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Abstract
This paper investigates decentralized unlearning,
aiming to eliminate the impact of a specific client
on the whole decentralized system. However, de-
centralized communication characterizations pose
new challenges for effective unlearning: the in-
direct connections make it difficult to trace the
specific client’s impact, while the dynamic topol-
ogy limits the scalability of retraining-based un-
learning methods. In this paper, we propose the
first Provable Decentralized Unlearning algorithm
under Dynamic Topologies, called PDUDT. It al-
lows clients to eliminate the influence of a spe-
cific client without additional communication or
retraining. We provide rigorous theoretical guar-
antees for PDUDT, showing it is statistically in-
distinguishable from perturbed retraining. Addi-
tionally, it achieves an efficient convergence rate
of O( 1

T ) in subsequent learning, where T is the
total communication rounds. This rate matches
state-of-the-art results. Experimental results show
that compared with the Retrain method, PDUDT
saves more than 99% of unlearning time while
achieving comparable unlearning performance.

1. Introduction
With the surge in data volume and increasing geographic
dispersion of data sources, some collaborative learning
paradigms, such as Federated Learning (McMahan et al.,
2017) and Decentralized Learning (Lian et al., 2017), have
attracted widespread attentions. In the above collaborative
scenarios, privacy regulations like GDPR (Voigt & Von dem
Bussche, 2017) grant clients the right to withdraw the use
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of their personal data in any form. For instance, users might
wish to delete location information from navigation apps or
ask smart voice assistants to “forget” sensitive conversation
content. Simply deleting data does not ensure the right to
be forgotten, as its influence remains embedded in the col-
laboratively trained models (Tao et al., 2024). Therefore,
several studies have empirically explored ways to ensure
the right to be forgotten for collaborative learning, using
techniques such as knowledge distillation (Wu et al., 2022a),
class-discriminative pruning (Wang et al., 2022), projected
gradient ascent (Wu et al., 2022b), or second-order AdaHes-
sian optimizer (Liu et al., 2022).

However, the existing works usually rely on a trustworthy
central server for coordination, which is not always guaran-
teed in real-world scenarios (Qiao et al., 2024). To further
remove the dependence on the central server, the researchers
began to explore how to achieve efficient unlearning in a full
decentralized framework. For example, HDUS (Ye et al.,
2024) uses distilled seed models to create erasable ensem-
bles for all clients. Similarly, BlockFUL (Liu et al., 2024a)
is a novel framework with a dual-chain structure, compris-
ing a live chain and an archive chain, to enable unlearning
in Blockchained FL. Although these studies provide prac-
tical solutions for decentralized unlearning, the theoretical
performance analysis still lacks in-depth exploration.

Therefore, we aim to design an efficient decentralized un-
learning framework, while also theoretically guaranteeing
the effectiveness and soundness of the unlearning process.
To achieve this, we need to address the following challenges:
(1) Indirect connections complicate the impact chain. In
a decentralized system, some clients may not be directly
connected to the client initiating the unlearning request, yet
they can still be influenced through the information flow.
The complexity and unpredictability of model propagation
paths make it challenging to accurately trace and mitigate
the influence of a specific client. (2) Dynamic topologies
make retraining-based methods infeasible. The con-
stantly changing topologies among clients pose significant
barriers to retraining-based unlearning methods. Clients that
have exited the decentralized system are often unreachable,
making it infeasible to revert to an earlier training state (Tao
et al., 2024) or retrain the model from scratch. This lack
of access to previously participating clients undermines the
consistency and feasibility of retraining approaches, espe-
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Table 1. Comparison with some related works

Algorithm SL w/o retrain
Dynamic Theoretical guarantee

topology Unlearning guarantee Convergence rate Unlearning time Space overhead
Comp. Comm.

FedEraser (Liu et al., 2021) × ✓ × - - - - -
FedRemover (Yuan et al., 2024) × × ✓ - - - - -

FedUnl (Wu et al., 2022a) × ✓ × - - - - -
HDUS (Ye et al., 2024) ✓ ✓ ✓ - - - - -

FATS-Unl (Tao et al., 2024) × × ✓ Exact unlearning
1O

(
1√

Kb(t1+T )

)
2 > min{1, KR

n } · RT -
3O(R ·max{b, d})
3O(R ·max{K, d})

FedRecovery (Zhang et al., 2023) × ✓ × (ϵ, β)-machine unlearning - O(t1) 0 O(t1nd)

PDUDT (This paper) ✓ ✓ ✓ (ϵ, β)-machine unlearning O( 1
T ) O(t1) 0 O(t1Nmaxd)

Note that “-” means no result or not applicable, “SL” means “Severless”, “RT” means “Retraining time”, “t1” is the round when a client in the learning system issues an unlearning request, and
Nmax = maxi,t |N t

i | ≤ n denotes the maximum number of neighbors over rounds in a decentralized learning system.
For the last three columns, we consider the unlearning time and space overhead on a single node, whether it is a server or a client, that needs to perform the unlearning operations.

1 The original convergence rate in Tao et al.’s paper is shown as O(1/
√
ρSMN). For easy comparison, in our Table 1, it is further derived from line 2 of Algorithm 1 in their paper. Here, K is the

number of clients participating in each round of training, and b is the sample batch size used to calculate the gradient (in our theoretical result, we set b = 1). Their convergence result is for the total
training rounds. Since we have proved the statistical indistinguishability of the unlearning algorithm, we only focus on the convergence behavior after the unlearning operations.

2 Tao et al.’s result relies on the time it takes to retrain the parameterized neural network, which is often much longer than ours. In their result, ”R” denotes the total communication rounds, and it holds
R = t1 + T in our paper.

3 The space overhead is O(R ·max{b, d}) for each client and O(R ·max{K, d}) for the server.

cially when client participation is voluntary and transient.
(3) Global unlearning performance is difficult to quantify
theoretically. In a decentralized setting, each client must
independently “forget” the effects of a specific client locally.
However, there is currently no unified metric to evaluate
how these local unlearning operations collectively achieve
the desired global unlearning effect. Without centralized
oversight, ensuring that local actions align to produce the
intended global impact remains a significant open challenge.

Along this line, we propose a provable unlearning algorithm,
called PDUDT, for the decentralized framework under dy-
namic topologies. To make the whole system “forget” the
unlearned client, each client locally uses its own historical
gradient submissions, along with those of its neighbors, to
perform unlearning operations. Specifically, we compute
a sequence of gradient residual approximations using the
expected retraining update rule. At the unlearning moment,
we subtract the weighted sum of the corresponding approxi-
mations from each client’s model, where the weights mea-
sure the clients’ contributions to the system. This process
only involves using saved historical information, with no
additional communication and training process, making it
readily adaptable to dynamic topology settings. To provide
a theoretically rigorous unlearning guarantee, we first de-
rive an upper bound on the difference between the retrained
model and the output model of the proposed algorithm from
a global perspective. Then, we use the Gaussian mechanism
to mask this gap in the parameter space, ensuring statistical
indistinguishability. Finally, we analyze the impact of the
unlearning models on the subsequent convergence behavior
of decentralized learning.

Our main contributions can be summarized as follows:

• To the best of our knowledge, we propose PDUDT, the
first provable decentralized unlearning algorithm under

dynamic topologies. It modifies local models using
only historical information, eliminating the influence
of a specific client. Notably, PDUDT requires no extra
communication or neural network retraining, ensuring
high efficiency in dynamic settings.

• We provide rigorous theoretical guarantee for the
PDUDT algorithm. First, we prove that it is statis-
tically indistinguishable from the perturbed retraining
method. Then, we derive that the subsequent learning
process converges to the scaled difference among the
unlearning models from all remaining clients at a rate
of O( 1

T ), which matches the state-of-the-art results.

• We conduct extensive experiments to verify the per-
formance superiority of the proposed PDUDT algo-
rithm. Specifically, compared with the Retrain method,
PDUDT saves over 99% unlearning time, while main-
taining outstanding unlearning performance.

2. Related Work
Depending on the precision of forgetting, existing unlearn-
ing techniques in the collaborative frameworks can be cate-
gorized into two types: Exact Unlearning and Approximate
Unlearning.

2.1. Exact Unlearning

Exact unlearning requires that the clients in a collaborative
system completely remove the influence of a specific client.
To achieve this, the model typically needs to be retrained
or partially retrained, which may incur high computational
costs and time expenses (Liu et al., 2024b; Yuan et al., 2024;
Tao et al., 2024). For example, one exact unlearning tech-
nique is the leave-one-out retraining approach, where the
model is retrained on the complete dataset, omitting the
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user’s data that needs to be unlearned (Liu et al., 2024b).
FedRemover (Yuan et al., 2024) designs a real-time mali-
cious client detection scheme to quickly perform unlearning
operations and implement a global model of unlearning in a
minimum number of rounds. FATS-Unl (Tao et al., 2024)
aims to backtrack to the point before the client who initi-
ates the unlearning request first participates in collaborative
training, performing retraining to achieve exact unlearning.
While these methods can fully eliminate the influence of
specific clients, their implementation faces challenges. First,
heavy reliance on retraining results in high computational
overhead and time costs (Liu et al., 2024b). Second, due to
the dynamic nature of client participation in collaborative
training, recalling previous clients for retraining is often
impractical (Zhang et al., 2023).

2.2. Approximate Unlearning

Approximate unlearning provides a more efficient solution,
with methods that are typically faster and more computation-
ally economical than exact unlearning (Liu et al., 2024b).
Although it may not completely eliminate the influence of
specific clients, approximate unlearning is sufficiently ef-
fective for most practical scenarios and meets the necessary
requirements. Some works have been proposed to improve
the understanding of federated approximate unlearning. Fed-
Eraser (Liu et al., 2021) relies on the central server to store
historical submissions of each client, which are then cal-
ibrated to accelerate the unlearning process. FedRecov-
ery (Zhang et al., 2023) provides a federated unlearning
scheme to eliminate the influence of a specific client by
removing the weighted sum of gradient residuals from the
global model.

Considering that the reliability of central servers in practical
applications is often not guaranteed, researchers have begun
to focus on implementing unlearning in the decentralized
frameworks (Wu et al., 2022a; Ye et al., 2024; Lin et al.,
2024). For instance, HDUS (Ye et al., 2024) introduces a
decentralized unlearning mechanism that leverages distilled
seed models to construct erasable ensembles BlockFUL (Liu
et al., 2024a) supports unlearning in Blockchained Feder-
ated Learning, with an innovative framework featuring a
dual-chain structure. Similarly, Lin et al. (2024) addresses
unlearning in privacy-preserving AIGC systems via coded
computing, which requires additional storage and recon-
struction overhead. While these studies offer practical so-
lutions for decentralized unlearning, a thorough theoretical
performance analysis remains underexplored.

In Table 1, we provide a comprehensive comparison of
our approach against some related works across multiple
dimensions, including implementation architecture, com-
munication patterns, theoretical unlearning guarantees, and
efficiency metrics.

3. Decentralized Unlearning
3.1. Problem Setup

In this paper, we consider a decentralized learning scenario
with n clients, denoted as V = {1, · · · , n}. The communi-
cation mode in round t is modeled by a doubly stochastic
matrix Wt = (W t

ij)n×n, where W t
ij > 0 if client-i and

client-j can directly communicate. Specially, we consider a
general dynamic scenario where the connections between
clients can vary arbitrarily after each round, i.e., the neigh-
boring set N t

i = {j|W t
ij > 0, j ∈ V, j ̸= i} of client-i

and weight matrix Wt of clients vary with the rounds. All
clients participating in the training collaboratively find a
solution to the following general learning problem:

min
θ∈Rd

f(θ) :=
1

n

n∑
i=1

Eξi∼Di
[Fi(θ, ξi)]︸ ︷︷ ︸

:=fi(θ)

(1)

In round t, each client-i receives gradients from all its neigh-
bors, subsequently updating its model through local training
that combines these gradients with its own local information
according to the communication matrix:

θti = θt−1
i − η

n∑
j=1

W t−1
ij ∇Fj(θ

t−1
j , ξt−1

j ) (2)

After several rounds of training, a client may submit an un-
learning request to withdraw its data consent. At this point,
due to privacy regulations like GDPR (Voigt & Von dem
Bussche, 2017), the decentralized learning system must re-
move this client’s contribution to the global model. Without
loss of generality, assume client-n makes the unlearning
request at round t1. Ideally, retraining by the n− 1 clients,
excluding client-n, ensures that the contribution of client-n
is fully removed, thus guaranteeing privacy. The retraining
process can be expressed as follows:

θ̃ti = θ̃t−1
i − η

n−1∑
j=1

W̃ t−1
ij ∇Fj(θ̃

t−1
j , ξ̃t−1

j ) (3)

where we can set the initial model as θ̃0i = θ0i . Theoretically,
the communication matrix W̃t = (W̃ t

ij)(n−1)×(n−1) can
still be a doubly stochastic one. For example, the Metropolis-
Hastings method (Awan et al., 2006) can be utilized to
generate it. And we denote the neighbor set of client-i (i ∈
V\{n}) in round t as Ñ t

i = {j|W̃ t
ij > 0, j ∈ V\{n}, j ̸=

i}.

However, retraining from scratch incurs prohibitively high
computation and communication costs. Therefore, our goal
is to adjust the local model θt1i for each client that continues
training, so that from a global perspective, the adjusted
models perform similarly to those retrained by n− 1 clients.
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Algorithm 1 The Perturbed Retraining Algorithm
1: Input: The number of clients participating in retrain-

ing n − 1, the initial local parameters θ̃0i = θ0i ∈ Rd

(i ∈ V\{n}), the round t1 when client-n submits an
unlearning request, the step size η, the privacy budget ϵ,
and the confidence parameter β.

2: for client i = 1, · · · , n− 1 (In Parallel) do
3: for round t = 1, · · · , t1 do
4: Compute its local gradient ∇Fi(θ̃

t−1
i , ξ̃t−1

i );
5: Receive all the gradients ∇Fj(θ̃

t−1
j , ξ̃t−1

j ) (j ∈
Ñ t−1

i ) from its neighbors;
6: Update each local model parameter following θ̃ti =

θ̃t−1
i − η

n−1∑
j=1

W̃ t−1
ij ∇Fj(θ̃

t−1
j , ξ̃t−1

j ) ;

7: end for
8: Set σ = 1√

2
· d1√

log(1/β)+ϵ−
√

log(1/β)
, where d1 is

the upper bound discussed in Theorem 4.9;
9: Add perturbation to each local model parameter

θ̌t1i = θ̃t1i + zi, where zi ∼ N (0, (n − 1)σ2Id) is a
noise from the Gaussian distribution.

10: end for

3.2. Algorithm Design

When client-n issues an unlearning request in round t1,
for any client-i (i ∈ V\{n}) in the decentralized learning
system, its local model can be expressed as

θt1i = θ0i − η

t1−1∑
t=0

n∑
j=1

W t
ij∇Fj(θ

t
j , ξ

t
j) (4)

Correspondingly, if retrained from scratch to round t1, for
any client-i (i ∈ V\{n}), it holds that

θ̃t1i = θ̃0i − η

t1−1∑
t=0

n−1∑
j=1

W̃ t
ij∇Fj(θ̃

t
j , ξ̃

t
j) (5)

To investigate the effect of client-n, we can subtract Equa-
tion (4) from Equation (5), and have

θ̃t1i − θt1i

=− η

t1−1∑
t=0

(

n−1∑
j=1

W̃ t
ij∇Fj(θ̃

t
j , ξ̃

t
j)−

n∑
j=1

W t
ij∇Fj(θ

t
j , ξ

t
j))

(6)

To make an adjustment to the local model θt1i of
each client-i (i ∈ V\{n}), we introduce rti =

η
∑n−1

j=1 W̃ t
ij∇Fj(θ̃

t
j , ξ̃

t
j)−η

∑n
j=1 W

t
ij∇Fj(θ

t
j , ξ

t
j) to rep-

resent the gradient residual. Calculating rti involves the
trajectory dynamics of all neighbors of client-i obtained by
retraining. Therefore, it is not feasible to directly adjust

Algorithm 2 Decentralized Unlearning Algorithm PDUDT
1: Input: The number of clients n, the initial local pa-

rameters θ0i = θ0 ∈ Rd (i ∈ V), the round t1 when
client-n submits an unlearning request, the step size η,
the privacy budget ϵ, and the confidence parameter β.

2: for client i = 1, · · · , n (In Parallel) do
3: for round t = 1, · · · , t1 do
4: Compute and storage its local gradient

∇Fi(θ
t−1
i , ξt−1

i );
5: Receive and storage all its neighbors’ gradients

∇Fj(θ
t−1
j , ξt−1

j ) (j ∈ N t−1
i );

6: Update each local model parameter following θti =

θt−1
i − η

n∑
j=1

W t−1
ij ∇Fj(θ

t−1
j , ξt−1

j ) ;

7: end for
8: end for
9: Receive the unlearning request from client-n.

10: for client i = 1, · · · , n− 1 (In Parallel) do
11: Compute the approximations {δti}

t1−1
t=0 of the gradi-

ent residuals by Equation (7);
12: Compute the weight pti for each approximation δti

(t = 0, · · · , t1 − 1) according to Equation (8);
13: Subtract a weighted sum of δti from θt1i to obtain ¯̄θt1i

based on Equation (9);
14: Set σ = 1√

2
· d1√

log(1/β)+ϵ−
√

log(1/β)
, where d1 is

the upper bound discussed in Theorem 4.9;
15: Add perturbation to each local model parameter θui =

¯̄θt1i + zi, where zi ∼ N (0, (n − 1)σ2Id) is a noise
from the Gaussian distribution.

16: end for

the local model θt1i by subtracting the accumulated gradi-
ent residual, i.e., θt1i −

∑t1−1
t=0 rti . Instead, we provide an

approximation of the gradient residual rti , denoted by

δti = η
n−1∑
j=1

W̃ t
ij∇Fj(θ

t
j , ξ

t
j)− η

n∑
j=1

W t
ij∇Fj(θ

t
j , ξ

t
j) (7)

However, this approximation δti does not fully capture the
intricate dynamics and interactions among clients during
training, especially the influence of client-n over different
rounds. To this end, we use pti to denote the weight of δti
in the t-th round of the learning process. Since each client
relies on the gradient information from its neighbors to up-
date its local model, ∥

∑n
j=1 W

t
ij∇fj(θ

t
j , ξ

t
j) ∥2 naturally

weights the contributions of client-i’s neighbors’ gradients
in each round. Formally, pti is expressed as follows:

pti =
∥
∑n

j=1 W
t
ij∇Fj(θ

t
j , ξ

t
j) ∥2∑t1−1

t=0 ∥
∑n

j=1 W
t
ij∇Fj(θtj , ξ

t
j) ∥2

(8)

Therefore, when an unlearning request is submitted by
client-n in round t1, each client will perform the following
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operation as shown in Equation (9) to remove the influence
of client-n to the learning process over rounds.

¯̄θt1i = θt1i −
t1−1∑
t=0

ptiδ
t
i , i ∈ V\{n} (9)

To achieve the indistinguishability described in Defini-
tion 4.1, we introduce random Gaussian noise to θ̃t1i and ¯̄θt1i
to mask the gap between them. Specifically, Algorithm 1
outlines the perturbed retraining method, while Algorithm 2
presents our proposed decentralized unlearning algorithm
that does not rely on retraining. From a global perspective,
the output models of the two algorithms are indistinguish-
able, as will be discussed in detail in Section 4.

4. Theoretical Guarantee
Before delving into the unlearning performance and conver-
gence behavior, we present some definitions and assump-
tions required for our theoretical analysis.

Definition 4.1. ((ϵ, β)-Indistinguishability (Neel et al.,
2021)): Let X and Y be random variables over domain
R. We say that X and Y are (ϵ, β)-Indistinguishable if, for
every possible subset S ⊆ R, the following holds:

Pr(X ∈ S) ≤ exp(ϵ) · Pr(Y ∈ S) + β,

Pr(Y ∈ S) ≤ exp(ϵ) · Pr(X ∈ S) + β.

Definition 4.2. (Sensitivity (Dwork, 2006)): For a given
function q : D → Rd, the sensitivity ∆ of q is

∆ = max
D,D′

∥ q(D)− q(D
′
) ∥,

where D and D
′

differ in a single entry.

Definition 4.3. (Gaussian Mechanism (Bun & Steinke,
2016)): Given random variables X ∼ N (µ1, σ

2Id) and
Y ∼ N (µ2, σ

2Id) satisfying ∥ µ1 − µ2 ∥≤ ∆, then X and
Y are (ϵ, β)-Indistinguishable if it holds

ϵ =
∆2

2σ2
+

∆

σ

√
2 log(1/β).

Definition 4.4. (Client-Level (ϵ, β)-Machine Unlearn-
ing (Zhang et al., 2023)): An unlearning algorithm MU

satisfies (ϵ, β)-machine unlearning with respect to the learn-
ing algorithm ML if, for any possible subset of outputs
S ⊆ Rd, the following holds

Pr(ML(V\{n}) ∈ S) ≤ exp(ϵ) · Pr(MU (Ω) ∈ S) + β,

Pr(MU (Ω) ∈ S) ≤ exp(ϵ) · Pr(ML(V\{n}) ∈ S) + β.

where Ω denotes the set of cached statistics of each client,
such as gradients and intermediate model parameters.

Assumption 4.5. (Lipschitzian gradient). Loss function
fi(·)s are with Lipschitzian gradients, i.e., For ∀θ, ϕ ∈ Rd,
it holds that

∥ ∇fi(θ)−∇fi(ϕ) ∥≤ L ∥ θ − ϕ ∥

Assumption 4.6. (Bounded variance). For any θ ∈ Rd,
the variance of the stochastic gradient is bounded as follows:

E ∥ ∇Fi(θ, ξ)−∇fi(θ) ∥2≤ σ2
1 ,

E ∥ ∇fi(θ)−∇f(θ) ∥2≤ σ2
2 .

Assumption 4.7. (Symmetric double stochastic matrix).
In each round t, the communication matrices Wt and W̃t

are real double stochastic matrices.

Assumption 4.8. (Spectral gap). For any symmetric dou-
bly stochastic matrices Wt and W̃t aforementioned, we
assume that ρt,1 = max{|λ2(Wt)|, |λn(Wt)|} < 1 and
ρt,2 = max{|λ2(W̃t)|, |λn−1(W̃t)|} < 1. Specifically, we
denote ρ1 = max

t
ρt,1 and ρ2 = max

t
ρt,2.

4.1. Unlearning Performance

To explore the unlearning performance of Algorithm 2, we

analyze the gap between 1
n−1

n−1∑
i=1

¯̄θt1i and 1
n−1

n−1∑
i=1

θ̃t1i in

Theorem 4.9. We then use Definitions 4.1-4.4 to estab-
lish the statistical indistinguishability between the two algo-
rithms, as described in Corollary 4.10.

Before obtaining the formal indistinguishability result, we
first explore the difference between the average of the re-
maining n−1 models in Algorithm 2 when client-n revokes
data consent and the average model retrained by n−1 clients
in Algorithm 1, as shown in Lemma B.1 of Appendix B. We
then measure the weighted gradient residual approximation
in Lemma B.2 of Appendix B. Based on these two lemmas,
we can derive the following result for the gap between the

averages 1
n−1

n−1∑
i=1

¯̄θt1i and 1
n−1

n−1∑
i=1

θ̃t1i .

Theorem 4.9. Let

D1 = 1− 24η2L2ρ21nt1,

D3 = ρ21 + ρ22 +
1

(n− 1)2
,

E2 =
ρ22
D2

,

D2 = 1− 36η2L2ρ22(n− 1)t1,

E1 =
(6 + 4ρ21)ρ

2
1

D1
,

E3 =
8(1 + ρ21)ρ

2
1

nD1
.

We can obtain the following result if the step size η satisfies
0 < η < min{

√
1

12L2t21
,
√

1
24L2ρ2

1nt1
,
√

1
36L2ρ2

2(n−1)t1
}:

∥ 1

n− 1

n−1∑
i=1

¯̄θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥
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≤

√√√√√√√ I1σ
2
1 + I2σ

2
2 + I3(Ef(θ0)− Ef( 1n

n∑
i=1

θt1i ))+

I4(Ef(θ0)− Ef( 1
n−1

n−1∑
i=1

θ̃t1i ))

+

√
I

′

1σ
2
1 + I

′

2σ
2
2 + I

′

3(Ef(θ0)− Ef( 1n
n∑

i=1

θt1i ))

where

I1 =(24η4L2nt41 + 144η5L3t41) · (E1 + E2 + E3)+

8η2(5 + 2ρ21)t
3
1

I2 =144η4L2nt41(E1 + 3E2 + 2E3) + 48η2(1 + ρ21)t
3
1

I3 =288η3L2nt31(E1 + E3) +
192η(1 + ρ21)t

2
1

n

I4 =288η3L2nt31E2

I
′

1 =6
(
η2n+ 3η3L+

12η4L2ρ21n
2t1

D1
+

72η5L3ρ21nt1
D1

)
D3t

2
1

I
′

2 =
(
18η2n+

432η4L2ρ21n
2t1

D2

)
D3t

2
1

I
′

3 =
(
36ηnt1 +

864η3L2ρ21n
2t21

D1

)
D3

In Theorem 4.9, the terms I1σ2
1 and I

′

1σ
2
1 reflect the impact

of random sampling, the terms I2σ2
2 and I

′

2σ
2
2 capture the

local loss heterogeneity, and the remaining terms represent
the decentralized training dynamics. And according to The-
orem 4.9, the formal indistinguishability guarantee can be
summarized as follows.
Corollary 4.10. From a global perspective, our PDUDT
and its early stopping variant PDUDT (ES) (described in
Section 4.3) satisfies (ϵ, β)-machine unlearning with respect
to the perturbed retraining algorithm. For every possible
subset S ⊆ R, it holds that

Pr(
1

n− 1

n−1∑
i=1

θui ∈ S) ≤ exp(ϵ)·Pr( 1

n− 1

n−1∑
i=1

θ̌t1i ∈ S)+β,

Pr(
1

n− 1

n−1∑
i=1

θ̌t1i ∈ S) ≤ exp(ϵ)·Pr( 1

n− 1

n−1∑
i=1

θui ∈ S)+β.

4.2. Convergence Analysis

After each client-i (i ∈ V\{n}) eliminates the influence
of client-n (Line 12 in Algorithm 2), we assume that it
continues T rounds of decentralized collaborative learning
with the communication topology W̃t1+t−1 (t = 1, · · · , T ).
To simplify the analysis, we regard θui as the initial model
of each client-i (i ∈ V\{n}) in these T rounds of training.
Then the model update rules are as follows:

θ̂t+1
i = θ̂ti − η̂

n−1∑
j=1

W̃ t1+t
ij ∇Fj(θ̂

t
j , ξ̂

t
j), θ̂0i = θui (10)

Considering that client-n has exited the collaborative learn-
ing system, we replace f(·) in Equation (1) with f̃(·), which
is defined as:

f̃(θ) :=
1

n− 1

n−1∑
i=1

fi(θ), θ ∈ Rd (11)

As a result, after eliminating the client-n influence through
Algorithm 2, the convergence of decentralized learning in
the subsequent T rounds is characterized by Theorem 4.11.
Theorem 4.11. Let

D4 =
1

2
− 16η̂2L2ρ22(n− 1)T

1− 32η̂2L2ρ22(n− 1)T
, D5 =

1

2
− η̂L

2

D6 = 1− 32η̂2L2ρ22(n− 1)T.

If the step size satisfies η̂ <
√

1
32L2ρ2

2(n−1)T
, it holds for

the subsequent T rounds of training:

D4 ·
1

T

T−1∑
t=0

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂ti) ∥2 +

D5
1

T

T−1∑
t=0

E ∥ 1

n− 1

n−1∑
i=1

∇f̃(θ̂ti) ∥2

≤ 3L2

2D6
· 1

n− 1

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +
η̂Lσ2

1

2(n− 1)

+

f̃( 1
n−1

n−1∑
i=1

θui )− f̃∗

η̂T
+

2η̂2L2ρ22σ
2
1(n− 1)T

D6

+
16η̂2L2ρ22σ

2
2(n− 1)T

D6
+

16η̂2L2ρ22σ
2
2T

(n− 1)D6

We choose an appropriate step size η̂ in Theorem 4.9 to
derive the following result.
Corollary 4.12. If the step size satisfies η̂ = n−1

T ,
and the number of training round further satisfies T ≥
max{ 64(1−C)L2ρ2

2(n−1)3

1−2C , (n− 1)L} with the constant C ∈
(0, 1

2 ), the following holds for the subsequent T rounds:

C · 1
T

T−1∑
t=0

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂ti) ∥2

≤Lσ2
1

2T
+

f̃( 1
n−1

n−1∑
i=1

θui )− f̃∗

n− 1
+

(1− 2C)σ2
2

2(n− 1)2
+

(1− 2C)σ2
1

16

+
(1− 2C)σ2

2

2
+

3(1− C)L2

n− 1

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2

In Corollary 4.12, the bound sharply decreases as the num-
ber of clients n− 1 and training rounds T increase. Specifi-
cally, it indicates a rate of O( 1

T ), converging to the scaled
difference among the unlearning models from all n − 1
clients.
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4.3. Discussion

In this part, we provide a discussion of our decentralized
unlearning algorithm PDUDT regarding privacy considera-
tions, unlearning time, space overhead, and early stopping
benefits.

Privacy considerations. Some works have shown that
transmitting the raw gradient can also lead to privacy infor-
mation leakage. Differential privacy technology, as the most
commonly used privacy protection method for distributed
learning, provides a solution to this concern by adding noise
to perturb the gradient. For these decentralized learning
frameworks based on differential privacy, the perturbed in-
formation of client-n can be regarded as its contribution to
the system. As a result, our proposed mechanism can still
be used to eliminate the noisy impact of client-n.

Unlearning time. The proposed algorithm involves only
simple operations (Lines 7-12 in Algorithm 2) to achieve
unlearning. Let t1 denote the training round when client-n
submits an unlearning request. For each client, the time
complexity to remove the contribution of client-n is O(t1).
Specifically, subtracting the weighted gradient residual ap-
proximation requires O(t1) time, while computing the dis-
tance d1 and sampling noise from a Gaussian distribution
each require O(1) time. Furthermore, the unlearning opera-
tions are only performed on each client side, so the required
communication overhead is 0.

Space overhead. The proposed decentralized unlearning
algorithm requires each client-i to save the gradients of
its neighbors. Let Nmax = maxi,t |N t

i | denote the maxi-
mum number of neighbors over rounds t = 0, . . . , t1 − 1.
For each client, it costs O(t1Nmaxd) in memory space to
perform the unlearning operations. Although Nmax ≤ n al-
ways holds, especially in the scenarios like social networks,
the required memory increases linearly as the number of
neighbors grows. To further reduce memory usage, each
client may consider an early stopping strategy based on its
resource constraints and model performance.

Early stopping benefits. For neural networks in an over-
parameterization regime, the NTK theory (Lee et al., 2019)
suggests that gradient-based methods converge exponen-
tially to zero training error, with minimal variation in the
model’s parameters (Zhang et al., 2023). Therefore, each
client needs to store only the gradients of its neighbors for
the first t1,i ≤ t1 rounds to save memory. Under this setup,
we can redefine Lines 8-10 in Algorithm 2: each client-
i computes the approximations {δti}

t1,i−1
t=0 of the gradient

residuals using Equation (7). Then, it calculates the weight
p

′t
i for every approximation δti (t = 0, · · · , t1,i − 1) as

p
′t
i =

∥
∑n

j=1 W
t
ij∇fj(θ

t
j , ξ

t
j) ∥2∑t1,i−1

t=0 ∥
∑n

j=1 W
t
ij∇fj(θtj , ξ

t
j) ∥2

and subtract a weighted sum of δti from θt1i to obtain ¯̄θt1i :

¯̄θt1i = θt1i −
t1,i−1∑
t=0

p
′t
i δ

t
i , i ∈ V\{n}.

Furthermore, we can prove that the weighted gradient resid-
ual approximation with early stopping is also bounded by
the right-hand side of the inequality in Lemma B.2, as de-
tailed in Appendix D.

5. Experiments
In this section, we evaluate PDUDT from many aspects,
such as its statistical indistinguishability from the perturbed
retraining algorithm, as well as its efficiency and effective-
ness of unlearning.

5.1. Experimental Setup

According to the complexity of the learning tasks, we train
the CNN model for MNIST (Lecun et al., 1998) and Fashion-
MNIST (Xiao et al., 2017) datasets, and the ResNet-18
model (He et al., 2016) for CIFAR-10 (Krizhevsky & Hin-
ton, 2009) and SVHN (Netzer et al., 2011) datasets. To
show the advantages of our proposed PDUDT algorithm,
we compare it with some baseline methods, including Ori-
gin (Lian et al., 2017), Retrain, FATS-Unl (Tao et al., 2024),
FedRecovery (Zhang et al., 2023) and HDUS (Ye et al.,
2024). Multiple metrics are used to evaluate the perfor-
mance of the proposed decentralized unlearning algorithm,
including accuracy, unlearning time, communication over-
head, and attack success rate. More details can be found in
Appendix I.

In our experiments, we work with total n = 10 clients.
Specifically, in each round t, whether there is a connection
between any two clients is randomly generated. Then, in
order to ensure that the communication situation can be mod-
eled as a doubly stochastic matrix, we use the Metropolis-
Hastings method (Awan et al., 2006) to generate the com-
munication weights among clients. Each client trains with a
batch size of 256 for 1 epoch per round, with a step size of
0.001. The unlearning request from client-n is set to occur
at round t1 = 100. To save storage space, each client can
apply an early stopping strategy by retaining its neighbors’
information only for the first 80 rounds. After performing
the unlearning operations, the remaining n− 1 clients con-
tinue training collaboratively for an additional 200 rounds.
We conduct 100 membership inference attacks, presenting
both the average performance and standard deviation.

Our experiments are conducted using PyTorch 2.5.1, Python
3.12, and Cuda 12.1. The experiments run on a cloud server
equipped with an Intel(R) Xeon(R) Platinum 8358P CPU
and 10 RTX 3090 GPUs, operating on Ubuntu 22.04.
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Figure 1. The accuracy of unlearned models using PDUDT, PDUDT (ES), and perturbed retrained models.
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Figure 2. The accuracy on each class using PDUDT, PDUDT (ES), and perturbed retrained models.

Table 2. Comparison of the unlearning time across different un-
learning methods.

Method
Unlearning time (s)

MNIST Fashion-MNIST CIFAR-10 SVHN

Retrain 1322.2 1299.8 1696.2 2747.8
FATS-Unl 573.6 573.4 884.0 1233.2

FedRecovery 3.5 3.9 8.1 8.5
HDUS 19.3 19.9 24.1 38.0

PDUDT 3.0 3.3 9.6 9.8
PDUDT (ES) 2.3 2.6 7.5 7.8

Table 3. Comparison of the attack precision of MIA across differ-
ent unlearning methods.

Method
Attack precision (%)

MNIST Fashion-MNIST CIFAR-10 SVHN

Origin 65.3± 0.9 67.1± 1.9 65.3± 0.7 68.1± 0.5

Retrain 49.4± 1.3 49.2± 2.2 51.0± 0.6 49.5± 0.7

FATS-Unl 51.3± 1.2 49.6± 4.3 53.1± 1.2 51.8± 1.6

FedRecovery 50.1± 0.7 48.4± 0.9 52.5± 0.6 51.1± 0.3

HDUS 50.2± 1.1 51.2± 0.7 50.6± 0.3 51.2± 1.3

PDUDT 49.9± 0.6 49.0± 1.3 50.1± 1.6 51.3± 0.3

PDUDT (ES) 50.8± 0.6 50.2± 0.9 51.1± 1.3 51.5± 1.4

5.2. Experimental Results

1) Statistical indistinguishability: To examine the effect of
different noise scales on the statistical indistinguishability
between unlearned models and perturbed retrained models,
we vary the values of σ from 0.001 to 0.015. The perfor-
mance is evaluated in terms of the average model accuracy.
Specifically, we start decentralized learning from pre-trained
models to control the injected noise and ensure good perfor-
mance. Figure 1 illustrates the statistical indistinguishability

of our PDUDT algorithm from the Perturbed Retraining
method under varying noise scales σ. Across all datasets,
PDUDT achieves comparable accuracy to the Perturbed Re-
training method under all noise conditions, demonstrating
its ability to maintain statistical indistinguishability effec-
tively. Similarly, PDUDT (ES), the space-saving version of
PDUDT, also shows comparable performance, though with
slight degradation in MNIST dataset. Overall, the results
confirm that both PDUDT and PDUDT (ES) can maintain
statistical indistinguishability with perturbed retrained mod-
els across all noise conditions.

2) The Effectiveness of Unlearning: To evaluate the effec-
tiveness of PDUDT and its space-saving version PDUDT
(ES), we record the average accuracy on each class. In this
experiment, data from class 9 is exclusively owned by the
client who requests unlearning. Therefore, the unlearning
performance can be assessed based on the accuracy of this
class. From Figure 2, it can be observed that both PDUDT
and PDUDT (ES) maintain high performance on Classes
0–8, while their accuracy drops significantly on Class 9,
exhibiting behavior similar to the retraining method. This
demonstrates that PDUDT and PDUDT (ES) effectively en-
able the entire system to forget what it has learned from the
client initiating the unlearning request.

3) The Efficiency of Unlearning: To verify the efficiency of
PDUDT and PDUDT (ES), we evaluate the time required for
unlearning operations. In Table 2, our PDUDT and its space-
saving version PDUDT (ES) show impressive performance
in both unlearning time. Specifically, they reduce unlearning
time by over 99% compared to the Retrain method. The time
consumption of FedRecovery, HDUS, PDUDT and PDUDT
(ES) primarily arises from computing gradient residuals or
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the stored distilled seed models ensemble. In contrast, the
time consumption for Retrain and FATS-Unl is mainly due
to parameter training within the networks.

4) The Performance of MIA on Unlearned Models: In
this experiment, we conduct 100 membership inference at-
tacks, presenting both the average performance and standard
deviation across different unlearning methods. As shown
in Table 3, the MIA achieves high attack precision on the
original models, indicating that the attacker can successfully
determine whether the target client’s data was used during
training. In contrast, after unlearning, its attack precision
drops to approximately 50%, demonstrating that the pro-
posed unlearning methods successfully remove the impact
of the target client. Notably, the performance of PDUDT
and PDUDT (ES) is comparable to that of Retrain and FATS-
Unl, highlighting that our PDUDT and PDUDT (ES) meth-
ods achieve similar unlearning effectiveness without relying
on retraining.

6. Conclusion
In this paper, we propose the first provable decentralized
unlearning algorithm PDUDT under dynamic topologies.
Theoretically, we derive its statistical indistinguishability
and the convergence of its subsequent learning process. We
conduct extensive experiments to verify the performance
superiority of the proposed unlearning algorithm.

Our work inspires future research on provable decentralized
unlearning. It paves the way for investigating adaptive mech-
anisms that enhance unlearning efficiency under dynamic
topologies and for extending the unlearning framework to
broader decentralized paradigms.
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Appendix A summarizes the main notations in this paper.
Appendix B lists some important theoretical results, including Lemma B.1 and Lemma B.2.
Appendix C shows the proof of Lemma B.1.
Appendix D shows the proof of Lemma B.2.
Appendix E shows the proof of Theorem 4.9.
Appendix F shows the proof of Corollary 4.10.
Appendix G shows the proof of Theorem 4.11.
Appendix H shows the proof of Corollary 4.12.
Appendix I shows the experimental details, including datasets and models, baseline methods, metrics and additional
experimental results.

A. Notation Table

Table 4. Notations and descriptions.

Notations Descriptions
t1 The time when client-n issues an unlearning request
η The step size for Algorithms 1-2
σ The noise scale in Algorithms 1-2
ϵ The privacy budget of indistinguishability
β The confidence parameter of indistinguishability
θ̃ti The local model of client-i in round t (t = 1, · · · , t1) in Algorithm 1
θti The local model of client-i in round t (t = 1, · · · , t1) in Algorithm 2
θ̌t1i The perturbed retrained model of client-i in Algorithm 1
rti The gradient residual in round t related to client-i’s neighbors’ information
δti The approximation of the gradient residual rti in round t, which is computed by client-i
pti The weight of δti , which measures the contributions of client-i’s neighbors’ gradients in round t
¯̄θt1i The local model of client-i after removing the influence of client-n based on Equation (9)
θui The unlearned model of client-i in Algorithm 2
∇Fi(θ

t
i , ξ

t
i) The local gradient of client-i related to model θti and sample ξti in round t

B. Some important theoretical results
Before obtaining the formal indistinguishability result, we first explore the difference between the average of the remaining
n − 1 models in Algorithm 2 when client-n revokes data consent and the average model retrained by n − 1 clients in
Algorithm 1, as shown in Lemma B.1. We then measure the weighted gradient residual approximation in Lemma B.2.
Lemma B.1. Let

D1 = 1− 24η2L2ρ21nt1, D2 = 1− 36η2L2ρ22(n− 1)t1.

If 0 < η < min{
√

1
12L2t21

,
√

1
24L2ρ2

1nt1
,
√

1
36L2ρ2

2(n−1)t1
}, it holds that

∥ 1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥

≤

√√√√√√√√√√
(24η4L2σ2

1nt
4
1 + 144η5L3σ2

1t
4
1) · (

(6+4ρ2
1)ρ

2
1

D1
+

ρ2
2

D2
+

8(1+ρ2
1)ρ

2
1

nD1
) + 8η2(5 + 2ρ21)σ

2
1t

3
1 + 48η2(1 + ρ21)σ

2
2t

3
1+

144η4L2σ2
2t

4
1 · (

(6+4ρ2
1)ρ

2
1n

D1
+

3ρ2
2(n−1)
D2

+
16(1+ρ2

1)ρ
2
1

D1
) + (

2304η3L2ρ2
1(1+ρ2

1)t
3
1

D1
+

576η3L2ρ2
1(3+2ρ2

1)nt
3
1

D1
+

192η(1+ρ2
1)t

2
1

n ) · (Ef(θ0)− Ef( 1n
n∑

i=1

θt1i )) +
288η3L2ρ2

2(n−1)t31
D2

· (Ef(θ0)− Ef( 1
n−1

n−1∑
i=1

θ̃t1i ))

Lemma B.2. Let

D1 = 1− 24η2L2ρ21nt1, D2 = 1− 36η2L2ρ22(n− 1)t1

11
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D3 = ρ21 + ρ22 +
1

(n− 1)2
.

If 0 < η < min{
√

1
12L2t21

,
√

1
24L2ρ2

1nt1
,
√

1
36L2ρ2

2(n−1)t1
}, the norm of the weighted gradient residual approximation (with

early stopping, discussed in Section 4.3) holds that

∥ 1

n− 1

n−1∑
i=1

t1−1∑
t=0

ptiδ
t
i ∥

(Early stopping: ∥ 1

n− 1

n−1∑
i=1

t1,i−1∑
t=0

p
′t
i δ

t
i ∥)

≤

√√√√√√ 6
(
η2n+ 3η3L+

12η4L2ρ2
1n

2t1
D1

+
72η5L3ρ2

1nt1
D1

)
D3σ

2
1t

2
1 +

(
18η2n+

432η4L2ρ2
1n

2t1
D2

)
D3σ

2
2t

2
1+(

36ηnt1 +
864η3L2ρ2

1n
2t21

D1

)
D3(Ef(θ0)− Ef( 1n

n∑
i=1

θt1i ))

C. Proof of Lemma B.1
Based on Equation (5), (9), (4) and (7), we can directly obtain Equation (12)-(15):

1

n− 1

n−1∑
i=1

θ̃t1i =θ̃0i −
η

n− 1

t1−1∑
t=0

n−1∑
j=1

∇Fj(θ̃
t
j , ξ̃

t
j) (12)

1

n− 1

n−1∑
i=1

¯̄θt1i =θ0i −
η

n− 1

t1−1∑
t=0

( n∑
i=1

n∑
j=1

W t
ij∇Fj(θ

t
j , ξ

t
j)−

n∑
j=1

W t
nj∇Fj(θ

t
j , ξ

t
j)−

n∑
i=1

ptiδ
t
i

)
=θ0i −

η

n− 1

t1−1∑
t=0

n∑
j=1

∇Fj(θ
t
j , ξ

t
j) +

η

n− 1

t1−1∑
t=0

( n∑
j=1

W t
nj∇Fj(θ

t
j , ξ

t
j)−

n∑
i=1

ptiδ
t
i

)
(13)

1

n− 1

n−1∑
i=1

θt1i =θ0i −
η

n− 1

t1−1∑
t=0

n∑
j=1

∇Fj(θ
t
j , ξ

t
j) +

η

n− 1

t1−1∑
t=0

n∑
j=1

W t
nj∇Fj(θ

t
j , ξ

t
j) (14)

1

n− 1

n−1∑
i=1

δti =
η

n− 1

n−1∑
i=1

n−1∑
j=1

W̃ t
ij∇Fj(θ

t
j , ξ

t
j)−

η

n− 1

n∑
i=1

n∑
j=1

W t
ij∇Fj(θ

t
j , ξ

t
j) +

η

n− 1

n∑
j=1

W t
nj∇Fj(θ

t
j , ξ

t
j)

=
η

n− 1

( n∑
j=1

W t
nj∇Fj(θ

t
j , ξ

t
j)−∇Fn(θ

t
n, ξ

t
n)
)

(15)

Substitute Equation (15) into Equation (13) to get

1

n− 1

n−1∑
i=1

¯̄θt1i =θ0i −
η

n− 1

t1−1∑
t=0

n∑
j=1

∇Fj(θ
t
j , ξ

t
j) +

η

n− 1

t1−1∑
t=0

(
∇Fn(θ

t
n, ξ

t
n) +

n∑
i=1

(1− pti)δ
t
i

)
(16)

Consider the gap

1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i

=− η

n− 1

t1−1∑
t=0

n∑
j=1

∇Fj(θ
t
j , ξ

t
j) +

η

n− 1

t1−1∑
t=0

n−1∑
j=1

∇Fj(θ̃
t
j , ξ̃

t
j) +

η

n− 1

t1−1∑
t=0

n∑
j=1

W t
nj∇Fj(θ

t
j , ξ

t
j)

=
η

n− 1

t1−1∑
t=0

n−1∑
j=1

(
∇Fj(θ̃

t
j , ξ̃

t
j)−∇Fj(θ

t
j , ξ

t
j)
)
+

η

n− 1

t1−1∑
t=0

( n∑
j=1

W t
nj∇Fj(θ

t
j , ξ

t
j)−∇Fn(θ

t
n, ξ

t
n)
)

(17)

12
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Then we have

E ∥ 1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥2

≤2η2t1
n− 1

t1−1∑
t=0

n−1∑
j=1

E ∥ ∇Fj(θ̃
t
j , ξ̃

t
j)−∇fj(θ̃

t
j) +∇fj(θ̃

t
j)−∇fj(

1

n− 1

n−1∑
j=1

θ̃tj) +∇fj(
1

n− 1

n−1∑
j=1

θ̃tj)−

∇fj(
1

n− 1

n−1∑
j=1

θtj) +∇fj(
1

n− 1

n−1∑
j=1

θtj)−∇fj(
1

n

n−1∑
j=1

θtj) +∇fj(
1

n

n−1∑
j=1

θtj)−∇fj(θ
t
j) +∇fj(θ

t
j)−∇Fj(θ

t
j , ξ

t
j) ∥2

+
2η2t1

(n− 1)2

t1−1∑
t=0

E ∥
n∑

j=1

W t
nj∇Fj(θ

t
j , ξ

t
j)−

1

n

n∑
j=1

∇Fj(θ
t
j , ξ

t
j) +

1

n

n∑
j=1

∇Fj(θ
t
j , ξ

t
j)−∇Fn(θ

t
n, ξ

t
n) ∥2

=24η2t21σ
2
1 +

12η2L2t1
n− 1

t1−1∑
t=0

n−1∑
j=1

E ∥ θ̃tj −
1

n− 1

n−1∑
j=1

θ̃tj ∥2 +
12η2L2t1
n− 1

t1−1∑
t=0

n−1∑
j=1

E ∥ 1

n− 1

n−1∑
j=1

θ̃tj −
1

n− 1

n−1∑
j=1

θtj ∥2 +

12η2L2t1
(n− 1)2

t1−1∑
t=0

E ∥ θtn − 1

n

n∑
i=1

θti ∥2 +
12η2L2t1
n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +

4η2t1
(n− 1)2

t1−1∑
t=0

E ∥ (eTnW
t − 1Tn

n
)Gt

(n) ∥
2 +

4η2t1
(n− 1)2

t1−1∑
t=0

E ∥ (
1Tn
n

− eTn )G
t
(n) ∥

2

≤24η2t21σ
2
1 +

12η2L2t1
n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 +
12η2L2t1
n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ 1

n− 1

n−1∑
i=1

θ̃ti −
1

n− 1

n−1∑
i=1

θti ∥2 +

12η2L2t1
n− 1

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +
4η2(1 + ρ21)t1

(n− 1)2

t1−1∑
t=0

E ∥ Gt
(n) −Ht

(n) +Ht
(n) ∥

2 (18)

Bound E ∥ Gt
(n) −Ht

(n) +Ht
(n) ∥

2:

E ∥ Gt
(n) −Ht

(n) +Ht
(n) ∥

2

≤2

n∑
i=1

E ∥ ∇Fi(θ
t
i , ξ

t
i)−∇fi(θ

t
i) ∥2 +

2

n∑
i=1

E ∥ ∇fi(θ
t
i)−∇fi(

1

n

n∑
i=1

θti) +∇fi(
1

n

n∑
i=1

θti)−∇f(
1

n

n∑
i=1

θti) +∇f(
1

n

n∑
i=1

θti) ∥2

≤2nσ2
1 + 6L2

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +6nσ2
2 + 6nE ∥ ∇f(

1

n

n∑
i=1

θti) ∥2 (19)

Bound E ∥ θ̃ti − 1
n−1

∑n−1
i=1 θ̃ti ∥2:

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2

=E ∥ η

t−1∑
l=0

( 1

n− 1

n−1∑
j=1

∇Fj(θ̃
l
j , ξ̃

l
j)−

n−1∑
j=1

W̃ l
ij∇Fj(θ̃

l
j , ξ̃

l
j)
)
∥2

=η2E ∥
t−1∑
l=0

(
1Tn−1

n− 1
− ẽTi W̃

l)(G̃l
(n−1) − H̃ l

(n−1) + H̃ l
(n−1)) ∥

2

≤2η2
( t−1∑

l=0

E ∥ (
1Tn−1

n− 1
− ẽTi W̃

l)(G̃l
(n−1) − H̃ l

(n−1)) ∥
2 +

t−1∑
l=0

E ∥ (
1Tn−1

n− 1
− ẽTi W̃

l)H̃ l
(n−1) ∥

2 +

13



PDUDT: Provable Decentralized Unlearning under Dynamic Topologies

t−1∑
l′ ̸=l

E⟨(
1Tn−1

n− 1
− ẽTi W̃

l)H̃ l
(n−1), (

1Tn−1

n− 1
− ẽTi W̃

l
′

)H̃ l
′

(n−1)⟩
)

≤2η2ρ22σ
2
1(n− 1)t+ 2η2

(
ρ22

t−1∑
l=0

E ∥ H̃ l
(n−1) ∥

2 +

t−1∑
l′ ̸=l

E⟨(
1Tn−1

n− 1
− ẽTi W̃

l)H̃ l
(n−1), (

1Tn−1

n− 1
− ẽTi W̃

l
′

)H̃ l
′

(n−1)⟩
)

(20)

And

t−1∑
l=0

E ∥ H̃ l
(n−1) ∥

2

=

t−1∑
l=0

n−1∑
i=1

E ∥ ∇fi(θ̃
l
i)−∇fi(

1

n− 1

n−1∑
i=1

θ̃li) +∇fi(
1

n− 1

n−1∑
i=1

θ̃li)−∇f(
1

n− 1

n−1∑
i=1

θ̃li) +∇f(
1

n− 1

n−1∑
i=1

θ̃li) ∥2

≤3L2
t−1∑
l=0

n−1∑
i=1

E ∥ θ̃li −
1

n− 1

n−1∑
i=1

θ̃li ∥2 +3σ2
2(n− 1)t+ 3(n− 1)

t−1∑
l=0

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̃li) ∥2 (21)

t−1∑
l′ ̸=l

E⟨(
1Tn−1

n− 1
− ẽTi W̃

l)H̃ l
(n−1), (

1Tn−1

n− 1
− ẽTi W̃

l
′

)H̃ l
′

(n−1)⟩

≤
t−1∑
l′ ̸=l

E ∥
1Tn−1

n− 1
− ẽTi W̃

l ∥ · ∥ H̃ l
(n−1) ∥ · ∥

1Tn−1

n− 1
− ẽTi W̃

l
′

∥ · ∥ H̃ l
′

(n−1) ∥

≤ρ22

t−1∑
l′ ̸=l

E(
∥ H̃ l

(n−1) ∥
2 + ∥ H̃ l

′

(n−1) ∥
2

2
)

=ρ22

t−1∑
l′ ̸=l

E ∥ H̃ l
(n−1) ∥

2 (22)

Substitute Equation (21) and (22) into Equation (20) to get

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2

≤2η2ρ22σ
2
1(n− 1)t+ 12η2ρ22σ

2
2(n− 1)t+

12η2L2ρ22

t−1∑
l=0

n−1∑
i=1

E ∥ θ̃li −
1

n− 1

n−1∑
i=1

θ̃li ∥2 +12η2ρ22(n− 1)

t−1∑
l=0

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̃li) ∥2 (23)

Summing over t = 0 to t1 − 1 and i = 1 to n− 1 yields:

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2

≤2η2ρ22σ
2
1(n− 1)2t21 + 12η2ρ22σ

2
2(n− 1)2t21+

12η2L2ρ22(n− 1)t1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 +12η2ρ22(n− 1)2t1

t1−1∑
t=0

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̃ti) ∥2 (24)

Therefore, it holds that

(1− 12η2L2ρ22(n− 1)t1)

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2

14
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≤2η2ρ22σ
2
1(n− 1)2t21 + 12η2ρ22σ

2
2(n− 1)2t21 + 12η2ρ22(n− 1)2t1

t1−1∑
t=0

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̃ti) ∥2 (25)

Bound E ∥ θti − 1
n

n∑
i=1

θti ∥2:

E ∥ θti −
1

n

n∑
i=1

θti ∥2

≤E ∥ η

t−1∑
l=0

( 1
n

n∑
j=1

∇Fj(θ
l
j , ξ

l
j)−

n∑
j=1

W l
ij∇Fj(θ

l
j , ξ

l
j)
)
∥2

=η2E ∥
t−1∑
l=0

(
1Tn
n

− eTi W
l)(Gl

(n) −H l
(n) +H l

(n)) ∥
2

≤2η2
t−1∑
l=0

E ∥ (
1Tn
n

− eTi W
l)(Gl

(n) −H l
(n)) ∥

2 +2η2
t−1∑
l=0

E ∥ (
1Tn
n

− eTi W
l)H l

(n) ∥
2 +

2η2
t−1∑
l′ ̸=l

E⟨(1
T
n

n
− eTi W

l)H l
(n), (

1Tn
n

− eTi W
l
′

)H l
′

(n)⟩

≤2η2ρ21σ
2
1nt+ 4η2ρ21

t−1∑
l=0

E ∥ H l
(n) ∥

2 (26)

And

4η2ρ21

t−1∑
l=0

E ∥ H l
(n) ∥

2

≤4η2ρ21

t−1∑
l=0

E ∥ ∇fi(θ
l
i)−∇fi(

1

n

n∑
i=1

θli) + fi(
1

n

n∑
i=1

θli)−∇f(
1

n

n∑
i=1

θli) +∇f(
1

n

n∑
i=1

θli) ∥2

≤12η2ρ21L
2
t−1∑
l=0

n∑
i=1

E ∥ θli −
1

n

n∑
i=1

θli ∥2 +12η2ρ21σ
2
2nt+ 12η2ρ21n

t−1∑
l=0

E ∥ ∇f(
1

n

n∑
i=1

θli) ∥2 (27)

Substitute Equation (27) into Equation (26) to get

E ∥ θti −
1

n

n∑
i=1

θti ∥2

≤2η2ρ21σ
2
1nt+ 12η2ρ21σ

2
2nt+ 12η2ρ21L

2
t−1∑
l=0

n∑
i=1

E ∥ θli −
1

n

n∑
i=1

θli ∥2 +12η2ρ21n

t−1∑
l=0

E ∥ ∇f(
1

n

n∑
i=1

θli) ∥2 (28)

Summing over t = 0 to t1 − 1 and i = 1 to n yields:

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2

≤2η2ρ21σ
2
1n

2t21 + 12η2ρ21σ
2
2n

2t21 + 12η2ρ21L
2nt1

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +12η2ρ21n
2t1

t1−1∑
t=0

E ∥ ∇f(
1

n

n∑
i=1

θti) ∥2

(29)

Therefore, it holds that

(1− 12η2L2ρ21nt1)

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2

15
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≤2η2ρ21σ
2
1n

2t21 + 12η2ρ21σ
2
2n

2t21 + 12η2ρ21n
2t1

t1−1∑
t=0

E ∥ ∇f(
1

n

n∑
i=1

θti) ∥2 (30)

According to Equation (18), we have

t1−1∑
t=0

E ∥ 1

n− 1

n−1∑
i=1

θti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 +E ∥ 1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥2

≤24η2t31σ
2
1 +

12η2L2t21
n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 +12η2L2t21

t1−1∑
t=0

E ∥ 1

n− 1

n−1∑
i=1

θ̃ti −
1

n− 1

n−1∑
i=1

θti ∥2 +

12η2L2t21
n− 1

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +
4η2(1 + ρ21)t

2
1

(n− 1)2

t1−1∑
t=0

E ∥ Gt
(n) −Ht

(n) +Ht
(n) ∥

2 (31)

If

1− 12η2L2t21 ≥ 0 ⇒ η ≤

√
1

12L2t21

we have

E ∥ 1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥2

≤24η2t31σ
2
1 +

12η2L2t21
n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 +
12η2L2t21
n− 1

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +

4η2(1 + ρ21)t
2
1

(n− 1)2

t1−1∑
t=0

E ∥ Gt
(n) −Ht

(n) +Ht
(n) ∥

2 (32)

Then we need to explore the relationship between ∥ θti − 1
n

n∑
i=1

θti ∥2 and ∥ ∇f( 1n

n∑
i=1

θti) ∥2:

θti = θ0i − η

t−1∑
l=0

n∑
j=1

W l
ij∇Fj(θ

l
j , ξ

l
j)

1

n

n∑
i=1

θti = θ0i −
η

n

t−1∑
l=0

n∑
j=1

∇Fj(θ
l
j , ξ

l
j)

1

n

n∑
i=1

θt−1
i = θ0i −

η

n

t−2∑
l=0

n∑
j=1

∇Fj(θ
l
j , ξ

l
j)

Based on Assumption 4.5, we can derive the following:

Ef(
1

n

n∑
i=1

θti)− Ef(
1

n

n∑
i=1

θt−1
i )

≤E⟨− η

n

n∑
i=1

∇Fi(θ
t−1
i , ξt−1

i ),∇f(
1

n

n∑
i=1

θt−1
i )⟩︸ ︷︷ ︸

B1

+
L

2
E ∥ η

n

n∑
i=1

∇Fi(θ
t−1
i , ξt−1

i ) ∥2︸ ︷︷ ︸
B2

B1 =E⟨− η

n

n∑
i=1

∇fi(θ
t−1
i ),∇f(

1

n

n∑
i=1

θt−1
i )⟩
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=− η

2
(E ∥ 1

n

n∑
i=1

∇fi(θ
t−1
i ) ∥2 +E ∥ ∇f(

1

n

n∑
i=1

θt−1
i ) ∥2) + η

2
E ∥ 1

n

n∑
i=1

∇fi(θ
t−1
i )−∇f(

1

n

n∑
i=1

θt−1
i ) ∥2

B2 =
L

2
E ∥ η

n

n∑
i=1

(∇Fi(θ
t−1
i , ξt−1

i )−∇fi(θ
t−1
i ) +∇fi(θ

t−1
i )) ∥2

≤η2Lσ2
1

2n
+

η2L

2
E ∥ 1

n

n∑
i=1

∇fi(θ
t−1
i ) ∥2

Therefore, it holds that

Ef(
1

n

n∑
i=1

θti)− Ef(
1

n

n∑
i=1

θt−1
i )

≤η2Lσ2
1

2n
+

ηL2

2n

n∑
i=1

E ∥ θt−1
i − 1

n

n∑
i=1

θt−1
i ∥2 −η(1− ηL)

2
E ∥ 1

n

n∑
i=1

∇fi(θ
t−1
i ) ∥2 −η

2
E ∥ ∇f(

1

n

n∑
i=1

θt−1
i ) ∥2 (33)

Summing over t = 1 to t1 yields:

Ef(
1

n

n∑
i=1

θt1i )− Ef(
1

n

n∑
i=1

θ0i )

≤η2Lσ2
1t1

2n
+

ηL2

2n

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 −η(1− ηL)

2

t1−1∑
t=0

E ∥ 1

n

n∑
i=1

∇fi(θ
t
i) ∥2 −η

2

t1−1∑
t=0

E ∥ ∇f(
1

n

n∑
i=1

θti) ∥2

(34)

Then we have

η

2

t1−1∑
t=0

E ∥ ∇f(
1

n

n∑
i=1

θti) ∥2 +
η(1− ηL)

2

t1−1∑
t=0

E ∥ 1

n

n∑
i=1

∇fi(θ
t
i) ∥2

≤Ef(
1

n

n∑
i=1

θ0i )− Ef(
1

n

n∑
i=1

θt1i ) +
ηL2

2n

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +
η2Lσ2

1t1
2n

(35)

If the above condition about step size η is satisfied, that is, η ≤
√

1
12L2t21

, then it holds that

t1−1∑
t=0

E ∥ ∇f(
1

n

n∑
i=1

θti) ∥2≤
η

2

(
Ef(

1

n

n∑
i=1

θ0i )− Ef(
1

n

n∑
i=1

θt1i )
)
+

L2

n

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +
ηLσ2

1t1
n

(36)

Then we can further derive the Equation (30) as follows:

(1− 12η2L2ρ21nt1)

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2

≤2η2ρ21(σ
2
1 + 6σ2

2)n
2t21 + 12η2ρ21n

2t1

(η
2

(
Ef(

1

n

n∑
i=1

θ0i )− Ef(
1

n

n∑
i=1

θt1i )
)
+

L2

n

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +
ηLσ2

1t1
n

)
(37)

Therefore, it holds that

(1− 24η2L2ρ21nt1)

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2

≤2η2ρ21σ
2
1n

2t21 + 12η2ρ21σ
2
2n

2t21 + 12η3Lρ21σ
2
1nt

2
1 + 24ηρ21n

2t1
(
Ef(

1

n

n∑
i=1

θ0i )− Ef(
1

n

n∑
i=1

θt1i )
)

(38)
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Next, we need to explore the relationship between ∥ θ̃ti − 1
n−1

n−1∑
i=1

θ̃ti ∥2 and ∥ ∇f( 1
n−1

n−1∑
i=1

θ̃ti) ∥2:

θ̃ti = θ̃0i − η

t−1∑
l=0

n∑
j=1

W̃ l
ij∇Fj(θ̃

l
j , ξ̃

l
j)

1

n− 1

n−1∑
i=1

θ̃ti = θ̃0i −
η

n− 1

t−1∑
l=0

n−1∑
j=1

∇Fj(θ̃
l
j , ξ̃

l
j)

1

n− 1

n−1∑
i=1

θ̃t−1
i = θ̃0i −

η

n− 1

t−2∑
l=0

n−1∑
j=1

∇Fj(θ̃
l
j , ξ̃

l
j)

Based on Assumption 4.5, we can derive the following:

Ef(
1

n− 1

n−1∑
i=1

θ̃ti)− Ef(
1

n− 1

n−1∑
i=1

θ̃t−1
i )

≤E⟨− η

n− 1

n−1∑
i=1

∇Fi(θ̃
t−1
i , ξ̃t−1

i ),∇f(
1

n− 1

n−1∑
i=1

θ̃t−1
i )⟩︸ ︷︷ ︸

B3

+
L

2
E ∥ η

n− 1

n−1∑
i=1

∇Fi(θ̃
t−1
i , ξ̃t−1

i ) ∥2︸ ︷︷ ︸
B4

B3 =E⟨− η

n− 1

n−1∑
i=1

∇fi(θ̃
t−1
i ),∇f(

1

n− 1

n−1∑
i=1

θ̃t−1
i )⟩

=− η

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t−1
i ) ∥2 −η

2
E ∥ ∇f(

1

n− 1

n−1∑
i=1

θ̃t−1
i ) ∥2

+
η

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t−1
i )−∇f(

1

n− 1

n−1∑
i=1

θ̃t−1
i ) ∥2

≤− η

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t−1
i ) ∥2 −η

2
E ∥ ∇f(

1

n− 1

n−1∑
i=1

θ̃t−1
i ) ∥2

+
η

2
E ∥ 1

n− 1

n−1∑
i=1

(
∇fi(θ̃

t−1
i )−∇fi(

1

n− 1

n−1∑
i=1

θ̃t−1
i ) +∇fi(

1

n− 1

n−1∑
i=1

θ̃t−1
i )−∇f(

1

n− 1

n−1∑
i=1

θ̃t−1
i )

)
∥2

≤− η

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t−1
i ) ∥2 −η

2
E ∥ ∇f(

1

n− 1

n−1∑
i=1

θ̃t−1
i ) ∥2 +ησ2

2 +
ηL2

n− 1

n−1∑
i=1

E ∥ θ̃t−1
i − 1

n− 1

n−1∑
i=1

θ̃t−1
i ∥2

B4 =
L

2
E ∥ η

n− 1

n−1∑
i=1

(∇Fi(θ̃
t−1
i , ξ̃t−1

i )−∇fi(θ̃
t−1
i ) +∇fi(θ̃

t−1
i )) ∥2

≤ η2Lσ2
1

2(n− 1)
+

η2L

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t−1
i ) ∥2

Therefore, it holds that

Ef(
1

n− 1

n−1∑
i=1

θ̃ti)− Ef(
1

n− 1

n−1∑
i=1

θ̃t−1
i )

≤− η(1− ηL)

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t−1
i ) ∥2 −η

2
E ∥ ∇f(

1

n− 1

n−1∑
i=1

θ̃t−1
i ) ∥2 +

η2Lσ2
1

2(n− 1)
+ ησ2

2
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+
ηL2

n− 1

n−1∑
i=1

E ∥ θ̃t−1
i − 1

n− 1

n−1∑
i=1

θ̃t−1
i ∥2 (39)

Summing over t = 1 to t1 yields:

Ef(
1

n− 1

n−1∑
i=1

θ̃t1i )− Ef(
1

n− 1

n−1∑
i=1

θ̃0i )

≤− η(1− ηL)

2

t1−1∑
t=0

E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t
i) ∥2 −η

2

t1−1∑
t=0

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̃ti) ∥2 +
η2Lσ2

1t1
2(n− 1)

+ ησ2
2t1

+
ηL2

n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 (40)

Then we have

η

2

t1−1∑
t=0

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̃ti) ∥2
η(1− ηL)

2

t1−1∑
t=0

E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̃
t
i) ∥2

≤Ef(
1

n− 1

n−1∑
i=1

θ̃0i )− Ef(
1

n− 1

n−1∑
i=1

θ̃t1i ) +
η2Lσ2

1t1
2(n− 1)

+ ησ2
2t1 +

ηL2

n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 (41)

Similarly, if the above condition about step size η is satisfied, that is, η ≤
√

1
12L2t21

, then it holds that

t1−1∑
t=0

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̃ti) ∥2

≤2

η

(
Ef(

1

n− 1

n−1∑
i=1

θ̃0i )− Ef(
1

n− 1

n−1∑
i=1

θ̃t1i )
)
+

ηLσ2
1t1

n− 1
+ 2σ2

2t1 +
2L2

n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 (42)

Then we can further derive the Equation (25) as follows:

(1− 12η2L2ρ22(n− 1)t1)

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2

≤2η2ρ22σ
2
1(n− 1)2t21 + 12η2ρ22σ

2
2(n− 1)2t21 + 12η2ρ22(n− 1)2t1

(2
η

(
Ef(

1

n− 1

n−1∑
i=1

θ̃0i )− Ef(
1

n− 1

n−1∑
i=1

θ̃t1i )
)

+
ηLσ2

1t1
n− 1

+ 2σ2
2t1 +

2L2

n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2
)

(43)

Therefore, it holds that

(1− 36η2L2ρ22(n− 1)t1)

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2

≤2η2ρ22σ
2
1(n− 1)2t21 + 12η2ρ22σ

2
2(n− 1)2t21 + 12η3Lρ22σ

2
1(n− 1)t21 + 24η2ρ22σ

2
2(n− 1)2t21+

24ηρ22(n− 1)2t1
(
Ef(

1

n− 1

n−1∑
i=1

θ̃0i )− Ef(
1

n− 1

n−1∑
i=1

θ̃t1i )
)

(44)

Then based on Equation (19), we can further derive the following:

4η2(1 + ρ21)t
2
1

(n− 1)2

t1−1∑
t=0

E ∥ Gt
(n) −Ht

(n) +Ht
(n) ∥

2
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≤2

n∑
i=1

E ∥ ∇Fi(θ
t
i , ξ

t
i)−∇fi(θ

t
i) ∥2 +

2

n∑
i=1

E ∥ ∇fi(θ
t
i)−∇fi(

1

n

n∑
i=1

θti) +∇fi(
1

n

n∑
i=1

θti)−∇f(
1

n

n∑
i=1

θti) +∇f(
1

n

n∑
i=1

θti) ∥2

≤8η2(1 + ρ21)σ
2
1nt

3
1

(n− 1)2
+

24η2(1 + ρ21)σ
2
2nt

3
1

(n− 1)2
+

24η2L2(1 + ρ21)t
2
1

(n− 1)2

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2

+
24η2(1 + ρ21)nt

2
1

(n− 1)2

t1−1∑
t=0

E ∥ ∇f(
1

n

n∑
i=1

θti) ∥2 (45)

Due to the fact

n ≥ 2 ⇒



1

(n− 1)2
≤ 2

n
,

1

n− 1
≤ 2

n
,

n

(n− 1)2
≤ 2

n− 1
≤ 4

n
,

we can further derive the Equation (32) as

E ∥ 1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥2

≤8η2(5 + 2ρ21)σ
2
1t

3
1 + 48η2(1 + ρ21)σ

2
2t

3
1 +

12η2L2t21
n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2 +

24η2L2(3 + 2ρ21)t
2
1

n

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2 +
24η2(1 + ρ21)nt

2
1

(n− 1)2

t1−1∑
t=0

E ∥ ∇f(
1

n

n∑
i=1

θti) ∥2 (46)

According to Equation (38) and (47), let

D1 = 1− 24η2L2ρ21nt1 > 0 ⇒ η <

√
1

24L2ρ21nt1

D2 = 1− 36η2L2ρ22(n− 1)t1 > 0 ⇒ η <

√
1

36L2ρ22(n− 1)t1

1

n

t1−1∑
t=0

n∑
i=1

E ∥ θti −
1

n

n∑
i=1

θti ∥2

≤2η2ρ21σ
2
1nt

2
1

D1
+

12η2ρ21σ
2
2nt

2
1

D1
+

12η3Lρ21σ
2
1t

2
1

D1
+

24ηρ21nt1
D1

(
Ef(

1

n

n∑
i=1

θ0i )− Ef(
1

n

n∑
i=1

θt1i )
)

(47)

1

n− 1

t1−1∑
t=0

n−1∑
i=1

E ∥ θ̃ti −
1

n− 1

n−1∑
i=1

θ̃ti ∥2

≤2η2ρ22σ
2
1(n− 1)t21
D2

+
12η2ρ22σ

2
2(n− 1)t21
D2

+
12η3Lρ22σ

2
1t

2
1

D2
+

24η2ρ22σ
2
2(n− 1)t21
D2

+

24ηρ22(n− 1)t1
D2

(
Ef(

1

n− 1

n−1∑
i=1

θ̃0i )− Ef(
1

n− 1

n−1∑
i=1

θ̃t1i )
)

(48)
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Substitute Equation (36), (47) and (48) into Equation (46) to get

E ∥ 1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥2

≤(24η4L2σ2
1nt

4
1 + 144η5L3σ2

1t
4
1) · (

(6 + 4ρ21)ρ
2
1

D1
+

ρ22
D2

+
8(1 + ρ21)ρ

2
1

nD1
) + 8η2(5 + 2ρ21)σ

2
1t

3
1 + 48η2(1 + ρ21)σ

2
2t

3
1+

144η4L2σ2
2t

4
1 · (

(6 + 4ρ21)ρ
2
1n

D1
+

3ρ22(n− 1)

D2
+

16(1 + ρ21)ρ
2
1

D1
)+

(
2304η3L2ρ21(1 + ρ21)t

3
1

D1
+

576η3L2ρ21(3 + 2ρ21)nt
3
1

D1
+

192η(1 + ρ21)t
2
1

n
) · (Ef(θ0)− Ef(

1

n

n∑
i=1

θt1i ))+

288η3L2ρ22(n− 1)t31
D2

· (Ef(θ0)− Ef(
1

n− 1

n−1∑
i=1

θ̃t1i )) (49)

where 0 < η < min{
√

1
12L2t21

,
√

1
24L2ρ2

1nt1
,
√

1
36L2ρ2

2(n−1)t1
}. Then, using Jensen’s inequality, we can directly obtain

Lemma B.1.

D. Proof of Lemma B.2

E ∥ 1

n− 1

n−1∑
i=1

t1−1∑
t=0

ptiδ
t
i ∥2

≤ t1
n− 1

n−1∑
i=1

t1−1∑
t=0

∥ pti ∥2 E ∥ δti ∥2

≤ t1
n− 1

n−1∑
i=1

t1−1∑
t=0

E ∥ δti ∥2

=
η2t1
n− 1

n−1∑
i=1

t1−1∑
t=0

E ∥
n−1∑
j=1

W̃ t
ij∇Fj(θ

t
j , ξ

t
j)−

1

n− 1

n−1∑
j=1

∇Fj(θ
t
j , ξ

t
j) +

1

n

n∑
j=1

∇Fj(θ
t
j , ξ

t
j)−

n∑
j=1

W t
ij∇Fj(θ

t
j , ξ

t
j)

+
1

n− 1
(
1

n
∇Fj(θ

t
j , ξ

t
j)−∇Fn(θ

t
n, ξ

t
n)) ∥2

≤3η2t1
n− 1

n−1∑
i=1

t1−1∑
t=0

(E ∥ (ẽTi W̃
t −

1Tn−1

n− 1
)Gt

(n−1) ∥
2 +E ∥ (eTi W

t − 1Tn
n
)Gt

(n) ∥
2 +

1

(n− 1)2
E ∥ (

1Tn
n

− eTn )G
t
(n) ∥

2)

≤3η2(ρ21 + ρ22 +
1

(n− 1)2
)t1

t1−1∑
t=0

E ∥ Gt
(n) −Ht

(n) +Ht
(n) ∥

2 (50)

Substitute Equation (19) and (47) into Equation (50) to get

E ∥ 1

n− 1

n−1∑
i=1

t1−1∑
t=0

ptiδ
t
i ∥2

≤6
(
η2n+ 3η3L+

12η4L2ρ21n
2t1

D1
+

72η5L3ρ21nt1
D1

)
D3σ

2
1t

2
1 +

(
18η2n+

432η4L2ρ21n
2t1

D2

)
D3σ

2
2t

2
1+(

36ηnt1 +
864η3L2ρ21n

2t21
D1

)
D3(Ef(θ0)− Ef(

1

n

n∑
i=1

θt1i )) (51)

where D3 = ρ21 + ρ22 +
1

(n−1)2 and step size 0 < η < min{
√

1
12L2t21

,
√

1
24L2ρ2

1nt1
,
√

1
36L2ρ2

2(n−1)t1
}. Then, using Jensen’s

inequality, we can directly obtain Lemma B.2 without early stopping.
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For an early stopping setup, it holds that

E ∥ 1

n− 1

n−1∑
i=1

t1,i−1∑
t=0

p
′t
i δ

t
i ∥2

≤ 1

(n− 1)2

n−1∑
i=1

(n− 1)

t1,i−1∑
t=0

t1,i ∥ p
′t
i ∥2 E ∥ δti ∥2

≤ t1
n− 1

n−1∑
i=1

t1−1∑
t=0

E ∥ δti ∥2 (52)

This result shows the same bound with Equation (50). As a result, Lemma B.2 still holds for the early stopping setup.

E. Proof of Theorem 4.9
Subtracting Equation (12) from Equation (13) yields

1

n− 1

n−1∑
i=1

¯̄θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i =
1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i − 1

n− 1

n−1∑
i=1

t1−1∑
t=0

ptiδ
t
i (53)

If 0 < η < min{
√

1
12L2t21

,
√

1
24L2ρ2

1nt1
,
√

1
36L2ρ2

2(n−1)t1
}, it holds that

∥ 1

n− 1

n−1∑
i=1

¯̄θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥

≤ ∥ 1

n− 1

n−1∑
i=1

θt1i − 1

n− 1

n−1∑
i=1

θ̃t1i ∥ + ∥ 1

n− 1

n−1∑
i=1

t1−1∑
t=0

ptiδ
t
i ∥

≤

√√√√√√√√√√
(24η4L2σ2

1nt
4
1 + 144η5L3σ2

1t
4
1) · (

(6+4ρ2
1)ρ

2
1

D1
+

ρ2
2

D2
+

8(1+ρ2
1)ρ

2
1

nD1
) + 8η2(5 + 2ρ21)σ

2
1t

3
1 + 48η2(1 + ρ21)σ

2
2t

3
1+

144η4L2σ2
2t

4
1 · (

(6+4ρ2
1)ρ

2
1n

D1
+

3ρ2
2(n−1)
D2

+
16(1+ρ2

1)ρ
2
1

D1
) + (

2304η3L2ρ2
1(1+ρ2

1)t
3
1

D1
+

576η3L2ρ2
1(3+2ρ2

1)nt
3
1

D1
+

192η(1+ρ2
1)t

2
1

n ) · (Ef(θ0)− Ef( 1n
n∑

i=1

θt1i )) +
288η3L2ρ2

2(n−1)t31
D2

· (Ef(θ0)− Ef( 1
n−1

n−1∑
i=1

θ̃t1i ))

+

√√√√√√ 6
(
η2n+ 3η3L+

12η4L2ρ2
1n

2t1
D1

+
72η5L3ρ2

1nt1
D1

)
D3σ

2
1t

2
1 +

(
18η2n+

432η4L2ρ2
1n

2t1
D2

)
D3σ

2
2t

2
1+(

36ηnt1 +
864η3L2ρ2

1n
2t21

D1

)
D3(Ef(θ0)− Ef( 1n

n∑
i=1

θt1i ))

which completes the proof.

F. Proof of Corollary 4.10
Corollary 4.10 guarantees the (ϵ, β)-Indistinguishability of Algorithm 2, since it is essentially based on the Gaussian
mechanism.

From a global perspective, the average model 1
n−1

n−1∑
i=1

θui is obtained by our proposed decentralized unlearning algorithm

(Algorithm 2) and 1
n−1

n−1∑
i=1

θ̌t1i is produced by the retraining algorithm (Algorithm 1).

According to the generation rule of θ̌t1i and θui :{
θ̌t1i = θ̃t1i + zi, where zi ∼ N (0, (n− 1)σ2Id)

θui = ¯̄θt1i + zi, where zi ∼ N (0, (n− 1)σ2Id)
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We can derive that the average models 1
n−1

n−1∑
i=1

θ̌t1i and 1
n−1

n−1∑
i=1

θui satisfy:


1

n− 1

n−1∑
i=1

θ̌t1i =
1

n− 1

n−1∑
i=1

θ̃t1i + z

1

n− 1

n−1∑
i=1

θui =
1

n− 1

n−1∑
i=1

¯̄θt1i + z

where z ∼ N (0, σ2Id).

Therefore, the average models 1
n−1

n−1∑
i=1

θ̌t1i and 1
n−1

n−1∑
i=1

θui follow the distributions 1
n−1

n−1∑
i=1

θ̌t1i ∼ N ( 1
n−1

n−1∑
i=1

θ̃t1i , σ2Id)

and 1
n−1

n−1∑
i=1

θui ∼ N ( 1
n−1

n−1∑
i=1

¯̄θt1i , σ2Id).

What’s more, according to Theorem 4.9, we can denote d1 as the upper bound discussed in Theorem 4.9, which satisfies

d1 ≥

√√√√√√√√√√
(24η4L2σ2

1nt
4
1 + 144η5L3σ2

1t
4
1) · (

(6+4ρ2
1)ρ

2
1

D1
+

ρ2
2

D2
+

8(1+ρ2
1)ρ

2
1

nD1
) + 8η2(5 + 2ρ21)σ

2
1t

3
1 + 48η2(1 + ρ21)σ

2
2t

3
1+

144η4L2σ2
2t

4
1 · (

(6+4ρ2
1)ρ

2
1n

D1
+

3ρ2
2(n−1)
D2

+
16(1+ρ2

1)ρ
2
1

D1
) + (

2304η3L2ρ2
1(1+ρ2

1)t
3
1

D1
+

576η3L2ρ2
1(3+2ρ2

1)nt
3
1

D1
+

192η(1+ρ2
1)t

2
1

n ) · (Ef(θ0)− Ef( 1n
n∑

i=1

θt1i )) +
288η3L2ρ2

2(n−1)t31
D2

· (Ef(θ0)− Ef( 1
n−1

n−1∑
i=1

θ̃t1i ))

+

√√√√√√ 6
(
η2n+ 3η3L+

12η4L2ρ2
1n

2t1
D1

+
72η5L3ρ2

1nt1
D1

)
D3σ

2
1t

2
1 +

(
18η2n+

432η4L2ρ2
1n

2t1
D2

)
D3σ

2
2t

2
1+(

36ηnt1 +
864η3L2ρ2

1n
2t21

D1

)
D3(Ef(θ0)− Ef( 1n

n∑
i=1

θt1i ))

Based on Gaussian mechanism (Definition 4.3), the average models 1
n−1

n−1∑
i=1

θ̌t1i and 1
n−1

n−1∑
i=1

θui are (ϵ, β)-

Indistinguishability, and thus Algorithm 2 satisfies (ϵ, β)-machine unlearning with

σ =
1√
2
· d1√

log(1/β) + ϵ−
√
log(1/β)

.

That completes the proof.

G. Proof of Theorem 4.11
Based on Equation (10), we have

θ̂ti = θ̂0i − η̂

t∑
l=1

n−1∑
j=1

W̃ t1+l−1
ij ∇Fj(θ̂

l−1
j , ξ̂l−1

j )

1

n− 1

n−1∑
i=1

θ̂ti =
1

n− 1

n−1∑
i=1

θ̂0i −
η̂

n− 1

t∑
l=1

n−1∑
j=1

∇Fj(θ̂
l−1
j , ξ̂l−1

j )

1

n− 1

n−1∑
i=1

θ̂t−1
i =

1

n− 1

n−1∑
i=1

θ̂0i −
η̂

n− 1

t−1∑
l=1

n−1∑
j=1

∇Fj(θ̂
l−1
j , ξ̂l−1

j )

Therefore, it holds that

θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti
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=(θ̂0i −
1

n− 1

n−1∑
i=1

θ̂0i )− η̂

t∑
l=1

( n−1∑
j=1

W̃ t1+l−1
ij ∇Fj(θ̂

l−1
j , ξ̂l−1

j )− 1

n− 1

n−1∑
j=1

∇Fj(θ̂
l−1
j , ξ̂l−1

j )
)

=(θui − 1

n− 1

n−1∑
i=1

θui )− η̂

t∑
l=1

(ẽTi W̃
t1+l−1 −

1Tn−1

n− 1
)Ĝl−1

(n−1) (54)

1

n− 1

n−1∑
i=1

θ̂ti −
1

n− 1

n−1∑
i=1

θ̂t−1
i = − η̂

n− 1

n−1∑
j=1

∇Fj(θ̂
t−1
j , ξ̂t−1

j ) (55)

According to Assumption 4.5, we have

Ef̃(
1

n− 1

n−1∑
i=1

θ̂ti)− Ef̃(
1

n− 1

n−1∑
i=1

θ̂t−1
i )

≤E⟨− η̂

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ),∇f̃(

1

n− 1

n−1∑
i=1

θ̂t−1
i )⟩+ L

2
E ∥ − η̂

n− 1

n−1∑
i=1

∇Fi(θ̂
t−1
i , ξ̂t−1

i ) ∥2

=− η̂

2
E ∥ ∇f̃(

1

n− 1

n−1∑
i=1

θ̂t−1
i ) ∥2 − η̂

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) ∥2

+
η̂

2
E ∥ ∇f̃(

1

n− 1

n−1∑
i=1

θ̂t−1
i )− 1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) ∥2

+
η̂2L

2
E ∥ 1

n− 1

n−1∑
i=1

∇Fi(θ̂
t−1
i , ξ̂t−1

i )− 1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) +

1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) ∥2

=− η̂

2
E ∥ ∇f̃(

1

n− 1

n−1∑
i=1

θ̂t−1
i ) ∥2 − η̂

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) ∥2

+
η̂

2
E ∥ 1

n− 1

n−1∑
i=1

(∇fi(
1

n− 1

n−1∑
i=1

θ̂t−1
i )−∇fi(θ̂

t−1
i )) ∥2

+
η̂2L

2
E ∥ 1

n− 1

n−1∑
i=1

(∇Fi(θ̂
t−1
i , ξ̂t−1

i )−∇fi(θ̂
t−1
i )) ∥2 +

η̂2L

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) ∥2

≤ η̂2Lσ2
1

2(n− 1)
− η̂

2
E ∥ ∇f̃(

1

n− 1

n−1∑
i=1

θ̂t−1
i ) ∥2 − η̂(1− η̂L)

2
E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) ∥2

+
η̂L2

2(n− 1)

n−1∑
i=1

E ∥ θ̂t−1
i − 1

n− 1

n−1∑
i=1

θ̂t−1
i ∥2︸ ︷︷ ︸

B5

(56)

Bound
n−1∑
i=1

E ∥ θ̂ti − 1
n−1

n−1∑
i=1

θ̂ti ∥2:

n−1∑
i=1

E ∥ θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti ∥2

=

n−1∑
i=1

E ∥ (θui − 1

n− 1

n−1∑
i=1

θui )− η̂

t∑
l=1

(ẽTi W̃
t1+l−1 −

1Tn−1

n− 1
)Ĝl−1

(n−1) ∥
2

≤2

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2
n−1∑
i=1

E ∥
t∑

l=1

(ẽTi W̃
t1+l−1 −

1Tn−1

n− 1
)(Ĝl−1

(n−1) − Ĥ l−1
(n−1)) ∥

2
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+ 4η̂2
n−1∑
i=1

E ∥
t∑

l=1

(ẽTi W̃
t1+l−1 −

1Tn−1

n− 1
)Ĥ l−1

(n−1) ∥
2

≤2

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2ρ22σ
2
1(n− 1)2t+ 4η̂2

n−1∑
i=1

t∑
l=1

E ∥ (ẽTi W̃
t1+l−1 −

1Tn−1

n− 1
)Ĥ l−1

(n−1) ∥
2 +

t∑
l ̸=l∗

E⟨(ẽTi W̃ t1+l−1 −
1Tn−1

n− 1
)Ĥ l−1

(n−1), (ẽ
T
i W̃

t1+l∗−1 −
1Tn−1

n− 1
)Ĥ l∗−1

(n−1)⟩

≤2

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2ρ22σ
2
1(n− 1)2t+ 8η̂2

n−1∑
i=1

E
t∑

l=1

∥ (ẽTi W̃
t1+l−1 −

1Tn−1

n− 1
)Ĥ l−1

(n−1) ∥
2

≤2

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2ρ22σ
2
1(n− 1)2t+ 8η̂2ρ22(n− 1)

t∑
l=1

n−1∑
i=1

E ∥ ∇fi(θ̂
l−1
i ) ∥2︸ ︷︷ ︸

B6

(57)

Bound B6:

B6 =

n−1∑
i=1

E ∥ ∇fi(θ̂
l−1
i )−∇fi(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) +∇fi(

1

n− 1

n−1∑
i=1

θ̂l−1
i )−∇f(

1

n− 1

n−1∑
i=1

θ̂l−1
i )+

∇f(
1

n− 1

n−1∑
i=1

θ̂l−1
i )−∇f̃(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) +∇f̃(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2

≤4

n−1∑
i=1

E ∥ ∇fi(θ̂
l−1
i )−∇fi(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2 +4

n−1∑
i=1

E ∥ ∇fi(
1

n− 1

n−1∑
i=1

θ̂l−1
i )−∇f(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2 +

4

n−1∑
i=1

E ∥ ∇f(
1

n− 1

n−1∑
i=1

θ̂l−1
i )−∇f̃(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2 +4

n−1∑
i=1

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2

≤4

n−1∑
i=1

E ∥ ∇fi(θ̂
l−1
i )−∇fi(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2 +4

n−1∑
i=1

E ∥ ∇fi(
1

n− 1

n−1∑
i=1

θ̂l−1
i )−∇f(

1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2 +

4

n−1∑
i=1

E ∥ 1

n− 1
(∇fn(

1

n− 1

n−1∑
i=1

θ̂l−1
i )− 1

n

n∑
i=1

∇fi(
1

n− 1

n−1∑
i=1

θ̂l−1
i )) ∥2 +4

n−1∑
i=1

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2

≤4L2
n−1∑
i=1

E ∥ θ̂l−1
i − 1

n− 1

n−1∑
i=1

θ̂l−1
i ∥2 +4(n− 1)σ2

2 +
4σ2

2

n− 1
+ 4

n−1∑
i=1

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2 (58)

Substitute Equation (58) into Equation (57) to get

n−1∑
i=1

E ∥ θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti ∥2

≤2

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2ρ22σ
2
1(n− 1)2t+ 32η̂2ρ22σ

2
2(n− 1)2t+ 32η̂2ρ22σ

2
2t+

32η̂2L2ρ22(n− 1)

t∑
l=1

n−1∑
i=1

E ∥ θ̂l−1
i − 1

n− 1

n−1∑
i=1

θ̂l−1
i ∥2 +32η̂2ρ22(n− 1)2

t∑
l=1

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂l−1
i ) ∥2 (59)

Therefore, it holds that

T∑
t=1

n−1∑
i=1

E ∥ θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti ∥2
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≤2T

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2ρ22σ
2
1(n− 1)2T 2 + 32η̂2ρ22σ

2
2(n− 1)2T 2 + 32η̂2ρ22σ

2
2T

2+

32η̂2L2ρ22(n− 1)T

T−1∑
t=0

n−1∑
i=1

E ∥ θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti ∥2 +32η̂2ρ22(n− 1)2T

T−1∑
t=0

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂ti) ∥2 (60)

Then
T−1∑
t=0

n−1∑
i=1

E ∥ θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti ∥2

≤3T

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2ρ22σ
2
1(n− 1)2T 2 + 32η̂2ρ22σ

2
2(n− 1)2T 2 + 32η̂2ρ22σ

2
2T

2+

32η̂2L2ρ22(n− 1)T

T−1∑
t=0

n−1∑
i=1

E ∥ θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti ∥2 +32η̂2ρ22(n− 1)2T

T−1∑
t=0

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂ti) ∥2 (61)

If it satisfies η̂ <
√

1
32L2ρ2

2(n−1)T
, the following holds:

(1− 32η̂2L2ρ22(n− 1)T )

T−1∑
t=0

n−1∑
i=1

E ∥ θ̂ti −
1

n− 1

n−1∑
i=1

θ̂ti ∥2

≤3T

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +4η̂2ρ22σ
2
1(n− 1)2T 2 + 32η̂2ρ22σ

2
2(n− 1)2T 2 + 32η̂2ρ22σ

2
2T

2+

32η̂2ρ22(n− 1)2T

T−1∑
t=0

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂ti) ∥2 (62)

Summing from t = 1 to t = T for Equation (56) and substituting Equation (62) into it yields

Ef̃(
1

n− 1

n−1∑
i=1

θ̂Ti )− Ef̃(
1

n− 1

n−1∑
i=1

θ̂0i )

≤
( 16η̂3L2ρ22(n− 1)T

1− 32η̂2L2ρ22(n− 1)T
− η̂

2

) T−1∑
t=0

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂ti) ∥2 − η̂(1− η̂L)

2

T−1∑
t=0

E ∥ 1

n− 1

n−1∑
i=1

∇fi(θ̂
t−1
i ) ∥2 +

1

2(n− 1)
· 3η̂L2T

1− 32η̂2L2ρ22(n− 1)T

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +
2η̂3L2ρ22σ

2
1(n− 1)T 2

1− 32η̂2L2ρ22(n− 1)T
+

16η̂3L2ρ22σ
2
2(n− 1)T 2

1− 32η̂2L2ρ22(n− 1)T
+

16η̂3L2ρ22σ
2
2T

2

(n− 1)(1− 32η̂2L2ρ22(n− 1)T )
+

η̂2Lσ2
1T

2(n− 1)
(63)

where η̂ <
√

1
32L2ρ2

2(n−1)T
.

Then let

D4 =
1

2
− 16η̂2L2ρ22(n− 1)T

1− 32η̂2L2ρ22(n− 1)T
, D5 =

1

2
− η̂L

2

D6 = 1− 32η̂2L2ρ22(n− 1)T.

If the step size η̂ satisfies η̂ <
√

1
32L2ρ2

2(n−1)T
, we have the following convergence result of the subsequent T rounds of

training:

D4 ·
1

T

T−1∑
t=0

E ∥ ∇f̃(
1

n− 1

n−1∑
i=1

θ̂ti) ∥2 +D5
1

T

T−1∑
t=0

E ∥ 1

n− 1

n−1∑
i=1

∇f̃(θ̂ti) ∥2
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≤ 3L2

2D6
· 1

n− 1

n−1∑
i=1

E ∥ θui − 1

n− 1

n−1∑
i=1

θui ∥2 +
η̂Lσ2

1

2(n− 1)
+

f̃( 1
n−1

n−1∑
i=1

θui )− f̃∗

η̂T
+

2η̂2L2ρ22σ
2
1(n− 1)T

D6
+

16η̂2L2ρ22σ
2
2(n− 1)T

D6
+

16η̂2L2ρ22σ
2
2T

(n− 1)D6

which completes the proof.

H. Proof of Corollary 4.12
We assume that D4 ≥ C, where C ∈ (0, 1

2 ). Then it holds

16η̂2L2ρ22(n− 1)T

1− 32η̂2L2ρ22(n− 1)T
=

1

2
−D4 ≤ 1− 2C

2
⇔ η̂2 ≤ 1− 2C

64(1− C)L2ρ22(n− 1)T

and D6 = 1− 32η̂2L2ρ22(n− 1)T ≥ 1

2(1− C)

If we set η̂ = n−1
T , the following should be satisfied

(n− 1)2

T 2
≤ 1− 2C

64(1− C)L2ρ22(n− 1)T
⇔ T ≥ 64(1− C)L2ρ22(n− 1)3

1− 2C

D5 =
1

2
− η̂L

2
=

1

2
− (n− 1)L

2T
≥ 0 ⇔ T ≥ (n− 1)L

As a result, it holds that 

f̃( 1
n−1

n−1∑
i=1

θui )− f̃∗

η̂T
=

f̃( 1
n−1

n−1∑
i=1

θui )− f̃∗

n− 1

η̂Lσ2
1

2(n− 1)
=

Lσ2
1

2T

2η̂2L2ρ22σ
2
1(n− 1)T

D6
= (

1

2
−D4) ·

σ2
1

8
≤ (1− 2C)σ2

1

16

16η̂2L2ρ22σ
2
2(n− 1)T

D6
= (

1

2
−D4) · σ2

2 ≤ (1− 2C)σ2
2

2

16η̂2L2ρ22σ
2
2T

(n− 1)D6
= (

1

2
−D4) ·

σ2
2

(n− 1)2
≤ (1− 2C)σ2

2

2(n− 1)2

Therefore, if the number of training round T satisfies T ≥ max{ 64(1−C)L2ρ2
2(n−1)3

1−2C , (n− 1)L} with C ∈ (0, 1
2 ), and the

step size η̂ further satisfies η̂ = n−1
T , then Corollary 4.12 holds.

I. Experimental Details
I.1. Datasets and Models

We train the ResNet-18 model (He et al., 2016) and the CNN model on the real-world datasets, including MNIST (Lecun
et al., 1998), CIFAR-10 (Krizhevsky & Hinton, 2009), SVHN (Netzer et al., 2011) and Fashion-MNIST (Xiao et al., 2017).

• MNIST is a handwritten digit dataset containing 60, 000 training images and 10, 000 test images of grayscale digits
(0− 9), each with a resolution of 28× 28 pixels.

• Fashion-MNIST consists of 60, 000 training images and 10,000 testing images, with each being a 28 × 28 pixel
grayscale image representing various clothing items such as T-shirts, pants, dresses, and more.
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• CIFAR-10 includes 60, 000 colored images of 10 common object classes, with 50, 000 images for training and 10, 000
for testing, each at 32× 32 pixels with three color channels (RGB).

• SVHN consists of real-world house number images from street views, containing 73, 257 training images and 26, 032
test images, also at 32× 32 pixels with RGB channels.

I.2. Baseline methods

To show the advantages of our proposed algorithm, we compare it with the following baseline methods:

• Origin. The baseline is actually the D-PSGD algorithm (Lian et al., 2017), which does not involve any unlearning
operations.

• Retrain. This method retrains the decentralized models from scratch on the remaining n− 1 clients after removing the
target client-n. It can achieve exact unlearning but requires significant time and resources.

• FATS-Unl (Tao et al., 2024). It saves the historical global models and the sets of clients that participated in past
training rounds on the central server. When a client initiates an unlearning request, the algorithm retrieves the latest
model from before the client’s initial participation in training and then retrains.

• FedRecovery (Zhang et al., 2023). It relies on a central server to remove the weighted sum of the gradient residuals
from the global model to eliminate the influence of a certain client, and adds specific Gaussian noise to make the
unlearned model and the retrained model statistically indistinguishable.

• HDUS (Ye et al., 2024). Each client’s main model relies entirely on local and public datasets and remains unaffected
by its neighbors. The collaboration among clients is solely reflected in the integration of distilled seed models from
neighbors to make decisions. Therefore, the decision results of the client initiating the unlearning request can be
removed by adjusting the integration process.

I.3. Metrics

In our experiments, we use multiple metrics to evaluate the performance of the proposed decentralized unlearning algorithm,
including accuracy, unlearning time, communication overhead, and attack success rate.

• Accuracy. To examine the statistical indistinguishability, we evaluate the overall accuracy of the unlearning models
and the retrained models. To show the effectiveness of our PDUDT, we record the average accuracy on each class after
performing a specified number of rounds.

• Unlearning time. We evaluate the running time required for the proposed Algorithm 2 to perform the unlearning
operations and compare it with other baseline algorithms. For FATS-Unl and FedRecovery, this is measured on the
server side, while for others, it is tracked on the client with the most neighbors.

• Attack success rate. Membership Inference Attack (MIA) is employed to determine whether the data samples of a
client slated for forgetting were part of the training process. A higher MIA success rate indicates that the global model
still retains considerable information about this client’s training data, signifying an inadequate unlearning effect. In
contrast, a success rate of 50%—equivalent to random guessing—implies that the model no longer carries exploitable
traces of the client’s data, thereby demonstrating effective client removal. We perform the membership inference
attack on the unlearned model to verify if the proposed unlearning algorithm successfully removed the targeted client’s
influence.

I.4. Additional experimental results

To show the scalability of PDUDT, we conducted experiments with 20 clients performing a natural language processing
(NLP) task. Specifically, we evaluated PDUDT using the Yahoo! Answers dataset with the Bert-tiny model.

For the Yahoo! Answers dataset, Figure 3 demonstrates that our method is statistically indistinguishable from the Perturbed
Retraining approach across a range of noise scales. Moreover, Figure 4 highlights the effectiveness of both PDUDT and
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Figure 3. The accuracy of unlearned models using PDUDT,
PDUDT (ES), and perturbed retrained models on Yahoo! An-
swers dataset.
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Figure 4. The accuracy on each class using PDUDT, PDUDT (ES),
and perturbed retrained models on Yahoo! Answers dataset.

Table 5. Comparison of the unlearning time and the attack precision of MIA across different unlearning methods on Yahoo! Answers
dataset. “-” means no results or not applicable.

Method Unlearning time (s) Attack precision (%)

Origin - 69.2± 0.2
Retrain 2852.2 50.3± 0.8

FATS-Unl 2039.9 51.2± 0.4
FedRecovery 13.0 51.8± 0.7

HDUS 27.5 51.5± 0.3
PDUDT 11.8 50.7± 0.7

PDUDT (ES) 10.2 51.1± 0.5

its space-efficient variant, PDUDT (ES): While they maintain high performance on classes 0–8, their accuracy noticeably
declines for Class 9. Finally, Table 5 summarizes the substantial time savings afforded by our unlearning operations and
further confirms the unlearning effectiveness of PDUDT and PDUDT (ES) through comparable membership inference attack
(MIA) precision relative to the Retrain method. The results confirm the superior performance of PDUDT, showing good
scalability to larger networks and NLP task.
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