
OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset

Anonymous ACL submission

Abstract

Recent work has shown the immense poten-001
tial of synthetically generated datasets for train-002
ing large language models (LLMs), especially003
for acquiring targeted skills. Current large-004
scale math instruction tuning datasets such as005
MetaMathQA (Yu et al., 2024) and MAm-006
moTH (Yue et al., 2024) are constructed using007
outputs from closed-source LLMs with com-008
mercially restrictive licenses. A key reason lim-009
iting the use of open-source LLMs in these data010
generation pipelines has been the wide gap be-011
tween the mathematical skills of the best closed-012
source LLMs, such as GPT-4, and the best open-013
source LLMs. Building on the recent progress014
in open-source LLMs, our proposed prompt-015
ing novelty, and some brute-force scaling, we016
construct OpenMathInstruct-1, a math instruc-017
tion tuning dataset with 1.8M problem-solution018
pairs. The dataset is constructed by synthe-019
sizing code-interpreter solutions for GSM8K020
and MATH, two popular math reasoning bench-021
marks, using the recently released and permis-022
sively licensed Mixtral model. Our best model,023
OpenMath-CodeLlama-70B, trained on a sub-024
set of OpenMathInstruct-1, achieves a score of025
84.6% on GSM8K and 50.7% on MATH, which026
is competitive with the best gpt-distilled mod-027
els. We will release our code, models, and the028
OpenMathInstruct-1 dataset under a commer-029
cially permissive license.030

1 Introduction031

The huge development and inference costs asso-032

ciated with general-purpose large language mod-033

els (LLMs) have led to the rise of smaller, task-034

specific LLMs. Recent work has proposed creat-035

ing these domain/task-specific LLMs by generating036

high-quality synthetic data using powerful closed-037

source models such as GPT-3.5/4 (OpenAI et al.,038

2023) and training smaller models on the generated039

distillation data (Eldan and Li, 2023; Gunasekar040

et al., 2023; Li et al., 2023). For mathematical rea-041

soning, our task of interest, all the current state-of-042

Figure 1: Training set coverage of Mixtral model gener-
ated solutions as a function of number of solutions sam-
pled per problem (using temperature of 1.0 and top_p
= 0.95). The statistics for the training set coverage of
GPT-4 are from Gou et al. (2024).

the-art open-source models are gpt-distilled (Wang 043

et al., 2024; Yue et al., 2024; Gou et al., 2024; Liao 044

et al., 2024). However, model development recipes 045

relying on proprietary models like GPT-4 can have 046

serious limitations: (a) legal restraints on how the 047

finetuned models can be used,1 (b) generating data 048

with closed-source models is typically costlier than 049

state-of-the-art open-source models, and (c) these 050

recipes lack reproducibility as closed-source model 051

behaviors can vary significantly over time (Chen 052

et al., 2023a). 053

For developing mathematical reasoning models, 054

why are open-source models not used in place of 055

closed-source models? To answer this, we compare 056

GPT-4 with Mixtral 8x7B model (Jiang et al., 2024), 057

currently one of the best open-source LLMs at math- 058

ematical reasoning, by generating code-interpreter 059

style solutions for two popular mathematical rea- 060

soning benchmarks, namely GSM8K (Cobbe et al., 061

2021) and MATH (Hendrycks et al., 2021). We use 062

the metric training set coverage (TSC) to compare 063

the models, where TSC measures the number of 064

1https://openai.com/policies/terms-of-use

1

https://openai.com/policies/terms-of-use

Table 1: Comparison of OpenMathInstruct-1 with math-
ematical reasoning fine-tuning datasets used by current
state-of-the-art open-source models. OpenMathInstruct-
1 is 4x bigger than the current largest dataset, Meta-
MathQA, and is the only one, except Lila, with a per-
missive license. Datasets marked with * have not been
publicly released.

Dataset Size Generating LM
(Permissive License)

Lila (Mishra et al., 2022) 272K - (✓)
MathInstruct (Yue et al., 2024) 262K GPT-4 (✗)
MetaMathQA (Yu et al., 2024) 395K GPT-3.5 (✗)
MathCodeInstruct (Wang et al., 2024) 80K GPT-4 + Self (✗)
WizardMath* (Luo et al., 2023) 96K GPT-3.5 (✗)
ToRA* (Gou et al., 2024) 16K GPT-4 (✗)

OpenMathInstruct-1 (Ours) 1.8M Mixtral (✓)

training problems for which any of the generated065

solutions leads to the ground truth answer (pass@k).066

Figure 1 shows the training set coverage (TSC) of067

the Mixtral model as a function of the number of068

sampled solutions. For the relatively easier GSM8K069

benchmark, the Mixtral model’s coverage catches070

up to GPT-4’s with almost 8x the number of solution071

samples. For the challenging MATH benchmark,072

even with 12x the number of solutions, the Mix-073

tral model still has a lower TSC than GPT-4. This074

gap in the training set coverage reflects the distilla-075

tion data quality and, hence, the quality of the final076

fine-tuned model. This explains the preference for077

GPT-4 in the current distillation pipelines.078

Bridging the coverage gap between GPT-4 and079

Open-source LLMs: We limit our investigation of080

open-source LLMs for synthesizing solutions to081

the Mixtral-base model due to (a) its strong perfor-082

mance on mathematical reasoning tasks compared083

to other open-source LLMs and (b) its permissive084

license.2 As a first attempt, we use a brute-force085

approach of sampling several solutions per prob-086

lem. However, this approach only scales logarith-087

mically, limiting its effectiveness (Figure 1). Next,088

we explore the approach of targeted solution gen-089

eration, where we write few-shot prompts focused090

on specific sections of the training data. Concretely,091

we write few-shot prompts for each mathematics092

subject in the MATH dataset and merge the syn-093

thesized solutions. The motivation is that these094

subject-specific few-shot prompts could better tar-095

get the latent mathematical capabilities of these096

general-purpose LLMs. Unfortunately, we only097

find a marginal gain in TSC with this approach (Sec-098

tion 2.2.2). Finally, we utilize the fact that text so-099

lutions accompany mathematical benchmarks such100

2https://mistral.ai/news/mixtral-of-experts/

as MATH and GSM8K. These text solutions can 101

aid the synthesis of code-interpreter style solutions. 102

We show that using the text solution in our few- 103

shot prompt with a slight modification substantially 104

increases the coverage and, consequently, the per- 105

formance of the fine-tuned model (Section 2.2.3). 106

Our solution synthesis experiments result in 107

OpenMathInstruct-1, a collection of 1.8M problem- 108

solution pairs. OpenMathInstruct-1 has a training 109

set coverage of 93% for MATH and 99.9% for 110

GSM8K. Table 1 shows that compared to previ- 111

ous mathematical reasoning fine-tuning datasets, 112

OpenMathInstruct-1 is at least four times bigger 113

and, even more importantly, it is permissively li- 114

censed, allowing unrestricted usage by future work. 115

To illustrate the quality of OpenMathInstruct-1, we 116

train a range of models based on Mistral-7B (Jiang 117

et al., 2023), Llama 2 (Touvron et al., 2023), and 118

CodeLlama (Rozière et al., 2023). In particular, 119

the CodeLlama-70B model fine-tuned on a subset 120

of OpenMathInstruct-1 achieves a score of 84.6% 121

on GSM8K and 50.7% on MATH. These scores 122

are competitive with the best gpt-distilled models. 123

Finally, to support the open-source efforts in this 124

direction, we will publicly release all our fine-tuned 125

models, code, and the OpenMathInstruct-1 dataset 126

along with a further 6.6M incorrect solutions.3 127

2 Training Data Synthesis 128

2.1 Overview 129

Setup. Let X = {(q1, a1), · · · , (qN , aN)} be 130

a typical mathematical reasoning training dataset, 131

where qi and ai denote the ith question and answer 132

respectively. Optionally, the training data may in- 133

clude text solution ti, which illustrates a trajectory 134

from qi to ai using mathematical principles.4 Be- 135

sides the data, we assume access to a foundation 136

LLM like Mixtral-base. The goal is to generate 137

diverse, high-quality solutions for the training set 138

problems using the LLM: a popular recipe for rea- 139

soning tasks (Zelikman et al., 2022; Huang et al., 140

2023). Recent work has also attempted augmenting 141

training set problems (Yue et al., 2024; Yu et al., 142

2024), but we limit our exploration to solution syn- 143

thesis for existing problems in the benchmark. 144

Solution Format. We use the code-interpreter 145

format for the synthesized solutions (Figure 2). 146

The code-interpreter format interweaves natural 147

3The incorrect solution trajectories can be used to train
verifier models (Cobbe et al., 2021; Lightman et al., 2023).

4Both GSM8K and MATH have these text solutions.

2

https://mistral.ai/news/mixtral-of-experts/

Question

A department store displays a 20% discount on all fixtures.

What will be the new price of a 25 cm high bedside lamp

that was worth $120?

Code-Interpreter Style Solution

Let’s solve this problem using Python code.

<llm-code>
discount_percent = 20
price_before_discount = 120
discount = discount_percent / 100
discount_amount = price_before_discount * discount
price = price_before_discount - discount_amount
price
</llm-code>
<llm-code-output>
96.0
</llm-code-output>

So the new price of the lamp is 96 dollars.

Figure 2: Code-Interpreter style solution for a training
set problem from GSM8K.

language reasoning with Python code blocks. It148

thus combines the computation precision of cod-149

ing environments with the expressiveness of natu-150

ral language reasoning, which is particularly suit-151

able for mathematical tasks (Zhou et al., 2024;152

Gou et al., 2024). To demarcate the start and end153

of a code block, we use the strings ⟨llm-code⟩154

and ⟨/llm-code⟩. A code block is followed155

by its execution block, which is demarcated by156

⟨llm-code-output⟩ and ⟨/llm-code-output⟩.157

During inference, the model invokes the Python158

interpreter to run the preceding code block after159

generating ⟨/llm-code⟩, appends the execution re-160

sult in between the ⟨llm-code-output⟩ separators,161

and resumes the autoregressive model inference.5162

Approach. We use few-shot prompting to synthe-
size solutions for the training sets of GSM8K and
MATH. Formally, the prompt has the form:

I (q1, c1), · · · , (qK , cK) q′

where I represents a text-based instruction for the163

task, {q1, · · · , qK} represent K problems represen-164

tative of the dataset, {c1, · · · , cK} represent their165

respective solutions in the code-interpreter format,166

and q′ represents a question from the training set.167

Given this prompt, the base LLM generates a can-168

didate solution c′ for the question q′. If c′ leads169

to the correct answer for the question q′, we add170

the pair (q′, c′) to our fine-tuning set. For all our171

5During training, we don’t mask the code execution output
surrounded by ⟨llm-code-output⟩ separators.

experiments, we choose K = 5, and the represen- 172

tative problems are chosen from the training set of 173

the corresponding benchmark. In the instruction 174

I, we instruct the model to output the answer in- 175

side the \boxed{} block. Complete instruction is 176

in Table 12 in Appendix. 177

Sampling Details. We sample solutions with tem- 178

perature=1.0 and top_p=0.95. We use the following 179

constraints in our generation pipeline: (a) the total 180

number of input-output tokens is limited to 4096, 181

(b) a maximum of 512 new tokens after each code 182

block, (c) a maximum of 3 code blocks, and (d) the 183

generation halts after any code execution error. We 184

use the TensorRT-LLM toolkit.6 185

2.2 Prompting 186
In the previous section, we described our solu- 187

tion generation pipeline. A key ingredient of this 188

pipeline is the few-shot prompt examples. We next 189

describe the different prompting strategies explored. 190

2.2.1 Default 191

We choose five representative examples of GSM8K 192

and MATH to create the few-shot prompt for the 193

respective datasets. For GSM8K, we use a mix 194

of problems that require vanilla Python code and 195

problems that are best solved using Python’s sympy 196

library. For MATH, we compose a 5-shot prompt 197

with examples from different subjects. To reflect 198

this diversity of reasoning paths required for MATH, 199

we choose a mix of problems that require code- 200

based solutions, text-based solutions, and a com- 201

bination of both. The prompts used for the two 202

datasets are shown in Appendix B.7. 203

For GSM8K, we sample 128 solutions per train- 204

ing problem, which gets a training set coverage of 205

99.1%. For MATH, we sample 224 solutions per 206

training problem, which only achieves a training 207

set coverage of 80.1%. This difference in coverage 208

reflects the difficulty of the MATH benchmark com- 209

pared to GSM8K, which has been noted in previous 210

work as well (Gou et al., 2024; Liao et al., 2024). 211

2.2.2 Subject-specific Prompting (Subj) 212

Could the diversity of mathematical topics in MATH 213

be a reason for the low training set coverage 214

with a single 5-shot prompt? To answer this ques- 215

tion, we create subject-specific prompts for the 216

seven subjects in the MATH benchmark, namely 217

algebra, geometry, intermediate algebra, 218

number theory, prealgebra, precalculus, 219

6https://github.com/NVIDIA/TensorRT-LLM

3

https://github.com/NVIDIA/TensorRT-LLM

Table 2: Statistics of unique solutions generated by prompts described in Section 2.2. Default prompt refers to the
single prompt used for the two benchmarks, Mask-Text refers to prompting the model with masked text solution,
and Subj refers to prompting with subject-specific prompts (applicable only to MATH). Coverage % refers to the
percentage of problems in the training set for which there’s at least one solution among the generated solutions.

Prompt MATH GSM8K
Samples # Unique Solns. Coverage (in %) # Samples # Unique Solns. Coverage (in %)

Default 224 177K 80.1 128 434K 99.1
+ Subj 224 191K 80.1 - - -

Mask-Text 224 192K 85.9 128 602K 99.9
+ Subj 224 227K 87.5 - - -

Total 896 787K 93.0 256 1036K 99.9

and probability (See Table 10 in the appendix for220

the subject-wise split of MATH training data). The221

MATH benchmark also labels problems by their222

hardness level, with levels ranging from 1 to 5,223

where level 5 is the hardest. For creating subject-224

specific 5-shot prompts, we choose one example225

from each level for a given subject. For each of the226

seven prompts, we sample 32 solutions per prob-227

lem and combine the data generated with all the228

prompts, which is equivalent to 32 x 7 = 224 so-229

lutions per problem. However, even with this fine-230

grained prompting, we only find a negligible gain in231

the training set coverage, though the total number232

of correct solutions increases by 14K (Table 2).233

Combining this fine-tuning dataset with the ear-234

lier single default prompt dataset yields a training235

coverage of 85.1% for MATH, a boost of 5% abso-236

lute. But achieving this coverage required sampling237

almost 450 solutions per problem (224 + 224 = 448).238

Can we make the solution pipeline more efficient?239

Question
Lynne bought 7 books about cats and 2 books about the
solar system. She also bought 3 magazines. Each book cost
$7 and each magazine cost $4. How much did Lynne spend
in all?

Ground-Truth Text Solution
Lynne bought a total of 7 + 2 = 9 books. The books cost
Lynne 9 x 7 = $63. For 3 magazines, Lynne spent 3 x 4 =
$12. In total, Lynne spent 63 + 12 = $75

Masked Text Solution
Lynne bought a total of 7 + 2 = M books. The books cost
Lynne M x 7 = N. For 3 magazines, Lynne spent 3 x 4 = P.
In total, Lynne spent N + P = Q

Figure 3: A sample masked solution from GSM8K train-
ing set. The masked text solution only masks the inter-
mediate computations, such as 9 → M and 63 → N, and
doesn’t mask the amounts introduced in the question.

2.2.3 Masked Text Solution Prompting240

GSM8K and MATH benchmarks come with ground-
truth text solutions. Using these text solutions can,
in theory, reduce the problem of code-interpreter so-

lution generation to a translation problem from text
to code. We initially experimented by prompting
the LLM with:

I (q1, t1, c1), · · · , (qK , tK , cK) q′, t′

where ti’s represent the text solution of representa- 241

tive problem qi’s and t′ represents the text solution 242

of the problem q′. Using the text solution in the 243

prompt leads to a considerable increase in training 244

set coverage. However, our manual analysis re- 245

vealed that many solutions were shortcuts. E.g., 246

trivial solutions such as print(ANSWER) or The 247

answer is ANSWER where the ANSWER is copied 248

from the text solution t′ in the prompt. Our attempts 249

to filter out these trivial solutions proved challeng- 250

ing as we ran into many creative ways in which the 251

generated solution was cheating (see Figure 9 in 252

Appendix). 253

To deter the possibility of such shortcut solutions
where the results of intermediate computations or
the final answer from the text solution are copied,
we propose prompting with a masked text solution.
Such solutions have all numbers in intermediate
computations replaced with symbols. A sample
masked text solution is shown in Figure 3. These
masked text solutions are generated using few-shot
prompting as follows:

Imask (q1, t1, t
mask
1), · · · , (qK , tK , tmask

K) q′, t′

where Imask represents the instruction for the so- 254

lution masking task, and {tmask
1 , · · · , tmask

K } rep- 255

resent masked text solutions corresponding to 256

{t1, · · · , tK}. For a detailed overview of the 257

masked text solution generation pipeline, we re- 258

fer the reader to Appendix B.5. Using these masked 259

text solutions in the prompts significantly boosts the 260

training set coverage for MATH, increasing from 261

80.1% → 85.9% for the single default prompt, and 262

80.1% → 87.5% for the subject-specific prompts. 263

4

(a) Naive Sampling (b) Fair Sampling

Figure 4: Histogram of the number of solutions for prob-
lems in a 64K downsampled subset of MATH instances
in OpenMathInstruct-1.

For GSM8K, it leads to the coverage increasing264

from 99.1% to 99.9%.265

Table 2 summarizes the statistics of the solu-266

tions dataset generated via different prompts. The267

OpenMathInstruct-1 dataset is obtained by merg-268

ing and deduplicating the problem-solution pairs269

resulting from the above-described prompt strate-270

gies. OpenMathInstruct-1 consists of 787K unique271

solutions for 6978 problems (out of 7500) in MATH272

and 1.04M unique solutions for 7469 problems (out273

of 7473) in GSM8K. To get to this final dataset, we274

also perform a few post-processing steps described275

in Appendix B.6.276

2.3 Data Selection277

OpenMathInstruct-1 on average has hundreds of so-278

lutions per problem. These solutions can have differ-279

ent formats (code vs. text), and problems can have280

very different numbers of solutions in the dataset.281

Careful data selection allows for reduced training282

times and can also benefit performance. We detail283

the data selection strategies explored in this work.284

2.3.1 Fair vs Naive Downsampling285

For a dataset like MATH, where problems can have286

very different difficulty levels, our solution gener-287

ation strategy leads to a corpus where easier prob-288

lems have a lot of solutions and harder problems289

have very few solutions (see Appendix A.3 for a de-290

tailed discussion on solution count). A naive strat-291

egy for downsampling treats every instance, i.e.,292

problem-solution pair, as an equal. This problem-293

agnostic sampling perpetuates the imbalance of the294

original corpus, as seen in Figure 4(a). We pro-295

pose a fair sampling alternate in which we iterate296

over all the problems round-robin and sample from297

unpicked solutions for each problem. This problem-298

dependent sampling ensures a more balanced rep-299

resentation of each problem in the downsampled300

dataset (see Figure 4(b)). Experimental results show301

that fair downsampling outperforms naive down- 302

sampling (Section 4.1.1). 303

2.3.2 Code-Preferred Solutions 304

The code-interpreter format allows for mixing code 305

and text, and also text-based solutions without any 306

code blocks. For GSM8K, the proportion of text- 307

based solutions is 2%, but for MATH, their repre- 308

sentation is 35.1%.7 While natural language rea- 309

soning is more expressive, it lacks the precision of 310

code-based solutions (Gao et al., 2023). Suppose 311

for a problem q there are a total of Ntotal correct 312

solutions in the corpus, out of which Ncode rep- 313

resents the number of code-based solutions, and 314

Ntext represents the text-based solutions. We pro- 315

pose the following two code-preferential data selec- 316

tion strategies: 1. Majority-Code: If Ncode > Ntext, 317

remove all the text-based solutions. 2. Any-Code: 318

If Ncode > 0, remove all the text-based solu- 319

tions. Ablation experiments over the MATH subset 320

of OpenMathInstruct-1 show the benefit of code- 321

preferential data selection (Section 4.1.3). 322

3 Experimental Setup 323

Training Details. For all our experiments, includ- 324

ing ablations, models of size 34B or smaller are 325

trained for four epochs. A global batch size of 128 326

is used along with the AdamW optimizer with a 327

weight decay of 1e-2 (Loshchilov and Hutter, 2019) 328

and dropout (Hinton et al., 2012) of 0.1. We save 329

one checkpoint per epoch for ablation experiments 330

and two checkpoints per epoch for final model runs. 331

The final checkpoint is created by averaging all the 332

saved checkpoints. All experiments are performed 333

using the NeMo toolkit (Kuchaiev et al., 2019). Ap- 334

pendix B.1 details the full set of hyperparameters. 335

Evaluation Setup. We evaluate our models 336

on popular math reasoning benchmarks, namely 337

GSM8K, MATH, GSM-Hard (Gao et al., 2023), 338

SVAMP (Patel et al., 2021), TabMWP (Lu 339

et al., 2023), ASDiv (Miao et al., 2020), and 340

MAWPS (Koncel-Kedziorski et al., 2016). For abla- 341

tion studies and hyperparameter selection, we create 342

a validation set of 1K examples from the training 343

set of GSM8K and MATH since both datasets lack 344

an actual validation set. All the fine-tuned mod- 345

els are evaluated in the zero-shot setting. We use 346

greedy decoding and self-consistency/majority vot- 347

ing (Wang et al., 2023) for evaluation. For majority 348

7We detect the presence of code by searching for
⟨llm-code⟩ in the solution string.

5

Table 3: Comparison of our OpenMath-finetuned models with their gpt-distilled counterparts. We present results
on popular mathematical reasoning tasks, namely, GSM8K, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, and
MAWPS. For ToRA and MAmmoTH, we report the results of their "-Code(r)" versions whenever available since they
are always better than their non-code counterparts. SC (k=50) denotes self-consistency decoding with 50 samples.
We highlight the following results for a parameter range: best with SC, best and second best with greedy decoding.

Size Base Model Model GSM8K MATH GSM-Hard SVAMP TabMWP ASDiv MAWPS

- GPT-4 (Code Interpreter) 97.0 69.7 77.6 94.8 95.9 92.6 97.7

7B

Llama-2 WizardMath 54.9 10.7 - 36.1 - - -
MetaMath 66.4 19.4 -

CodeLlama

MAmmoTH 59.4 33.4 - 71.4 - - -
ToRA 72.6 44.6 56.0 70.4 51.6 78.7 91.3

+ SC (k=50) 76.8 52.5 - - - - -
OpenMath-CodeLlama 75.9 43.6 60.1 79.6 56.0 77.7 93.5

+ SC (k=50) 84.8 55.6 - - - - -

Mistral

MetaMath-Mistral-7B 77.7 28.2 - - - - -
MAmmoTH-7B-Mistral 75.0 40.0 - - - - -
WizardMath 83.2 33.0 - - - - -
OpenMath-Mistral-7B 80.2 44.5 63.7 82.4 70.0 82.7 95.4

+ SC (k=50) 86.9 57.2 - - - - -

13B

Llama-2 WizardMath 63.9 14.0 - 51.9 - - -
MetaMath 72.3 22.4 - - - - -

CodeLlama

MAmmoTH 64.7 36.3 - 73.7 - - -
ToRA 75.8 48.1 60.5 75.7 65.4 81.4 92.5

+ SC (k=50) 80.4 55.1 - - - - -
OpenMath-CodeLlama 78.8 45.5 61.9 78.8 59.7 81.2 93.6

+ SC (k=50) 86.8 57.6 - - - - -

34B CodeLlama

MAmmoTH 72.7 43.6 - 84.3 - - -
ToRA 80.7 51.0 63.7 80.5 70.5 84.2 93.3

+ SC (k=50) 85.1 60.0 - - - - -
OpenMath-CodeLlama 80.7 48.3 64.0 83.6 66.0 82.7 94.9

+ SC (k=50) 88.0 60.2 - - - - -

70B
Llama-2

WizardMath 81.6 22.7 - 71.8 - - -
MetaMath 82.3 26.6 - - - - -
MAmmoTH 76.9 41.8 - 82.4 - - -
ToRA 84.3 49.7 67.2 82.7 74.0 86.8 93.8

+ SC (k=50) 88.3 56.9 - - - - -
OpenMath-Llama2 84.7 46.3 65.7 85.0 70.8 84.3 95.6

+ SC (k=50) 90.1 58.3 - - - - -

CodeLlama OpenMath-CodeLlama 84.6 50.7 66.6 87.8 74.2 84.7 95.7
+ SC (k=50) 90.8 60.4 - - - - -

voting, we found that using the lower temperature349

of 0.7 is beneficial compared to the data generation350

setup. We also deviate from the data generation351

setup by allowing the model to continue answering352

questions after code execution errors.353

4 Results354

We finetune all the models on a mixture of (a)355

512K fair downsampled GSM8K instances and (b)356

512K MATH instances with any-code filtering (Sec-357

tion 2.3).8 Thus, the total finetuning corpus size is358

roughly 1.2M. We will justify the data selection359

choice later in the ablation experiments.360

Table 3 compares the performance of OpenMath-361

finetuned models against their gpt-distilled coun-362

terparts. Among the 7B models, our OpenMath-363

8The actual number of MATH instances is 511,677.

Mistral-7B is competitive with all the gpt-distilled 364

models. It is second-best to WizardMath on 365

GSM8K, and bested by ToRA by 0.1% on MATH.9 366

Our models easily outperform both MAmmoTH 367

and MetaMath, even when controlling for the base 368

fine-tuned model. Since WizardMath and ToRA 369

finetuning datasets are not publicly available yet, 370

OpenMathInstruct-1 presents a superior alternative 371

to the publicly available MetaMathQA and Math- 372

Instruct datasets, which are used to fine-tune Meta- 373

Math and MAmmoTH, respectively. 374

With the increase in model parameters, our mod- 375

els continue to outperform MAmmoTH and Meta- 376

Math substantially. Compared to ToRA, with 377

9Our grading script scores the publicly released ToRA out-
puts about 2-3% lower than the reported numbers. We believe
that ToRA uses some heuristics to extract answers when the
model doesn’t generate answers in the correct format.

6

Table 4: Comparison of performance of fair vs naive sam-
pling on our validation subset of GSM8K and MATH.

Prompt GSM8K MATH

Naive 74.3 35.0
Fair 75.3 37.0

greedy decoding, we see a meaningful drop in per-378

formance on MATH, though our models are equal379

or better on GSM8K. With self-consistency (SC)380

decoding, however, our models outperform ToRA381

on both MATH and GSM8K. The gains with SC382

can be attributed to our diverse fine-tuning data.383

4.1 Ablations384

We perform ablation experiments with the Mistral-385

7B as the base model. We report results on the386

1K-sized validation subsets for MATH and GSM8K387

created by us.388

4.1.1 Fair vs Naive Downsampling389

We finetune the base model on a dataset of 128K390

instances created by combining 64K naive or fair391

downsampled instances from the GSM8K and392

MATH portion of the data. Table 4 shows that393

the model fine-tuned on the data downsampled with394

fair sampling outperforms the one created by naive395

downsampling. The performance gap is particularly396

substantial for MATH, which suffers from a graver397

data imbalance than GSM8K in our corpus.398

4.1.2 Impact of Fine-Tuning Dataset Size399

Table 5: Effect of fine-tuning dataset size on perfor-
mance on our validation subset of GSM8K and MATH.

Dataset Size GSM8K MATH

128K 75.3 37.0
256K 79.0 38.6
512K 81.0 41.6

To determine the impact of the size of the400

fine-tuning dataset, we create datasets of size401

128K/256K/512K by combining 64K/128K/256K402

fair downsampled subsets of GSM8K and MATH.403

Table 5 shows that the performance increases on404

both GSM8K and MATH with the increase in the405

fine-tuning dataset size. We didn’t find benefit from406

training the models for more steps, so the perfor-407

mance gain is attributable to the increased data size.408

4.1.3 MATH-only Ablations409

This section presents the ablation results for only410

the MATH portion of OpenMathInstruct-1. In all411

experiments, we finetune the base model on a 128K412

fair downsampled subset to control for data size.413

Table 6: Comparison of default vs subject-wise prompt
performance on our MATH validation subset.

Prompt Pass@1 SC (k=4)

Default 39.1 41.7
Subject 38.3 44.5

Default vs Subject-Specific Prompting. In sec- 414

tion 2.2.2, we motivated using subject-specific 415

prompts, which ultimately didn’t result in much 416

training set coverage difference. But how are the 417

solutions generated by the combination of subject- 418

wise prompts different from a single default prompt? 419

To answer this, we create a subset of 128K instances 420

generated with the default prompt/subject-specific 421

prompts. 422

Table 6 compares the finetuning performance 423

on these two splits on our MATH validation sub- 424

set. While the model trained on the subject-specific 425

subset trails the model trained on the default sub- 426

set for greedy decoding; the trend is decisively re- 427

versed for self-consistent decoding with four sam- 428

ples. This suggests that the subset generated with 429

subject-specific prompts has a higher diversity than 430

the ones generated using a single prompt. 431

Table 7: Impact of code-preferential data selection on
our MATH validation subset performance.

Prompt Pass@1 SC (k=4)

Default 37.4 45.2
Majority-Code 39.8 42.6
Any-Code 39.4 42.6

Code-Preferential Subsets. In this ablation, we 432

determine the impact of code-preferential solu- 433

tion selection strategies proposed in Section 2.3.2. 434

Table 7 shows that code-preferential solution 435

strategies aid the greedy decoding performance. 436

However, the reduction in solution diversity ar- 437

guably results in decreased performance with self- 438

consistency decoding (text-based solutions are only 439

1/3rd of the original corpus to begin with). Based 440

on these results and because any-code results in a 441

smaller finetuning dataset (512K compared to 664K 442

with majority-code), we chose to use the any-code 443

subset in our finetuning data blend. 444

5 Analysis 445

We analyze the performance of the ablation model 446

trained on 512K instances from Section 4.1.2. We 447

focus our discussion on the MATH benchmark 448

where this model scores 41.6% on our MATH vali- 449

dation subset. 450

7

(a) Subject-wise performance (b) Level-wise performance

Figure 5: Performance split by subjects and levels on
our MATH validation subset.

Performance-split by Subjects and Levels. Fig-451

ure 5 presents the performance split by subjects and452

levels on the MATH validation subset. Among sub-453

jects, we see that the model’s worst performance454

is on geometry, which can be attributed to the lack455

of multi-modality in our base models (Zhou et al.,456

2024). We see a monotonic decrease in perfor-457

mance with the increase in hardness level which is458

to be expected (Zhou et al., 2024).459

Error Analysis. Table 8 shows that the model460

performs an absolute 13.3% better when using code461

for answering questions in comparison to when not462

using it. We find that some of the errors made by463

text-based solutions could have been avoided by464

preferring code-based solutions; see Figure 15 in465

the Appendix for a sample solution. This analysis466

provides another support for our proposal and use467

of code-preferred solutions from Section 2.3.2.468

Table 9 presents the count of different error cat-469

egories. For code-based solutions, we find that al-470

most 74% of the errors in such solutions are due471

to reasoning errors, and the remaining 26% are at-472

tributable to execution-related issues. Sample so-473

lutions from these error types are presented in Ap-474

pendix B.3.475

6 Related Work476

Recently, a plethora of work has been done on en-477

hancing the mathematical reasoning capabilities478

of LLMs. Inference techniques such as Chain-of-479

Thought (Wei et al., 2022), its programmatic coun-480

terpart, Program of Thought (Gao et al., 2023; Chen481

et al., 2023b), Self-Consistency (Wang et al., 2023),482

Table 8: Performance split based on solution format.

Solution Type Accuracy (in %) Count

Text-based 32.0 278
Code + Text 45.3 722

Total 41.6 1000

Table 9: Types of errors and their counts.

Error Type Count

Text Reasoning Error 189
Code Reasoning Error 292
Code Execution Error 78
Code timeout 15
Max code executions reached 10

Total 584

and Self-Verification (Zhou et al., 2024) have been 483

shown to significantly improve the reasoning capa- 484

bilities of LLMs without any further training. 485

Pretraining language models on math-heavy con- 486

tent has resulted in foundation LLMs such as Min- 487

erva (Lewkowycz et al., 2022), Galactica (Taylor 488

et al., 2022), and Llemma (Azerbayev et al., 2023) 489

with stronger mathematical skills out-of-the-box. A 490

more direct approach of dataset-specific training 491

does instruction fine-tuning on problem-solution 492

pairs derived from math reasoning datasets. Our 493

work falls in this latter category and bears simi- 494

larity with recent work such as RFT (Yuan et al., 495

2023), ToRA (Gou et al., 2024), MAmmoTH (Yue 496

et al., 2024), MetaMath (Yu et al., 2024) and Math- 497

Coder (Wang et al., 2024). We differ from the pre- 498

vious work along one factor or a combination of 499

the following factors: (a) reliance on GPT-3.5/4, 500

(b) solution format, and (c) use of ground truth text 501

solution in synthesizing code-based solutions. 502

7 Conclusion 503

We introduce OpenMathInstruct-1, a math instruc- 504

tion tuning dataset with 1.8M problem-solution 505

pairs with a commercially permissive license. Com- 506

pared to previous work, OpenMathInstruct-1 is at 507

least four times bigger. The problems are taken 508

from the training set of GSM8K and MATH bench- 509

marks, and the solutions are synthesized by few- 510

shot prompting the Mixtral model. With our pro- 511

posed prompting novelty of using masked text so- 512

lutions and some brute-force scaling, we achieve 513

training set coverage of 99.9% for the GSM8K 514

benchmark and 93% for the challenging MATH 515

benchmark. The quality of these synthesized solu- 516

tions is illustrated by finetuning experiments, which 517

show models achieving performance comparable 518

to or better than their gpt-distilled counterparts. To 519

support the open-source efforts in this direction, we 520

will publicly release all our fine-tuned models, code, 521

and the OpenMathInstruct-1 along with a further 522

6.6M incorrect sampled solutions. 523

8

8 Limitations and Potential Risks524

Our work aims to improve the mathematical rea-525

soning of open-source models using open-source526

models. In pursuit of this goal, we create a synthetic527

dataset, OpenMathInstruct-1, that our experiments528

show aids the performance on existing math bench-529

marks. Below, we list the key limitations of our530

work:531

• Our manual analysis reveals solutions that get532

the right answer but via flawed reasoning (Fig-533

ure 11 in Appendix). Removing these semanti-534

cally noisy solutions is beyond the scope of the535

current work. This means a lack of guarantee536

about the quality of our synthetically generated537

solutions.538

• Improving performance on in-domain math539

benchmarks may not translate to performance540

gain on other related tasks. The drop in per-541

formance on GSM-Hard compared to GSM542

indicates that our models may not be robust543

to input perturbations, though, they are at par544

with previous work.545

While we don’t foresee any material risk due to546

our work, using our imperfect dataset and models547

to perform tasks, such as evaluating student assign-548

ments or building a math tutor, carries risk.549

References550

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,551
Marco Dos Santos, Stephen McAleer, Albert Q. Jiang,552
Jia Deng, Stella Biderman, and Sean Welleck. 2023.553
Llemma: An Open Language Model For Mathemat-554
ics.555

Lingjiao Chen, Matei Zaharia, and James Zou. 2023a.556
How is ChatGPT’s behavior changing over time?557

Wenhu Chen, Xueguang Ma, Xinyi Wang, and558
William W. Cohen. 2023b. Program of Thoughts559
Prompting: Disentangling Computation from Reason-560
ing for Numerical Reasoning Tasks. TMLR.561

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,562
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias563
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro564
Nakano, Christopher Hesse, and John Schulman.565
2021. Training Verifiers to Solve Math Word Prob-566
lems.567

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How568
Small Can Language Models Be and Still Speak Co-569
herent English? arXiv.570

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 571
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra- 572
ham Neubig. 2023. PAL: Program-aided Language 573
Models. In ICML, pages 10764–10799. PMLR. 574

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, 575
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu 576
Chen. 2024. ToRA: A Tool-Integrated Reasoning 577
Agent for Mathematical Problem Solving. In ICLR. 578

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio 579
César Teodoro Mendes, Allie Del Giorno, Sivakanth 580
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo 581
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, 582
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, 583
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and 584
Yuanzhi Li. 2023. Textbooks Are All You Need. 585
arXiv. 586

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 587
Arora, Steven Basart, Eric Tang, Dawn Song, and 588
Jacob Steinhardt. 2021. Measuring Mathematical 589
Problem Solving With the MATH Dataset. NeurIPS. 590

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, 591
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012. 592
Improving neural networks by preventing co- 593
adaptation of feature detectors. arXiv preprint 594
arXiv:1207.0580. 595

Jiaxin Huang, Shixiang Gu, Le Hou, Yuexin Wu, Xuezhi 596
Wang, Hongkun Yu, and Jiawei Han. 2023. Large 597
Language Models Can Self-Improve. In EMNLP. 598

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men- 599
sch, Chris Bamford, Devendra Singh Chaplot, Diego 600
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 601
laume Lample, Lucile Saulnier, Lélio Renard Lavaud, 602
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, 603
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and 604
William El Sayed. 2023. Mistral 7B. arXiv. 605

Albert Q. Jiang, Alexandre Sablayrolles, Antoine 606
Roux, Arthur Mensch, Blanche Savary, Chris Bam- 607
ford, Devendra Singh Chaplot, Diego de las Casas, 608
Emma Bou Hanna, Florian Bressand, Gianna Lengyel, 609
Guillaume Bour, Guillaume Lample, Lélio Renard 610
Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre 611
Stock, Sandeep Subramanian, Sophia Yang, Szy- 612
mon Antoniak, Teven Le Scao, Théophile Gervet, 613
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and 614
William El Sayed. 2024. Mixtral of Experts. 615

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate 616
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS: 617
A Math Word Problem Repository. In NAACL-HLT. 618

O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary, 619
B. Ginsburg, S. Kriman, S. Beliaev, V. Lavrukhin, 620
J. Cook, et al. 2019. NeMo: a toolkit for building 621
AI applications using neural modules. In Systems for 622
ML Workshop, NeurIPS. 623

Aitor Lewkowycz, Anders Johan Andreassen, 624
David Dohan, Ethan Dyer, Henryk Michalewski, 625
Vinay Venkatesh Ramasesh, Ambrose Slone, Cem 626

9

http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2307.09009
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
http://arxiv.org/abs/2305.07759
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap
http://arxiv.org/abs/2306.11644
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2401.04088

Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu,627
Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra.628
2022. Solving Quantitative Reasoning Problems with629
Language Models. In NeurIPS.630

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del631
Giorno, Suriya Gunasekar, and Yin Tat Lee. 2023.632
Textbooks Are All You Need II: phi-1.5 technical633
report. arXiv.634

Minpeng Liao, Wei Luo, Chengxi Li, Jing Wu, and Kai635
Fan. 2024. MARIO: MAth Reasoning with code636
Interpreter Output – A Reproducible Pipeline.637

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri638
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John639
Schulman, Ilya Sutskever, and Karl Cobbe. 2023.640
Let’s Verify Step by Step. arXiv.641

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan642
Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel Ward,643
and Yi Zhang. 2023. TinyGSM: achieving> 80% on644
GSM8k with small language models. arXiv preprint645
arXiv:2312.09241.646

Ilya Loshchilov and Frank Hutter. 2019. Decoupled647
Weight Decay Regularization. arXiv.648

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,649
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark, and650
Ashwin Kalyan. 2023. Dynamic Prompt Learning651
via Policy Gradient for Semi-structured Mathematical652
Reasoning. In ICLR.653

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-654
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei655
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-656
ardMath: Empowering Mathematical Reasoning for657
Large Language Models via Reinforced Evol-Instruct.658
arXiv preprint arXiv:2308.09583.659

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su.660
2020. A Diverse Corpus for Evaluating and Develop-661
ing English Math Word Problem Solvers. In ACL.662

Swaroop Mishra, Matthew Finlayson, Pan Lu, Leonard663
Tang, Sean Welleck, Chitta Baral, Tanmay Rajpurohit,664
Oyvind Tafjord, Ashish Sabharwal, Peter Clark, and665
Ashwin Kalyan. 2022. Lila: A Unified Benchmark666
for Mathematical Reasoning. In EMNLP.667

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar,668
Sahaj Agarwal, Hamid Palangi, and Ahmed Awadal-669
lah. 2023. Orca: Progressive Learning from Complex670
Explanation Traces of GPT-4.671

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-672
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-673
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-674
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,675
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-676
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,677
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-678
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-679
laine Boyd, Anna-Luisa Brakman, Greg Brockman,680
Tim Brooks, Miles Brundage, Kevin Button, Trevor681

Cai, Rosie Campbell, Andrew Cann, Brittany Carey, 682
Chelsea Carlson, Rory Carmichael, Brooke Chan, 683
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, 684
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, 685
Chester Cho, Casey Chu, Hyung Won Chung, Dave 686
Cummings, Jeremiah Currier, Yunxing Dai, Cory 687
Decareaux, Thomas Degry, Noah Deutsch, Damien 688
Deville, Arka Dhar, David Dohan, Steve Dowling, 689
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna 690
Eloundou, David Farhi, Liam Fedus, Niko Felix, 691
Simón Posada Fishman, Juston Forte, Isabella Ful- 692
ford, Leo Gao, Elie Georges, Christian Gibson, Vik 693
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo- 694
Lopes, Jonathan Gordon, Morgan Grafstein, Scott 695
Gray, Ryan Greene, Joshua Gross, Shixiang Shane 696
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, 697
Yuchen He, Mike Heaton, Johannes Heidecke, Chris 698
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, 699
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin 700
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, 701
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun 702
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo 703
Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, In- 704
gmar Kanitscheider, Nitish Shirish Keskar, Tabarak 705
Khan, Logan Kilpatrick, Jong Wook Kim, Christina 706
Kim, Yongjik Kim, Hendrik Kirchner, Jamie Kiros, 707
Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, 708
Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, 709
Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai 710
Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, 711
Chak Ming Li, Rachel Lim, Molly Lin, Stephanie 712
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, 713
Patricia Lue, Anna Makanju, Kim Malfacini, Sam 714
Manning, Todor Markov, Yaniv Markovski, Bianca 715
Martin, Katie Mayer, Andrew Mayne, Bob McGrew, 716
Scott Mayer McKinney, Christine McLeavey, Paul 717
McMillan, Jake McNeil, David Medina, Aalok Mehta, 718
Jacob Menick, Luke Metz, Andrey Mishchenko, 719
Pamela Mishkin, Vinnie Monaco, Evan Morikawa, 720
Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, 721
David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev 722
Nayak, Arvind Neelakantan, Richard Ngo, Hyeon- 723
woo Noh, Long Ouyang, Cullen O’Keefe, Jakub 724
Pachocki, Alex Paino, Joe Palermo, Ashley Pantu- 725
liano, Giambattista Parascandolo, Joel Parish, Emy 726
Parparita, Alex Passos, Mikhail Pavlov, Andrew 727
Peng, Adam Perelman, Filipe de Avila Belbute Peres, 728
Michael Petrov, Henrique Ponde de Oliveira Pinto, 729
Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, 730
Tolly Powell, Alethea Power, Boris Power, Eliza- 731
beth Proehl, Raul Puri, Alec Radford, Jack Rae, 732
Aditya Ramesh, Cameron Raymond, Francis Real, 733
Kendra Rimbach, Carl Ross, Bob Rotsted, Henri 734
Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, 735
Shibani Santurkar, Girish Sastry, Heather Schmidt, 736
David Schnurr, John Schulman, Daniel Selsam, Kyla 737
Sheppard, Toki Sherbakov, Jessica Shieh, Sarah 738
Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, 739
Maddie Simens, Jordan Sitkin, Katarina Slama, Ian 740
Sohl, Benjamin Sokolowsky, Yang Song, Natalie 741
Staudacher, Felipe Petroski Such, Natalie Summers, 742
Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine 743
Thompson, Phil Tillet, Amin Tootoonchian, Eliz- 744
abeth Tseng, Preston Tuggle, Nick Turley, Jerry 745

10

http://arxiv.org/abs/2401.08190
http://arxiv.org/abs/2401.08190
http://arxiv.org/abs/2401.08190
http://arxiv.org/abs/2305.20050
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/2306.02707
http://arxiv.org/abs/2306.02707
http://arxiv.org/abs/2306.02707

Tworek, Juan Felipe Cerón Uribe, Andrea Vallone,746
Arun Vijayvergiya, Chelsea Voss, Carroll Wainwright,747
Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan748
Ward, Jason Wei, CJ Weinmann, Akila Welihinda,749
Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wi-750
ethoff, Dave Willner, Clemens Winter, Samuel Wol-751
rich, Hannah Wong, Lauren Workman, Sherwin Wu,752
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo,753
Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan754
Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao,755
Tianhao Zheng, Juntang Zhuang, William Zhuk, and756
Barret Zoph. 2023. GPT-4 Technical Report.757

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.758
2021. Are NLP Models really able to Solve Sim-759
ple Math Word Problems? In NAACL-HLT.760

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,761
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi762
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom763
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish764
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-765
han Xiong, Alexandre Défossez, Jade Copet, Faisal766
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,767
Thomas Scialom, and Gabriel Synnaeve. 2023. Code768
Llama: Open Foundation Models for Code. arXiv.769

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas770
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew771
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.772
Galactica: A Large Language Model for Science.773

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-774
bert, Amjad Almahairi, Yasmine Babaei, Nikolay775
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti776
Bhosale, Dan Bikel, Lukas Blecher, Cristian Can-777
ton Ferrer, Moya Chen, Guillem Cucurull, David778
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu,779
Brian Fuller, Cynthia Gao, Vedanuj Goswami, Na-780
man Goyal, Anthony Hartshorn, Saghar Hosseini,781
Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,782
Madian Khabsa, Isabel Kloumann, Artem Korenev,783
Punit Singh Koura, Marie-Anne Lachaux, Thibaut784
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yun-785
ing Mao, Xavier Martinet, Todor Mihaylov, Pushkar786
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton,787
Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,788
Alan Schelten, Ruan Silva, Eric Michael Smith, Ran-789
jan Subramanian, Xiaoqing Ellen Tan, Binh Tang,790
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin791
Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, An-792
gela Fan, Melanie Kambadur, Sharan Narang, Aure-793
lien Rodriguez, Robert Stojnic, Sergey Edunov, and794
Thomas Scialom. 2023. Llama 2: Open Foundation795
and Fine-Tuned Chat Models.796

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun797
Luo, Weikang Shi, Renrui Zhang, Linqi Song,798
Mingjie Zhan, and Hongsheng Li. 2024. MathCoder:799
Seamless Code Integration in LLMs for Enhanced800
Mathematical Reasoning. In ICLR.801

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,802
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and803
Denny Zhou. 2023. Self-consistency improves chain804
of thought reasoning in language models. In ICLR.805

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 806
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 807
et al. 2022. Chain-of-thought prompting elicits rea- 808
soning in large language models. NeurIPS. 809

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, 810
Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin 811
Jiang. 2023. WizardLM: Empowering Large 812
Language Models to Follow Complex Instructions. 813
arXiv. 814

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 815
Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo 816
Li, Adrian Weller, and Weiyang Liu. 2024. Meta- 817
Math: Bootstrap Your Own Mathematical Questions 818
for Large Language Models. In ICLR. 819

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting 820
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and 821
Jingren Zhou. 2023. Scaling Relationship on Learn- 822
ing Mathematical Reasoning with Large Language 823
Models. 824

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen- 825
hao Huang, Huan Sun, Yu Su, and Wenhu Chen. 826
2024. MAmmoTH: Building math generalist models 827
through hybrid instruction tuning. In ICLR. 828

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good- 829
man. 2022. STaR: Bootstrapping Reasoning With 830
Reasoning. In NeurIPS. 831

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun 832
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song, 833
Mingjie Zhan, and Hongsheng Li. 2024. Solving 834
Challenging Math Word Problems Using GPT-4 Code 835
Interpreter with Code-based Self-Verification. In 836
ICLR. 837

11

http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2211.09085
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2304.12244
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I
https://openreview.net/forum?id=yLClGs770I

A Data Statistics838

A.1 MATH Training Data Split by Subjects839

Table 10: MATH training set decomposition by subjects.

Subject # of Training Instances

Algebra 1744
Geometry 870

Intermediate Algebra 1295
Number Theory 869

Prealgebra 1205
Precalculus 746
Probability 771

Total 7500

A.2 Code-Block Count Frequencies840

Figure 6: Distribution of solutions with different code-
block counts in OpenMathInstruct-1.

The code-interpreter allows solving a problem841

by breaking it into multiple code blocks. Most of842

the solutions in OpenMathInstruct-1 have 0 or 1843

code blocks, 16.4% and 81.7% of the solutions,844

respectively. The remaining 2% of the solutions845

have two or more code blocks. Figure 7 shows an846

example of a solution using two code blocks.847

A.3 Frequency of solutions per problem in848

OpenMathInstruct-1849

Figure 12 shows the histogram of the frequency850

of the number of solutions in OpenMathInstruct-1851

for problems in GSM8K and MATH. For GSM8K,852

57.4% problems (4292 out of 7473) have more than853

half the sampled solutions, i.e., > 128 solutions out854

of 256 sampled solutions, that are valid. For MATH,855

the solution frequency histogram mimics a power-856

Solution with Two Code Blocks

Question

Let d and e denote the solutions of 2x2 + 3x − 5 = 0.
What is the value of (d− 1)(e− 1)?

Generated Solution
Let’s solve the quadratic equation using Sympy:

<llm−code>
from sympy import Symbol, solve, Eq, simplify

Define the variable x
x = Symbol('x')

Define the equation
eq = 2*x**2 + 3*x − 5

Solve the equation
roots = solve(eq, x)

Print the solutions
print("The solutions are:")
for root in roots:

print("x = ", simplify(root))
</llm−code>
<llm−code−output>
The solutions are:
x = −5/2
x = 1
</llm−code−output>

So d = −5/2 and e = 1.
Let’s calculate the answer:

<llm−code>
d = −5/2
e = 1
d_minus_1 = d − 1
e_minus_1 = e − 1
result = d_minus_1 * e_minus_1
print("The value of (d−1)(e−1) is:", result)
</llm−code>
<llm−code−output>
The value of (d−1)(e−1) is: −0.0
</llm−code−output>

So the answer is −0.0 .

Figure 7: Sample solution with multiple code blocks.
The first code block computes the roots of the given
quadratic equation and the second block computes the
expression involving them.

law curve, with most problems having very few so- 857

lutions and very few problems with many solutions. 858

Concretely, 19% problems (1324 out of 6978) with 859

any solutions in OpenMathInstruct-1 have ≤ 10 860

valid solutions out of the 896 sampled solutions 861

per problem. To further highlight the hardness of 862

the MATH benchmark in comparison to GSM8K, 863

just 3.1% problems (233 out of 7500) have more 864

than half the sampled solutions (> 448 out of 896 865

12

Code + Text Reasoning

Question

Let p(x) =
√
−x, and q(x) = 8x2 + 10x − 3. The

domain of p(q(x)) can be written in the form a ≤ x ≤ b.
Find b− a.

Generated Solution
Let’s use sympy to solve for the domain of p(q(x)).

<llm−code>
import sympy as sp

define the symbols
x = sp.symbols('x')

define the functions
p = sp.sqrt(−x)
q = 8*x**2 + 10*x − 3

solve for the domain of p(q(x))
domain = sp.solve(q >= 0, x)

print the domain
print(domain)
</llm−code>
<llm−code−output>
((1/4 <= x) & (x < oo)) | ((−oo < x) & (x <= −3/2))
</llm−code−output>
So the domain is $x \in [1/4, \infty) \cup (−\infty, −3/2)
$.

The difference between the upper and lower bounds is
b− a = 1/4− (−3/2) .

Figure 8: Sample solution where the model performs the
initial reasoning in code and performs the last reasoning
steps to answer the question in natural language. This
shows the strength of the code-interpreter solution format
for mathematical reasoning.

sampled solutions), that are valid.866

B Miscellaneous867

B.1 Training Hyperparameters868

Table 11: Details of training hyperparameters for fine-
tuning the different base models. LR=Learning rate,
TP=Tensor Parallel, PP=Pipeline Parallel.

Epochs LR # of GPUs TP PP

Mistral-7B 4 1e-6 64 4 1
CodeLlama-7B 4 2e-5 64 4 1
CodeLlama-13B 4 2e-5 64 4 1
CodeLlama-34B 4 1e-5 128 8 1
Llama 2-70B 2 1e-5 256 8 2
CodeLlama-70B 3 1e-5 256 8 2

Table 11 details the hyperparameters used for869

finetuning the different base models. Due to com-870

Shortcut Solution

Question
Jolene and Phil have four children, each with the same
birthday. They gave birth to their first child exactly 15
years ago. They gave birth to their second child exactly
one year after the birth of their first child. They gave birth
to their third child on the fourth birthday of their second
child. Two years after the birth of their third child, they
gave birth to their fourth child. How old, in years, is their
fourth child?

Reference Solution
Their 1st child was born 15 years ago, and therefore is 15
years old.
Their 2nd child was born 1 year after their 15-year-old
child, and therefore is 15-1=14 years old.
Their 3rd child was born 4 years after their 14-year-old
child, and therefore is 14-4=10 years old.
Their 4th child was born 2 years after their 10-year-old
child, and therefore is 10-2=8 years old.

Generated Solution
Let’s write down a python script to answer this problem.

<llm−code>
children = ['first', 'second', 'third', 'fourth']
child_age = [15, 14, 10, 8]
number_of_children = len(children)
children = children[:−1] # let's get rid of the youngest
one since we already know that one
dictionary = dict(zip(children, child_age))
dictionary
</llm−code>
<llm−code−output>
{'first': 15, 'second': 14, 'third': 10}
</llm−code−output>

The answer is 8 years old.

Figure 9: Sample shortcut solution generated from
prompting the LLM with the reference solution in con-
text. The code initializes the variable child_age with
the children’s ages copied from the reference solution.
The generated code then performs ad-hoc computations
before answering the question in the text.

pute limitations, for 70B models, we limit the train- 871

ing to 2 epochs for Llama2 and 3 epochs for CodeL- 872

lama. For CodeLlama models, we use the learning 873

rate of 2e-5 used by ToRA models (Gou et al., 2024). 874

For the Mistral-7B model, we use a lower learning 875

rate of 1e-6 based on our hyperparameter search. 876

B.2 Sample Solutions 877

In this section, we illustrate sample solutions repre- 878

sentative of different phenomena encountered dur- 879

ing the creation of OpenMathInstruct-1. 880

• Figure 8 shows a sample solution that utilizes 881

the strength of the code-interpreter solution 882

13

Solution Requiring Trimming

Question
Caroline can make eleven lassis out of two mangoes.
How many lassis can she make out of twelve mangoes?

Generated Solution
Let f(x) be the number of lassis she can make out of x
mangoes. From the question, we can see that f(2) = 11.
Using basic algebra, we can see that f(12) = 66 .

Let's verify this with sympy.
<llm−code>
import sympy as sp

define the unknown function
x, y = sp.symbols('x y')

let's define the parabola
parabola = sp.Eq(y, x**2 + b*x + c)

substitute points into parabola equation and solve for
b, c
point_1 = parabola.subs({x: −1, y: −11})
point_2 = parabola.subs({x: 3, y: 17})
solutions = sp.solve((point_1,point_2), (b, c))
solutions[b]
</llm−code>

Trimmed Solution
Let f(x) be the number of lassis she can make out of x
mangoes. From the question, we can see that f(2) = 11.
Using basic algebra, we can see that f(12) = 66 .

Figure 10: Sample solution where the model generates
unrelated text after answering the question. During post-
processing, we trim the solution by removing text be-
yond the solution line with the answer.

format with reasoning in both code and natural883

language.884

• Figure 9 demonstrates a sample solution gener-885

ated when the reference solution is used in the886

few-shot prompt. The model copies the chil-887

dren’s ages from the reference solution and888

initializes the child_age variable. Such solu-889

tions are the reason why we propose the use890

of masked text solutions in the prompt.891

• Figure 11 shows a sample solution where the892

generated solution gets the right answer but893

through flawed reasoning. These semantically894

noisy solutions are much harder to detect with895

simple syntactic filters. One solution might896

be to use models like GPT-4 to grade the gen-897

erated solutions as done in recent work (Gu-898

Flawed Reasoning

Question
The areas of two squares are in the ratio 25 : 36. What is
the ratio of their perimeters? Express your answer in the
form a : b.

Reference Solution
In general, if the ratio of the perimeters of two similar
figures is a/b, then the ratio of their areas is (a/b)2. So
in this case, (a/b)2 = 25/36, or a/b = 5/6.
So the answer is 5 : 6 .

Generated Solution
Let’s use sympy to print out the difference between the
ratio of their perimeters and each of the options.
<llm−code>
from sympy import Rational, Abs

areas are in the ratio 25:36
area_ratio = Rational(25, 36)

list of options
options = [Rational(5, 6), Rational(5, 4), Rational(5, 3),
Rational(5, 2), Rational(5, 1)]

let's print out the differences
[Abs(area_ratio − frac_option) for frac_option in
options]
</llm−code>
<llm−code−output>
[5/36, 5/9, 35/36, 65/36, 155/36]
</llm−code−output>

Let’s now check which difference is the smallest.

<llm−code>
import numpy as np

Calculate the idx of the closest option
min_idx = np.argmin([5/36, 5/9, 35/36, 65/36, 155/36])

Print the closest option
print(options[min_idx])
</llm−code>
<llm−code−output>
5/6
</llm−code−output>

So the answer is 5 : 6 .

Figure 11: Sample solution where the model uses com-
pletely flawed reasoning to arrive at the correct answer.
Such flawed reasoning is hard to detect, but fortunately,
these solutions are rare.

nasekar et al., 2023). We leave the work of de- 899

veloping such semantic filters for future work. 900

• Figure 10 illustrates a sample solution where 901

the solution goes beyond answering the ques- 902

tion, with the model generating coherent but 903

unrelated text for the input problem. 904

14

(a) GSM8K (b) MATH

Figure 12: Histogram of the number of solutions for problems in GSM8K and MATH.

B.3 Error Analysis of Solutions Generated by905

Fine-tuned Model906

In this section, we illustrate instances of the dif-907

ferent kind of errors made by the ablation model908

analyzed in Section 5.909

• Figure 13 shows a sample solution where the910

code generated in the solution runs into an911

execution error. Nevertheless, the model still912

generates an incorrect answer to the question.913

• Figure 14 demonstrates a sample where the914

model performs correct reasoning while gen-915

erating the code. However, the model falters916

at copying the code output and ends up gener-917

ating a new answer.918

• Figure 15 illustrates a sample where the model919

performs correct reasoning but falters in arith-920

metic calculation (multiplication). Failure at921

arithmetic computation has been a known is-922

sue with LLMs and justifies our choice of pre-923

ferring code-based solutions.924

B.4 Instructions for Few-shot Data Generation925

Table 12 details the instructions used for the differ-926

ent generation tasks.927

B.5 Masked Text Solution Generation928

We generate masked text solutions using a pipeline929

very similar to the solution generation pipeline. We930

use the following procedure:931

• Generate eight candidate masked solutions.932

• Filter out solutions that have very different933

lengths.934

Table 12: Instructions for prompting the model.

Task Instruction

Few-shot
prompt
(I)

Here are some examples of questions
and solutions followed by a new ques-
tion that you need to solve. Make sure
to put the answer (and only answer)
inside \boxed{}.

Few-shot
prompt
text
masking
(Imask)

Here are some examples of questions,
solutions, and their masked solutions
followed by a new question and solu-
tion that you need to mask. The goal
is to ensure that the masked solution
doesn’t have any of the numerical val-
ues not mentioned in the question. So
intermediate values calculated in the
solution are to be masked by single
letter capital variables, such as M, N.

Zero-shot
prompt for
fine-tuned
model

System: You’re an expert Python pro-
grammer and mathematician. Help
the user to solve this problem using
code when necessary. Make sure to
put the answer (and only answer) in-
side \boxed{}.

• Filter out solutions that have the final answer. 935

This ensures that our masked solutions are at 936

least masking the final answer. 937

• Rank solutions where higher-ranked solutions 938

have fewer numbers. This is essentially a 939

heuristic to ensure we pick solutions where 940

the intermediate computation is masked out 941

the most. 942

15

Code Execution Error

Question
The area of a triangle is 600 square feet. Find the altitude,
in feet, of the triangle if the length of the corresponding
base is 30 feet.

Generated Solution
Let’s use sympy to solve this problem.

<llm−code>
from sympy import symbols, Eq, solve

define the variables
base, altitude = symbols('base altitude')

area of the triangle
area_eq = Eq(base * altitude / 2, 600)

length of the corresponding base
base_eq = Eq(base, 30)

solve the equations
solutions = solve((area_eq, base_eq), (base, altitude))

print the altitude
print(solutions[altitude])
</llm−code>
<llm−code−output>
[0;31m−−−−−−−−−−−−−−−−−−−−−−−−−−[0m
[0;31mTypeError[0m Traceback (most recent call last)
File [0;32m<ipython−input−1−f95732badac7>:16[0m
[1;32m 13[0m solutions [38;5;241m=[39m solve((
area_eq, base_eq), (base, altitude))
[1;32m 15[0m [38;5;66;03m# print the altitude[39;00m
[0;32m−−−> 16[0m [38;5;28mprint[39m([43
msolutions[49m[43m[[49m[43maltitude[49m[43m][49
m)

[0;31mTypeError[0m: list indices must be integers or
slices, not Symbol
</llm−code−output>

So the altitude is 20 .

Figure 13: Sample solution where the model generated
code runs into execution error. Nevertheless, the model
still generates an incorrect answer to the question.

B.6 Post-processing943

The generated solutions can sometimes be syntacti-944

cally noisy even if they lead to the right answer. We945

fix or remove the following solutions:946

• The solution has multiple answers as it has947

multiple \boxed{} blocks. We remove such948

solutions.949

• The solution has the ⟨llm-code⟩ string but950

not the ⟨/llm-code⟩ string. We remove such951

solutions.952

• The solution continues even after generating953

Last Step Mishap

Question
What is the 100th digit to the right of the decimal point in
the decimal representation of 13

90
?

Generated Solution
We can use sympy to calculate the decimal representation
of 13

90
and then extract the 100th digit.

<llm−code>
from sympy import Rational, N

Calculate the decimal representation of 13/90
decimal_rep = N(Rational(13, 90), 100)

Extract the 100th digit
digit = int(str(decimal_rep)[−1])

print(digit)
</llm−code>
<llm−code−output>
4
</llm−code−output>

So the 100th digit to the right of the decimal point in the
decimal representation of 13

90
is 7 .

Figure 14: The model performs correct reasoning till
code generation. But rather than copying the code output
(4) it concludes with a different answer (7).

Calculation Error

Question
Our basketball team has 12 members, each of whom can
play any position. In how many ways can we choose a
starting lineup consisting of a center, a power forward, a
shooting forward, a point guard, and a shooting guard?

Generated Solution
We can choose a starting lineup in 12×11×10×9×8 =

11880 ways.

Figure 15: Sample solution where the model performs
the right text reasoning but makes calculation mistake.

the answer, i.e., the \boxed{} block. While 954

in some cases, this continuation merely con- 955

cludes the answer, we noticed that continua- 956

tions that went beyond two lines were almost 957

always gibberish generated by the LLM. We 958

removed the text in the lines beyond the solu- 959

tion line with the answer. See Figure 10 in the 960

Appendix for an example solution where we 961

perform trimming. 962

While these post-processing steps can fix some of 963

the syntactic errors, filtering semantically noisy, i.e., 964

16

solutions that get to the right answer with flawed965

reasoning (Cobbe et al., 2021), is a much harder966

problem and beyond the scope of this work. Anec-967

dotally, we find such solutions to be rare in our968

corpus. See Figure 11 in the Appendix for a sample969

semantically noisy solution.970

B.7 Few-shot prompts used for GSM8K and971

MATH972

17

Listing 1: Few-shot prompt for GSM8K.
973

Here are some examples of questions and solutions followed by a new question that you need to974
solve.975
Make sure to put the answer (and only answer) inside \boxed{}.976

977
Question:978
Missy had a giant piggy bank in her bedroom. Every day she would search the house for change979
to put in her bank. After 4 years, the bank was opened and it contained $450 in change. If980
the second, third, and fourth-year she doubled the amount of money she put in the bank from981
the amount she had put in the previous year, how much money, in dollars, did she put in the982
bank the first year?983

984
My solution:985
Missy started with some amount of money in the first year.986
She was then doubling the amount of money every year for 4 years and ended up with $450.987
Let's write down an equation for this problem and solve it using sympy.988
<llm-code>989
from sympy import solve, symbols990
first_year_money = symbols('first_year_money')991
second_year_money = 2 * first_year_money992
third_year_money = 2 * second_year_money993
fourth_year_money = 2 * third_year_money994
Solve for first year money given that the combined saving is 450995
result = solve(first_year_money + second_year_money + third_year_money + fourth_year_money -996
450, first_year_money)[0]997
result998
</llm-code>999
<llm-code-output>1000
301001
</llm-code-output>1002
Thus Missy put \boxed{30} dollars in the bank the first year.1003

1004
1005
1006
1007
1008

Question:1009
Pete has to take a 10-minute walk down to the train station and then board a 1hr 20-minute1010
train to LA. When should he leave if he cannot get to LA later than 0900 hours? (24-hr time)1011

1012
My solution:1013
Since Pete needs to take a 10 minutes walk and then a 1 hour 20 minutes train ride, he will1014
spend a total of 1 hour and 30 minutes.1015
This means that he needs to leave 1 hour and 30 minutes earlier than 09:00 hours.1016
Subtracting 1 hour and 30 minutes from 09:00 hours we get \boxed{07:30} hours.1017

1018
1019
1020
1021
1022

Question:1023
Mark deposited $88 in a bank. Bryan deposited $40 less than five times as much as Mark. How1024
much did Bryan deposit in the bank?1025

1026
My solution:1027
Let's solve this problem using Python code.1028
<llm-code>1029
mark_deposit = 881030
five_times_mark_deposit = 5 * mark_deposit1031
bryan_deposit = five_times_mark_deposit - 401032
bryan_deposit1033
</llm-code>1034
<llm-code-output>1035
4001036
</llm-code-output>1037
So Bryan deposited \boxed{400} dollars in the bank.1038

1039
1040
1041

18

1042
1043

Question: 1044
A department store displays a 20% discount on all fixtures. What will be the new price of a 1045
25 cm high bedside lamp that was worth $120? 1046

1047
My solution: 1048
Let's solve this problem using Python code. 1049
<llm-code> 1050
discount_percent = 20 1051
price_before_discount = 120 1052
discount_portion = discount_percent / 100 1053
discount_amount = price_before_discount * discount_portion 1054
price_after_discount = price_before_discount - discount_amount 1055
price_after_discount 1056
</llm-code> 1057
<llm-code-output> 1058
96.0 1059
</llm-code-output> 1060
So the new price of the lamp is \boxed{96} dollars. 1061

1062
1063
1064
1065
1066

Question: 1067
James opens up a flower shop. He needs to pay rent of $1200 a week with an additional 20% of 1068
rent to pay for utilities and he has 2 employees per shift with the store open 16 hours a day 1069
for 5 days a week. If he pays each employee $12.50 an hour, what are his weekly expenses to 1070
run the store? 1071

1072
My solution: 1073
The cost consists of rent, utilities, and employee salaries. Let's compute each of them 1074
separately and then add them up. 1075
<llm-code> 1076
rent cost 1077
rent_per_week = 1200 1078
utility cost 1079
utility_per_week = rent_per_week * 20 / 100 1080
employee cost 1081
employee_work_hours = 16 1082
work_days_per_week = 5 1083
employee_work_hours_per_week = work_days_per_week * employee_work_hours 1084
number_of_employees = 2 1085
employee_cost_per_hour = 12.5 1086
employees_cost_per_week = number_of_employees * employee_work_hours_per_week * 1087
employee_cost_per_hour 1088
add the three to get total cost 1089
cost_per_week = rent_per_week + utility_per_week + employees_cost_per_week 1090
cost_per_week 1091
</llm-code> 1092
<llm-code-output> 1093
3440.0 1094
</llm-code-output> 1095
Thus James's weekly expences add up to \boxed{3440} dollars. 1096

1097
1098
1099
1100
1101

Question: 1102
Tim has 30 less apples than Martha, and Harry has half as many apples as Tim. If Martha has 1103
68 apples, how many apples does Harry have? 1104

1105
My solution: 11061107

19

Listing 2: Few-shot prompt for MATH.
1108

Here are some examples of questions and solutions followed by a new question that you need to1109
solve.1110
Make sure to put the answer (and only answer) inside \boxed{}.1111

1112
Question:1113
A parabola with equation $y=x^2+bx+c$ passes through the points $(-1,-11)$ and $(3,17)$. What1114
is c?1115

1116
My solution:1117
Let's write down an equation for the parabola and solve for c using sympy.1118
<llm-code>1119
import sympy as sp1120

1121
define the symbols1122
x, y, b, c = sp.symbols('x y b c')1123

1124
define the parabola equation1125
parabola_eq = sp.Eq(y, x**2 + b*x + c)1126

1127
the parabola passes through the points (-1,-11) and (3,17)1128
so we substitute these points into the parabola equation1129
point_1 = parabola_eq.subs({x: -1, y: -11})1130
point_2 = parabola_eq.subs({x: 3, y: 17})1131

1132
we now have two equations and two unknowns (b and c)1133
we will solve for b and c1134
solutions = sp.solve((point_1,point_2), (b, c))1135
solutions[c]1136
</llm-code>1137
<llm-code-output>1138
-71139
</llm-code-output>1140
So c is \boxed{-7}1141

1142
1143
1144
1145
1146

Question:1147
Let $f(x)$ be an odd function. Is $f(f(x))$ even, odd, or neither?1148

1149
Enter "odd", "even", or "neither".1150

1151
My solution:1152
The definition of an odd function is that $f(-x) = -f(x)$.1153
Applying this to $f(f(-x))$ we get $f(f(-x)) = f(-f(x)) = -f(f(x))$.1154
Thus, $f(f(x))$ is an \boxed{odd} function.1155

1156
1157
1158
1159
1160

Question:1161
At the 2007 Math Olympics, Team Canada won 17 out of a possible 100 medals. Which one of1162
the following is closest to the fraction of medals that they won? $$1163
\frac{1}{4} \qquad \frac{1}{5} \qquad \frac{1}{6} \qquad \frac{1}{7} \qquad \frac{1}{8}1164
$$1165

1166
My solution:1167
Let's use sympy to print out the differences between the fraction of medals that Canada won1168
and each of the options.1169
<llm-code>1170
from sympy import Rational, Abs1171

1172
team Canada won 17 out of 100 medals1173
medal_frac = Rational(17, 100)1174

1175
list of options1176

20

options = [Rational(1, 4), Rational(1, 5), Rational(1, 6), Rational(1, 7), Rational(1, 8)] 1177
1178

let's print out the differences 1179
[Abs(medal_frac - frac_option) for frac_option in options] 1180
</llm-code> 1181
<llm-code-output> 1182
[2/25, 3/100, 1/300, 19/700, 9/200] 1183
</llm-code-output> 1184
Let's now check which difference is the smallest. 1185
<llm-code> 1186
import numpy as np 1187

1188
Calculate the idx of the closest option 1189
min_idx = np.argmin([2/25, 3/100, 1/300, 19/700, 9/200]) 1190

1191
Print the closest option 1192
print(options[min_idx]) 1193
</llm-code> 1194
<llm-code-output> 1195
1/6 1196
</llm-code-output> 1197
So the answer is \boxed{1/6}. 1198

1199
1200
1201
1202
1203

Question: 1204
A rectangular box P is inscribed in a sphere of radius r. The surface area of P is 384, 1205
and the sum of the lengths of its 12 edges is 112. What is r? 1206

1207
My solution: 1208
Let the dimensions of P be x, y, and z. 1209
The sum of the box's edges is $4(x + y + z)$ and the surface area is $2xy + 2yz + 2xz$. 1210
The diameter of the sphere is $2r$ and it's equal to the diagonal of the box. 1211
Let's now write down the equations based on the above information and solve them using sympy. 1212
<llm-code> 1213
from sympy import symbols, Eq, solve 1214

1215
define the variables 1216
x, y, z, r = symbols('x y z r') 1217

1218
equations based on the given information 1219
eq1 = Eq(2 * (x*y + x*z + y*z), 384) 1220
eq2 = Eq(4 * (x + y + z), 112) 1221

1222
the diagonal of the box is the diameter of the sphere 1223
diagonal_eq = Eq(x**2 + y**2 + z**2, (2*r)**2) 1224

1225
solve the equations 1226
solutions = solve((eq1, eq2, diagonal_eq), (x, y, z, r)) 1227

1228
let's see which values of r we get 1229
[solution[-1] for solution in solutions] 1230
</llm-code> 1231
<llm-code-output> 1232
[-10, -10, 10, 10] 1233
</llm-code-output> 1234
Since the radius of the sphere is positive, we get $r = \boxed{10}$. 1235

1236
1237
1238
1239
1240

Question: 1241
A bee starts flying from point P_0. She flies 1 inch due east to point P_1. For $j \ge 1242
1$, once the bee reaches point P_j, she turns 30° counterclockwise and then flies 1243
$j+1$ inches straight to point P_{j+1}. When the bee reaches $P_{2015},$ how far from P_0 1244
is she, in inches? 1245

1246

21

My solution:1247
We can represent the rotation action via $\omega = e^{\pi i/6}$.1248
Let's assume the bee starts at the origin, so P_{2015} is at the point \[z = 1 + 2 \omega +1249
3 \omega^2 + 4 \omega^3 + \dots + 2015 \omega^{2014}.\]1250
This is an arithmetic-geometric series which we can solve by simplifying the expression.1251
Alternatively, we can solve for |z| using sympy using the following code.1252
<llm-code>1253
from sympy import I, pi, exp, sqrt1254

1255
rotation action of 30 degrees1256
omega = exp(I * pi/6)1257

1258
position = 01259

1260
for i in range(2015):1261

delta = (i + 1) * omega**(i)1262
position += delta1263

1264
real, img = (position.as_real_imag())1265
Distance from origin i.e. starting point1266
dist = sqrt(real**2 + img**2)1267
print(dist)1268
</llm-code>1269
<llm-code-output>1270
sqrt(2)*(1008 + 1008*sqrt(3))1271
</llm-code-output>1272
So the bee is $\boxed{1008\sqrt{2} + 1008\sqrt{6}}$ far from the starting point.1273

1274
1275
1276
1277
1278

Question:1279
If $f (x) = x^2 - 1$, what is the value of $f (-1)$?1280

1281
My solution:12821283

22

	Introduction
	Training Data Synthesis
	Overview
	Prompting
	Default
	Subject-specific Prompting (Subj)
	Masked Text Solution Prompting

	Data Selection
	Fair vs Naive Downsampling
	Code-Preferred Solutions

	Experimental Setup
	Results
	Ablations
	Fair vs Naive Downsampling
	Impact of Fine-Tuning Dataset Size
	MATH-only Ablations

	Analysis
	Related Work
	Conclusion
	Limitations and Potential Risks
	Data Statistics
	MATH Training Data Split by Subjects
	Code-Block Count Frequencies
	Frequency of solutions per problem in OpenMathInstruct-1

	Miscellaneous
	Training Hyperparameters
	Sample Solutions
	Error Analysis of Solutions Generated by Fine-tuned Model
	Instructions for Few-shot Data Generation
	Masked Text Solution Generation
	Post-processing
	Few-shot prompts used for GSM8K and MATH

