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ABSTRACT

This paper addresses the challenge of incrementally reconstructing object-centric
3D representations from only a pose-free RGB video stream. Existing dense
SLAM methods face a dual challenge: they are constrained by a reliance on
precise camera poses and RGB-D input for initialization, and they lack precise
instance-level scene understanding. Moreover, the quality of their reconstruction
and perception is fragile to systematic errors. To this end, we propose Embod-
iedGS, a pipeline that jointly performs incremental 3D reconstruction and percep-
tion from RGB stream to constructs an Object-Centric 3D Gaussians (OCGS)
representation that is both geometrically accurate and rich with instance-level
information. Specifically, our approach leverages MASt3R-SLAM for Gaus-
sian geometric initialization and introduces a Global-Associated Instance Mem-
ory (GAIM) to consistently track objects across views using multi-modal cues.
We then construct the initial OCGS by lifting instance information to 3D Gaus-
sians via optimizable binary embeddings. Finally, this representation is refined
through a joint optimization process that leverages the synergy between recon-
struction and perception to mutually correct inaccuracies, yielding a robust, high-
fidelity OCGS. Extensive experiments are conducted on TUM-RGBD and Scan-
Net datasets and a real-world robotic platform, where EmbodiedGS demonstrates
competitive performance even compared with RGB-D SLAM methods and offline
3D instance segmentation methods. Code will be released. Project page.

1 INTRODUCTION

Reconstructing 3D scenes from visual observations is a fundamental problem in computer vision.

Recently, 3D Gaussian Splatting ( , ) has emerged as a powerful paradigm, achieving
state-of-the-art rendering quality and efﬁmency However, applying 3DGS-based methods to real-
world embodied agents ( s s ; s ) faces several critical

limitations. Many existing approaches requlre offline optimization, lack vital instance-level infor-
mation for interaction, and often depend on high-precision RGB-D sensors, limiting their versatility.
To facilitate practical deployment, we contend a unified 3D representation should be: (1) Incremen-
tal. Enables synchronous 3D reconstruction as an agent explores, ensuring real-time scene updates
for instantaneous decision making. (2) Object-Centric. Supports direct instance-level queries, fa-
cilitating both scene understanding and interactive manipulation. (3) Error-resilient. Overcomes
inevitable errors in initial reconstruction and segmentation to build a high-quality scene represen-
tation robustly. We propose Object-Centric Gaussian Splatting (OCGS) as a promising solution to
fulfill these requirements. Inheriting the explicit nature of point clouds, OCGS naturally supports
incremental updates while maintaining object-centric awareness through per-Gaussian instance la-
beling. Crucially, OCGS ensures its robustness by jointly leveraging geometric and perceptual cues,
correcting initial inaccuracies to forge a high-fidelity final model.

We focus on a practical setting: to incrementally reconstruct OCGS from pose-free RGB stream.
This imposes minimal assumptions on the input data, ensuring broad applicability with only
commodity-grade monocular RGB sensors. The most relevant task to this setting is 3DGS-based
dense SLAM ( s ), which
tracks camera pose online and 51multaneously maintains 3D Gaussmn map as scene representation.
To empower Gaussian-based SLAM system with scene understanding ability, recent works ( ,

; , ) propose semantic visual SLAM by incorporating semantic features into 3D
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Figure 1: We present EmbodiedGS, a framework for incrementally reconstructing Object-Centric
Gaussian Splatting (OCGS) representations from only a monocular, pose-free RGB stream. This
task is challenging, as initial perception often suffers from temporal inconsistencies across views,
while geometric reconstruction is typically noisy (Left). EmbodiedGS addresses this by introducing
a synergistic process where multi-view aggregation refines perception and instance-guided smooth-
ing corrects the geometry (Middle). This mutual refinement yields a unified, high-fidelity OCGS
map that is both geometrically accurate and rich with consistent, instance-level semantics (Right).

Gaussians to support semantic rendering and category-wise scene editing. However, most exist-
ing 3D Gaussian SLAM approaches rely on RGB-D sensor or large monocular depth estimation
model for Gaussian initialization. Their scene understanding capability is also limited to category-
level segmentation, and exhibits a strong dependency on existing 2D models and a high sensitivity to
segmentation errors. Therefore, achieving efficient dense 3D Gaussian reconstruction with instance-
level understanding from monocular RGB streams remains an open challenge.

In this paper, we propose EmbodiedGS, an efficient pipeline to incrementally reconstruct OCGS
scene representations from unposed RGB streams. Different from a naive fusion of dense 3D Gaus-
sian SLAM and 3D instance segmentation, our approach establishes a synergistic loop between
reconstruction and perception. It fully exploits the 3D Gaussian representation for incremental in-
stance understanding, which reciprocally aids in the robust optimization of the OCGS map. Specifi-
cally, buiding upon MASt3R-SLAM (Murai et al., 2024), which efficiently estimates camera poses
and generates coordinate-aligned pointmaps from an unposed RGB stream, we implement a submap-
wise OCGS mapping system. This system begins by initializing the geometry of 3D Gaussians with
the output of MASt3R-SLAM. Concurrently, to incorporate object-level information into the geom-
etry, we build a Global-Associated Instance Memory (GAIM) by incrementally associating instance
proposals across views with multi-modal matching criteria to ensure global consistency. The re-
sulting instance labels from GAIM are then assigned to the Gaussians, forming an initial OCGS.
Finally, to address inevitable inaccuracies from initial reconstruction and segmentation, we jointly
optimize the OCGS by leveraging the synergy between perception and reconstruction, simultane-
ously refining Gaussian geometry and instance embedding to produce a high-fidelity representation.
We conduct extensive experiments on the popular TUM-RGBD and ScanNet datasets. Our Embod-
iedGS achieves appealing performance in both instance segmentation and rendering. Furthermore,
we deploy EmbodiedGS on a real-world robot, showcasing its remarkable capability to reconstruct
complex scenes while effectively handling moving objects, confirming its practical applicability.

2 RELATED WORK

3D Reconstruction from Video Stream. Methods for reconstructing 3D geometry from video
streams primarily fall into two categories: dense visual SLAM and end-to-end approaches. Dense
visual SLAM has evolved from classical point-cloud systems (Engel et al., 2014; Tateno et al,,
2017; Newcombe et al., 2011; Zhou et al., 2018) to recent methods leveraging 3D Gaussian Splat-
ting (Kerbl et al., 2023) for real-time rendering (Huang et al., 2024; Keetha et al., 2024; Matsuki
et al., 2024; Zhu et al., 2024a). However, these Gaussian-based methods often rely on RGB-D
input for Gaussian initialization and require costly test-time optimization, which severely limits
camera tracking speed. In contrast, end-to end methods like Spann3R (Wang & Agapito, 2024) and
CUT3R (Wang et al., 2025b) enhance DUSt3R (Wang et al., 2024) with spatial memory and contin-
uous updating states respectively, enabling real-time, incremental point cloud reconstruction from
only pose-free RGB streams. While efficient, end-to-end methods often struggle with catastrophic
forgetting on long sequences. Recently, MASt3R-SLAM (Murai et al., 2024) bridged this gap by
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integrating the local end-to-end reconstruction capabilities of MASt3R ( , ) within
a global SLAM framework, achieving real-time,high-quality point cloud reconstruction. Building
on this, our EmbodiedGS extends MASt3R-SLAM by introducing an object-centric 3D Gaussian
representation, leveraging perceptual cues and Gaussian optimization mechanism to mitigate point
cloud prediction errors for more robust performance.

Incremental 3D Scene Understanding. To enable embodied agents to understand unknown envi-
ronments on-the-fly, incremental (or online) 3D scene understandmg emerges as a pivotal yet un-
resolved research challenge. Early methods ( , ) typically
projected per-frame 2D predictions onto a 3D point cloud for fuswn a step often compromised by
a lack of geometric and temporal awareness. To address this, Fusion-aware 3D-Conv ( ,

) and SVCNN ( s ) construct data structures to maintain the information of
previous frames and conduct point-based 3D aggregation to fuse the 3D features for semantic seg-
mentation. INS-CONYV ( R ) extends sparse convolution ( s

, ) to incremental CNN to efficiently extract global 3D features for semantic and 1nstance
segmentation. In order to simplify the model design, Online3D ( , ) proposes a new
paradigm that empowers offline model with online perception ability by multimodal memory-based
adapters. EmbodiedSAM ( s ) further leverages 2D VFM to achieve real-time and
fine-grained 3D instance segmentation. However, these methods are performed on posed RGB-D
videos. Both camera pose and depth sensor are required to form 3D geometry of the scene. Differ-
ently, our EmbodiedGS jointly performs incremental 3D reconstruction and 3D perception, which
fully exploits the correlation between geometry and instance information to build a robust system.

3 APPROACH

Given a streaming RGB video V; = {I1, I, ..., I;} with known camera intrinsics K, our system
aims to simultaneously estimate camera trajectory, reconstruct 3D Gaussian representation of the
scene, and predict globally consistent 3D instance labels on the reconstruction, thereby constructing
an OCGS representation of the scene. All tasks should be performed online as the video stream
progresses. At any time instant ¢, future images ;. (k > t) are not available.

Overview. The overall pipeline of our approach is illustrated in Figure 2. We first initialize the
geometry of 3D Gaussians using camera poses and pointmaps predicted by MASt3R-SLAM from
monocular RGB stream, while concurrently building a Global-Associated Instance Memory (GAIM)
by incrementally associating instance proposals across views using multi-modal matching criteria
for global consistency. The resulting globally consistent instance information from GAIM is then
leveraged to assign instance labels to the Gaussians, forming the initial Object-Centric 3D Gaussians
(OCGS). Finally, to correct for initial reconstruction and segmentation inaccuracies, we perform a
joint optimization that leverages the synergy between perception and reconstruction to mutually
refine the multi-view consistency of GAIM and the OCGS scene representation.

3.1 PRELIMINARY

Our system is built upon two preliminary modules for geometry and perception initialization.

For geometric reconstruction and camera tracking, we utilize MASt3R-SLAM (

) to process the monocular RGB stream input, which provides the initial geometry for our 3D
Gaussians. As a keyframe-based system, it uses the two-view reconstruction model MASt3R (

, ) to process the current frame /; and last keyframe I, obtaining pointmaps Xf, X! e
RH*XWx3 with their confidences Cf,Cl € RY*Wx1 and d-dimensional matching features
DF, D! € RY*Wxd yith the corresponding confidences QF, Q! € R¥*W 1. Here we use no-
tation Xf to represent the pointmap of image I;, expressed in the coordinate frame of ;. Based on
these outputs and the pre-stored keyframe pointmap X’,j of I, the SLAM system establishes point
correspondences between the two frames to solve the relative pose transformation Ty; € Sim(3).
It also includes standard loop closure and backend optimization to ensure global pose consistency.

For 2D instance perception, we employ the efficient open-vocabulary segmenter YOLO-E (
, ) to generate a set of instance masks {M,, }~ _, for current frame I;. To better harness
the information inherent in the masks, we extract both geometric and visual descriptors for each
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Figure 2: Framework of EmbodiedGS. Our system receives pose-free RGB stream and incremen-
tally builds object-centric 3D Gaussians (OCGS). It features two parallel branches: Global Instance
Association builds a consistent instance memory (GAIM) across views, while Incremental Gaussian
Mapping uses MASt3R-SLAM to construct the 3D geometry of Gaussians. Both outputs are fused
and refined in a Joint Optimization stage to enhance perception and reconstruction quality.

instance. On one hand, we leverage the pixel-wise correspondence between the pointmap Xi and
the image I; to extract the point cloud of each instance with its mask M,,, and compute its 3D
bounding boxes B,, as the geometric descriptor. On the other hand, inspired by

( ), we reuse the highly discriminative feature map of I; from the MASt3R encoder, applying
average pooling within each mask region to obtain a feature vector F},, as the visual descriptor.
Finally, we combine these descriptors into a set of instance proposals for the current frame, denoted
as P, = {pm } % _,, where each proposal is a triplet p,,, = (M,,,, By, F},). These proposals are then
fed into our GAIM module for global association and memory updates.

3.2 OCGS INITIALIZATION WITH GAIM UPDATE

Submap-based Gaussian Mapping. To manage computational and memory costs, we employ a
submap-based mapping approach. The entire scene is partitioned into sequential submaps, with
each keyframe selection from MASt3R-SLAM finalizing the current submap and initializing a new
one, thus ensuring efficient resource management. Within each submap, we further select a sparse
subset of distinctive frames for mapping, termed mapping frames, which serve a dual purpose. Geo-
metrically, their pointmaps are used to initialize new 3D Gaussians, and their RGB images supervise
the Gaussian optimization process. Semantically, their corresponding instance proposals are asso-
ciated with GAIM to establish globally consistent instance IDs, which are then lifted to the newly
created 3D Gaussians to form the initial OCGS representation.

When I is a mapping frame, we transform its pointmap X! into the coordinate frame of I, with rela-
tive pose T and initialize 3D Gaussians from it, denoted as G*". Each 3D Gaussian is represented
asg = (u,s,r, o, c), where  is centroid, s is scaling vector, r is rotational quaternion, « is opacity
value and c is color. Here p and c are initialized with the transformed pointmap. G7*" will be
appended to G“%, the previous reconstructed 3D Gaussians in current submap, to obtain G{“*. We

denote mapping frames selected so far within current submap as V;"*" = {1, I;"*" .. I/"*P}.

We optimize the geometry and appearance of G4? via differentiable rendering on Vmap using pho-
tometric loss, which is a weighted sum of an El and an SSIM ( , ) term:
Lono = (1= Assiar) - I3 = Iy + Assia - (1 — SSIM(Ie?, [;neP)), (D

where I mapP denotes the i image rendered by G;*°. To constrain the excessive elongation of Gaussians
in sparsely observed regions, we introduce an isotropic regularization term:

1 K
‘CTeg:EZLSk’_gkhy (2)
k=1

where £ is the number of Gaussians in gsub s € R3 is the scales of a Gaussian and 3 is its mean.
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When a new set of L instance proposals larity matrix between current instance proposals and
Pp = {p1,p2,...,pL} is acquired from cur- global instances, which achieves accurate instance

rent mapping frame 7;;*?, we update GAIM  mjiching and supports efficient GPU parallelization.
by solving a bipartite matching problem be-

tween these proposals and existing instances O. The matching is determined by a similarity matrix
S = [si;], where s;; is the similarity score between o; and p;. For each successfully matched pair,
the attributes of proposal from P,, are merged into its corresponding instance in O. Proposals that
remain unmatched are considered new objects and registered with new global IDs in the memory O.
To ensure accurate and robust matching, we design three merging criteria for similarity computation,
considering geometric, visual and temporal cues between each pair, as shwon in Figure 3.

Geometric similarity measures spatial proximity to encourage merging of nearby instances and
prune incorrect merges between distant instances. We obtain this score s °° by computing the 3D
box DIoU( , ) between the stored instance box o0;.box and the proposal box B,
which considers both the spatial overlap and the center-to-center distance between them. We opt for
3D boxes rather than 3D masks as they are more efficient to store, update and compare. We have:

s{;% = DIoU(0;.box, Bj), (3)
If a merge ocurrs, o;.box is updated to be the minimal bounding box enclosing the two boxes.

Visual similarity captures appearance resemblance between instances to distinguish semantically
different objects. We measure this score s} using the cosine similarity between the stored visual
descriptor 0;.vis and the visual descriptor F; of proposal p;:

sfj’s = Cos(0;.vis, Fj), 4)

— , where n is the

Once merged, o0;.vis is updated using a running average: 0;.vis ¢
numbers of previous merges.

Temporal similarity leverages spatio-temporal consistency cue to track an object across frames. In-
stead of using an external video segmentation model as instance propagator, we directly leverage
our previously reconstructed map G:“% to render the mask of an existing object o; using the esti-
mated pose T';. Then the temporal similarity sﬁjm can be calculated as the co-coverage between this
pre-rendered mask and the proposal’s mask M, where co-coverage between mask pairs is defined

M;NM; M;NM; .
as: CoCov(M;, M;) = %(l Al il | 7] ’l). So we have:
si5™ = CoCov([R (GMY T, M;). %)
Here R is mask rendering operatlon (detailed in Sec. 3.3) and [-]; selects the mask for instance o;.
This approach is highly efficient, as all instance masks can be generated in a single rendering pass.

Note that these three scores can be computed in parallel, enabling efficient matrix operations. We
aggregate them via a weighted sum, s;; = A1s7;” + Aas?® + Azsi$™, to form the final similarity
matrix S. Then we solve the bipartite matching problem on .S, d1scard1ng matches where s;; < 0y,.
Based on the resulting associations, each new proposal is either merged into an existing instance in
GAIM or registered as a new one. Finally, these newly assigned global instance IDs are lifted from
2D proposals to their corresponding 3D Gaussians in Gi*", completing the OCGS initialization.
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3.3 OCGS REFINEMENT VIA JOINT OPTIMIZATION

The initial OCGS representation constructed in Sec. 3.2 is prone to two primary error sources,
which leads to degraded mapping quality. The first is reconstruction error, arising from inaccu-
rate pointmap depths and pose drift from MASt3R-SLAM. The second is perception error, such as
missed or over-segmented instances from the 2D segmenter. To mitigate these issues, we first en-
hance segmentation robustness by introducing a binary instance embedding, which can be gradually
optimized. Furthermore, we leverage multi-view perception results to jointly optimize the OCGS,
ultimately improving the accuracy of both the reconstruction and perception.

Explicit Binary Instance Embedding. Fixed instance IDs are sensitive to segmentation errors. To
address this, we attach each Gaussian with an optimizable instance embedding e € R¢ to enhance
robustness, such that g = (u, s, r, a, c,e). To ensure global consistency of instance embeddings,
we employ explicit binary encoding for instance IDs by converting each decimal ID into its corre-
sponding binary representation, thereby yielding a d-dimension vector where d = [logy(Nymaz)]-
Nipaz 18 the pre-defined maximum number of instances which is large enough.

For newly added 3D Gaussians G*" contributed by current mapping frame I;7°?, we initialize their
d-dimension instance embedding e; to the binary encoding of their instance IDs. Then we can splat
G:ub according to the camera parameters of images in V;"“? to render instance embedding maps:
i—1
Ep) =Y efip) [[(1 - £;(0)), ©)
ieN j=1
where p is a pixel, f;(p) is the influence factor of each Gaussian on that pixel. The explicit nature
of our binary encoding allows for straightforward recovery of discrete instance IDs from their em-
beddings via rounding and base conversion. This enables the transformation of instance embedding
maps into instance masks and the classification of Gaussians by their respective instance IDs.

Bidirectional Joint Optimization. We propose a virtuous cycle of bidirectional optimization that
jointly refines reconstruction and perception. We formulate this as two reciprocal processes: “Re-
construction for Perception (R4P)” and “Perception for Reconstruction (P4R)”, which work in tan-
dem to progressively correct each other’s errors and ultimately enhance the OCGS mapping quality.

On one hand, reconstruction aids perception by providing a unified 3D space via OCGS, where
multi-view perceptual results can be fused. This 3D fusion effectively resolves cross-view incon-
sistencies and improves perceptual accuracy. Specifically, we use associated instance masks { M, }
from GAIM to supervise the optimization of instance embeddings via binary cross-entropy loss:

Lrip = Y w(p) - BCE (0(En(p)), b(Mn(p))) , )

P
where o is sigmoid function, b(-) maps a mask to its d-bit binary encoding. The per-pixel weight
w(p) is derived by the YOLO-E confidence for foreground pixels and set to a constant wy, for the
background. This method simplifies instance embedding optimization by decomposing it into inde-
pendent binary classifications, enabling a confidence-weighted fusion of multi-view segmentations.

On the other hand, perception aids reconstruction by leveraging instance information to enforce
spatial smoothness, thus reducing severe depth reconstruction errors. Specifically, we introduce a
smoothness loss to encourage Gaussians belonging to the same instance to be spatially compact:

1 cy
Lpip = Z Gl Z <am|li1 _H’N(i,n)|2) : (®)
n g,€0n

For each instance n, the loss pulls a Gaussian’s center p; towards a robust local target fipr(; ,,, com-
puted as the confidence-weighted mean of its k-nearest intra-instance neighbors. The strength of this
pull is inversely weighted by the Gaussian’s own confidences C; from MASt3R. This dual-weighting
scheme compels lower confidence Gaussians to align with their high-confidence neighbors, reducing
intra-object spatial variance to yield smoother reconstructions.

Finally, the overall loss function for the iterative optimization of our OCGS is defined as:
L= Lpho+ Lreg + ArarPLRap + Ap4rLP4R- 9

For clarity, the pseudocode for the entire algorithm is provided in the Appendix as Algorithm 1.
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4 EXPERIMENT

In this section, we present a comprehensive evaluation of EmbodiedGS. We first detail the experi-
mental setup, and then compare EmbodiedGS with SOTA baselines on tasks of 3D instance segmen-
tation and Gaussian rendering. We follow this with in-depth ablation studies and efficiency analyses.
Finally, we apply our method to real-world scenarios to demonstrate its effectiveness and robustness.

4.1 BENCHMARKS AND IMPLEMENTATION DETAILS

Benchmarks. We evaluate on two real-world datasets: TUM-RGBD ( ,
Net ( , ) datasets. Following previous protocols ( ,
sequences from TUM-RGBD and 6 sequences from ScanNet, respectively.

) and Scan-
), we selected 3

Compared Methods. For 3D instance segmentation, we compare with zero-shot 3D scene segmen-

tation methods ( ); ( ) following the setting of ( ). For

training view rendering, we compare with neural rendering-based SLAM methods ( );
(2022); (2022); (2019); ( ;

( ); ( ); ( ); ( ), on TUM-RGBD and ScanNet

following the setting of ( ).

Implementation Details. Frames are selected as mapping frames under either of two conditions:
being a keyframe or covering substantially unobserved regions. For hyperparameters, we set A\; =
A2 = A3 = 0.333, Assim = 0.2, Apag = 1, Apap = 0.1, 0y, = 0.15, wpy = 0.01. our system
runs on a single NVIDIA GeForce RTX 4090 GPU. See Appendix A.4 for more details.

4.2 3D INSTANCE SEGMENTATION

Existing offline 3D instance segmentation models
rely on pre-reconstructed point clouds, typically
requiring ground-truth (GT) depths and poses as

Table 1: Class-agnostic 3D instance segmen-
tation results of zero-shot methods on ScanNet.
t: w/o GT pose; I: w/o both GT pose and depth.

input. In contrast, our approach is online and
requires Only monocular RGB. To ensure a fair  Method Metric 0000 0059 0106 0169 0181 0207 Avg.
comparison, we re-evaluated SAM3D and SAM-  Posed RGB-D Ap 80 156 85 58 144 165 112
Pro3D by replacing GT inputs with the depth and  samprosp AP, 147 407 280 194 208 2371 254
pose predictions from MASt3R-SLAM. Accord- APy 333 723 644 578 482 450 525
ing to Table 1, our EmbodiedGS significantly out- AP 347 215 134 166 30.1 155 210
. SAM3D AP5y 5301 345 380 37.6 419 261 37.5
performs both RGB and even RGB-D versions of APys 69.8 71.6 68.1 664 602 583 65.4
the baselines, whose performance degrades no- rgp-p
tably when provided with lower-quality pose and AP 93 11200 87 85 41 71
SAMPro3Df AP5, 202 285 23 168 159 75 152
depth. Remarkably, our approach even surpasses APy; 442 531 220 526 43.0 381 425
the original offline models while requiring only =~~~ """ AP 379 135 80 122 70 92 139
; ssualizati ; SAM3DT  APs, 519 283 17.6 275 145 181 257
RGB inputs. V1sua112at10n§ of the segmentation AP 677 505 620 604 538 488 582
results on ScanNet are provided in Figure 6. —
AP 25 55 10 46 28 18 32
SAMPro3Df AP;, 83 125 46 106 7. 36 79
4.3 GAUSSIAN RENDERING APy 215 485 190 328 365 206 296
AP~ 7152785 49 135 51 1279
SAM3DF  AP5 363 134 119 285 152 35 172

We evaluate our rendering performance on train-
ing views in Table 2. As a submap-based method, ~~------%p5" ~ 330 29 230 312 147 381 267
we follow the settings of LoopSplat ( EmbodiedGS APs
) by aggregating all submaps into a global AP
map using the predicted camera poses and optimizing it for several iterations after processing the
sequence for a fair comparison. Our method outperforms all baselines across all datasets in terms
of average PSNR, SSIM, and LPIPS, even surpassing RGB-D SLAM methods. Per-scene rendering
results are provided in the appendix as Table 6 and Table 7, with some visualizations in Figure 7.

4.4 FURTHER ANALYSIS

Runtime and Memory Usage. We analyze the efficiency of EmbodiedGS on an RTX 4090 GPU
in Table 3. We report the per-frame tracking and mapping runtime of SLAM methods, obtained by
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dividing the total optimization time by the sequence length. Additionally, we provide the per-frame
segmentation time for online 3D instance segmentation methods, calculated as the average process-
ing time across all segmented frames. The embedding size shows both the peak submap memory
usage during processing and the size of the final optimized Gaussian map. Since our EmbodiedGS
employs an adaptive mapping frame selection strategy and a submap-based mapping approach, it
achieves high mapping speed while preventing the embedding size from becoming too large during
processing. Additionally, the efficient 2D segmenter and association strategy we use also contribute
to high segmentation efficiency, which is 20x faster than SAM3D.

Ablation Studies. We conduct compre- Table 2: Rendering Performance on 2 Datasets. Em-
hensive ablation studies to validate the key  bodiedGS achieves competitive results on real-world
components of our method design. datasets, even outperforming RGB-D SLAM methods.

First, we ablate our multi-cue match-

ing criteria, reporting the average perfor- Dataset TUM-RGED ScanNet
mance on 6 scenes of the ScanNet dataset. Method PSNRT SSIMT LPIPS | PSNRT SSIMT LPIPS |
As reported in Table 4, removing any NICE-SLAM | 1486 0614 0441 | 17.54 0621 0548
of the three cues deerades seementation Vox-Fusion 1646 0.677 0471 | 1817 0673  0.504
g g ! A ESLAM 1526 0478 0569 | 1529 0658 0488
performance, confirming all are essential. & Poin-SLAM | 1662 0696 0526 | 1982 0751 0514
Among them, geometric similarity plays & Loopy-SLAM | 1294 0489 0645 | 1523 0629 0671
. oo : SplaTAM 2280 0893 0178 | 1914 0716 0358
the most plyotal role. Th],s gllgns Wlth LoopSplat 2272 0873 0259 | 2492 0845 0425

the observation that geometric information

d bust elobal discriminati  MonoGs 1882 0740 0327 | 1879 0707 0.585
provices robust gioba’ GISCIMINAUVE Ca- g GLORIE-SLAM| 2236 0890 0240 | 2245 0843 0355
pability for objects. Meanwhile, tempo- EmbodiedGS | 2447 0908 0.162 | 2648 0913  0.205

ral information serves as a crucial comple-
ment, ensuring temporal consistency of segmentation across adjacent frames.

Next, we validate our bidirectional joint optimization module. The results in Table 5 demonstrate
its effectiveness in mutually refining both perception and reconstruction. Specifically, removing the
R4P loss causes a drop of approximately 1.0 across all AP metrics, confirming its role in improving
segmentation. Besides, ablating the P4R loss reduces rendering quality by 0.86 dB PSNR, validating
its contribution to geometric accuracy.

For further discussion on our method’s scalability, generalization and potential limitations, please
see Appendix A.5.

Table 3: Runtime and Memory Usage on ScanNet 0000. Table 4: Effects of the Merging Criteria.

Method Tracking Mapping Segmentation Embedding Method AP
/Frame(s) | /Frame(s) | /Frame(s) ] Size(MiB)|
Remove geometric similarity ~ 18.6
SplaTAM 2.08 0.69 - —/144.40 R isual similarit 20.1
LoopSplat ~ 3.24 0.79 - 5.21/93.98 emove visual sumrianty :
SAM3D _ _ 1.74 /- Remove temporal similarity ~ 24.0
Ours 0.06 0.09 0.07 15.51/50.31 The final model 26.7

Table 5: Effects of the Bidirectional Optimization.

Method PSNRT SSIMt LPIPS| AP APs, AP
Without Ins. Emb. 2639 0913 0205 243 490 73.6
Without R4P 2647 0910 0210 256 512 756
Without PAR 2562 0904 0218 265 514 760

The final model 26.48 0.913 0.205 26:7 524  76.6

4.5 REAL-WORLD APPLICATION

We test EmbodiedGS in real-world scenarios to demonstrate its practical performance and adapt-
ability to dynamic scenes where objects are changed over time.

Online Visualization. Figure 4 demonstrate the online reconstruction and segmentation process of
EmbodiedGS in both indoor and outdoor ( , ) scenes . It showcases our model’s ability
to build a complete OCGS representation incrementally, performing scene reconstruction, instance
segmentation, and global matching simultaneously from only a monocular RGB stream.
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Figure 4: Online visualization of EmbodiedGS on real-world and outdoor scenarios.

Dynamic Object Handling. We also demonstrate the adaptability of our OCGS reconstructed in
dynamic scenes where objects may move. The system handles changes by performing a consistency
check between the map’s predictions and current observations, illustrated in Figure 5. For object
removal (case 1), it compares the instance mask rendered from the OCGS with the mask segmented
from the current frame; if a rendered instance is not observed, its corresponding Gaussians are
pruned. For object displacement (case 2), it is treated as a removal from the original location,
followed by a re-introduction at the new position by mapping the current observation.
Original OCGS

3 —

New Observation Rendered Image 1 New OCGS Rendered Image
T oy G

Case 1

Case2 [

Figure 5: Visualization of object removal and displacement.

5 CONCLUSION

In this work, we presented EmbodiedGS, an efficient pipeline for online OCGS reconstruction from
RGB video streams. Our approach initializes the 3D Gaussian geometry using MASt3R-SLAM,
and concurrently builds a Global-Associated Instance Memory to associate 2D proposals across
frames via multi-modal cues, forming the initial OCGS. This initial representation is then refined
through a joint optimization process that leverages the synergy between perception and reconstruc-
tion, mutually enhancing both the Gaussian geometry and explicit instance embeddings to yield
the final OCGS. Extensive experiments on real-world datasets demonstrate EmbodiedGS effectively
constructs high-fidelity OCGS, achieving superior performance in both segmentation and rendering
quality. We believe the proposed EmbodiedGS provides a unified and robust scene representation
that can benefit various embodied Al tasks.
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A APPENDIX

The appendix provides additional experimental results and implementation details.

A.1 PER-SCENE RENDERING RESULTS

We test our rendering performance on 6 scenes from ScanNet and 3 scenes from TUM-RGBD,
conducting a scene-by-scene quantitative comparison with other RGB-D and RGB baselines. The
results are shown in Table 6 and Table 7, respectively. Our model achieve the highest scores in
PSNR, SSIM, and LPIPS on both ScanNet and TUM-RGBD sequences.

12
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Table 6: Per-scene rendering results on ScanNet Table 7: Per-scene rendering results on TUM-

dataset. RGBD dataset.
Method Metric 0000 0059 0106 0169 0181 0207 Avg. Method Metric frl/desk fr2/xyz fr3/off. Avg
RGB-D RGB-D
PSNRT 18.70 20.91 19.84 22.16 22.01 18.90 20.42 PSNRT  22.00 24.50 21.90 22.80
SplaTAM SSIMt 0.71 0.79 081 0.78 082 0.75 0.78 SplaTAM SSIMtT  0.86 0.95 0.88 0.89
LPIPS| 0.48 032 032 034 042 041 0.38 LPIPS|  0.23 0.10 0.20 0.18
PSNRT 25.19 23.21 23.29 26.86 23.78 25.28 24.60 PSNRT  22.15 23.81 23.47 23.14
LoopSplat SSIMt 0.85 0.83 0.84 0.88 0.80 0.83 0.84 LoopSplat SSIM T 0.85 0.92 0.88 0.88
LPIPS| 044 040 041 034 053 044 043 LPIPS| 0.31 0.19 0.25 0.25
RGB RGB
PSNRT 16.91 19.15 18.57 20.21 19.51 18.37 18.79 PSNRT  19.67 16.17 20.63 18.82
MonoGS SSIMt 0.62 0.69 0.74 0.74 0.75 0.70 0.71 MonoGS SSIM?T 0.73 0.72 0.77 0.74
LPIPS| 0.70 0.51 0.55 0.54 0.63 0.58 0.59 LPIPS|  0.33 0.31 0.34 0.33
PSNRT 23.42 20.66 20.41 25.23 21.28 23.68 22.45 PSNRT 20.26 25.62 21.21 22.36
GLORIE-SLAM SSIMt 0.87 0.83 0.84 091 0.76 0.85 0.84 GLORIE-SLAM SSIMt  0.87 0.96 0.84 0.89
LPIPS| 026 031 031 021 044 029 0.36 LPIPS| 031 0.09 0.32 0.24
PSNRT 26.13 24.10 24.59 30.88 25.87 27.31 26.48 PSNRT  22.78 27.10 23.53 24.47
EmbodiedGS  SSIMt 0.92 0.89 0.90 0.95 0.90 0.92 091 EmbodiedGS SSIMt  0.87 0.96 0.89 0.91
LPIPS| 021 022 022 013 025 020 0.21 LPIPS|  0.23 0.07 0.19 0.16

A.2 ADDITIONAL VISUALIZATION

We provide a qualitative evaluation of instance segmentation performance on the ScanNet
dataset (Dai et al., 2017) in Figure 6. As illustrated, baseline methods like SAM3D are highly
susceptible to noise in the input geometry from MASt3R-SLAM, resulting in fragmented and erro-
neous instance masks. In contrast, EmbodiedGS exhibits significant robustness to these geometric
imperfections, yielding cleaner and more coherent instance segmentations. This underscores our
method’s ability to jointly refine geometry and perception for superior accuracy.

~ Input Scene Ground Truth SAM3Dj} Ours

Figure 6: Visualization of instance segmentation results on ScanNet.

We also provide some rendering visualization on both ScanNet and TUM-RGBD (Sturm et al,,
2012) datasets. As shown in Figure 7, our approach demonstrates superior rendering quality. In
comparison, both GLORIE-SLAM and SplaTAM produce results with significant blurring and arti-
facts, while LoopSplat struggles with rendering sharp object boundaries.

A.3 MEMORY FOOTPRINT

We showcase our method’s ability to handle long video sequences using Scene0000 in ScanNet
dataset (5578 frames). As depicted in Figure 8, by promptly saving and resetting the active submap,
we ensure its memory consumption remains manageable throughout the entire process.
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GLORIE-SLAM SplaTAM LoopSplat Ours Ground Truth

Figure 7: Rendering Visualization on ScanNet and TUM-RGBD datasets.
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Figure 8: Memory Footprint on ScanNet Scene0000.

A.4 IMPLEMENTATION DETAILS

Mapping Frames Selection.We select mapping frames through the following approach. First, all
keyframes are selected as mapping frames to obtain the initial gaussian mapping of the current
submap. Additionally, after acquiring the camera pose of the current frame through tracking, we ren-
der the gaussians of current submap G onto the current frame to obtain the accumulated opacity
map. Areas where accumulated opacity falls below a threshold o, are considered insufficiently ob-
served. If the proportion of insufficiently observed regions on the current frame exceeds a threshold
Oyis, the current frame is selected as a mapping frame, and the pixels corresponding to insufficiently
observed areas are used to initialize new gaussians, which are then added to the current submap. We
set o, = 0.6, 0;s = 0.3.

Instance Masks Pre-rendering. During the rendering of the submap’s gaussians on the current
frame to compute the accumulated opacity map, we also obtain the corresponding instance embed-

14



Under review as a conference paper at ICLR 2026

ding map for the current frame. Additionally, we simultaneously render an accumulated instance
opacity map by assigning an opacity of 1 to foreground gaussians and O to background gaussians.
The resulting instance embedding map is explicitly converted into instance masks, retaining only
regions where the accumulated instance opacity exceeds a predefined threshold o, to ensure the
precision of the pre-rendered masks. We set 0;,,5., = 0.9. A visualization of the pre-rendered masks
is provided in Figure 9.

Current Frame Last Masks

Rendered Masks

Figure 9: Visualization of Pre-rendered Instance Masks.

Final Global Instance Merging. Due to the error accumulation during the tracking process that
cannot be entirely eliminated by loop closure optimization, the point cloud position of an instance
when it reappears after a long period may differ from its previous position. This could result in a low
geometric similarity and lead to matching failures. To compensate for this error, after completing the
processing of the entire sequence, we once again extract the 3D bounding box and MASt3R Encoder
Features for each instance and calculate the box coverage and feature cosine similarity between
every pair of instances. Additionally, during the sequence processing, we also record whether two
instances have appeared together in the same frame. Finally, two instances are merged if their box
coverage and feature cosine similarity exceed thresholds 040, and o fcq¢, respectively, and they have
never appeared together in the same frame. We set 0pop = 0 feqr = 0.5.

Final Submaps Merging and Refinement. After processing the entire sequence, our method
merges all submaps to construct a global OCGS representation. To ensure the compactness of this
representation and mitigate local overfitting, we subsequently refine it through downsampling and
iterative rendering optimization. Specifically, we first aggregate all Gaussians from the submaps,
and then apply a downsampling procedure using a voxel grid with a size of 2cm, where only the
Gaussian with the highest confidence is retained within each cell. Consequently, we perform global
instance merging as is described above. Finally, the global OCGS representation is optimized for
N iterations using the photometric loss to yield the final, refined model. We set N;; = 10000.

A.5 MORE DISCUSSIONS

Scalability. The EmbodiedGS pipeline is architected for scalability across long sequences, large-
scale environments, and numerous object instances. (1) To handle long-duration operations, our
submap-based framework dynamically partitions the input stream, ensuring a manageable and con-
sistent memory footprint and preventing unbounded growth, as empirically demonstrated in Figure
8. (2) Our foundation on MASt3R-SLAM provides robustness against pose drift through loop clo-
sure, while our Gaussian optimization and P4R loss further improve reconstruction fidelity over
time. (3) The binary instance embedding is highly compact, as its required dimension grows only
logarithmically with the number of objects—doubling the instance count requires only one ad-
ditional bit, imposing negligible overhead on efficiency and performance. The capability of our
method to handle a large-scale outdoor environment is qualitatively demonstrated in Figure 4.

15



Under review as a conference paper at ICLR 2026

Generalization Ability. Our method’s strong generalization capabilities are founded on the strategic
integration of powerful, pre-trained Vision Foundation Models (VFMs). In reconstruction, our geo-
metric backbone, MASt3R, is pre-trained on diverse datasets spanning a wide range of indoor and
outdoor environments. This endows our pipeline with strong generalization for geometric initializa-
tion, allowing it to establish a robust coarse structure for various scene types, which is subsequently
refined via Gaussian optimization. In perception, we use the open-vocabulary detector YOLO-E,
whose strong performance on both common and long-tail categories allows our system to generalize
to various object classes via text prompts. Our method fully leverage these powerful, generaliz-
able priors and then mutually enhance the reconstruction and perception quality through our joint
optimization framework, creating a system that is effective across diverse scenes and objects.

Limitation. While EmbodiedGS demonstrates robust performance, we acknowledge several limi-
tations. As a modular system, its performance is inherently dependent on its upstream components,
MASt3R-SLAM and YOLO-E. Although our joint optimization framework can refine initial inac-
curacies, this refinement-based approach has limited corrective capacity against significant founda-
tional errors. Furthermore, while the method remains robust to drastic viewpoint changes thanks to
the MASt3R-SLAM and our multi-cue matching, such scenarios can require a denser selection of
mapping frames, which in turn impacts computational efficiency. Future work could explore end-to-
end trainable paradigms to address these challenges, potentially enhancing both robustness to severe
errors and overall efficiency.

A.6 ALGORITHM PSEUDOCODE & NOTATION TABLES

We outline the overall pipeline of our method in Algorithm 1. For a clearer exposition of its two
core branches, we provide detailed pseudocode in Algorithm 2 and Algorithm 3, respectively.

Algorithm 1 EmbodiedGS: Main Pipeline

Input: RGB video stream V = {I, I5, ... }, Camera intrinsics K
Output: Object-Centric 3D Gaussian (OCGS) representation Gfpa;

1: Initialize Global-Associated Instance Memory (GAIM) O + ()
2: Initialize submap collection S < ) and mapping frame collection V" <— ()
3: Initialize current submap Gg“® <— () and its mapping frames V" <+ ()
4: Initialize MASt3R-SLAM tracker and YOLO-E segementer
5: for each frame I; in V do
6: > — Tracking —
7: (Tt, X}, Cl) «+ MASt3R_SLAM. Track(l;) > Pose, Pointmap, Confidence
8: if I; is a new mapping frame then
9: > — Global Instance Association —
10: P, + YOLO-E.Segment(I}) > Get 2D instance proposals
11: Extract geometric & visual descriptors for P,
12: (O,1ID;) + UpdateGAIM(O, P;, Gi*%, Ti) > See Alg. 2
13: > — Incremental Gaussian Mapping —
14: G+~ InitializeGaussians(X}, Ty, ID;) > Init. from current pointmap
15: if I; is a new keyframe then > Submap Management
16: Finalize and store current submap: S < S U {G5“4
17: Store current mapping frames: V4P «— Ymap (J Y P
18: Initialize new submap G5“? «+ G¢vr, VP « I,
19: else
20: Merge Gaussians of current frame into submap G5 < G4 U Gevr
21: Add current frame to submap mapping frames V,"? < V"9 U I,
22: > — OCGS Refinement —
23: G + JointOptimization(Giel, V", O) > See Alg. 3
24: Grinai ¢ MergeSubmaps&Refine(S, V™P)
25: return Grinal
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Algorithm 2 UpdateGAIM

Input: GAIM O = {o0;}}¥,, Current proposals P, = {p;}}_,, Submap Gaussians G;“}, Pose T,
Output: Updated GAIM, Globally-consistent IDs for proposals P;
1: Initialize similarity matrix S € RV*E

2: for each instance o; € O do

3: for each proposal p; € P, do

4: > — Compute Multi-Cue Similarities —
5 5757 <= DIoU(0;.box, p;.box)

6: s{;° <= CosineSimilarity(o;.vis, p;.vis)

7 Myendered « RenderInstanceMask(Gi, o;.id, Ty)

8 515+ CoCoverage(M; "% p; mask)

9: Sij /\15%&" + )\25;’;5 + )\35§;m > Weighted sum
10: S[’L,j} — Sij

11: matches «+ BipartiteMatching(S, threshold = o,,)
12: for each proposal p; € P; do

13: if p; is matched to o; then

14: Merge p; into o; in GAIM (update masks, box, vis. feature)
15: Assign ID of o; to p;

16: else

17: Register p; as new instance in GAIM w/ new global ID

18: Assign the new ID to p;

19: return (GAIM, Assigned IDs)

Algorithm 3 JointOptimization

Input: Submap Gaussians G{“®, Mapping frames V;"*, GAIM O = {o;}
Output: Optimized submap Gaussians G;4°
for a fixed number of iterations do
I + RandomSample(V;" ")

m

> — Differentiable Rendering —

E,, + RenderEmbedding(G;**, T,,)

1:

2

3:

4 Imap « RenderColor (G, T,,)
5.

6 > — Photometric Loss —
7

Lpho < (1= Assrm) [ 1P — ffn”“p||1
+Assram (1 — SSIM(Iep, [mar))

8: > — R4P: Reconstruction for Perception Loss —
9: M, < GetMasksFromGAIM(I%P)
10: LRrap < ComputeBCELoss(o(Ey, ), binary(M,,)) > Weighted by confidences
11: > — P4R: Perception for Reconstruction Loss —
12: Lpsr + ComputeSmoothnessLoss(Gi*)
13: Liotal < Lpho + AraPLRap + AparLpar
14: > — Update —
15: Update params of all g € ggub via gradient descent on L;14;

16: return G5u®
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Table 8: Table of Notations

Symbol Description

General Symbols & Inputs

1% The input RGB video stream, {I3, I, ... }.
I The RGB image at time ¢.
K Camera intrinsic parameters.
Tyt Relative camera pose (Sim(3) transformation) from keyframe k to current frame ¢.
X! Pointmap (3D points in camera coordinates) generated for frame I;.
C! Confidence map associated with the pointmap X}.
O The Global-Associated Instance Memory (GAIM), a set of observed instances {o; }.
0; A specific instance stored in GAIM, containing attributes like box, visual feature, etc.
P, A set of 2D instance proposals {p;} detected in frame I;.
Dj A specific instance proposal, containing mask, box, and visual feature.
ID; The set of globally-consistent instance IDs assigned to proposals in F;.
g A 3D Gaussian point, g = (u,s,r, @, C, e).
g A general set of 3D Gaussians.
G tinal The final, merged OCGS representation of the entire scene.
S A collection of finalized submaps.
sub The set of 3D Gaussians in the current submap being actively mapped.
£ The set of new 3D Gaussians initialized from frame I;.
ymaep A collection of all mapping frames from finalized submaps.
v, The set of mapping frames corresponding to the active submap G540,
Ao Hyperparameters (weights, thresholds).
Algorithm 2: GAIM Update
S The N x L similarity matrix between [V existing instances and L new proposals.
5757 Geometric similarity score (from DIoU) between instance o; and proposal p;.
i Visual similarity score (from Cosine Similarity) between o; and p;.
sﬁjm Temporal similarity score (from Co-coverage) between o; and p;.

Myendered  The instance mask for instance o; rendered from the 3D submap.

Algorithm 3: Joint Optimization

I ap The color image rendered from the submap G*".

E,, The instance embedding map rendered from the submap G52,

M,, The global-associated instance masks for frame 17", retrieved from GAIM.
Lpho The photometric loss (weighted-sum of L.1 and SSIM Loss).

LRrap The "Reconstruction for Perception” loss (BCE loss on instance embeddings).
Lpar The “Perception for Reconstruction” loss (intra-instance smoothness).

Liotal The final combined loss function for joint optimization.

A.7 THE USE OF LARGE LANGUAGE MODELS

Throughout the preparation of this manuscript, we employed a Large Language Model for linguistic
refinement. The model was used for improving the conciseness and flow of our sentences, clarifying
our technical expressions, and reinforcing the logical structure of our arguments. Apart from these,
all core scientific contributions—including the conceptualization of research ideas, methodological
design, experimental execution, and the analysis and interpretation of results—were performed by
the human authors. All authors take full responsibility for the content and claims of this work.
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