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ABSTRACT

We introduce GATE, a framework for improving the estimation of conditional
average treatment effects (CATE) from observational data. Our framework lever-
ages generative models to selectively augment datasets with synthetic potential
outcomes, thus addressing the covariate shift problem inherent in CATE estimation.
Crucially, GATE enables the integration of external knowledge into downstream
CATE models, by leveraging generative models trained on external data sources,
such as large language models (LLMs). These models utilize rich contextual
information, such as dataset metadata, to generate synthetic potential outcomes
grounded in real-world contexts. While generative models can introduce bias
when imperfect, we theoretically demonstrate that restricting augmentation to a
carefully chosen subsets of the covariate space can allow to achieve performance
gains despite these imperfections. Empirically, GATE instantiated with LLMs
consistently improves a wide range of CATE estimators, narrowing performance
gaps between learners and underscoring the advantages of incorporating external
knowledge through generative augmentation, particularly in small-sample regimes.

1 INTRODUCTION

Motivation. Conditional Average Treatment Effect (CATE) estimation has received a lot of attention
from the machine learning (ML) literature (Shalit et al., 2017; Kiinzel et al., 2019; Kennedy, 2023).
This should not be a surprise: tools allowing to leverage observational data to estimate the person-
alised effects of interventions are an invaluable asset in domains varying from healthcare (Gershon
et al., 2021) to economics (Baum-Snow & Ferreira, 2015) or marketing (Hill et al., 2015). However,
despite its immense benefits, estimating CATE from observational data remains challenging.

In observational data, especially in high-stakes domains, treatments are assigned non-randomly. This
non-random treatment assignment, particularly when guided by expert judgment (Hiyiik et al., 2024),
leads to a covariate shift, where covariate distributions differ between treated and control groups,
leading to unreliable or high-variance treatment effect estimates (Johansson et al., 2022). Covariate
shift can have especially negative consequences in small-sample regimes (Alaa & van der Schaar,
2018), prevalent in case of novel treatments, rare diseases or data collected at the country level.

Existing approaches address the covariate shift through model specification, employing inverse-
propensity weighting (Abrevaya et al., 2015), representation learning (Johansson et al., 2016; Shalit
et al., 2017), or both (Assaad et al., 2021; Hassanpour & Greiner, 2019). In this work, we explore
a complementary solution to the covariate shift problem, which can be used alongside any CATE
learner: addressing covariate shift by manipulating the dataset rather than the model.

Generative Augmentation for CATE. To this end, we introduce GATE (Generative Augmentation
for Treatment Effect estimation), a flexible data augmentation framework that leverages diverse
generative models to supercharge the performance of existing CATE estimators. By augmenting' the
observational dataset with missing potential outcomes sampled from a generative model, GATE not
only increases the effective sample size (as is typical in data augmentation) but also directly mitigates
the covariate shift inherent in CATE estimation. Importantly, as we demonstrate both theoretically
and empirically, the reduction in covariate shift can counterbalance biases introduced by a potentially

"We refer to this solution as augmentation, rather than imputation, as we approach the problem from the
perspective of the dataset DEObS), rather than D) (see Section 2 for definitions).
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imperfect generative model. This distinguishes GATE from traditional data augmentation, where
inaccuracies in the generative model can easily degrade performance (Manousakas & Aydore, 2023).

To maximize effectiveness, GATE restricts augmentation to a carefully selected subset of the covariate
space, the admissible set, where the generative model’s predictions are expected to be most reliable.
This principled selection process, informed by the properties of the generative model, ensures robust
augmentation and minimizes the risk of introducing noise.

Leveraging External Knowledge Through Generative Models. Beyond mitigating covariate
shift, data augmentation offers a unique opportunity to inject external knowledge into downstream
CATE models. GATE achieves this by leveraging generative models trained on external data sources,
contrasting imputation methods limited to local regression modules or GANs (Aloui et al., 2023;
Yoon et al., 2018). In particular, we propose to instantiate GATE with Large Language Models
(LLMs), which benefit from extensive pretraining and have been shown to improve performance of
downstream models across diverse tasks (Choi et al., 2022; Zhu et al., 2023; Seedat et al., 2024).

The key advantage of using LLMs as generative models lies in their ability to leverage rich metadata
present in observational datasets, such as textual descriptions of covariates or contextual information.
By utilizing this metadata, LLMs can generate potential outcomes that align with common-sense
reasoning, grounding downstream CATE models in real-world contexts. Recent studies also highlight
LLMs’ ability to uncover causal structures in real-world data (Richens & Everitt, 2024; Zecevié et al.,
2023; Long et al., 2024), further validating their use in this context.

However, there are valid concerns regarding the safety and robustness of employing LLMs in the
causal setting, particularly given their propensity for hallucinations. As such, we approach the use
of LLMs with a critical and cautious stance, acknowledging the uncertainties and potential pitfalls.
Through empirical experiments, we investigate under which circumstances LLMs outperform other
generative models within our framework. Our results indicate that LLMs can be particularly beneficial
in low-data regimes, and under a strong covariate shift.

Contributions. @ Data augmentation framework for CATE: We propose GATE, a flexible
data augmentation framework that leverages diverse generative models to obtain missing
potential outcomes, addressing the challenges of covariate shift in CATE estimation. Unlike
existing approaches for potential outcome imputation, GATE can seamlessly incorporate insights
from external data sources to enhance downstream CATE estimators. @ Theoretical analysis:
We derive a generalization bound showing that even imperfect generative models can improve
CATE estimation by selectively augmenting subsets of the covariate space. This not only reduces
covariate shift but also increases the effective sample size, offering significant advantages in
small-sample regimes. @ Empirical validation: Through experiments on three datasets, we
demonstrate that GATE improves the performance of a wide range of CATE models compared
to the no-augmentation baseline, while reducing the performance gap between learners. We
further explore the benefits and drawbacks of instantiating our framework with LLMs, showing
that LLMs’ ability to utilise external knowledge offers particular benefits in low-data regimes.

2 PROBLEM SETUP

Conditional average treatment effects (CATEs). We assume access to an observational dataset
DY) = {(X;,T;,Y;)}", such that (X;,T;,Y;) "= P(X,T,Y), where Y; € Y is a continuous
or binary outcome, X; € X C R% is a vector of covariates and T; € {0,1} is a binary treatment
assignment. For conciseness, we ignore the sample subscript ¢ unless explicitly needed. Following
the potential outcomes framework (Rubin, 1974), we assume that there are two possible potential
outcomes: Y (0) (no treatment) and Y (1) (under treatment). Our overall goal is to estimate CATE:

m(z) =E[Y(1) = Y(0) [ X = 2] = p(2) — po(), M
where u:(z) = E[Y (¢t)| X = z]. We make the standard (Rubin, 1974) assumptions of overlap
O< P(T = 11X =2) <1Vx € X), ignorability (Y (1),Y(0)) L T|X), and consistency
Y =Y(@)ifT =t). Wealsodefine P, = P(X | T =t)and m; = P(T = t).

Conditional Average Potential Outcomes (CAPOs). A problem closely related to CATE estimation
is the estimation of the CAPO functions, po(x) and p;(x). Although estimating 1o and g is not
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Figure 1: Method overview. GATE enhances CATE estimation in the finite-sample regime through
selective data augmentation. For a fixed treatment ¢, synthetic potential outcomes for samples with
T; = 1 —t are generated using Pt(g ™) and scored via s(z, t) to decide their inclusion in DgObs). This
approach mitigates covariate shift while boosting the effective sample size.

strictly necessary to obtain the treatment effect, it is sufficient and almost all the existing meta-learning
strategies for estimating CATE (Kiinzel et al., 2019; Curth & Van der Schaar, 2021b) estimate (1 and
(1 as one of the intermediate steps. For this reason we will focus our analysis on the estimation of 1

and pq from D(()Obs) and Dg‘)bs) respectively, where DgObs) = {(X;,Y;) € DY) | T; =t}

The challenges of estimating CAPO from finite data. Inferring CAPOs from finite observational

(obs)

data D, is challenging for two main reasons (see Johansson et al. (2022) for a detailed discussion):

@ Large variance: As in supervised learning, model variability will be large in small datasets,
leading to less reliable predictions (Hastie et al., 2009). In context of CAPO, this issue is exacerbated
because DEObS) may be significantly smaller than D(°P%), since min{ |D(()°bs) l, \DgObs) |} < 3Dlebs)),
leading to relatively high error in CAPO estimation.

(2) Covariate shift: In observational data, covariates in the subset Dt(Obs) are sampled from P;(X),
which is typically different from P;_;(X) and hence also different from the marginal P(X). As a

result, a CAPO model fitted on D\°" might not generalise well to the entire population.

3 GATE: DATA AUGMENTATION FOR IMPROVED PO ESTIMATION

Our objective in this work is to simultaneously minimise the covariate shift and decrease the model
variability. Both of these goals could be achieved by generating the missing potential outcomes for

individuals in D(°"*) using a generative model Pt(f") which allows to sample Y (&™) (¢) | X =

T ~ Pt(im) for all z € X. Using this model, for every (X, T,Y") we can create an additional sample
(X,1— T,Y () (1 —T)) and add it to D% to create the augmented dataset D(°"®) (see Figure 1).

obs)

If the generator P(g ™) was perfect, augmenting D' by generating the missing potential outcomes

for all individuals would fix the covariate shift problem. Indeed, the augmented dataset ﬁiObs)

(

would
°"%) Furthermore, we would have [D{°**)| = n > 7, - n, hence
mitigating the variance problem However in practice, the generator Pt( en) may be inaccurate (e.g.
non-null bias), at least in some areas of the covariate space X. In this case, to balance the bias

introduced by Pt(gen) with the benefits obtained by mitigating the covariate shift, it might be better to
generate the missing potential outcomes only in a selective subset of the covariate space. We verify
this intuition theoretically by deriving a generalisation bound.

comprise the same covariates as D

3.1 BOUNDING THE GENERALIZATION ERROR OF THE AUGMENTED DATASET.

We fix a treatment ¢ € {0, 1} and focus on augmenting the dataset Dt(Obs), used to estimate y;. To
avoid introducing too much bias, we would like to use Pt(g ™) only in a selected subset of the covariate



Under review as a conference paper at ICLR 2025

space, which we call the admissible set X;. In what follows, we theoretically analyse how the choice
of X; affects the trade-off described in the previous section.

We note that by augmenting the dataset D(°*®), we manipulate both the distribution of the covariates
and the conditional distribution of the outcomes. To formalise the induced changes, we introduce
the variables (A, X', Y”(t)), where A is a binary random variable which indicates whether X’ is
drawn from the factual distribution P; or not. That is, let X'|A = ¢ ~ P; (so that X’ is drawn
from the factual distribution when A = ¢) and let X'|A = 1 -t ~ @, sothat for A = 1 —¢
we draw X' from a distribution (), supported on X; only. Setting P(A = ¢) = m;, we obtain the
following marginal distribution of X’: P/(X') = mP(X' | T =1t) + (1 — m)Q(X"). We then let
Y'(t) = 1(A=t)Y(t) + 1(A =1 — t)Y (&) (¢), i.e. we use the generative model only when X is
drawn from @), else we use the observed outcome.

Having formalized the data augmentation process with the distribution ¢, we now highlight the trade-
off associated with choosing a good &} (and a good () supported on this &) for CAPO estimation.
We do so by deriving a generalization bound on the expected risk R(f;) = Ex y ) [L(Y (1), f:(X))]
for a hypothesis f; and a loss function L, building on the bound presented in (Johansson et al., 2022)

to account for the effect of using the augmented dataset 75§°bs) = {(X1, Y/ (1)},

(R R

Theorem 3.1. Assume access to an augmented dataset {(X!, Y/ (1))}, e P/ (X', Y'(t)). Then
with probability at least 1 — 0,

R(f) < R () + (U= m)PM (Q. Pis) + Vior e @
(1 7)Exng [PMex (P(Y (D) | X), PO (YO (@) | X)) . )

where R(™P)(f,) is the empirical risk, IPMs (P, P') = supses|Bvar[f(V)] — Ew~p [f(W)]| is
the Integral Probability Metric between P and P’, L and L are classes of functions determined by
the choice of the loss L, Vp: is a constant, and Crzftﬁ = O(log fzf/s) as g — +oo.

Proof. The proof is given in Appendix C, with a detailed definition of all the terms involved. O

Interpretation. The bound in Theorem 3.1 illustrates the different mechanisms which can affect
the generalization error involved in using generative models for data augmentation.

@ Covariate shift and Variance : The term IPM. (Q, P;_;) measures the distance between the

distribution ) of the covariates for which the generative model is used and the counterfactual
e cH . . .
distribution P;_;. On top of that, the term Vp/—552 quantifies the variance stemming from the
My
finite-sample regime, emphasising that potential outcome generation is particularly impactful in the
small-sample regime. Both of these terms can be made small by performing data augmentation for

all the samples with treatment 7' = 1 — ¢ in D(©bs),

@ Noise of the generator : While the minimization of the above two terms suggests that we should
augment the observational dataset with as many generated samples as possible, this ignores the impact
of the inaccuracy of the generator. This inaccuracy is highlighted by the term involving IPM /x in
the bound, which quantifies how close the distribution Y (8°™)(¢) is to the ground-truth distribution of
the potential outcome Y (t), conditioned on different values of the covariates X .

Remark. Recent work by Aloui et al. (2023) has similarly explored the role of data augmentation
in CATE estimation, highlighting the fundamental tradeoff between reducing covariate shift and
controlling imputation error. Our theoretical bound, while covering similar phenomena, offers
several novelties. First, it provides a more general formulation by accommodating an arbitrary loss
function L. Second, our bound explicitly accounts for the potential stochasticity of generative models,
employing an IPM term to measure the distributional distance between the ground-truth outcome and
the generator’s distribution. Finally, our bound characterizes the finite-sample regime, showing how
the benefits of data augmentation correlate with sample size.

Navigating the trade-off through the admissible set X;. The derived generalisation bound confirms

that performance gains could be obtained even in the face of potential inaccuracy of Pt(ien), by
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balancing the effect of these two mechanisms with a careful choice of ). We would like () to be as
close as possible to the counterfactual distribution P;_; (to minimise term @), while at the same
time excluding regions where the generative model is particularly inaccurate (thus minimising term
(2)). To achieve this, for a given admissible set X; we define Q(X) o< P;_(X)1{X € A,}. The
corresponding empirical distribution is then Q(z) = ﬁ Y i e x0(z — X;), with 6(x) the Dirac
delta function and X = {i | i € [n],T; = 1 — ¢,X; € X;}. This way, manipulating X; for
a given generative model Pt(ffn) allows to navigate the trade-off between the bias introduced by
the inaccuracy of the generator, and the reduction of variance and covariate shift achieved via data
augmentation. We provide a discussion of how X; can be defined in Section 4.2.

4 INSTANTIATING GATE WITH LARGE LANGUAGE MODELS

As we discussed in the section above, the design of GATE involves making two design choices which
will determine the efficacy of data augmentation: the choice of the generative model and the choice of
the admissible set X;. In what follows, we describe an instantiation of GATE using LLMs, in which
we propose to define the admissible set X; using the LLM’s uncertainty.

4.1 LARGE LANGUAGE MODELS AS POTENTIAL OUTCOME GENERATORS

The efficacy of the GATE framework hinges on the selection of the generative model Pt()ien). By

choosing Pt(ien) that closely approximates the true conditional distribution P(Y ()| X = z), we can

tighten the generalization bound presented in Theorem 3.1.

While GATE can be be instantiated with generative models trained exclusively on observational

data DEObS) — such as local regression models (Aloui et al., 2023)) — the utility of such solutions
is inherently limited since such generative models ultimately utilise the same information as the
downstream CATE model. To overcome this limitation, we propose to instantiate GATE with
foundational models, such as large language models (LLMs) (Bommasani et al., 2021).

Why LLMs? LLMs bring several unique properties that make them particularly well-suited for this
task. Due to extensive pretraining they encode rich domain knowledge. As such, they can effectively
utilize dataset metadata, such as descriptions of covariates, study populations, or the context of
data collection, to align their outputs with the specific problem domain and integrate contextual

relationships that may not be apparent in Di"bs). This is particularly advantageous in small-sample
regimes. Additionally, LLMs excel at few-shot learning, allowing them to adapt to a given task when
conditioned on subsets of DIEObS). By grounding their predictions in observed data while incorporating

broader priors, LLMs can address shortcomings of D(°"*) and improve alignment with real-world
distributions, thus allowing the downstream CATE models to transcendent observational data.

To harness the capabilities of LLMs, we employ two complementary prompting strategies, which —
as we show in our empirical experiments (Section 6) — allow GATE to significantly improve CATE
estimators, particularly in data-scarce settings. Details of the prompts can be found in Appendix E.

(I) Metadata-Driven Prompts. We guide the extraction of the prior knowledge of the LLM by
utilising metadata and auxiliary information present in observational datasets. We achieve this by
including in the prompts information such as: natural language descriptions of covariates, information
about the data collection technique, the population of the study or more general context of the dataset.

(II) Conditioning the LLM on the observational dataset. We exploit the few-shot learning
capabilities of the LLM by conditioning the generation on a randomly chosen subset of samples
from the observational dataset D(°**) presented in natural language, hence exploiting its in-context
learning abilities.

Stochastic nature of the LLM. Given the stochastic nature of LLMs, for each sample X; = z; in
D©Ps) for which we decide to generate the potential outcome, we propose to sample K potential

outcomes from Pt(,ien): Yfien) (t) ~ Pt(f;.ei”), k = 1,...,K. To improve the robustness of the
generation, we then aggregate these samples by taking the mean, and setting Yi(” en) (t) = )Z.%en) (1)

(see Figure 1). As we explain in the next section, we further use the variance in the generated potential
outcomes to guide the selection of the admissible set ;.
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4.2 CHOOSING THE ADMISSIBLE SET X

The definition of the subset X; for the selection of the generated outcomes Y (9¢™) is another important
component of GATE. Under our definition of @, choosing X; = () retains the original observational
dataset, failing to address the covariate shift. Conversely, setting X; = X’ mitigates covariate shift, but
can introduce significant bias if the generated potential outcomes Y (2°™) are imperfect. As motivated

in Theorem 3.1 by the term (2), the choice of X; can be guided by the objective of excluding from the

admissible set regions of the covariate space X’ where the distribution Pt(ien)

from the true distribution P(Y (¢)|X = x).

significantly deviates

However, assessing the statistical distance between these two distributions is challenging, particularly
when the available observational dataset is small, because the potential outcome Y () is not observed
for every X = x. Given this, we consider a scoring function s(z, t), which is chosen as a proxy for

the fidelity of Pt(i,en) at a given point z € X. Then, for a fixed parameter o € [0, 1], we define an

adaptive threshold \(a, D(°P®)) = Quantile,, ({s(X;,T;) | @ € [n]}). * With this threshold, we
define the admissible sets X, and X as

Xo=X ={Xi|i € [n],s(X;,T;) < A, D)}, 4)
comprising the samples for which the fidelity of the potential outcome generated by the Pt(ien)
is below the a-quantile. We provide a detailed discussion on this definition in Appendix

Furthermore, we explore the influence of o on the performance of the downstream CATE model in
our empirical experiments in Section

Choosing the scoring function s for LLMs. For deterministic models trained on D(°P®), properties
of D©Ps) itself could be leveraged to find an optimal admissible set (Aloui et al., 2023; Jesson
et al., 2020). For stochastic models such as LLMs, trained on data different from Dlobs) e
propose to rely on the variance in the generated outcomes to define the admissible set, by setting

s(z,t) = Vary e (1)~ pEe™ (Y(&en) (¢) | X = x). While this scoring function might not always be

optimal, it reflects the heuristic that the accuracy of the Pt(ien) might be lower in the areas where
the generative model is less certain about its predictions. Indeed, in the context of LLMs, it has
been shown that uncertainty measures such as variance can be used to discriminate between factually
correct and incorrect responses (Huang et al., 2023; Manakul et al., 2023), as well as predict the
quality of a response (Lin et al., 2023). A detailed discussion and evaluation of the variance-based
scoring function can be found in Appendix

5 RELATED WORKS

CATE Meta-Learners. Model-agnostic approaches to CATE estimation, known as meta-learners,
are widely studied for their competitive performance and strong theoretical foundations (Kiinzel et al.,
2019; Kennedy, 2023). Among these, two-step learners (Kennedy et al., 2017; Nie & Wager, 2021;
Curth & Van der Schaar, 2021b) implicitly leverage data augmentation by estimating a/l missing
potential outcomes in the first step. Unlike two-step learners, GATE selectively imputes outcomes
based on the generative model’s properties. This flexibility allows GATE to act as a pre-processing
step in the meta-learning pipeline, offering performance gains (e.g., by regularization or incorporating
external knowledge) without altering the standard meta-learners. We empirically demonstrate GATE’S
benefits also to two-step learners in Section 6, with further discussion in Appendix

Data Augmentation for CATE Estimation. Few works address augmenting datasets with missing
potential outcomes beyond the two-step learner framework. GANITE (Yoon et al., 2018) uses GANs
to generate proxies for missing outcomes, while Aloui et al. (2023) selectively impute outcomes
with local regression models. Unlike GATE, these methods do not provide a principled way to utilize
generative models trained on external datasets, which is critical in small-sample or high covariate
shift settings. We compare GATE against GANITE and COCOA in Section 6.3 and Appendix F.1,
showing improved performance across datasets.

2Here, we propose a percentile-based threshold X to easily control the proportion of generated potential
outcomes across datasets. However, in real-world applications, a fixed-value threshold (informed by domain
knowledge) may better safeguard against low-quality outcomes. See Appendix for details.
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6 NUMERICAL EXPERIMENTS

6.1 EXPERIMENTAL DESIGN

Data. Evaluating CATE models using observational data is challenging due to the lack of ground-
truth CATE values. Standard benchmarks like IHDP (Hill, 2011) or News (Johansson et al., 2016)
address this by designing artificial potential outcome functions. However, since we aim to compare
generative models trained on D(°bs) with those trained on external (real-world) datasets, the outcome’s
relationship with treatment and covariates must be reality-grounded. Consequently, we utilize the
following datasets: Lalonde CPS1 (Lal.onde, 1986) (n = 7279), where synthetic counterfactual
outcomes are obtained using a pre-trained generative model from RealCause (Neal et al., 2020); STAR
Project (Achilles et al., 2008) (n = 1429), obtained by subsampling an RCT dataset using the method
from (Gentzel et al., 2021) to induce covariate shift, with ‘ground-truth® CATE estimates derived
from the full RCT; and Hillstrom (Hillstrom, 2008) (n = 9639), obtained similarly. Additional
experiments on the IHDP dataset are in Appendix 2. We partition these datasets into training D(°P%)
and test Dy sets of equal sizes, and standardize both covariates and continuous outcomes before
inputting them into the CATE learners.

CATE Models. We evaluate GATE by comparing the performance of downstream CATE models
when trained on the original dataset D(°") vs. when trained on the augmented D(°bs)  From the
portfolio of CATE meta-learners, we use the S-, T-, X-, R-, [IPW- and DR-learner (Kiinzel et al., 2019;
Curth & Van der Schaar, 2021b). We also consider the CFR-Wass and CFR-MMD algorithms (Shalit
etal., 2017) relying on balanced representations, designed specifically to tackle the covariate shift
(Johansson et al., 2022). We further complete the list of considered models with TARNet (Shalit
et al., 2017), DragonNet (Shi et al., 2019) and BART (Athey & Imbens, 2016).

Instantiating GATE. To test the potential of instantiating GATEwith LLMs, we use GPT-3.5 Turbo
(Achiam et al., 2023) — a widely used and reliable model, well-suited for robust evaluations of our
framework. Further, we define the admissible set X} with the variance-based criterion (Section 4.2),
using a fixed threshold o = 0.5 unless otherwise stated (note that this value is not tuned between
datasets or experiments, to allow for fair evaluation). We also use 100 in-context samples in each
prompt unless otherwise stated. In experiments in section Section 6.3, we compare the performance
of the LLM-instantiated GATE against a diverse set of models trained on D(Obs), which include:
mean model, 1-nearest neighbour (1-NN), random forest (RF) and GAN (following the approach of
GANITE (Yoon et al., 2018)) (detailed description of these models can be found in Appendix ).

Takeaways. The takeaways from the experiments are organised as follows:

» Section 0.2: LLM-instantiated GATE improves performance across diverse datasets and benchmark
meta-learners.

» Section 0.3: Although multiple generative models used within GATE provide performance benefits
for CATE estimation, leveraging LLMs provides substantial performance gains over models trained
solely on D(°P%)  particularly in low-sample regimes.

» Section 6.4: Prompting the LLM with meta-data and contextual information is crucial to elicit its
prior knowledge. In-context samples further allow to improve its performance.

» Section : GATE is particularly advantageous in problems with strong covariate shift.

» Section : Adjusting the admissible set X; through the hyperparameter o enables balancing the

bias introduced by Pt(ien) against the reduction in covariate shift, optimizing overall performance.

More detailed descriptions of the experiments can be found in Appendix D. Anonymised code to
reproduce the experiments can be found here.

6.2 DOES DATA AUGMENTATION WITH GATE IMPROVE CATE ESTIMATION?

Goal. In this experiment, we verify that LLM-instantiated GATE consistently improves the perfor-
mance of different CATE meta-learners, across all benchmark datasets.

Setup. Each CATE model is trained on both the original dataset and the GATE-augmented dataset,
and we compare the PEHE obtained in each case. The only difference between these two settings
comes from the data used to train the CATE estimators (additional parameters such as architecture or
hyperparameters were kept fixed between the two settings).
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Table 1: GATE performance with various CATE learners. GATE improves the performance of
different CATE learners across the datasets first without data augmentation ('), and then with data
augmentation (v'). Average /epgng and 1std is reported for 3 seeds ({ is better)

Learner Lalonde CPS1D STAR Hillstrom
o oo v

S-learner | 1.09£0.07 0.95+0.01 | 0.78+0.10 0.56+0.02 | 0.32+0.03 0.25+0.01
T-learner | 1.284£0.03 0.96+0.01 | 0.81£0.08 0.50£0.03 | 0.4 £0.01 0.24+0.01
X-learner | 1.43£0.10 0.95+0.01 | 0.93£0.05 0.4940.02 | 0.29+£0.01 0.24+£0.01
R-learner. | 1.35+£0.42 0.95+0.00 | 6.12£2.57 0.47£0.01 | 0.63+£0.21 0.26+0.02
IPW-learner. | 1.1240.03 0.95+0.01 | 0.57+0.06 0.47£0.01 | 0.2940.01 0.2540.00
DR-learner | 1.2940.02 0.954+0.01 | 0.60£0.11 0.48£0.02 | 0.41+0.02 0.254+0.01
CFR-Wass. | 0.99+0.03 0.95+0.02 | 0.61£0.15 0.41£0.01 | 0.24£0.0 0.24£0.0
CFR-MMD | 1.00£0.03 0.95£0.00 | 0.64£0.16 0.444+0.00 | 0.244+0.00 0.24+0.00
TARNet | 1.20£0.03 0.96+0.01 | 0.49+0.1 0.484+0.04 | 0.39£0.02 0.24+£0.00
DragonNet | 0.97£0.02 0.95£0.02 | 0.90+0.26 0.48+0.04 | 0.41£0.04 0.24£0.01
BART | 1.36£0.03 1.35+0.00 | 0.70+0.09 0.56+£0.02 | 0.27£0.02 0.25£0.01

Results. Table | shows that GATE consistently improves performance across all the considered CATE
models, with gains across the average PEHE (Hill, 2011) and its standard deviation. Furthermore,
GATE decreases the performance gap across CATE learners, making it a model agnostic data
pre-processing step that can aid model selection, usable with both one-step and two-step learners.

6.3 WITHIN GATE, HOW DOES THE LLM COMPARE TO OTHER GENERATIVE MODELS?

Goal. To explore whether and when using the LLM proves particularly beneficial, we now compare
the performance obtained with the LLM against alternative generative models.

Setup. We perform this comparison using the two-step DR-learner. For the baseline models
described in Section 6.1, we train each Pt(,ien) on the respective Dt(ObS). For the LLM, we generate

K = 10 surrogate outcomes per sample, which we then average to obtain Y (2°") . Performance
comparisons are conducted across three datasets of varying sizes, randomly sampled with proportions
p € {0.1,0.5,1.0} from the original observational datasets. Each baseline uses the same admissible
sets X; as the LLM for a fair comparison. Results with X; = X can be found in Appendix

Results. In Figure 3, we present the average |/epgng obtained across 3

seeds when instantiating GATE with each of the generative models. We 14 LLM prompting
note that multiple models can offer performance improvements to the 1 - e
downstream CATE model, compared to the no-augmentation baseline. | = with context

Interestingly, the LLM consistently outperforms the baselines trained
on D°") only, yielding lower average PEHE. As predicted, this per-
formance gap is most evident in the small sample regime (p = 0.1),
where LLM-derived prior knowledge proves most beneficial. Remark-
ably, comparing the PEHE obtained across all three dataset sizes, our
results demonstrate that using GATE with the LLM allows to obtain
performance levels which are close to optimal when using only a frac-
tion of the original dataset. The performance gap between LLMs and Figure 2: Prior knowl-
other generative models is most pronounced in the STAR dataset, which edge in GATE. Contex-
exhibits high treatment effect heterogeneity. Conversely, this gap is tual information helps to
minimal in the Hillstrom dataset, where potential outcome heterogeneity ~achieve good performance
is low (cf. Appendix I"4). This low heterogeneity explains the strong in low-samples. The error
performance of the mean imputation model, as the generated constant bars mark 1std (3 seeds).

potential outcomes effectively regularize the downstream model.

6.4 'WHERE DOES THE BENEFIT OF USING THE LLM COME FROM?

Goal. The surprisingly superior performance of the LLM over the non-parametric baselines can
possibly be explained by two orthogonal factors: its in-context learning abilities, and its contextual
understanding of the meta-data associated with the datasets. In this experiment, we disentangle these
two components.
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Figure 3: Comparison of generative models in GATE. Although multiple generative models offer
performance improvements over the no-augmentation baseline, the LLM outperforms the models
trained on D) across different proportions p. The error bars mark 1std, computed across 3 seeds.

o 16 e Setup. To quantify the influence of prior knowledge, we perform an
- o aug. ablation where we remove all the contextual information in the prompt
—— given to the LLM and give the features generic names (e.g. Feature

1). Hence effectively only the in-context samples are provided. We
compare the performance of this context-deprived LLM with an LLM
which is informed about the context of the dataset and feature names
(see Appendix E for exact prompts). Further, to evaluate the influence
of the in-context samples provided, within the context-informed prompt
we vary the number of samples included between {15, 30,100}. We
perform both experiments on the STAR dataset, with DR-learner as the

Figure 4: In-context learner and for varying proportions p.

learning in GATE. LLMs  Results. Figure 2 shows that substantial performance gains can be ob-
effectively learn from the  (ained when the meta-data of the STAR dataset is used to elicit the
provided in-context sam- i knowledge of the LLM, particularly when p is small. As p in-
ples. The error bars mark  creqges, the performance gap between context-informed LLM and the
Istd (3 seeds). no-augmentation baseline naturally becomes smaller. Results for other
datasets are in Appendix F.5. Furthermore, Figure 4 demonstrates that including more in-context
samples in the prompt improves the downstream performance, showcasing LLM’s ability to learn
from the provided examples.

P

6.5 DOES GATE CONFORM TO THEORETICAL EXPECTATIONS?

Having shown that GATE can consistently improve CATE estimation, we now further verify whether
the obtained empirical results agree with the theoretical results derived in Section 3.1. In particular,
we investigate whether indeed using GATE allows to address the covariate shift problems, as well as
whether the gains obtained from the covariate shift reduction can counterbalance the potential bias
introduced by an imperfect generative model.

6.5.1 IS GATE PARTICULARLY BENEFICIAL IN HIGH COVARIATE SHIFT SETTINGS?

Goal. We investigate the correlation between the performance gains obtained with GATE and the
intensity of the covariate shift between the treated and control groups in D(©P%).

Setup. We modulate the covariate shift’s strength by adjusting the biasing intensity in the subsampling
mechanism proposed by (Gentzel et al., 2021). This manipulation yields three distinct datasets,
derived from the original STAR dataset. To quantify the strength of the covariate shift, we compute

the sliced Wasserstein distance (SW) between the covariates of individuals in D((,Obs) and DgObs). For
each dataset, we calculate the difference in ,/epgng obtained with CATE learners trained on D(obs)
(obtained with the LLM) and D(°bs),

Results. In Figure 5 (left), the performance gain obtained by GATE increases with the SW across
almost all CATE models, validating the insight from Theorem 3.1. Contrary to other meta-learners,
we find that the S-learner is least affected by data augmentation. We believe this to be due to its data
efficiency (using all data for each PO estimate).
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Figure 5: Left: The performance gains offered by GATE increase across the majority of learners
as the strength of the covariate shift increases (the shaded regions denote 95% confidence intervals
computed over 30 seeds) Middle: The value of the hyperparameter «v allows to navigate the trade-off

involved in data augmentation. Right: The bias introduced by Pt(’icn) is counterbalanced by the
reduction in covariate shift obtained when using GATE.

6.5.2 CAN COVARIATE SHIFT REDUCTION COUNTERBALANCE THE BIAS INTRODUCED BY
AN IMPERFECT GENERATIVE MODEL?

Goal. We further verify whether, as indicated by Theorem , the benefits obtained from the
reduction in covariate shift can counterbalance the bias potentially introduced by Pt()ien), thus offering

performance benefits to the downstream CATE model. We also check whether the hyperparameter o
allows to navigate the trade-off between the covariate shift reduction and the bias induced by Pt(,icn).

Setup. We vary the quantile value « used by the selector (Equation (4)) across the range (0,1).
For each o, we compute the performance when using GATE (with LLM) for the different CATE

models (Figure 5, middle). Furthermore, we explicitly quantify the covariate shift in Dlobs) using
SW, and the bias introduced by Pt(ffn) by computing the average error in the potential outcomes in

D(°bs) compared to the ground-truth values, see Appendix for more details. We show how these
quantities vary as we change « (Figure 5, right). We report averages and 95% confidence intervals
for 3 seeds.

Results. Both the middle and right plots in Figure 5 verify our intuition that there exists an optimal
choice of a (v ~ 0.2) for the Lalonde dataset which allows to balance the gains obtained by

addressing the covariate shift with the losses suffered by introducing bias with Pt()ien). Figure
(middle) also demonstrates that GATE offers performance gains for most choices of o« > 0 when

compared to the no-augmentation baseline (o« = 0). Further, as we increase the allowed level of

uncertainty of Pt(ie"), the average L2 error in potential outcomes over D(°**) (quantifying how much
noise is introduced by data augmentation) increases, while the covariate shift decreases. Despite this
bias, optimal performance is obtained when o > 0, as suggested by Theorem

7 DISCUSSION AND FUTURE WORKS

Model Selection. Within the proposed implementation of GATE (see Section 3.1), using GATE re-
quires making two key choices: selecting the generative model and choosing the value of the
hyperparameter . We provide principles to guide the selection of the generative model in Section
and Section 6.3. Once the generative model is selected, the value of « can be tuned using standard
model selection approaches in CATE estimation, noting that setting o« = 0 corresponds to the 'no
augmentation’ baseline. This means that if the generative model is not sufficiently accurate and might
degrade downstream performance, using GATE can recover the baseline performance. We also note
that while incorporating GATE introduces one additional hyperparameter, as we show in Section 6.2,
it can reduce the performance gap between different CATE learners, thus potentially simplifying the
model selection process.

Broader Impact. In Section 6 we learn that GATE may enable practical adoption of CATE estimation
in low-sample settings, possibly yielding a positive impact in fields where data is costly. Furthermore,
GATE helps address problems such as covariate shift (particularly in low-sample regimes), further
aiding the adoption of CATE inference in practice. However, extra care should be taken before relying
on the LLM to guide decision-making in high-stakes domains.

10
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Reproducibility statement. We provide all the details on the datasets and the implementation of
baselines in Appendix D. Furthermore, we detail the prompts used by the LLM-instantiated GATE in
Appendix E. Anonymised code to reproduce the experiments can be found here.
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A RELATED WORKS

Methods for CATE estimation. Machine learning methods for CATE estimation can be broadly di-
vided into two categories: model-specific and model-agnostic methods. Method-specific approaches
rely on adjusting specific machine learning methods to the treatment effect setting. This gives rise to
solutions based on neural networks (Shalit et al., 2017; Shi et al., 2019; Johansson et al., 2016; Curth
& Van der Schaar, 2021a), Gaussian processes (Alaa & Van Der Schaar, 2017) or random forests and
regression trees (Athey & Imbens, 2016; Wager & Athey, 2018; Hahn et al., 2020; Hill, 2011).

In contrast, model-agnostic methods (so-called 'meta-learners’ (Kiinzel et al., 2019; Curth & Van der
Schaar, 2021b)) are general learning strategies which can be instantiated with any base learner (e.g.,
neural network, random forest). Within the model-agnostic strategies we can distinguish the one-step
learners, which directly estimate the potential outcome surfaces, fip and /i1, and then obtain the
CATE as: 7 = fi1 — fip. The alternative rwo-step learners (Kennedy et al., 2017; Nie & Wager, 2021;
Curth & Van der Schaar, 2021b) implicitly rely on ideas from data imputation. In their first step,
two-step learners obtain pseudo outcomes )7¢, which are “proximal" target treatment effect values,
composed from nuisance parameters ¢ = (7, f9, pt1) estimated from the given observational dataset
D(©b%) (or a subset of it). In the second step, the final CATE model is obtained by regressing the
pseudo-outcomes Yy on the covariates X. The pseudo-outcomes can be obtained using strategies
relying on propensity weighting (IPW-learner (Horvitz & Thompson, 1952)), regression-adjustment
(X-learner (Kiinzel et al., 2019)) or both of these combined (DR-learner (Kennedy, 2023)). We note
that our framework GATE is a strategy which is complementary to these standard two-step learners.

How is GATE different from a standard two-step learner?

1. Admissible set: Two-step learners require obtaining the missing potential outcomes for all
individuals in the observational dataset. As we demonstrate, this might introduce excessive

bias if the generative model Pt(ien) is inaccurate. As a solution to this problem, in our
framework we introduce the concept of an admissible set X, which allows to navigate the
trade-off between the reduction of the covariate shift and the introduced bias. In the case
where X; # X, GATE does not allow to explicitly obtain treatment effect proxies for all
individuals in the dataset, making it different from a standard two-step learner.

2. External information: A standard two-step learning strategy does not allow to utilise
external sources of information to inform the generation of the pseudo-outcomes, as the
nuisance parameters ¢ estimated in the first step are fitted using the observational data
D(©bs) only. In contrast, a key defining characteristic of GATE is that it allows to infuse the
downstream CATE estimator with external knowledge, by training the generative model

Pt(ffn) on datasets different from D),

3. Complementary inductive biases: Considering our method as a pre-processing data aug-
mentation method allows to aggregate the inductive biases imposed by the generative model

Pt(,ien) and the downstream CATE learner used on the augmented dataset, 7. Particularly

in small sample regimes, when the observational dataset D°*) does not contain sufficient
information to confidently estimate the CATE function, combining the inductive biases im-
posed by different methods might be particularly beneficial. This is why in our experiments
(Section 6) we fit two-step learners on top of the GATE-augmented dataset, demonstrating
performance improvements.

As such, GATE can be used as the first step in the meta-learning pipeline, without requiring any
change to the standard meta-learners.

Data augmentation for CATE estimation. Other works have proposed alternative model-specific
instantiation of the two-step learning strategy, relying for example on obtaining the pseudo-outcome
using a GAN model (Yoon et al., 2018), or local regression methods (Aloui et al., 2023). However,
these imputation approaches are constrained by the amount of information present in the observational
datasets. As a result, they are particularly vulnerable to scenarios with covariate shift, where there
are significant differences between the distributions of the control and treated groups. Furthermore,
these imputation methods (GAN and local regression) require large amounts of data to be accurate,
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which contrasts the small-sample regime tackled in this work. On the other hand, GATE provides a
principled way of leveraging models trained on external data sources, such as the LLMs, and thus is
able to take advantage of the dataset metadata to set the context, leading to helpful data augmentation
as shown in Section

LLMs as sources of prior knowledge for downstream tasks. As large language models (LLMs)
have increased in parameter count and training set size, it has become clear that they are able to
act as knowledge bases, showing great performance across a variety of knowledge-retrieval tasks
(Brown et al., 2020; Nori et al., 2023; Li et al., 2024; He et al., 2024). As such, LLMs have been
proposed as tools for extracting prior knowledge about the world, which can be used to ground
standard data-driven ML models in real-world contexts and encourage their outputs to be consistent
with common-sense reasoning based on the meta-data (Choi et al., 2022). Relying on the inductive
biases generated by the LLMs from the task-specific metadata has been demonstrated to improve
performance on tasks as diverse as reinforcement learning (Choi et al., 2022; Du et al., 2023), tabular
learning (Zhu et al., 2023; Seedat et al., 2024) as well as causal discovery (Choi et al., 2022; Takayama
et al., 2024; Jiralerspong et al., 2024; Ban et al., 2023). Furthermore, recent studies demonstrate
that LLMs are in principle capable of gaining knowledge about the underlying causal structure
of real-world data generating processes, despite not being explicitly trained to reason ‘causally’
(Richens & Everitt, 2024; Zecevi¢ et al., 2023). This finding is further supported by empirical
research, demonstrating LLMs potential for answering causal queries (Long et al., 2024; Willig et al.,
2022; ZecCevic et al., 2023). This further motivates the use of LLMs as sources of prior knowledge
and relevant inductive biases in causal inference tasks in particular.

Comparison with domain adaption. Our bound in Theorem is related to a series of works
studying generalisation theory for unsupervised domain adaptation (Ben-David et al., 2006; Long
et al., 2015; Mansour et al., 2009), but differs in significant ways. These bounds involve the risk in
the target domain (D = 1) using the observed risk in the source domain (D = 0) and the distance
between the domains:

Rp=1(f) < Rp=o(f) + du(P(X|D = 1), P(X|D = 0)) + A,

where H is some function class and Ay is a constant. Unique in our bound
is the use of the distribution @ to split dy into the terms IPM/(Q,P;_;) and
Ex~o[IPM;x(P(Y(t)|X = z), P(Y9)(t)|X = x))] which correspond respectively to the
covariate shift and the bias introduced by the generator. Through this, our bound offers the following
novel insights which we validate experimentally:

1. Imsight: Even when the generative model Pt(fn) is imperfect, using it to target covariate
shift can improve performance.
— Experiment 6.5.2: We explicitly compare the bias introduced by the generative model

Pt(ien) against the reduction of the covariate shift obtained by data augmentation, showing
that these two effects can be balanced.

— Experiment 6.4: We verify this by comparing the performance with and without
GATE across three datasets and multiple CATE models.

2. Insight: Tuning the distribution @ via the admissible set X} allows to balance the trade-off
between the bias introduced by the generator, and the reduction of variance and covariate
shift achieved via data augmentation.

— Experiment 6.5.2: We verify that modulating X; allows to navigate this trade-off.
3. Imsight: Excluding from the admissible set regions of the covariate space where the genera-
tive model is particularly "incorrect" can improve performance.

— Experiment 6.5.2: We propose to identify such regions using a proxy measure: the
uncertainty in the generated outcomes. We verify that as we increase the allowed level

of uncertainty of Pt(ien), the bias introduced by data augmentation increases, while the
covariate shift decreases.
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B DETAILS ON GATE

B.1 USAGE WITH CATE LEARNERS

GATE is a data augmentation method, which means that it is agnostic to the choice of the downstream
CATE learner (Curth & Van der Schaar, 2021a; Kiinzel et al., 2019). As such, it can be used both
with one-step learners and two-step learners. We illustrate in Algorithm | how to use it in practice.

Algorithm 1 Using GATE with CATE meta-learners.

Input: observational dataset D) = {(X;, T}, Y;)}?_,, pretrained generative model Pt(,ien), admis-
sible sets Xp, A7

Output: CATE estimation model 7(x)
1: fort € {0,1} do

P ,ﬁgobs) “ Dt(obs)

3 fori =1tondo

4 if T; =1—tand X; € X, then

5: sample Y (&) ~ Pt(gﬁf)

6 D) PPy {(X;, Y (eem))}
7 end if

8 end for

9: end for

10: T-learner: For ¢ = 0, 1, fit fi;(z) on D{°*"), then #(z) = ji1 () — jio(2);

11: S-learner: Fit fi(z,t) on (755"*’8),13501’”) then 7(x) = j(x,1) — a(x,0);

12: Two-step learners: For t = 0, 1, fit i;(z) on D\°™ and fit #(z) on D(©P*); perform the second
step on D(©P%) or on a held-out observational dataset.

One-step learners: Examples of one-step learners include the T-learner and the S-learner. For the

T-learner, one can estimate separately each p; using the dataset ﬁt(Obs). For the S-learner, we define

the concatenation D) = (D{**) D{***)) which shall be used to estimate j(x, ), the average PO
for treatment ¢ and covariate x.

Two-step learners: Two-step learners require the estimation of the nuisance parameters o and giq

in their first step, which we propose to estimate on D(©bs) In addition, some two-step learners (e.g.
DR learner) require an estimation of the propensity score 7(x). Such estimator can be obtained
by considering either the original dataset D(°*) or the augmented dataset D(°*®) (in our empirical
experiments, we used the latter option). The second step of these learners does not require any change
as the nuisance estimators are used as plug-in. As such, the pseudo-outcomes should be obtained for
the observational dataset D(°%*).

B.2 THE QUESTION OF MODEL SELECTION AND HYPERPARAMETER TUNING

The fundamental problem of causal inference makes the standard approaches to model selection and
hyperparameter tuning not applicable in CATE estimation. Because the ground truth CATE value
is unobserved, one cannot simply choose a model which performs best on a held-out validation set.
Instead, model selection for CATE estimation has to rely on heuristics, assumptions on the data
generating process and general prior knowledge of the problem at hand (Curth & Van Der Schaar,
2023). Model selection procedures for causal inference models remain an active area of research
(Saito & Yasui, 2020; Schuler et al., 2018; Lan & Syrgkanis, 2024; Curth & Van Der Schaar, 2023;
Mabhajan et al., 2022).

The challenges of model selection in causal inference also apply to GATE. Deciding which of the
available generative models should be used to augment the observational dataset at hand is non-trivial,
and neither is the question of choosing the admissible set A} (e.g. by specifying the value of « in our
proposed instantiation) for a given generative model.
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Choosing the generative model. We provide the following insights which might guide the selection
of the generative model within the GATE framework:

1. LLMs vs other models. The performance gap between the LLLM and the models trained
on D©"%) seems to depend on the size of the dataset (with LLMs providing particular
performance improvements in smaller datasets, cf. Figure 3), as well as on the variability
in the (standardized) potential outcomes (the Hillstrom dataset — where the performance
gap is particularly small — has Var(Y' (1)) = 0.04 and Var(Y (0)) = 0.02, while in the
STAR dataset — where the performance gap is particularly large — Var(Y (1)) = 1.05 and
Var(Y(0)) = 0.93). In scenarios with low outcome heterogeneity and/or large sample
sizes, a simple model such as mean imputation can already perform well.

2. Auditing the outcomes generated with the LLM: Contrasting other generative models,
the use of LLMs with GATE permits to make the generation process more transparent.
Beyond producing numerical values, LLMs can also detail verbal explanations of their
generations. Indeed, alternative prompting strategies can be employed to elicit explicit
causal reasoning chains underpinning outcome generation. This capability enables human-
in-the-loop applications of GATE, where domain experts can evaluate the generated data by
examining these reasoning traces against their domain knowledge. As such, we view the use
prompting techniques for explicit reasoning, such as chain-of-thought (Wei et al., 2022) or
tree of thought(Yao et al., 2024), as a promising direction for future work.

Tuning the hyperparameter c. With these challenges in mind, we propose three complementary
strategies which allow to guide the selection of the value of « to define the admissible set X; within
the GATE framework:

1. As we explain above, relying on the fixed-threshold definition of the admissible set (rather
than the percentile-based definition of the threshold) can allow to guide the selection of «
using domain knowledge.

2. We further propose to guide the selection of o by measuring the covariate shift between

the sets ﬁéObs) and 75§Ob8), using for example the sliced Wasserstein distance (an example
of such an analysis can be found in our Figure 5, right). Then, we propose to choose the
minimal value of a which allows to achieve significant reduction in a covariate shift (which
might correspond to the ‘elbow’ in the graph). While such an ‘elbow’ might not always
exist, this criterion provides additional guidelines in certain circumstances.

3. Finally, the choice of « can be further guided by standard methods for CATE model
selection, particularly those based on comparing the downstream CATE models using a
pseudo-outcome surrogate criteria evaluated on a held-out validation set (see Curth & Van
Der Schaar (2023) for an overview). In particular, in view of strong covariate shift and small
sample regime, we propose to rely on criteria which do not rely on estimating the propensity
score, as these might lead to high variance in such cases.

Nevertheless, while finding the optimal value of « is non-trivial, our experiments showed the
following: (1) Fixing o« = 0.5 consistently led to improved dowstream PEHE across the 3 datasets
and the 11 CATE learners (cf. Table 1) (2) The strong effect of the reduction in covariate shift
obtained with data augmentation (shown in Figure 5) reduces the sensitivity with respect to «.. Indeed,
Figure 5 (middle) highlights that any value o > 0 leads to performance gains compared to o = 0.

B.3 USING VARIANCE IN THE GENERATED OUTCOMES TO SELECT THE ADMISSIBLE SET

Sources of variance. We acknowledge that the variance in the outcomes generated by the LLM,
which we use as a proxy to evaluate the LLM’s uncertainty and hence guide the selection of the
admissible set X;, might capture different types of uncertainty. Firstly, it might reflect the aleatoric
uncertainty, which refers to the irreducible uncertainty of the outcome distributions. Secondly, it
also captures the epistemic uncertainty, which accounts for both the insufficiency of observational
data in some regions of the covariate space and insufficient semantic knowledge of the LLM. Our
variance-based selection mechanism relies on the implicit assumption that the aleatoric uncertainty
does not vary significantly across the covariate space X. This implies that choosing the admissible
set X; based on the variance allows to capture the differences in the epistemic uncertainty of the LLM
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across X', where higher epistemic uncertainty may indicate to a higher inaccuracy in the generated
outcomes.

Definition of the admissible sets. We define the admissible sets X, and X} in Section 4.2. In
our instantiation, these sets are kept equal. The rationale for this choice is that only samples with
relatively low uncertainty should be kept. One can imagine the situation where the generative model
performs significantly worse for one of the groups (i.e. treated or control) compared to the other
one. If the quantile value \(c, D(°**)) was computed separately for the treated and control groups,
then the same ratio of samples would be kept in the augmented dataset in the two groups, despite
the disparities across these groups. This justifies the computation of the quantile value using all the
covariates, as explicited in Equation (4).

Fixed-value threshold for the scoring function. In the instantiation of GATE that we have used in
the experiments, our main focus was to control the number of generated potential outcomes, and as
a result we have decided to use a percentile-based definition of the scoring function s(z,t) (where
choosing o = 0.5 guarantees that 50% of missing potential outcomes are generated, thus allowing to
fix the proportion of generated outcomes across datasets).

However, in real-world applications a more optimal strategy might be to let « be a fixed variance
threshold instead, the value of which can be guided by domain-knowledge or exploratory analysis
of the data. This would more explicitly guardrail against the inclusion in the augmented dataset of
particularly *poor” generated outcomes. Then, we would define X; = {X; | i € [n],s(X;,T;) <
o }. We note that this in case, the proportion of generated outcomes depends on the properties of the
generative model. In particular, if the model is particularly bad, no potential outcomes are generated
and our method recovers the baseline performance.

C DETAILS OF THE THEORETICAL RESULTS

Let f, € H denote the hypothesis used to make the predictions for Y (¢), where H C {h : X — Y}
is a hypothesis class. Let L : J x Y — R, be a loss function (e.g. the squared loss function
L(y,y") = (y — vy')?). We define the following quantities:

* Pointwise loss: £, (z) := Ey ()| x=z [L(Y (t), fe(2))],

* Marginal risk: R(f;) :=Ex [¢;,(X)] = Ey@),x [L(Y (t), f:(X))],

* Marginal risk for the augmented distribution: R(f;) := Ex/[(;,(X")] =
By ().x0 [LY'(#), f1(X)],

* Factual risk: Ry (ft) := Ex = [€f,(X)] = Ey (1) x|7=¢ [L(Y (), f:(X))],

* Counterfactual risk: R1_;(f:) := Ex|p=1—¢ [{s,(X)] = Ey @) x|7=1—¢ [L(Y (£), f:(X))],

« Empirical risk on the augmented distribution: R(¢™P)(f,) := L Z?;l L(Y/(t), fu(X])).

ng

In addition to these notations related to the risk, we define the class of functions £ C {z — R4}
comprising functions g : @ — Ey(4)|x—¢ [L(Y (t), fi(x))|X = z] for all f; € H. Furthermore, for
any x € X, we define a class of functions £¥ C {) — R, } comprising the functions G, y—
L(y, fi(z)) € L® for all f; € H. Finally, for a class of functions S and two distributions P and
P, we write IPMs (P, P') = sup e s[Evap[f(V)] — Ew~p/[f(W)]| for the Integral Probability
Metric between P and P’ defined for the class S.

We first recall the statement of the generalization bound:

Theorem C.1. (Full formulation of Theorem 3.1) Assume access to an augmented dataset

(XY ()Y, "5 PI(X!,Y'(t)) and assume that 0 < Bx: .y ps [L2(Y', fi(X")] < +oc.
Then with probability at least 1 — 9,

R(fy) < RE™)(f)) + (1 = m)Exng [IPMex (PY (1) X), PO (YO (1) | X)) (5)
H

c?
+ (1= m)IPM. (Q, Pi—t) + Vpr f:?/? ©
Ty
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where Vpr = max (\/Ex,y,(t)wp, [L2(Y7(0), f(X))], \/EX, viop [L2Y(1), f (X’))]), with

A~ eng 8

P’ denoting the empirical distribution for P', and C%i 25/4(%)3, with d the
pseudo-dimension of {(x,y) — L(y, ft(x)) | f € H}.

Proof. To prove Theorem for a given hypothesis f;, our goal lies in obtaining a finite-sample

generalisation bound of the marginal risk R(f;). We further note that:

R(fi) = mRe(fi) + (1 — m) Rio(fr)-

In this decomposition, R;(f;) is the factual risk which is identifiable from the observational data
under the ignorability assumption, and as such can be estimated using the empirical risk. However,
R1_+(f+) is not identifiable from the observational data. Thus, bounding the marginal risk is possible
only after bounding the counterfactual risk, which requires accounting for the covariate shift and the
variance in the outcomes, as we demonstrate below.

Lemma C.2. Let f; € H. The following inequality holds:

R(fi)=R(f)) < (1=m) (IPMc (Pi-1, Q) + Exng [IPMex (P(Y (8)|X), PO (v &0 (1) X) ) |)
)

Proof. As stated earlier, R(f;) = meRi(f¢) + (1 — ) R1—¢(f¢). We obtain a similar decomposition
for R(f:):

R(f) =EBxs yr) [LY' (1), fo(X))] ®)

=mExs yi@yja=e [LY, f( X))+ (1 = m)Exs yryja=1-¢ [LY' (), f(X)] (9

= mEx v )r=¢ [L(Y, ft( )]+ (1 = m)Exs yrya=i—t [LY'(t), f:(X")] (10)

= mRe(fo) + (1= m) Ry (f) (11)

where line (10) follows by definition of (A, X’,Y’(t)). Hence, R(f;) — R(f) =
(I — m) (let(ft) - let(ft))'

We can then bound Ry _(f;) — Rl,t(ft) as follows:

Ry_i(fr) = Rie(f2) (12)
=Ex yur=1-¢ [LY(#), ft(X)] = Exs yrja=i—¢ [LY'(t), f:(X"))] (13)
=Exir=1-¢ [By ) x [LY (£), (X)) X]] = Exrjazi—t [Ey ) xr,a=1-¢ [LY'(2), fr(X))|X"]]

(14)

=Ex~pr_, [Ey@x [LY(#), i(X)|X]] = Exing [Ey ) x,a=1-¢ [LY'(8), f:(X") | X]] s

(15)

=Ex~pr_, [Eyx [LY (t), fo(X)X]] = Ex~q [Ey@x [LY (1), f:(X)) | X]] (16)
+Ex~q [Eyx [LY (1), f:(X))X]] = Ex~q {]EY(ge“)(t)\X [L(Y(gcn) (t), fe(X)) | X

(17

< s1€uL>|EX~p1 9(X)] = Exnq [9(X)]| (18)

+Exng [ sup [y o [€5(V(0)] = Eyeon oy [(X (VD (0)] H (19)

Xerx
= IPM, (P,_1,Q) + Ex.0 [IPMﬁx (P(Y(t)|X), ploen) (y (gen) (t)|X))} (20)

where in line (13) we used the fact that Ex g [Ey/)x/ az1-¢ [L(Y'(t), fo(X) | X']] =
Ex~q [Eyen @ x [LYE(t), f(X)) | X]] (by definition of Y”(t)).

Multiplying the sum of the IPM terms by the factor 1 — 7, then yields the result. O
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Having bounded the difference in the marginal risk between the original P and the augmented
distribution P’, we now introduce the empirical risk to bound the marginal risk for P’.

Lemma C.3. For any f; € H, assume that 0 < Ex/ y+.ps [LQ(Y’, ft(X’)] < 4o0. Let0 < 6 < 1,

and consider an augmented dataset {( X/, Y] (1))}, e P/ (X', Y'(t)). The following bound then
holds with probability at least 1 — §:

) ) cH
R(T) < RE™(1) + Ve 208 an
Ty

where Vir = max (v/Ex v [P0, TNy By (L2 (0, (X)), with

. 2efiy s .
P’ denoting the empirical distribution for P', and CIt 5 = 25/4(w)5, with d the
pseudo-dimension of {(x,y) — L(y, f:(z)) | fr € H}.

ng

Proof. This result directly follows from Corollary 2 in the supplementary material of (Cortes et al.,
2010). O

By summing the bounds involved in the Lemma and Lemma C.3, we then obtain Theorem

D EXPERIMENTAL DETAILS

D.1 LICENSE FOR EXISTING ASSETS
The following existing assets were used to produce the experimental results:

e Hillstrom dataset (Hillstrom, 2008): available from https://blog.minethatdata.
com/2008/03/minethatdata-e-mail-analytics—and-data.html

» STAR Project dataset (Achilles et al., 2008): CCO 1.0 License

* Lalonde dataset (Lalonde, 1986; Dehejia & Wahba, 1999; 2002): CC BY-NC 2.0 DEED
License

* RealCause python library (Neal et al., 2020): MIT License

* CATENets python library (Curth & Van der Schaar, 2021a;b; Curth et al., 2021): BSD
3-Clause License

¢ COCOA code (Aloui et al., 2023)

D.2 DATASET DETAILS

* Lalonde (Lalonde, 1986): The covariates comprise several demographic variables (e.g. age,
degree, marital status). The treatment corresponds to attending a job training program. The
outcome is the real earnings obtained in 1978. We generate the dataset using the trained models in
(Neal et al., 2020).

* STAR project (Achilles et al., 2008): The individuals correspond to students, and we use the
following covariates: Gender, Race, Birth year, G3 Surban, G3 Free lunch, G3 Present, Aided
class, G3 Teacher gender, G3 Teacher race, G3 Teacher high degree, G3 Teach years of experience,
G3 Teacher training, where G3 denotes Grade 3. The treatment corresponds to putting the student
in a small class. In our analysis we have only included students who were assigned to the same
treatment group through all grades K-3. The outcome is the SAT score of the student.

* Hillstrom (Hillstrom, 2008): The covariates correspond to different customers’ attributes such
as the months since last purchase or the zip code of the customer. The treatment corresponds to
sending an email for men’s merchandise. The outcome corresponds to whether or not the customer
visited the website in the following two weeks.
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Table 2: Details on the datasets.

Dataset \ Type of obs. dataset  # Samples (obs.) Covariate dim. Label
Lalonde Semi-synthetic 7279 8 Continuous
STAR project | Subsampled from RCT 1429 12 Continuous
Hillstrom Subsampled from RCT 9639 8 Binary

We provide an overview of the datasets’ characteristics in Table 2.

Dataset subsampling. While the Lalonde dataset is semi-synthetic, the STAR and Hillstrom
observational datasets used throughout the experiments in Section 6 are obtained by subsampling
from their respective RCT data. We follow the same procedure as in (Gentzel et al., 2021), by
defining a biasing function, with the desideratum that this biasing function should introduce a
covariate shift between the treated and control groups. More precisely, given an original dataset
{(X;,T;,Y;) | i € [n]}, we define an encoder r such that r(x) is the first PCA component score
for x, obtained with the set of covariates {X; | ¢ € [n]}. Given this encoder, we then compute
v = Median({r(X;) | ¢ € [n]}). This permits to construct the datasets Sy = {(X;,7},Y;) |
r(X;) <7,j € [n]}and S1 = {(X,,T},Y;) | r(X;) > ~,j € [n]}. Intuitively, these two groups
have a substantial difference in terms of covariates, as is captured by the encoder r. Finally, we
obtain the observational dataset using the subsampling mechanism of (Gentzel et al., 2021) and keep
the individuals in Sy with treatment equal to 0, and individuals in S; with treatment equal to 1, i.e.
DO = {(X;, T}, Y5) | (X5, T5,Y;) € So, Ty = 0 U{(X;, T3, Y5) | (X, T3, ;) € i, Ty = 1}

In Section , we adjust the biasing intensity to modulate the covariate shift. To do so, we consider
a probability p € [0,1]. We then define D) (p) = {(X;,T;,Y;) | (X;,T},Y;) € So,Bj ~
Ber(1 —p), Tj = B;} {(X;, T;,Y5) | (X5, T}, Y;) € 81, Bj ~ Ber(p), Tj = Bj}.

Intuitively, higher values of p yields a more pronounced covariate shift. We consider p € [0.5,0.8, 1]
in Section

Ground-truth CATE. We fit two random forest models to half of the original and large STAR and
Hillstrom datasets, which permits to estimate the two potential outcome surfaces for each of the
datasets. This approach is not biased because these original datasets are RCTs. Equipped with the
fitted potential surfaces, we then take their difference to define the ground-truth CATE values used
for model evaluation. The other half of the datasets is then used to define an observational dataset
(used to train the CATE learners) and a test set (used to evaluate the CATE learners).

D.3 IMPLEMENTATION DETAILS FOR THE CATE LEARNERS

Hardware. All the experiments were performed on a machine equipped with a 64-Core AMD
Ryzen Threadripper and a NVIDIA RTX A4000. Fitting one CATE learner for one given dataset took
in the worst case 3 minutes, and generating the augmented datasets with the LLM took a maximum
of 17 minutes and 43 seconds per dataset and seed.

We now detail the hyperparameters used for the different CATE learners used in Section 6, which use
neural networks backbones.

* TNet: Following (Curth & Van der Schaar, 2021b), each hypothesis function has 3 layers with 200
units. The output head consists of 2 additional layers with 100.

* SNet: We use 3 layers with 100 hidden units for the shared layers, 2 layers with 100 units for the
output head of the hypothesis functions, and 2 layers with 100 units for the output of the propensity
network.

* XNet: First stage: We use the T' strategy to estimate the nuisance parameters. We use 3 layers with
100 units for the representation, 2 layers with 100 units for the output head, Second stage: We use
2 layers with 100 units for the output, 3 layers with 200 units for the representation.

* DRNet: First stage: We use the T strategy to estimate the nuisance parameters. We use 3 layers
with 200 units for the representation, 2 layers with 100 units for the output head, Second stage: We
use 2 layers with 100 units for the output, 3 layers with 200 units for the representation.
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* CFR-Wass: We use 3 layers with 200 units for the representation layers and 3 layers with 100
units per hypothesis function. We use the Wasserstein-1 distance for the regularization, with the
regularization coefficient « set to 3.

* CFR-MMD: We use 3 layers with 200 units for the representation layers and 3 layers with 100
units per hypothesis function. We use the MMD for the regularization, with the regularization
coefficient « set to 3.

* RNet: We use 3 layers with 200 units for the representation, 2 layers with 100 units for the output
head, for the two stages.

* IPW: First stage: We use the T strategy to estimate the nuisance parameters. We use 3 layers with
200 units for the representation, 2 layers with 100 units for the output head, Second stage: We use
2 layers with 100 units for the output, 3 layers with 200 units for the representation.

The batch size is set to 500, the learning rate is set to 0.0001 with the Adam optimizer and we use
early stopping with a validation split proportion equal to 0.3.

LLM. We use GPT-4 as the LLM throughout our experiments, which we access using the API,
version 2023-07-01-preview. We use a temperature of 0.7 throughout our experiments.

D.4 IMPLEMENTATION DETAILS FOR THE GENERATIVE MODELS
The following models perform augmentation by training [’(g'g;'") on D[g“bs) and 1)](%;'::,) on Dgfws)
respectively. In particular:

+ Mean imputation: P = 8(:L Y1, Vil (T, = 1), where {X,. T, Y} € D

b,

« Random Forest: P = §(fF) (z)), where ") is a random forest model trained on
Diobs)

« Nearest-neighbor: P9 = §( ™™ (z)) where £ is a nearest-neighbor predictor

trained on D",

On the other hand, the GAN augmentation uses a single model trained on D(°**), We refer to (Yoon
et al., 2018) for the details of the method. We use the following parameters: { hidden dimension:
100, batch size: 256, iteration: 10000, « : 1, learning rate: 0.001 }

D.5 METRICS

Assessing covariate shift with the sliced Wasserstein distances. In the experiments in Section

and Section , we quantify the covariate shift between the treated and control group using the
sliced Wasserstein distance. It is a metric which can compare two high-dimensional distributions
(Bonneel et al., 2015). To compute it, we perform random projections on vectors of the unit sphere.
For two distributions w1 and pe, the sliced Wasserstein distance of order p is defined as:

SWiGuap) = [ WPt P 22)

where S9~1 denotes the unit sphere in dimension d, P,(z) = u - x denotes the projection of the
vector « on u, P, # is the push-forward of i by P,, and W), is the Wasserstein distance of order p.
In our experiments, we use a Monte-Carlo estimate by randomly sampling n = 5000 random vectors
{u;li € [n]} in S~ and consider p = 2.

Assessing the inaccuracy of the generated potential outcomes. Let us consider an augmented
dataset {(O;, X!, T!,Y/)}*_,, where T} denotes the observed (factual) treatment, O; = 0if Y} is the
observed potential outcome and O; = 1 if Y was generated with Pt(ien). We assess in Section

the inaccuracy of the generated potential outcomes in the augmented dataset by computing:

A= > (Y -Ei(1-1)) | X]))*1(0; = 1)

K2
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PEHE. Our results in Section evaluate the performance of the models on Dies us-
ing the Precision in Estimation of Heterogeneous Effect (PEHE), defined as epgug =
LS (E V(1) = Yi(0)|X = X;] — (1 (X;) — fio(X;)))?. We report its square oot \/epEHE

n

(Hill, 2011).

E LLM PrROMPTS

Prompt design. When instantiating GATE with LLMs, we consider a prompt structure which
includes the following important elements:

» Task context: We include context about the task (CATE estimation). We also provide
information about the covariates, the treatment, and the outcomes.

* Statistics on the outcomes: we provide the average outcomes in both the control and
treatment group, as well as the range of the outcomes to help the LLM generate realistic
outcomes.

* In-context samples: we serialize the observational data in their raw format. The covariates
are provided as (feature name, feature value) tuples, followed by (treatment name, treatment
value), and (outcome name, outcome value). The in-context samples are randomly shuffled
in the prompt to avoid any generation artifacts stemming from the ordering of the samples.
We use 100 in-context samples per prompt.

The prompt structure is summarized in Figure

You are an expert in causal inference. Your goal is to produce counterfactuals from observational
data. I will give you the covariates, the treatment and the outcome from the observational data.
Leverage your knowledge about {Task context: general}. The covariates consist of {Task context:
covariates description} The treatment indicator (binary) corresponds to { Task context: treatment
description}. The outcome is { Task context: outcomes }. To help you, I am providing some
statistics about the data. {Statistics treatment group} {Statistics control group} Your response
should only contain the generated counterfactuals in the format ## outcome ##. {In-context
examples }

Figure 6: Prompt structure.

Prompt example. We provide an example of the prompt used for the Lalonde dataset in Listing

Listing 1: Prompt example. On Lalonde dataset.

You are an expert in causal inference. Your goal is to produce
counterfactuals from observational data. I will give you the
covariates, the treatment and the outcome from the
observational data. Leverage your knowledge about job training

and real earnings to produce counterfactuals. The covariates
consist of a number of demographic variables: age, measured in
years; education, measured in years; black, indicating race
(1 if black, 0 otherwise);hispanic, indicating race (1 if
Hispanic, 0 otherwise);married, indicating marital status (1
if married, 0 otherwise); nodegree, indicating high school
diploma (1 if no degree, 0 otherwise); re74, real earnings in
1974; re75, real earnings in 1975. The treatment indicator (
binary) corresponds to job training. The outcome is real
earnings in the year 1978, denoted as re78. To help you, I am
providing some statistics about the data. In the presence of
the treatment (treat: 1), the average re78 (outcome) in the
observational data is 4576.24, the min re78 is 0.0, the max
re78 is 26354.16. In the absence of the treatment (treat: 0),
the average re78 (outcome) in the observational data is
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14868.48, the min re78 is 0.0, the max re78 is 28609.63. Your
response should only contain the generated counterfactuals in
the format ## outcome ##

Covariates: age: 26.0, education: 11.0, black: 0.0, hispanic: 0.0,
married: 1.0, nodegree: 1.0, re74: 25862.32, re75: 16650.0

treat: O

re78: ## 24058.61 ##

Covariates: age: 23.0, education: 7.0, black: 1.0, hispanic: 0.0,
married: 1.0, nodegree: 1.0, re74: 18350.49, re75: 14967.1

treat: O

re78: ## 8564.2 ##

Covariates: age: 30.0, education: 16.0, black: 0.0, hispanic: 0.0,
married: 1.0, nodegree: 0.0, re74: 695.54, re75: 930.97

treat: 1

re78:

No context prompt We provide in Listing 2 the prompt used throughout Section 6.4, where the
contextual information is removed.

Listing 2: Prompt example without contextual information. On Lalonde dataset.

You are an expert in causal inference. Your goal is to produce
counterfactuals from observational data. I will give you the
covariates, the treatment and the outcome from the
observational data. To help you, I am providing some
statistics about the data. In the presence of the treatment (
treat: 1), the average re78 (outcome) in the observational
data is 4576.24, the min re78 is 0.0, the max re78 is 26354.16.

In the absence of the treatment (treat: 0), the average re78
(outcome) in the observational data is 14868.48, the min re78
is 0.0, the max re78 is 28609.63. Your response should only
contain the generated counterfactuals in the format ## outcome

##

Covariates: Feature_0: 26.0, Feature_1: 11.0, Feature_2: 0.0,
Feature_3: 0.0, Feature_4: 1.0, Feature_5: 1.0, Feature_6:
25862.32, Feature_7: 16650.0

treat: O

outcome: ## 24058.61 ##

Covariates: Feature_0: 23.0, Feature_1l: 7.0, Feature_2: 1.0,
Feature_3: 0.0, Feature_4: 1.0, Feature_5: 1.0, Feature_6:
18350.49, Feature_7: 14967.1

treat: 0

outcome: ## 8564.2 ##

Covariates: Feature_0: 30.0, Feature_1l: 16.0, Feature_2: 0.0,
Feature_3: 0.0, Feature_4: 1.0, Feature_5: 0.0, Feature_6:
695.54, Feature_7: 930.97

treat: 1

outcome:

Dataset splitting. Since the LLM context window limits the number of tokens which can be used in
the prompt, we cannot feed all the available observational data into a single prompt. To bypass this
issue, we randomly partition the observational dataset into different groups of in-context samples,
each of these groups making one prompt. Each group is populated by nicr, = 100 samples. Having
split the observational data into different groups, we construct the prompts as follows. For each
individual, we identify the group it belongs to, and construct a prompt where the individual appears at
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the end of the prompt, with the rest of the group passed as in-context examples above it in a random
order to avoid any ordering bias. The LLM then generates m = 10 outcomes for each individual and
its associated constructed prompt.

Memorization risks. A natural question is whether or not the LLM is returning outcomes which
have been memorized and seen during its pretraining stage. We note that this is very unlikely to be
the case, since by definition, the LLM is used to output missing potential outcomes, which are not
present in the observational datasets and hence not part of the pretraining corpora of the LLM. We
also remark that the Lalonde dataset is semi-synthetic, meaning that it is also very unlikely that it
has been memorized by the LLM.

F ADDITIONAL RESULTS

F.1 COMPARISON WITH ALOUI ET AL. (2023)

We compare GATE with COCOA (Aloui et al., 2023). As discussed in Appendix A, COCOA employs
a local regression model which is trained on the observational data only. This limitation can make
COCOA particularly susceptible to covariate shift scenarios or when operating in a small-sample
regime, where the available data may not sufficiently capture the underlying distribution of outcomes.

We report the results in Table 3, comparing the LLM-instantiated GATE with COCOA, which shows
that the LLM-instantiated GATE consistently outperforms COCOA across almost all of the datasets
and meta-learners. The performance gap is particularly noticeable for the Lalonde dataset, where the
control and treated groups are imbalanced, making the local regression model in COCOA significantly
less useful than the prior-knowledge-empowered LLMs.

Table 3: Comparison with COCOA (Aloui et al., 2023). Performance comparison across the
datasets for COCOA and GATE . Average /eprur and 1std is reported for 3 seeds ({, is better).

Lalonde CPS1D STAR Hillstrom

Learner
COCOA GATE | COCOA GATE | COCOA GATE

R-learner | 1.66£0.42 0.95+0.00 | 0.58£0.03 0.47+0.01 | 0.30£0.02 0.26+0.02
IPW-learner | 1.12£0.05 0.95+0.01 | 0.59£0.07 0.47+0.01 | 0.34£0.11 0.2540.00
TARNet | 1.26£0.08 0.96£0.01 | 0.45+£0.06 0.48+0.04 | 0.27£0.01 0.24£0.00
DragonNet | 1.04+0.06 0.95+0.02 | 0.51+0.03 0.48+0.04 | 0.27£0.01 0.24+0.01
CFR-MMD | 1.01£0.01 0.95£0.00 | 0.58+0.15 0.44£0.00 | 0.24£0.00 0.24=£0.00
BART | 1.32£0.01 1.354+0.00 | 0.62£0.07 0.56+0.02 | 0.26£0.01 0.254+0.01
T-learner | 1.35£0.06 0.96£0.01 | 0.66+0.08 0.50%+0.03 | 0.28+0.03 0.24+0.01
S-learner | 1.04+0.14 0.95+0.01 | 0.88+0.13 0.56+0.02 | 0.284+0.02 0.25+0.01
X-learner | 1.38£0.15 0.954+0.01 | 0.73£0.04 0.494+0.02 | 0.27£0.01 0.244+0.01
DR-learner | 1.35+£0.05 0.95£0.01 | 0.62+0.2 0.48£0.02 | 0.31+£0.02 0.25£0.01
CFR-Wass. | 0.98+£0.04 0.95£0.02 | 0.55+£0.15 0.41£0.01 | 0.24£0.0 0.24+0.0

F.2 COMPARISON ON THE IHDP DATASET

We evaluate the benefits of GATE instantiated with an LLM for the IHDP dataset (Shalit et al.,
2017). We note that the outcomes for this dataset are synthetic. Therefore, the objective of this
experiment is to assess the in-context learning abilities of the LLM, and the importance of covariate
shift reduction via data augmentation. We report the results in Table 4, showing that GATE improves
the performance of almost all the CATE learners.

F.3 SENSITIVITY WITH RESPECT TO «

We complement the results shown in Section , with Figure 7 and Figure 8, which present the
impact of varying the quantile o used to define the admissible set X;. We note that the results of
the trade-off experiment presented here (Figure 8) and in the main text (Figure 5) were obtained
using the DR-learner. For both the STAR Project and Hillstrom datasets, we see that incorporating
the generated outcomes helps improve the PEHE. However, unlike for the Lalonde dataset, there is
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Table 4: Comparison on IHDP. Performance comparison for the IHDP dataset, between No aug-
mentation and GATE . Average /eppng and 1std is reported for 3 seeds ({ is better).

Learner THDP
No aug. GATE
S-learner | 0.71 +£0.10 0.54 +0.03
T-learner | 0.70 £0.13 0.40 £0.06
X-learner | 0.68 =0.10 0.33 £0.04
R-learner | 0.68 £0.04 0.37 £0.01
IPW-learner | 0.854+0.04 0.38 &0.04
DR-learner | 0.61 £0.06 0.37 +£0.04
TARNet | 0.474+0.03 0.31£0.04
DragonNet | 0.41 £0.02 0.31 £0.04
CFR-MMD | 0.29 +£0.01 0.27 £0.01
CFR-Wass. | 0.28 £0.01 0.29 +0.05
BART | 0.56 £0.00 0.59 +0.01
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Figure 7: Sensitivity with respect to «

no clear cutoff value for « after which the PEHE starts increasing. This observation can be made
more intuitive by examining Figure 8. Indeed, we notice that the covariate shift reduction obtained by
increasing « is less pronounced than in the case of the Lalonde dataset, while the noise introduced
with the generated outcomes increases at a similar rate. This explains why setting higher values of «
is not harmful: the effect of the reduction in covariate shift balances the increased inaccuracy in the
generated potential outcomes.

F.4 COMPARISON WITH THE NON-PARAMETRIC BASELINES

We provide additional results for the experiment conducted in Section 6.3, where we do not perform
selection for the baselines (meaning that we set A; = & for all the baselines, except for the LLM).
We report the results in Figure 9, which confirms the performance gains obtained by using LLMs
as the generative model in GATE. We note that the results of the comparison experiment presented
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Figure 8: Tradeoff between covariance shift and potential outcome generation inaccuracy
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Figure 9: Comparison of the LLM with other non-parametric baselines (no selection)
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Figure 10: Comparison of using DR-learner fitted on the data augmented with GATE, using the LLM
prompted with and without context. The error bars mark 1std computed over 3 seeds.

here (Figure 9) and in the main text (Figure 3) were obtained using the DR-learner. We notice that
the performance gap on the Hillstrom dataset is negligible. This aligns with our observation that
the treatment effect is very small for this dataset. Indeed, the Average Treatment Effect, defined as
E[Y (1) — Y(0)] is equal to 0.08. Furthermore, the variability in the outcome is negligible, with
Var(Y (1)) = 0.04 and Var(Y (0)) = 0.02, explaining why the mean imputation baseline performs
competitively with respect to the LLM. In contrast, the ATE for the STAR dataset is equal to 0.15,
and Var(Y (1)) = 1.05 and Var(Y (0)) = 0.93 (computed on the normalized outcomes), where the
larger variability explains the performance gap between the LLM and the mean baseline.

F.5 IMPORTANCE OF CONTEXTUAL INFORMATION

Following the same experimental setup as in Section 6.4, we assess the importance of the contextual
information to improve the potential outcome generation for the Lalonde and Hillstrom datasets. We
report the results in Figure 10. We note that the results of the context experiment presented here
(Figure 2) and in the main text (Figure 10) were obtained using the DR-learner. For the Lalonde
dataset, we notice that the gains obtained using contextual information are especially noticeable in
the small-sample regime (i.e. p = 0.1), echoing the observations made for the STAR Project dataset.
The performance gap narrows down with an increasing p, as the increased sample size in factual
data makes the CATE learner more robust with respect to the inaccuracy of the generated potential
outcomes. On the other hand, the performance gap on the Hillstrom dataset is negligible. This aligns
with our observation that the treatment effect is very small for this dataset.
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G ADDITIONAL REBUTTAL RESULTS

G.1 STATISTICAL TESTS OF IMPROVEMENTS

Experiment setting. In order to assess the statistical significance of the results in Table 1, we conduct
two-sample t-tests on the /€ ppr g obtained with and without GATE (instantiated with LLMs).

Results. We report the p-values in Table 5, showing that the performance gains obtained with GATE
are statistically significant at the 0.05 level across the majority of CATE learners and datasets.

Table 5: Statistical significance of GATE’s performance gains. We report the p-values of the
two-sample t-tests, where bolded entries represent statistical significance at the 0.05 level.

Learner Lalonde CPS1D STAR Hillstrom
S-learner 3.0 x 102 2.2 x 1072 1.3 x 102
T-learner 4.0 x 107° 40x1072 1.3x10°°
X-learner 1.3 x 103 1.5x107% 4.1x10°3
R-learner 1.1 x10°2 1.5x1077 4.9x10°*
IPW-learner 1.0 x 10~ % 1.9x107% 74x10°°
DR-learner 6.8 x 1076 1.3x107Y 1.4x10°4
CFR-Wass. 3.7 x 1071 34x107% 38x107!
CFR-MMD. 4.9 x 106 1.6 x 107! 6.0x 107!
TARNet 1.1x10°° 28x1071 3.2x10°16
DragonNet 1.7x 1071 73x107¢ 1.8x1077
BART 1.3x10°6 6.6 x1072 3.0x10°!

G.2 ALTERNATIVE SELECTION OF IN-CONTEXT SAMPLES

Experimental setting. We consider an instantiation GATE with LLM where the in-context samples

used in the prompts are k nearest-neighbours of the samples considered for augmentation. More

specifically, given a sample (z, t), we define S, , = NNy (X, Dﬁ"_l’: )) as the set of in-context samples

for (x,t). We set k = 50 and use a DR-learner for downstream CATE estimation.

Results. As presented in Table 6, our results demonstrate that random sampling of in-context samples
from D(°**) (encompassing both control and treated groups) consistently yields superior performance
compared to the nearest neighbor baseline. This is intuitive given the covariate shift between the two
groups,which inherently limits the utility of nearest-neighbor information drawn from the opposing
treatment group. Random sampling, by contrast, enables the incorporation of individuals from both
groups — a particularly advantageous approach when prior knowledge exists regarding the relationship
between Y'! and Y (e.g. difference in expectation).

Table 6: Comparison of in-context samples’ selection. Results reported for 3 seeds.

IC sampling Lalonde CPS1D STAR Hillstrom
p=0.1

Nearest neighbor 1.09+0.12 0.99 +0.08 0.39+£0.06

Random sampling 0.95 £ 0.02 0.85£0.04 0.31+£0.01
p=0.5

Nearest neighbor 1.10 £ 0.04 0.62+0.09 0.28£0.02

Random sampling 0.97 £ 0.05 0.53 £ 0.07 0.26 £0.01

p=1
Nearest neighbor 1.09 £0.10 0.58 +£0.02 0.26 £0.01
Random sampling 0.95+£0.01 0.48+0.02 0.25+£0.01
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G.3 COMPARISON AGAINST OTHER SELECTORS

Experimental setting. We compare the variance-based selector used in our LLM instantiation of
GATE with two additional selectors: (1) a selector which selects the samples uniformly at random in
the observational dataset (Random) and (2) a propensity-based selector (Propensity), which defines the
score function as s(x, t) = P(T = t|X = x), intuitively favouring samples exhibiting characteristics
similar to those from the opposite treatment group. For all the selectors, we set o« = 0.5, and use a
DR-Learner for downstream CATE estimation.

Results. We report the results in Table 7, showing that the variance-based selector achieves optimal
performance most consistently out of the considered selection criteria, with performance gains
especially noticeable in the small-sample regime (p = 0.1).

Table 7: Comparison against other selectors. Results reported for 3 seeds.

Selector Lalonde CPS1D STAR Hillstrom

p=0.1
Random 0.95 £ 0.02 0.90+£0.21 0.35£0.03
Propensity 0.95+ 0.01 0.87+0.14 0.39+0.02
Variance 0.95+0.02 0.85+£0.04 0.31£0.01
p=0.5
Random 1.00 + 0.06 0.54+£0.02 0.25+0.01
Propensity 1.00 £0.04 0.50£0.07 0.35£0.00
Variance 0.97 £ 0.05 0.534+£0.07 0.26 £0.01
p=1
Random 0.98 + 0.01 0.49+0.03 0.25+£0.01
Propensity 1.02 +0.06 0.47+0.10 0.33£0.03
Variance 0.95£0.01 0.48+£0.02 0.25+£0.01

31



