
Improve Generalization and Robustness of Neural Networks via
Weight Scale Shifting Invariant Regularizations

Ziquan Liu 1 Yufei Cui 1 Antoni B. Chan 1

Abstract

Using weight decay to penalize the L2 norms of
weights in neural networks has been a standard
training practice to regularize the complexity of
networks. In this paper, we show that a family of
regularizers, including weight decay, is ineffective
at penalizing the intrinsic norms of weights for
networks with positively homogeneous activation
functions, such as linear, ReLU and max-pooling
functions. As a result of homogeneity, functions
specified by the networks are invariant to the shift-
ing of weight scales between layers. The ineffec-
tive regularizers are sensitive to such shifting and
thus poorly regularize the model capacity, lead-
ing to overfitting. To address this shortcoming,
we propose an improved regularizer that is invari-
ant to weight scale shifting and thus effectively
constrains the intrinsic norm of a neural network.
The derived regularizer is an upper bound for the
input gradient of the network so minimizing the
improved regularizer also benefits the adversar-
ial robustness. We demonstrate the efficacy of
our proposed regularizer on various datasets and
neural network architectures at improving gener-
alization and adversarial robustness.

1. Introduction
Weight decay (Krogh & Hertz, 1992) is a common regular-
ization in training deep neural networks, i.e., to regularize
the sum of squared L2 norms of the weights. However,
when the network has positively homogeneous activation
functions (PHAFs), i.e. φ(ax) = aφ(x) for a > 0, the scale
of weights can be shifted between layers without changing
the input-output function specified by the network. Consider
a 2-layer neural network with input x ∈ Rd and weights
W1 ∈ Rd×h and w2 ∈ Rh. Assuming the activation func-

1Department of Computer Science, City University of
Hong Kong. Correspondence to: Ziquan Liu <ziquanliu2-
c@my.cityu.edu.hk>.

Accepted by the ICML 2021 workshop on A Blessing in Disguise:
The Prospects and Perils of Adversarial Machine Learning. Copy-
right 2021 by the author(s).

tion φ is positively homogeneous, e.g., ReLU or linear func-
tion, we have y = wT

2 φ(W T
1 x) = awT

2 φ(1
aW

T
1 x) for

a > 0. This implies that the weight decay cannot well reg-
ularize the intrinsic norm of networks; we can change the
weight decay term by shifting weight magnitudes between
layers while maintaining the network function. Here, we
further consider a family of regularizers, which includes
weight decay, and prove that they can always be minimized
by properly shifting scales without changing the network
function. Since PHAFs are common in modern networks,
overcoming this difficulty of weight decay, and its larger
family of regularizers, is of great significance.

In this paper, we propose to regularize the intrinsic norms
of the networks using an improved norm regularizer, which
is invariant to shifting of weight scales between layers.
Based on the homogeneity of activation functions, we ex-
tract the weight magnitudes η(Wi) of all layers, measured
by some pre-defined norms (e.g., lp or spectral norm), re-
sulting in a product of norms for the whole network, i.e.,∏L
i=1 η(Wi). Within each layer, this leaves a normalized

weightWi/η(Wi) that should also be penalized to induce
sparsity. Thus we have two terms in the improved regular-
izer: the overall weight magnitude of the network, and the
complexity of each layer. We next show that besides the
WEight-Scale-Shift-Invariance (WEISSI) property, our reg-
ularizer improves adversarial robustness of neural networks.
Previous works (Simon-Gabriel et al., 2019; Ross & Doshi-
Velez, 2018; Cisse et al., 2017) have proved that penalizing
the input gradient, or similarly the Lipschitz constant of a
network, increases the adversarial robustness. In this paper,
we upper bound the norm of the input gradient by the weight
energy term in our regularizer, which is previously shown
to be related to the Lipschitz constant. By deriving the input
gradient, we also find that sparsifying the activation maps
has a positive effect on adversarial robustness. Finally, we
empirically prove the effectiveness of WEISSI regularizers
on various neural architectures and datasets.

2. Preliminaries
Consider a neural network ŷ = f(x;Θ) : RD 7→ RP ,
where Θ are the weights and other trainable parameters.
The neural network has L hidden layers and the function is

ICML 2021 Workshop on Adversarial Machine Learning

Figure 1. By shifting weight scales between layers, networks on
the red line have the same minimized l2-norm ‖w̃‖, but have
different actual l2-norms ‖w‖ (dashed lines).

recursively composed as
ŷ = WL+1φ(WLhL−1 + bL), (1)
hl = φ(Wlhl−1 + bl),∀l = 1, · · · , L. (2)

We define the input x as h0 for convenience. Weight matrix
Wl = [wT

l,1; · · · ;wT
l,Hl

] ∈ RHl×Hl−1 , Hl is the size of
layer l, and the network asW = (W1, · · · ,WL+1). The
activation functions φ(·) are assumed to be positively homo-
geneous, i.e., φ(ax) = aφ(x) when a > 0. Many common
activations in modern DNNs, such as ReLU, max pooling
and average pooling, are positively homogeneous. For sim-
plicity, our analysis assumes that the output layer is linear
– for networks with non-linear output layers, our analysis
applies to the sub-network containing PHAFs. The network
is trained by minimizing a data loss term Ldata (e.g., MSE)
and a regularization term Lreg ,

Θ∗ = arg min
Θ

Ldata(D;Θ) + λLreg(Θ), (3)

and λ is a tradeoff parameter, and D = {(xi,yi)}i the data.

Notation. We use ‖ · ‖p to denote lp norm for vectors. For
matrices, ‖ · ‖p,q is defined as

‖Wl‖p,q =
(
‖w1‖qp + · · ·+ ‖wHl‖qp

) 1
q . (4)

When p = q, we use ‖ · ‖p to represent matrix norm. The
spectral matrix norm is denoted as ‖ · ‖σ . Bold symbols are
vectors or matrices while plain symbols represent scalars.

3. Weight Scale Shift and Ineffective
Regularizers

Due to the positive homogeneity, a positive scalar can be
pulled out of the activation function, i.e., φ(W̃lhl−1+b̃l) =
γlφ(Wlhl−1 +bl), where γlWl = W̃l, γlbl = b̃l. This fac-
torization can be repeated from the first layer to the output,
yielding an equivalent network W̃ = (W̃1, · · · , W̃L+1),

ŷ =

(
L+1∏
l=1

γl

)
· W̃L+1φ(W̃LhL−1 + b̃L). (5)

Under the condition of the product term
∏L+1
l=1 γl = 1,

a “new” network with different weights is obtained, but
with exactly the same mapping function as before. In other
words, the weight scale can be shifted between layers while
keeping the network mapping function unchanged. Such

an equivalent transformation signals a problem with the
commonly used weight decay regularizer.

Weight decay. The weight decay (WD) regularizer is the
sum of squared l2 norms of the weights,

Lwd =

L+1∑
l=1

‖Wl‖22. (6)

Note that in general, for two equivalent networksW , W̃ ,
L+1∑
l=1

‖W̃l‖22 =

L+1∑
l=1

γ2
l ‖Wl‖22 6=

L+1∑
l=1

‖Wl‖22. (7)

Thus, equivalent networks (with the same generalization
error) have different regularization penalties. As a result,
the training with (3) will minimize the WD term by forming
an equivalent network W̃ to the current solutionW ,

min
γ1,··· ,γL+1

L+1∑
l=1

‖γlWl‖22, s.t.

L+1∏
l=1

γl = 1. (8)

The minimum is found by Lagrange multipliers (see App. 1),

L∗wd = (L+ 1)

(
L+1∏
l=1

‖Wl‖22

) 1
L+1

, (9)

which occurs when the l2 norms are the same for all layers,

‖W̃ ∗
1 ‖2 = · · · = ‖W̃ ∗

L+1‖2 =

(
L+1∏
l=1

‖Wl‖2

) 1
L+1

. (10)

Fig. 1 shows the equivalent-norm curves for a one hidden
layer network. All networks on one red line have the same
mapping function and generalization error, while their Lwd
are different. A consequence of this result is that any net-
work with large weights in one layer, resulting in large l2
norm, can be converted into an equivalent network with
lower l2 norm. From another perspective, increasing the
complexity of one layer will increase its l2 norm, but this
increase can be dampened by the other layers by shifting
the weight scale around. In particular, increasing a layer’s
‖Wl‖2 by a factor of 2 will only increase the overall mini-
mized l2 normL∗wd by an effective factor of 2

1
L+1 . Crucially,

this effective factor approaches 1 (i.e., no penalty increase)
as the network depth L increases. Thus, our key observation
is that the weight decay regularizer is ineffective for deep
networks because the penalty of increasing model complex-
ity is dampened, while minimizing the loss in (3), allowing
the model to more easily overfit. In Appendix A.2, we give
a more generalized ineffective regularization family.

4. WEISSI Regularizers
To overcome the problems of WD, we propose WEISSI
regularizers to penalize the intrinsic norm of a DNN. The
disadvantage of WD stems from the fact that shifting the
weight scales between layers will change the sum of the
L2 norm, allowing the regularizer to be artificially reduced.
Thus, to address this problem, an effective regularizer should

ICML 2021 Workshop on Adversarial Machine Learning

(a) Standard training
Model Method Clean FGSM PGD10

MLP WD 96.98±0.10 88.05±0.52 87.68±0.72
WEISSI 97.66±0.05 90.22±0.20 90.09±0.01

CNN WD 98.73±0.06 92.28±0.42 92.22±0.50
WEISSI 98.83±0.08 94.32±0.18 93.85±0.19

(b) Adversarial training
Model Method Clean FGSM PGD10

MLP WD 97.44±0.12 94.09±0.26 93.92±0.33
WEISSI 98.09±0.07 95.32±0.10 95.19±0.10

CNN WD 98.98±0.03 97.69±0.09 97.67±0.09
WEISSI 98.97±0.05 97.75±0.05 97.74±0.05

Table 1. Accuracy of Standard and Adversarial Training on MNIST.
FGSM and PGD10 use a max allowed perturbation of ε = 0.03.

be invariant to shifting of weight magnitudes between lay-
ers. Our approach is to consider canonical forms of the
DNN weights, where the scale is factored from each layer
according to a normalization function η(Wl),

ŷ =

(
L+1∏
l=1

η(Wl)

)
WL+1

η(WL+1)
φ(

WL

η(WL)
hL−1 + b̃L),

where possible choices of the normalizer are η(W) =
‖W ‖p,q. Based on the canonical form, the new regular-
ization term is separated into the overall weight energy over
all layers,

∏
l η(Wl), and the complexity of individual lay-

ers,
∑
l g(Wl/η(Wl)), where possible choices of g(·) are

‖ · ‖p,q with different p or q to prevent the function from
degenerating to constant 1. Note that both terms are invari-
ant to moving weight scales between layers, c.f. standard
WD. Adding monotonically increasing functions on top of
the weight energy term will not affect the invariance prop-
erty, such as

∏
l η(Wl)

n and
∑
l log η(Wl). We choose

two common norms, η(·) = ‖ · ‖2 and g(·) = ‖ · ‖1, and
therefore the regularization term is

λe

L+1∏
l=1

‖Wl‖22 + λc

L+1∑
l=1

‖Wl/‖Wl‖2‖1, (11)

where first term, Lwe, is defined as the weight energy term,
and the second term Lwc as the layer complexity term. For
very deep neural networks, the weight energy term at ini-
tialization will explode to infinity, so we take the logarithm.
The weight energy term is a measure of network capacity in
(Neyshabur et al., 2015), supporting the efficacy of the new
regularizer from the perspective of learning theory. The key
difference here is that our work derives the WEISSI regular-
izers to effectively prevent overfitting during training, while
(Neyshabur et al., 2015) gives a generalization bound based
on the weight energy term in our WEISSI regularizer.

We analyze the effect of WEISSI on the optimization using
the regularizer in (11) as an example. Taking the gradient
of Lwe with respect to the weight at l-th layer, we obtain
dLwe/dWl = 2Wl

∏
j 6=l ‖Wj‖22. In contrast to weight

decay, whose gradient is dLwd/dWl = 2Wl, the new reg-
ularizer has an extra scalar term, i.e., the weight energy of
all other layers. Thus the gradient of Lwe is very large if

20 40 60 80 100
10

0

10
1

10
2

10
3

10
4

WD

Parseval

Parseval OC

WEISSI

WEISSI CA

10 20 30 40 50
10

0

10
1

10
2

10
3

10
4

C
ou

nt
s

Grad Norm Grad Norm
Figure 2. Distribution of l2 norm of input gradient of WRN for
(left) adversarial training and (right) standard training on CIFAR10.

the network has a large product norm, and large penalties
are thus incurred if the norm is increased. For Lwc, we
observe that regularizing l1 norm of the normalized weights
induces sparse weights, which has been shown to improve
adversarial robustness (Guo et al., 2018), and decrease the
storage and computational time (Frankle & Carbin, 2019).
Adversarial Robustness. The new regularizer has an ad-
ditional advantage of alleviating the vulnerability to adver-
sarial examples because the weight energy term is an upper
bound of the input gradient. Consider the gradient of the
cross-entropy loss w.r.t. the input x,

∂Lce(x,y, ŷ)

∂x
=
∂ŷgt
∂x
−

P∑
j=1

pj
∂ŷj
∂x

, (12)

where pj and ŷj are the j-th output of softmax function and
corresponding logit, ŷgt is the logit of the ground-truth label.
For ReLU networks, we can derive an upper-bound to the
input gradient norm as a function of the product norm (see
Appendix A.3 for derivation),

‖∂ŷj
∂x
‖2 ≤ C

L∏
l=1

‖Wl‖2‖wL+1,j‖2, (13)

where C is a constant related to sizes of layers. Hence,
regularizing the product term, as WEISSI does, can help
control the sensitivity of a network to adversarial pertur-
bations. Previous works (Fazlyab et al., 2019; Guo et al.,
2018) have made similar observations, but in here we de-
rive the WEISSI regularizer from the perspective of weight
scale shifting and improving adversarial robustness is a fa-
vorable property of our new regularizer. In Appendix A.4,
we discuss the situation in CNNs and ResNets.

5. Experiments
We show the effectiveness of WEISSI in various neural net-
work architectures on standard image recognition datasets,
using weight decay and Parseval Network (Cisse et al., 2017)
as baselines. More details about our experiment can be
found in the Appendix B.

5.1. Networks without Residual Connections

We first report the effectiveness of WEISSI in regularizing
DNNs without residual connections. On MNIST (LeCun
et al., 1998) dataset, we use two kinds of neural architec-

ICML 2021 Workshop on Adversarial Machine Learning

Training Method Clean FGSM PGD10
ε = 0.05 ε = 0.03 ε = 0.01 ε = 0.03 ε = 0.01

Standard
WD 90.72 24.43 26.11 47.36 13.13 27.67

Parseval OC 88.72 6.11 13.33 48.55 1.46 34.63
WEISSI 91.06 25.97 27.29 47.52 16.23 28.57

Adversarial
WD 87.64 23.69 39.68 69.18 27.67 65.11

Parseval OC 84.61 20.24 36.66 66.93 26.72 64.06
WEISSI 88.06 24.78 40.71 70.27 28.89 66.17

Table 2. Accuracy of VGG16 on CIFAR10 using different training and regularization schemes.

Training Method Clean FGSM PGD10
ε = 0.05 ε = 0.03 ε = 0.01 ε = 0.03 ε = 0.01

Standard

WD 92.22 14.50 20.04 47.18 2.03 21.25
Parseval OC 92.86 16.73 21.60 45.25 0.55 12.78

Parseval 91.33 7.27 14.19 42.73 1.01 27.90
WEISSI 92.45 23.64 28.50 50.34 3.03 16.71

WEISSI CA 89.06 24.28 28.89 53.17 12.40 30.87

Adversarial

WD 89.44 37.57 51.10 74.23 41.01 72.56
Parseval OC 89.39 32.43 44.07 74.22 36.84 73.13

Parseval 83.82 24.70 34.96 65.67 29.43 64.44
WEISSI 89.90 41.71 55.14 75.18 44.15 73.51

WEISSI CA 87.69 42.23 55.22 72.33 45.39 70.19
Table 3. Accuracy of WRN-28-10 on CIFAR10 using different training and regularization schemes.

tures, a fully connected network (multilayer perceptron,
MLP) and a convolutional neural network (CNN). The MLP
has two fully connected hidden layers, and the CNN has
two convolution layers. On CIFAR10 (Krizhevsky et al.,
2009) dataset, we use a variant of VGG16 (Simonyan &
Zisserman, 2014) as an exemplar of deep neural networks.
For shallow networks on MNIST, we use Lwe for the weight
energy regularizer, and for VGG16 we use L(CNN)

we (See
Appendix A.4).

Table 1 shows the performance of WD and WEISSI on
MNIST. WEISSI has a clear advantage over WD in both
neural architectures and both training settings. We also ob-
serve that the variance of adversarial robustness (i.e., test
accuracy on attacked images) when training with WEISSI is
generally smaller than training with WD, indicating a lower
sensitivity of WEISSI w.r.t. random initializations. Table 2
shows the performance of VGG16 trained on CIFAR10 us-
ing WEISSI and 2 baselines. Although Parseval OC is better
at defending small perturbation (ε = 0.01) attacks in stan-
dard training, it will deteriorate dramatically when the attack
has moderate perturbation scales (ε = 0.03/05). When us-
ing adversarial training, Parseval OC shows a large decrease
in both generalization and robustness, while WEISSI re-
mains effective and has some advantage over WD on both
clean and adversarial examples. Finally, we note that ad-
versarial training improves robustness of all architectures
and regularizers when the training perturbation ∆ = 0.01 is
closely matched to the attack perturbation ε ∈ {0.01, 0.03},
with WEISSI showing the best performance overall.

5.2. Deep Residual Networks

We apply WEISSI with convex aggregation (WEISSI CA)
to deep residual networks and demonstrate the advantage

of WEISSI and WEISSI CA over several baselines. We
choose WRN-28-10 (Zagoruyko & Komodakis, 2016) as
the architecture (28 layers and width 10). Since the WRN
has many convolution layers, we use L(CNN)

we as the weight
energy term.

Table 3 shows the performance of WEISSI (CA) and the
baselines under standard and adversarial training. For stan-
dard training, Parseval OC achieves the best generaliza-
tion performance with WEISSI as the second. Nonetheless,
WEISSI CA exhibits better adversarial robustness under
both FGSM and PGD attacks, compared to other baselines.
WEISSI also shows similar robustness as WEISSI CA to
FGSM attacks, but performs poorly under PGD attacks,
which shows that convex aggregation helps overall robust-
ness. For adversarial training, Parseval performs poorly
in both generalization and robustness, while Parseval OC
is good against small perturbation attacks (ε = 0.01), but
again fails when the perturbation is larger. WEISSI and
WEISSI CA perform similarly and both have better adver-
sarial robustness over WD and Parseval, especially for larger
ε attacks.

In Fig. 2, we plot the histogram of l2 gradient norm of
10,000 test images to show how WEISSI (CA) changes the
input gradient norms compared to several baselines. The
number of gradient norms between 5.0 and 2.0 is nega-
tively correlated with the adversarial robustness, since both
WEISSI and WEISSI CA have an obvious decrease in this
region compared to 3 baselines. Another finding is that Par-
seval network is good at suppressing relatively large input
gradients, but this property does not seem to always help
adversarial robustness. Thus, we speculate that the key of
adversarial robustness could also be suppressing small input
gradient norms.

ICML 2021 Workshop on Adversarial Machine Learning

References
Bartlett, P. L. The sample complexity of pattern classifica-

tion with neural networks: the size of the weights is more
important than the size of the network. IEEE transactions
on Information Theory, 44(2):525–536, 1998.

Cisse, M., Bojanowski, P., Grave, E., Dauphin, Y., and
Usunier, N. Parseval networks: Improving robustness to
adversarial examples. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70, pp.
854–863. JMLR. org, 2017.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pap-
pas, G. Efficient and accurate estimation of lipschitz
constants for deep neural networks. In Advances in Neu-
ral Information Processing Systems 32, pp. 11423–11434.
Curran Associates, Inc., 2019.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks. In Interna-
tional Conference on Learning Representations, 2019.

Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu,
M., Wattenberg, M., and Goodfellow, I. Adversarial
spheres. arXiv preprint arXiv:1801.02774, 2018.

Gilmer, J., Ford, N., Carlini, N., and Cubuk, E. Adversarial
examples are a natural consequence of test error in noise.
In International Conference on Machine Learning, pp.
2280–2289, 2019.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining
and harnessing adversarial examples. In International
Conference on Learning Representations, 2015.

Guo, Y., Zhang, C., Zhang, C., and Chen, Y. Sparse dnns
with improved adversarial robustness. In Advances in neu-
ral information processing systems, pp. 242–251, 2018.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep
into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE inter-
national conference on computer vision, pp. 1026–1034,
2015.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 4700–4708, 2017.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Krogh, A. and Hertz, J. A. A simple weight decay can im-
prove generalization. In Advances in neural information
processing systems, pp. 950–957, 1992.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature,
521(7553):436–444, 2015.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In International Conference on Learn-
ing Representations, 2018.

Mianjy, P., Arora, R., and Vidal, R. On the implicit bias
of dropout. In Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pp. 3540–3548,
Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018.
PMLR.

Neyshabur, B., Tomioka, R., and Srebro, N. Norm-based
capacity control in neural networks. In Conference on
Learning Theory, pp. 1376–1401, 2015.

Neyshabur, B., Bhojanapalli, S., and Srebro, N. A
PAC-bayesian approach to spectrally-normalized margin
bounds for neural networks. In International Conference
on Learning Representations, 2018.

Pang, T., Xu, K., Dong, Y., Du, C., Chen, N., and Zhu,
J. Rethinking softmax cross-entropy loss for adversarial
robustness. In International Conference on Learning
Representations, 2020.

Polyak, B. T. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics
and Mathematical Physics, 4(5):1–17, 1964.

Ross, A. S. and Doshi-Velez, F. Improving the adversarial
robustness and interpretability of deep neural networks
by regularizing their input gradients. In Thirty-second
AAAI conference on artificial intelligence, 2018.

Salimans, T. and Kingma, D. P. Weight normalization: A
simple reparameterization to accelerate training of deep
neural networks. In Advances in Neural Information
Processing Systems, pp. 901–909, 2016.

ICML 2021 Workshop on Adversarial Machine Learning

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In Advances in Neural Information Processing
Systems, pp. 5014–5026, 2018.

Simon-Gabriel, C.-J., Ollivier, Y., Bottou, L., Schölkopf, B.,
and Lopez-Paz, D. First-order adversarial vulnerability
of neural networks and input dimension. In International
Conference on Machine Learning, pp. 5809–5817, 2019.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Summers, C. and Dinneen, M. J. Four things everyone
should know to improve batch normalization. In Inter-
national Conference on Learning Representations. Ieee,
2020.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Xie, C. and Yuille, A. Intriguing properties of adversarial
training at scale. In International Conference on Learning
Representations, 2020.

Yoshida, Y. and Miyato, T. Spectral norm regularization for
improving the generalizability of deep learning. arXiv
preprint arXiv:1705.10941, 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In BMVC, 2016.

Zhang, H., Dauphin, Y. N., and Ma, T. Residual learning
without normalization via better initialization. In Interna-
tional Conference on Learning Representations, 2019.

Zhang, Y., Sun, L., Yan, C., Ji, X., and Dai, Q. Adap-
tive residual networks for high-quality image restoration.
IEEE Transactions on Image Processing, 27(7):3150–
3163, 2018.

ICML 2021 Workshop on Adversarial Machine Learning

Appendix A.1 Minimized Weight Decay Regularization
We prove how to solve the optimization problem (7) in the main paper. Recall that the problem is formulated as

min
{γl}L+1

l=1

L+1∑
l=1

‖γlWl‖22, s.t.

L+1∏
l=1

γl = 1. (14)

Introduce the Lagrange multiplier λ and write the Lagrange function,

L(γ1, . . . , γL+1, λ) =

L+1∑
l=1

‖γlWl‖22 − λ(

L+1∏
l=1

γl − 1) (15)

Take the gradient w.r.t. γl ∀l and λ, we have,
∂L
∂γl

= 2γl‖Wl‖22 − λ
∏
j 6=l

γj , l = 1, . . . , L+ 1 (16)

∂L
∂λ

=

L+1∏
l=1

γl − 1 (17)

Let the gradient be zeros, we have γl = (λ)1/2/(2‖Wl‖22)1/2 and bring γl back to (17), we have

λ = 2(

L+1∏
l=1

‖Wl‖22)1/(L+1). (18)

So the optimal solution of γl is γ̂l = (
∏L+1
j=1 ‖Wj‖22)

1
2(L+1) /‖Wl‖2. It is easy to check that the second-order gradient of

the objective function w.r.t. γ̂l is greater than 0, so we obtain a minimum solution. Thus, the mimimized l2 weight norm is

‖Ŵ1‖22 = · · · = ‖ŴL+1‖22 = (

L+1∏
l=1

‖Wl‖22)1/(L+1), (19)

and the minimized weight decay is (L+ 1)(
∏L+1
l=1 ‖Wl‖22)1/(L+1).

Appendix A.2 An Ineffective Regularization Family
We prove Theorem 3.1 in the main paper, which states as follows,
Theorem 3.1. Assume we have a regularization function g : Rm×n 7→ R,∀m,n ∈ N and a set of real matrices {Wl}L+1

l=1 .
If 1) ∃p > 0, g(γ) = γp and 2) g(γW) = g(γ)g(W), then the following equation holds.

min
{γl}L+1

l=1

L+1∑
l=1

g(γlWl) = (L+ 1) L+1

√√√√L+1∏
l=1

g(Wl), s.t.

L+1∏
l=1

γl = 1. (20)

proof. Since we have g(γW) = g(γ)g(W), the objective function can be written as

min
{γl}L+1

l=1

L+1∑
l=1

g(γl)g(Wl). (21)

Following the previous section, we write the Lagrange funtion,

L(γ1, . . . , γL+1, λ) =

L+1∑
l=1

g(γl)g(Wl)− λ(

L+1∏
l=1

γl − 1). (22)

Then take the gradient of the Lagrange function,
∂L
∂γl

= g′(γl)g(Wl)− λ
∏
j 6=l

γj , l = 1, . . . , L+ 1 (23)

∂L
∂λ

=

L+1∏
l=1

γl − 1. (24)

ICML 2021 Workshop on Adversarial Machine Learning

Let the gradient be zero, we have

γl =
λ

g′(γl)g(Wl)
=

λ

pγp−1
l g(Wl)

= (
λ

p · g(Wl)
)1/p. (25)

Then bring γl back to (24), we have

λ = p(

L+1∏
l=1

g(Wl))
1

L+1 . (26)

Thus the optimal γl the minimized g(Wl) and objective function is

γ̂l =

 L+1

√∏L+1
j=1 g(Wj)

g(Wl)

1/p

, (27)

g(Ŵ1) = · · · = g(ŴL+1) = L+1

√√√√L+1∏
l=1

g(Wl), (28)

min
{γl}L+1

l=1

L+1∑
l=1

g(γlWl) = (L+ 1) L+1

√√√√L+1∏
l=1

g(Wl). (29)

Appendix A.3 WEISSI and input gradient norm
Consider the gradient of the cross-entropy loss w.r.t. the input x,

∂Lce(x,y, ŷ)

∂x
=
∂ŷgt
∂x
−

P∑
j=1

pj
∂ŷj
∂x

, (30)

where pj and ŷj are the j-th output of softmax function and corresponding logit, ŷgt is the logit of the ground-truth label.
Then, the input gradient is

∂yj
∂x

=

L∏
l=1

(W T
l Jl)wL+1,j , (31)

Jl = diag(φ′(wT
l,1hl−1 + bl), · · · , φ′(wT

l,Hl
hl−1 + bl)).

Taking the l2 norm of input gradient, we have

‖∂yj
∂x
‖2 = ‖

L∏
l=1

(W T
l Jl)wL+1,j‖2 (32)

≤
L∏
l=1

‖Wl‖2‖Jl‖2‖wL+1,j‖2, (33)

because the norm is sub-multiplicative. For ReLU network, we have ‖Jl‖2 ≤ Hl (the size of layer l), thus obtaining an
upper-bound to the input gradient norm as a function of the product norm,

‖∂yj
∂x
‖2 ≤ C

L∏
l=1

‖Wl‖2‖wL+1,j‖2, (34)

where C is a constant related to sizes of layers.

Appendix A.4 Convolution Neural Networks
A CNN uses structured convolution connections between layers, and the network function has a different expression from
the fully connected case in (2). The weight scale can be shifted among layers if we regard the convolution kernel as a weight
matrix. However, one problem with convolution layers is that the kernel parameters actually have more influence than
weight parameters in fully connected layers, since they are actually applied M times (equal to output feature map size) due
to the sliding of kernel over the feature map. One solution is to multiply by M in the regularizer. But the multipliers can
be moved across layers due to the WEISSI property, see (11). To address this shortcoming, for deep convolution network,

ICML 2021 Workshop on Adversarial Machine Learning

we choose to sacrifice WEISSI property among all layers, and downscale the weight of the fully connected layers taking
the square-root, L(CNN)

we =
∏L
l=1 ‖Wl‖22‖WL+1‖2. In this way, we maintain the WEISSI property among all convolution

layers and give proper penalties for their kernel parameters. From another perspective, the larger exponent on the CNN
kernel weights suppresses parameters smaller than 1.0 and gives more penalty for those parameters larger than 1.0, inducing
higher sparsity in the convolution kernels.

We consider the convolution layers in CNN and show that the conv layer is a special case of fully connected layer. Assume
the input z ∈ RD×D is a 2D input with one channel (for simplicity) to the convolution layer W ∈ Rdk×dk×1×H , where
dk is the kernel size and H is the output channel number. We flatten the input z to a 1D vector z̃ with zero paddings and
transform the convolution kernels so that we can write the convolution operation as W̃ z̃. Assuming the stride is 1 and use
zero paddings to keep the input and output has the same size, the (i, j,m) output element of the conv layer is

W1,1,mzi−(dk−1)/2,j−(dk−1)/2 +W1,2,mzi−(dk−1)/2,j−(dk−1)/2+1 + · · ·+Wdk,dk,mzi+(dk−1)/2,j+(dk−1)/2. (35)
This can be seen as the product of a sparse vector consisting of 0 and W1,1,m, . . . ,Wdk,dk,m and z̃, where the positions
of kernel parameters are determined by the positions of zi,j so that we get the Equ. (35) from the vector product. In this
way, we can have a sparse matrix W̃ consisting of elements inW where each column is a sparse vector and has the same
effect as the convolution operation, and the output of the conv layer can be written in the form of matrix multiplication W̃ z̃.
Notice that the kernel parameters in the matrix are multiplied several times, which is different from parameters in fully
connected layers. Specifically, the repeated computation time is the same as the output size. If we calculate the l2 norm for
the transformed matrix, we have ‖W̃ ‖2 = D2‖W ‖2. This suggests a more reasonable weight decay scheme: multiply the
repeated computation times for convolution kernels. But the multiplication does not apply to our WEISSI regularizer, since
the weight energy term is a product norm of all layers and the scale for one layer is equivalent for all layers. That is why we
propose to give larger exponents for conv kernel terms to give a proper regularization for conv layers.

Appendix A.5 Convex Aggregation in ResNet and Input Gradient Norm
We consider DNNs with residual connections (He et al., 2016), in particular Wide ResNet (WRN) (Zagoruyko & Komodakis,
2016), and obtain the same WEISSI regularizer as that of the standard network. Using our notation, a residual block in
WRN is,

h1 = W
(3)
1 x+W

(2)
1 φ(W

(1)
1 x),

hl = hl−1 +W
(2)
l φ(W

(1)
l φ(hl−1)), l = 1, · · · , L,

y = WL+1φ(hL), (36)

where the weights can be in the form of fully connected or convolution layers,W (1)
l ∈ RH

(1)
l ×H

(2)
l−1 ,W

(2)
l ∈ RH

(2)
l ×H

(1)
l

and we assume in each residual block the dimensions of input and output are the same for simplicity, i.e., H(2)
l = H

(2)
l−1.

The scale in the weight matrices are pulled out of the residual blocks, i.e.,

hl = hl−1 + γ
(2)
l W̃

(2)
l φ(γ

(1)
l W̃

(1)
l φ(hl−1)) (37)

= γ
(2)
l γ

(1)
l {h̃l−1 + W̃

(2)
l φ(W̃

(1)
l φ(hl−1))}. (38)

Note that we assume the shortcut connection has a scalar multiplier, e.g., as in adaptive ResNet (Zhang et al., 2018), which
can be re-scaled to keep the network’s function unchanged after the weight scale shifting. Repeating this transformation we
obtain a product of weight scales in front of the output of the network, thus we can also use the WEISSI regularizer (11) for
ResNet.

The Effect of Convex Aggregation. We adopt the convex aggregation strategy when summing the residual connections
and feature maps (Cisse et al., 2017; Zhang et al., 2018). The residual block has extra weight scalars 0 ≥ αl ≥ 1 and
0 ≥ βl ≥ 1, with αl + βl = 1,

hl = αlhl−1 + βlW
(2)
l φ(W

(1)
l φ(hl−1)), (39)

which account for the relative importance of the shortcut hl−1 and feature map φ(W
(1)
l φ(hl−1)). Cisse et al. (2017)

explains the importance of convex aggregation by considering the Lipschitz constant of one aggregation node. Here we
explain the effectiveness of convex aggregation from a global perspective, i.e., the input gradients of the whole network. We
next show that convex aggregation removes an exponential term in an upper bound of the input gradient norm compared to
standard ResNet, thus better constraining input gradients.

ICML 2021 Workshop on Adversarial Machine Learning

The gradient of logit yi w.r.t input x is
∂yi
∂x

= W
(3)
1 RLJL+1wL+1,i, (40)

RL =

L∏
l=1

(αlI + βlJ
(1)
l W

(1)
l

T
J

(2)
l W

(2)
l

T
), (41)

Jl = diag(φ′(wT
l,1hl−1 + bl), · · · , φ′(wT

l,Hl
hl−1 + bl)),

where the intermediate term RL comprising residual blocks and aggregation scalars is our main interest. Defining the
uniform upper bound for the norm of product weight terms,∥∥∥∥∥∥

∏
m∈Stβ

J (1)
m W (1)

m

T
J (2)
m W (2)

m

T

∥∥∥∥∥∥
2

≤ σ(Θ,x),∀t, (42)

where Stβ contains the βm weights for the t-th term in the product expansion of (46), we obtain an upper bound,

‖RL‖2 ≤

[
L∏
l=1

(αl + βl)

]
σ(Θ,x) = σ(Θ,x), (43)

since αl + βl = 1. We upper bound the input gradient as

‖∂yi
∂x
‖2 ≤ HL‖W (3)

1 ‖2‖wL+1,i‖2σ(Θ,x), (44)

where HL is from the upper bound for ‖JL+1‖2. In contrast, αl = βl = 1 for standard ResNet, and thus the upper bound in
(51) for these networks is 2Lσ(Θ,x), which contains an exponential term w.r.t network depth L. Thus, convex aggregation
avoids the exponential dependence of the input gradient norm on network depth in residual networks.

The gradient of logit yi w.r.t input x is
∂yi
∂x

= W
(3)
1 RLJL+1wL+1,i, (45)

RL =

L∏
l=1

(αlI + βlJ
(1)
l W

(1)
l

T
J

(2)
l W

(2)
l

T
), (46)

where the intermediate termRL comprising residual blocks and aggregation scalars is our main interest. We expandRL and
obtain a summation of 2L summands, where the tth summand includes the product

∏
l∈Stα

αl
∏
m∈Stβ

βm, and Stα,Stβ are
index sets of αl and βm according to the expansion. In the t-th summand, all αl and βm are from different multipliers/layers
and |Stα|+ |Stβ | = L. We write the expansion ofRL as follows,

2L∑
t=1

∏
l∈Stα

αl
∏
m∈Stβ

βmJ
(1)
m W (1)

m

T
J (2)
m W (2)

m

T
. (47)

According to Minkowski’s inequality, we have ‖RL‖2 is upper bounded by
2L∑
t=1

∏
l∈Stα

αl
∏
m∈Stβ

βm

∥∥∥∥∥∥
∏
m∈Stβ

J (1)
m W (1)

m

T
J (2)
m W (2)

m

T

∥∥∥∥∥∥
2

(48)

The weights of a neural network cannot be infinity, thus we denote the uniform upper bound for the norm of product weight
terms as σ(Θ,x), i.e., ∥∥∥∥∥∥

∏
m∈Stβ

J (1)
m W (1)

m

T
J (2)
m W (2)

m

T

∥∥∥∥∥∥
2

≤ σ(Θ,x),∀t. (49)

ICML 2021 Workshop on Adversarial Machine Learning

Thus, we have

‖RL‖2 ≤

 2L∑
t=1

∏
l∈Stα

αl
∏
m∈Stβ

βm

σ(Θ,x) (50)

=

[
L∏
l=1

(αl + βl)

]
σ(Θ,x) = σ(Θ,x), (51)

since αl + βl = 1. We upper bound the input gradient as

‖∂yi
∂x
‖2 ≤ HL‖W (3)

1 ‖2‖wL+1,i‖2σ(Θ,x), (52)

where HL is from the upper bound for ‖JL+1‖2.

Appendix A.6 Related Work
We first discuss several regularizers for neural networks and theoretical work on weight norm and generalization.

Weight decay. Weight decay improves the generalization (Krogh & Hertz, 1992) of networks by penalizing large weight
norms during training. Many modern DNNs are trained with weight decay, including VGG (Simonyan & Zisserman, 2014),
ResNet (He et al., 2016) and Densenet (Huang et al., 2017). We demonstrate that weight decay is unable to control the
intrinsic weight norms of a neural network with positively homogeneous activation functions, especially when the number
of layers in the network becomes large. Since the neural networks that are widely used today often have ReLU activations
and very deep architectures, this ineffectiveness of weight decay may cause severe problems in terms of generalization and
adversarial robustness. Our WEISSI regularizers mitigate this difficulty of weight decay and thus improve the generalization.
We further prove that WEISSI regularizers are preferable over weight decay in improving the adversarial robustness.

Dropout. Another widely used regularizer for DNNs is Dropout (Srivastava et al., 2014), which prevents co-adaptation of
neurons by randomly dropping neurons during training. The implicit regularizer induced by Dropout for a single hidden-layer
linear neural network is proven to constrain every hidden neuron’s input and output weight norms to be equal (Mianjy
et al., 2018). Such a constraint is equivalent to the square of path regularization (Neyshabur et al., 2015), which is invariant
to weight scale shifting between layers. In this sense, Dropout for a single hidden-layer linear neural network has a very
similar effect to that of WEISSI regularizers. WEISSI regularization extends the weight scale shift invariance property of
Dropout to multi-layer neural networks. However, we emphasize that for multi-layer networks, it is complicated to analyze
the implicit regularization of Dropout and its co-adaptation reduction property is generally accepted. Thus, we consider
Dropout as a complementary component to WEISSI regularizer.

Spectral Norm Regularization. Previous works have proposed to constrain the spectral norm of a neural network to control
its sensitivity to input perturbations (Yoshida & Miyato, 2017; Cisse et al., 2017). Spectral norm regularization (Yoshida
& Miyato, 2017) replaces the squared L2 norm in weight decay with the squared spectral norm. However, it is still not
invariant to weight scale shifting, and thus spectral norm regularization has the same drawback as weight decay. Parseval
network (Cisse et al., 2017) proposes to constrain the Lipschitz constant of a neural network by introducing an orthogonal
constraint on the weight matrix and a convex aggregation for residual connections. Although Parseval network and WEISSI
regularizers both constrain the Lipschitz constant of neural networks, their approaches are quite different: Parseval network
constrains the Lipschitz constant of each individual unit of a network to be less than 1, while WEISSI penalizes an estimated
upper bound for the Lipschitz constant for a whole network. One advantage of WEISSI is that the regularizers can be easily
plugged into the standard training pipeline, while Parseval network requires extra iterations to make sure the constraints
are satisfied. Our experiment shows that WEISSI is more effective at improving the adversarial robustness than Parseval
network. We also use the convex aggregation of Parseval network in the WEISSI regularized WideResNet (Zagoruyko &
Komodakis, 2016), and achieve better performance than using Parseval network, which demonstrates the superiority of
WEISSI over orthogonal weight constraints. In addition, we provide a theoretical explanation on the efficacy of convex
aggregation in controlling vulnerability of networks by analyzing adversarial attacks.

Weight Normalization. Similar to the WEISSI formulation, weight normalization (Salimans & Kingma, 2016) disentangles
the magnitude and direction of weight vectors and proposes to optimize the two components for one weight to accelerate
convergence. Despite the similarity in this step, WEISSI regularization and weight normalization have different purposes:
WEISSI aims to control the complexity of neural networks to mitigate overfitting, while weight normalization is dedicated

ICML 2021 Workshop on Adversarial Machine Learning

0 40 80 120 160 200
9

9.2

9.4

9.6

9.8

10

0 40 80 120 160 200
0

50

100

150

WD

Parseval

Parseval OC

WEISSI

WEISSI CA

lo
gℒ

%
&

lo
gℒ

%
'

Epoch Epoch

Figure 3. Plot of weight energy (left) and weight complexity (right) with respect to training epochs of WRN-28-10 on CIFAR10.

0.01 0.02 0.03
0

0.2

0.4

0.6

0.8

0.05 0.1 0.15

0.2

0.3

0.4

0.5

0.6
WEISSI CA w/o WC

WEISSI CA w/o WE

WEISSI CA

Ac
cu

ra
cy

𝜖 of FGSM 𝜖 of PGD10

Figure 4. Ablation study: accuracy of WRN trained on CIFAR10 under FGSM (left) and PDG (right) attacks.

Model Method Clean FGSM PGD10
ε = 0.05 ε = 0.03 ε = 0.01 ε = 0.03 ε = 0.01

VGG WD 90.10 23.28 29.85 52.00 12.59 30.04
WEISSI 90.64 33.79 35.98 50.72 22.31 33.84

WRN WD 92.90 55.67 68.26 76.39 60.51 63.02
WEISSI 93.12 55.98 67.35 75.64 60.67 63.67

Table 4. Accuracy of Standard Training on CIFAR10 using MMC loss.

to faster optimization. As an alternative to batch normalization (Ioffe & Szegedy, 2015), weight normalization may also hurt
adversarial robustness (Xie & Yuille, 2020) since they both make the optimizer too strong, causing overfitting.

Norm-based Generalization Error. The proposed WEISSI regularizer is closely related to several learning theory works
(Bartlett, 1998; Neyshabur et al., 2015; 2018). (Bartlett, 1998) proves that the generalization performance of a DNN
depends on the magnitude of weights instead of the number of weights. (Neyshabur et al., 2015) derives a bound of the
Rademacher complexity as a function of the product of weight norms, which is equivalent to the weight energy term in
WEISSI regularizers. (Neyshabur et al., 2018) extends the previous work by bounding the generalization error in the
PAC-Bayesian framework, where the bound is a function of the product of spectral weight norms. We note that (Neyshabur
et al., 2015; 2018) both prove the invariance of a network function to weight scale shifting due to the homogeneity of ReLU
activations, and use the product of some weight norms to bound generalization error. The key observation in our paper
is the incapability of weight decay in penalizing the intrinsic norm of a neural network, which is not considered in the
previous papers. We further propose WEISSI regularizers to more effectively control the network capacity, and thus enhance
generalization accuracy and adversarial robustness. Moreover, we provide various empirical results to support our claim. In
contrast, (Neyshabur et al., 2015; 2018) provide theoretical insights into the effect of the weight norm product in controlling
the generalization error, without considering adversarial robustness or giving experimental evidence.

Appendix B.1 Experiment Settings
Dataset. We consider the task of image recognition using deep neural networks. Our experiment is run on 2 standard image
recognition datasets, i.e., MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky et al., 2009).

ICML 2021 Workshop on Adversarial Machine Learning

λwe λwc
MLP 1e-6 1e-5
CNN 1e-6 1e-5
VGG 1e-31 3e-5
WRN 1e-24 1e-5

WRN CA 1e-30 1e-5

λwe λwc
MLP 1e-6 1e-5
CNN 1e-6 1e-5
VGG 1e-30 3e-5
WRN 1e-24 1e-5

WRN CA 1e-25 1e-5

Table 5. Hyperparameters settings in WEISSI. Left: standard training, right: adversarial training.

Baselines. Three regularization methods are used for comparison baselines:

(i) Weight Decay (WD) takes the sum of L2 norm of all layers as the regularization term, as in (6).
(ii) Parseval OC network (Cisse et al., 2017) enforces that the rows of weight matrices are orthogonal, and its largest

singular value is close to 1.
(iii) Parseval network (Cisse et al., 2017) imposes convexity constraints in residual aggregation layers (as in Eq. 39), in

addition to the orthogonal constraints.

Note that in our experiment we update all rows of each weight matrix instead of a subset of rows as in the original
paper (Cisse et al., 2017). For Parseval network, we use a parameterized function to ensure a valid convex aggregation,
a = exp(la)/(exp(la) + exp(lb)) and b = 1− a, instead of using the simplex projection.

Training. We minimize the softmax loss function using the momentum optimizer (Polyak, 1964) for all neural networks.
For training on CIFAR10, we use data augmentation of random cropping and left/right flipping. Pixel values are normalized
to [0, 1]. The batch size is set to be 100 for all experiments. Note that we do not use Batch Norm in our experiments because
it makes the network invariant to the scale of weight norms due to the layerwise normalization, and it has been shown
that Batch Norm hurts the adversarial robustness (Summers & Dinneen, 2020). We trained WideResnet with Batch Norm
on CIFAR10 and it turns out although the accuracy is increased to 95.09%, it drops to 34.24% under FGSM attack when
ε = 0.01. For VGG network we use He initialization (He et al., 2015), while for WRN we use Fixup initialization (Zhang
et al., 2019) to avoid gradient explosion (Zhang et al., 2019).

In addition to standard training, we also apply the adversarial training in (Madry et al., 2018), minimizing the loss:
min
Θ

E(x,y)∼D max
δ∈B∆

Lce(Θ,x+ δ,y) + λLreg(Θ),

where B∆ is the set of allowed perturbations. We choose the l∞-ball as the set of allowed perturbations and ∆ = 0.01 as the
maximum l∞ distance.

Evaluation. We evaluate the generalization ability using the test accuracy on clean examples, and evaluate the adversarial
robustness using the test accuracy on adversarial examples generated from two attacks, FGSM (Goodfellow et al., 2015) and
PGD (Madry et al., 2018) with 10 steps (denoted as PGD10). For MNIST, we run 5 initializations and report the mean and
standard deviation. For CIFAR10, we run 3 trials and choose the model with of median test accuracy.

The experiment is implemented in Tensorflow. For weight decay, we set the λwd = 0.0001. For Parseval network, we set the
same λwd = 0.0001 for the weight decay of output layer and use βparseval = 0.0001 in the orthogonal constraint updates.
The hyperparameters in WEISSI are listed in Table 5. Notice that in some neural networks like VGG and WRN, we use
different hyperparameters in adversarial and standard training. In MNIST experiment, MLP has two hidden layers with a
width of 1024 and CNN has two convolution layers, where each layer has 128 filters of 3× 3 size and the convolution stride
is 1. We train the network for 60 epochs with an initial learning rate of 0.1. In CIFAR10 experiment, we use a variant of
VGG16 for 32×32-sized input images, where the convolution layers are the same as VGG16 but we use one 512-width fully
connected layer, and WideResnet-28-10. In VGG training, we train the network for 300 epochs with an initial learning rate
of 0.01 and dropout rate of 0.5. The learning rate is decayed exponentially every 100 epchs with a decay rate 0.1. In WRN
training, we set the training epoch as 200, initial learning rate as 0.03 and use the same learning rate decay scheme as in
VGG.

Ablation study. We investigate the effect of Lwe and Lwc on adversarial robustness of WRN by removing either term in
the regularization. Fig. 4 shows a comparison between full WEISSI CA and only Lwe or Lwc regularization when using
FGSM and PGD attacks with different perturbation scales. WEISSI CA is robust to both attacks while single Lwe or
Lwc can only defend against one attack. Note that regularizing Lwe benefits robustness to FGSM, while regularizing Lwc

ICML 2021 Workshop on Adversarial Machine Learning

increases robustness to PGD. This suggests sparsity is crucial for defending against PGD and a smoother decision boundary
is beneficial to defending against FGSM.

Visualization. We visualize the change of Lwe and Lwc during WRN training under the 5 regularization schemes in Fig. 3.
WEISSI achieves the lowest weight energy, while WEISSI CA shows a consistent decrease of weight complexity, indicating
that the convex aggregation also helps train a more sparse network.

Training with a Robust Loss Function. Besides adversarial training, we test the performance of WEISSI using standard
training with a robust loss function, Max-Mahalanobis center (MMC) loss (Pang et al., 2020). The regularization functions
are the same as before. Table 4 shows a comparison between the performance of WEISSI and WD for VGG16 and WRN
using standard training with MMC. In this case, WEISSI and WD achieve similar generalization performance, but WEISSI
outperforms WD on the VGG network in terms of adversarial robustness.

