and self-directed walks—to trace and rank potential root causes.

• CIRCA (Li et al., 2022b): CIRCA is an unsupervised root cause analysis method that
formulates the problem as a causal inference task called intervention recognition. Its core
idea is to identify root cause indicators by evaluating changes in the probability distribution
of monitoring variables conditioned on their parents in a Causal Bayesian Network (CBN).
CIRCA applies this approach to online service systems by constructing a graph among
monitoring metrics, leveraging system architecture knowledge and causal assumptions to
guide the analysis.

• ϵ-Diagnosis (Shan et al., 2019): ϵ-Diagnosis is an unsupervised, low-cost diagnosis algo-
rithm designed to address small-window long-tail latency (SWLT) in web services, which
arises in short statistical windows and typically affects a small subset of containers in
microservice clusters. It uses a two-sample test algorithm and ϵ-statistics to measure the
similarity of time series, enabling the identification of root-cause metrics from millions
of metrics. The algorithm is implemented in a real-time diagnosis system for production
microservice platforms.

• RCD (Ikram et al., 2022): RCD is a scalable algorithm for detecting root causes of failures
in complex microservice architectures using a hierarchical and localized learning approach.
It treats the failure as an intervention to quickly identify the root cause, focuses learning
on the relevant portion of the causal graph to avoid costly conditional independence tests,
and explores the graph hierarchically. The technique is highly scalable, providing action-
able insights about root causes, while traditional methods become infeasible due to high
computation time.

• BARO (Pham et al., 2024): BARO is a robust, end-to-end RCA framework designed
for multivariate time-series data in microservice systems. It integrates anomaly detection
and root cause localization using Multivariate Bayesian Online Change Point Detection
(BOCPD) to detect failures and estimate their occurrence times. For RCA, BARO introduces
RobustScorer, a nonparametric hypothesis testing approach that ranks candidate root causes
based on their distributional shifts, using median and interquartile range rather than mean
and standard deviation to improve robustness.

• Nezha (Yu et al., 2023): Nezha is an interpretable and fine-grained root cause analysis
(RCA) method for microservices that unifies heterogeneous observability data (metrics,
traces, logs) into a homogeneous event format. This representation enables the construction
of event graphs for integrated analysis. Nezha statistically localizes actionable root causes at
granular levels, such as specific code regions or resource types, offering high interpretability
to support confident mitigation actions by SREs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 6: Corresponding to Figure 2 (a). The architecture of Product Review Platform

Figure 7: Corresponding to Figure 4 left. Visualization of Cryptojacking system fault scenario. Right: External
storage failure.

I FIGURES FOR CLARITY

We provide figures related to the system architecture and fault scenarios in this section, for better
readability. The architecture of Product Review Platform is shown in Figure 6, and the system fault
scenarios are demonstrated in Figure 7 and Figure 8.

J DATASET LABELING METHODOLOGY

We provide more details on the system fault labeling strategy, which comes in two-fold: the root
cause labeling process and label validation.

Root Cause Labeling Process.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Corresponding to Figure 4 right. Visualization of External storage failure. system fault scenario.

• For each system fault, we designed controlled fault scenarios to mimic realistic fault patterns
(e.g., external storage failure, database overload).

• During each controlled fault case, we monitored system behaviors, including metrics and
logs, to identify the exact root cause of the fault.

• The ground truth root cause was then labeled based on the specific fault of the system. This
ensures high accuracy in root cause labeling, as the faults were systematically induced and
their impacts directly observed.

Label Validation.

• To ensure label correctness, we validated the root cause labels by analyzing the system’s
behavior during and after fault. This involved cross-checking the observed anomalies in
system metrics and logs with the expected outcomes of the fault.

• Multiple experts reviewed the labeled faults to confirm the consistency and correctness of
the root cause assignments.

K PARAMETER SETTINGS FOR ALL BASELINE MODELS

We provide the detailed parameter settings for all baseline models as follows:

• PC: alpha=0.05 (significance level for conditional independence tests),
ci test=’fisherz’ (type of conditional independence test).

• RCD: ci test=’chisq’ (type of conditional independence test). k=10 (top-k root
causes), alpha limit=0.5 (the maximum alpha for search),

• ε-Diagnosis: test size=0.6 (train test split ratio), root cause top k=10 (top-k
root causes),

• Circa: test size=0.6 (train test split ratio), root cause top k=10 (top-k root
causes),

• Baro: Parameters of this algorithm are related to the Bayesian online change point detection.
r=50 (magnitude of the hazard function for Bayesian online learning), k=3 (number of
standard deviations from the mean to consider as an anomaly),

• Nezha: level=service (detection at the service level)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

L DATASET REPRESENTATIVENESS

In this section, we aim to show the representativeness of the released dataset. While it is challenging
to establish a universal metric for representativeness in benchmarks, we have made significant efforts
to ensure the dataset covers diverse fault scenarios:

• Real-World Fault Scenarios: The IT domain datasets (Product Review and Cloud Comput-
ing) encompass realistic microservice faults such as out-of-memory errors, DDoS attacks,
and cryptojacking, as outlined in Section 3.1 and Appendix B. Similarly, the OT domain
datasets (SWaT and WADI) include real-world cyber-physical system faults recorded in
controlled environments.

• Diversity of Fault Types: Across IT and OT domains, we include 10 distinct fault types,
ensuring coverage of both transient and persistent system failures. This diversity reflects
common issues faced by modern IT and OT systems.

• Comparative Analysis: As seen in Table 3 and related discussions, our dataset exhibits per-
formance trends consistent with other benchmarks (e.g., Petshop), supporting its credibility
as a representative evaluation platform.

• Quality Assurance: All data were collected using industry-standard monitoring tools like
Prometheus, CloudWatch, and Elasticsearch. Each fault scenario was validated to ensure it
mirrors real-world conditions.

19

	Introduction
	Preliminaries and Related Work
	LEMMA-RCA Data
	Data Collection
	Data Preprocessing
	System Fault Scenarios

	Experiments
	Experimental Setup
	Root Cause Analysis Results
	Online Root Cause Analysis Results

	Conclusion
	Broader Impact and Limitation
	Implementation Details of Online Setting
	Monitoring Time Series Segmentation for SWaT and WADI
	Additional System Fault Scenarios
	More Experimental Results
	LEMMA-RCA License
	Reproducibility
	Detailed Description of Baselines
	Figures for Clarity
	Dataset Labeling Methodology
	Parameter Settings for All Baseline Models
	Dataset Representativeness

