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Abstract

Gene regulatory networks are a popular tool for modelling important biological

phenomena, such as cell differentiation or oncogenesis. Efficient identification of

the causal connections between genes, their products and regulating transcrip-

tion factors, is key to understanding how defects in their function may trigger

diseases. Modelling approaches should keep up with the ever more detailed de-

scriptions of the biological phenomena at play, as provided by new experimental

findings and technical improvements. In recent years, we have seen great im-

provements in mapping of specific binding sites of many transcription factors to

distinct regulatory regions. Recent gene regulatory network models use binding

measurements; but usually only to define gene-to-gene interactions, ignoring

regulatory module structure. Moreover, current huge amount of transcriptomic

data, and exploration of all possible cis-regulatory arrangements which can lead

to the same transcriptomic response, makes manual model building both tedious

and time-consuming.

In our paper, we propose a method to specify possible regulatory connections

in a given Boolean network, based on transcription factor binding evidence.

This is implemented by an algorithm which expands a regular Boolean network

model into a ”Cis Regulatory” Boolean network model. This expanded model

explicitly defines regulatory regions as additional nodes in the network, and
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Preprint submitted to Journal of Theoretical Biology August 9, 2019

© 2019. This manuscript version is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0022519319304606
Manuscript_b7abaa41776388a382ac5dc3e838a226

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0022519319304606


adds new, valuable biological insights to the system dynamics. The expanded

model can automatically be compared with expression data. And, for each node,

a regulatory function, consistent with the experimental data, can be found.

The resulting models are usually more constrained (by biologically-motivated

metadata), and can then be inspected in in silico simulations.

The fully automated method for model identification has been implemented

in Python, and the expansion algorithm in R. The method resorts to the Z3

Satisfiability Modulo Theories (SMT) solver, and is similar to the RE:IN appli-

cation (Yordanov et al., 2016).

It is available on https://github.com/regulomics/expansion-network.

Keywords: transcriptional regulation, transcription factor binding, Boolean

network, model synthesis

1. Introduction and Problem Statement

Gene expression regulation is a key mechanism, used by multicellular eu-

karyotes, to differentiate cells into specific cell-types and react to changes in

the environment: e.g. the myeloid differentiation in the mouse [23]. In eukary-

otes, regulation occuring during the transcriptional phase of gene expression5

seemingly plays the most prominent part in this almost universal phenonemon.

Typically, several transcriptional factors (TFs) regulate a gene, in order to en-

sure its activation or its repression at key times, by binding to specific DNA

regions that are usually called cis-regulatory modules (CRMs). Usually, there

are multiple such elements per target gene; however, due to incomplete infor-10

mation, they are usually not modelled explicitly in Boolean gene regulatory

networks, as defined by Sugita, Kauffman, Thomas and others since the late

1960’s [34, 20, 35]. The whole set of such interactions would constitute a Cis-

Regulatory Network (CRN) – an expanded model that has been discussed in a

number of papers [8, 13, 40]. TF bindings to CRMs can be identified by ChIP-15

seq (chromatin immunoprecipitation sequencing) experiments. In most cases,

binding patterns are considered enough to determine the function of associated
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TFs, as shown by Zinzen et al. [44]. There were efforts in the field to explicitly

model cis-regulatory interactions as early as in 2002 [8]. However, then there

was not enough data on TF-DNA binding events. In most of the typical Boolean20

models, the regulatory functions are identified at the gene level [25, 30]. Never-

theless, as binding data from ChipSeq and other assays are becoming available

for increasing number of TFs and conditions, they are implicitly integrated into

models, such as the Collombet lymphoid/myeloid differentiation model [10].

From these studies, it becomes apparent that the regulatory functions can ac-25

tually be decomposed into ”physical”, almost self-contained, functional units,

according to the TF bindings associated with their regulatory modules. It is

not trivial to automate such decomposition; but having such a procedure would

maybe allow to better grasp the modular [9], hierarchically organized [24] struc-

ture of CRNs. This would potentially allow us to address the issue of modelling30

seemingly redundant parts [27], and to understand the underlying dynamics of

the regulatory interactions with more accuracy.

Gene regulatory networks (GRNs) comprise a collection of gene nodes and

some signed, directed, pairwise regulatory interactions. Sometimes, a set of fixed

possible ”consistent” regulatory functions is attributed to each node [43]. Such35

a representation (called sometimes interaction graphs) captures the regulatory

network topology; while state graphs, that can be computed from the topology

and regulatory functions, describe the dynamics of the considered system and

its stable states.

Generally speaking, GRNs rely on four main assumptions as described by40

Crombach [11]. Firstly, a fixed set of TFs can possibly have an influence on the

expression level of a given gene. The expression levels of these TFs combine into

some discrete or continuous value (input function) [4]. Secondly, this value is

then thresholded by the response function (that is, a function which will output

a decision: “expressed” or “non expressed” given some input) of the target gene45

(generally a sigmoidal or step function): if this value is over the given threshold,

then the target gene expression level is considered high enough, and thus the

gene is considered active (meaning that a functional amount of its products will

3



be present in the cell); otherwise, the gene is considered inactive, with a low

expression level. Thirdly, such a network acknowledges the presence of feedback50

loops, that are characterized by cycles in the corresponding graph, where the

expression levels of TFs can themselves be the result of gene expression regula-

tion. Fourthly, the result of the input and the response functions should match

the observed gene expression patterns at any time, under any condition. The

composition of the input and the response functions is sometimes called gene55

regulatory function (GRF).

We adopt partially in our approach the formalism of the RE:IN method [43].

In this method, the notion of the network is extended by associating a collection

of possibly acting regulatory interactions (called optional interactions) with the

Boolean Network. Then, one single structure (called abstract model) represents60

the space of many possible network topologies for the model. Each node is as-

sociated with a set of possible regulatory function types, which are monotonous

with respect to the regulators (both activators and repressors). Each regulatory

function type is actually a Boolean function, associated with a unique truth

table, with activator/repressor states as input. Once all potential (optional) or65

existing (definite) interactions between the nodes of interest are defined, comes

the model synthesis, i.e. the selection of relevant optional interactions, that give

a state graph which is consistent with constraints based on a set of wet lab ex-

periments. Once the ”abstract” model is built, one can convert the problem of

finding such relevant optional interactions and regulatory functions (network in-70

ference problem) into a SMT (satisfiability modulo theories) problem instance.

To achieve this, a list of logical constraints on the allowed GRFs are built, ac-

cording to a set of time-series gene expression patterns obtained from wet lab

experiments. Then, these logical constraints will define the requirements for the

selection of a subset of optional interactions. When these constraints are fed to75

a SMT solver, the latter can deduce one or several candidate models that match

the results of all the wet-lab experiments used to build the logical constraints.

Each solution model comprises a subset of regulatory functions/GRFs (one

for each node/gene) and a subset of relevant optional interactions, that describes
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completely a plausible regulatory scenario which explains the experimental re-80

sults. However, in the RE:IN framework, hypothesis testing for instance can

be directly performed on the abstract model, without resorting to selection of

a solution model.

Another method is exemplified by the GINsim model [37, 1, 25], where the

model is built manually, but allows the user to check if the model dynam-85

ics match the experimental results. Other logical models have been suggested

[36, 7, 5]. However, many of these approaches require multiple kinetic/logical

parameter values [22], that are frequently difficult to obtain experimentally (due

to a lack of technicians to produce experiments, or technological limitations),

or computationally (because of large number of degrees of freedom in the model90

fitting process).

Our goal is to show that, as a proof-of-concept, firstly: the addition of cis-

regulatory modules to network models can be done automatically, provided that

binding patterns are known; and secondly, that it can lead to models that are

constrained to more realistic dynamics, biologically speaking.95

2. Methods

Our stated goal is to turn a ”classic” Boolean network into a model that takes

into account regulatory modules. Thus the formal definition of the modelling

framework needs to be modified. This section aims at describing our formalism

and its most important features.100

CRM annotations correspond to the number, the names, the positions, and

the function of detected cis-regulatory regions, or CRMs (cis-regulatory mod-

ules), around genes of interest (that is, appearing in the original model), and

to the TFs binding to these regions. CRM annotations related to genes, and TF

bindings to CRM were obtained via CisView database: https://lgsun.irp.nia.nih.gov/geneindex/cisview.html [29]105

(both of the tested models are based on mice), and were processed manually:

for each gene, we have filtered for “high-quality” CRMs that span at less than

2kbp upstream and downstream TFBSs (transcription factor biding sites) that
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are related to the considered gene, and we have kept TFs that already appeared

in the original models. CRM identifiers are the same as the ones from CisView.110

2.1. Expanded Boolean model.

The objective of integrating regulatory modules to a regular Boolean network

is to add more biological relevance to the model, by distinguishing between

physically-assessed (which are generally considered more relevant) and other

interactions.115

An ”expanded” (or ”augmented”) Boolean network is a quintuplet (G, C, T ,

I, F ) whereG is the set of genes or biological entities of interest, C = {Cg|g ∈ G}

is a set of sets of CRMs for each gene, and T = {Tcg ⊆ G|cg ∈ Cg, g ∈ G} is the

set of TF bindings to each CRM. Let us denote Tg = ∪cg∈Cg
Tcg ⊆ G, g ∈ G.

Then:120

∪ ∪g∈G ∪cg∈Cg (Tcg × {cg} × {+,−}) (TF bindings)

∪ ∪g∈G (Cg × {g} × {+,−}) (cis-regulatory interactions). (1)

where I is the set of gene-pairwise, signed, directed regulatory interactions.

I can be decomposed into two disjoint sets Idef (set of regulatory interac-

tions which have been assessed physically) and Iopt (set of ”optional” regu-125

latory interactions, which represent current biological assumptions on the sys-

tem). F is the set of regulatory functions for each gene. The set of nodes

V of the corresponding interaction graph is V = G ∪ ∪g∈GCg, and the set of

edges is I. Each Boolean function fg, g ∈ G has the following signature: fg :

B
|
∏

cg∈Cg
{cg}×

∏
g′∈G−T {g

′}| → B, and each Boolean function fcg , cg ∈ Cg, g ∈ G130

has the following signature: fcg : B
|
∏

t∈Tcg
{t}| → B.
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2.2. Decomposition of a GRF Into Its Regulatory Modules.

Moreover, adding regulatory modules to the model allows to account for

modularity [9] and redundancy [27] of TF bindings for a given gene; it can ease

the interpretation of the synthetized model, and allow a better understanding of135

the actual interactions between genes. Indeed, as stated in [40]: ”An important

feature of CRMs is the modularity of their activity, allowing CRM function to be

assessed independently of each other”. The regulatory functions for each CRM

are actually the input function part in the GRF associated with the regulated

gene. That is why it can be advantageous to choose preferentially multiple140

input with low in-degree, physically ”decomposable” GRFs (with respect to the

CRMs of the considered gene) over more complex, input regulatory functions

with higher in-degree.

Let us denote the restriction of a Boolean vector q to the coordinates associ-

ated with variable in set V q|V , that is, if V = {a, b}, then q|V = q[a, b] (vector145

q restricted to coordinates associated with variables a and b). As stated before,

for a given gene g ∈ G, the gene regulatory function fg is the ”composition” (in

the regular function composition sense) of the input functions fcg , cg ∈ Cg, and

the response function rg, that is:

∀q ∈ B|G|, if Cg = {c1, c2, ..., cn},

fg(q) = rg(fc1(q|Tc1
), ..., fcn(q|Tcn

), q|G−T ).
(2)

If fg can be written this way, then it is said to be decomposable with respect150

to its regulatory modules/TF bindings, or physically decomposable. If Cg = ∅,

then fg is always decomposable.

This ”physical” decomposition can be seen as the decomposition of an ar-

bitrary Boolean function, with respect to a given cover of its variable set (that

is, a set of subsets of the set of variables that appear in the input Boolean155

function, such as their union is equal to the whole variable set present in this

function). This has already been widely studied, and building such a decompo-

sition requires recursively testing cases on the input function, and the functions
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present in its decomposition. The ten theorems associated with each case, and

the theoretical algorithm to build such a decomposition are presented in Curtis’s160

book [12], and have originally been applied to electronic circuits. They are not

dealt with here in detail, because Ashenhurst and Curtis’s theorems are enough

to establish the theoretical constraint on functions, which is introduced by an

explicit implementation of the regulatory modules.

Apart from trying to describe more properly the regulatory mechanisms,165

searching for physically decomposable functions also allows to lower the number

of possible regulatory Boolean functions, adding to the fixed subset of acceptable

types of functions used in [43]. This is especially important when the number

of genes is increasing, for computational reasons; indeed, Shannon (quoted by

Curtis in [12]) showed that the number of such decomposable functions1 greatly170

decreases when the number of input variables increases. Then, decomposability

actually adds an implicit constraint on the input of regulatory functions, which

potentially decreases the number of possible function candidates when their

in-degree is high, thus the number of model candidates.

2.3. Monotonicity of a GRF With Respect to the Regulators.175

We also want the resulting regulatory functions to satisfy a fixed set of

relevance-related criteria, in order to consider it consistent with the concept

1Functions (GRFs) are counted modulo logical equivalence (i.e. equality of associated

truth table) and when the time delay for TFs to bind to CRMs is considered negligible

compared to time delays associated with other reactions: degradation of proteins, mRNAs,

CRMs regulating the target gene, ... . The latter means that regulatory functions associated

with CRMs can be replaced by their own definition inside a GRF: if a gene is only regulated

by a single activating CRM M, as defined by its GRF fg : q → fM (q), whose regulatory

function is fM : q → q(TF1) ∧ q(TF2), then fg can be written as fg : q → q(TF1) ∧ q(TF2).

The proposition above still holds, just note that, for instance, with initial GRF fg : q →

q(A) ∧ q(B) ∧ q(C) for a gene g regulated by two CRMs M1 and M2, such as TFs A, B, C

bind to both modules, different solutions (which give the same gene regulatory function) can

arise in the expanded model: e.g. fg : q → fM1
∧ fM2

, where fM1
: q → q(A) ∧ q(B) ∧ q(C)

and fM2
: q → q(A), or fM1

: q → q(A) ∧ q(B) and fM2
: q → q(A) ∧ q(C), etc.
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of regulatory function. We would like it to ensure the consistency with the

description of GRFs provided by [11] (composition of input subfunctions and

response function). Furthermore, if we had a reference model for the considered180

biological phenomenon, then we could have compared the two models using

analysis methods for their equivalent homogeneous Markov chains [42]. For

example, steady states or a similarity coefficient, according to a certain measure,

could be computed. Since no reference is available, we decided to focus on the

preservation of the monotonicity property for each gene regulatory function, as185

done in [16] – since the ”bounded” property reported in [19] is trivially ensured

by the fact that all regulatory functions here are Boolean.

A gene regulatory function fg is intuitively said to be monotonic with

respect to a given regulator r of its associated gene g iff. r is an activator

(resp. a repressor) of g, then if r is activated, at fixed other regulators’s states,190

then the output of associated regulatory function fg is nondecreasing (resp.

nonincreasing) [43, 21].

For all q ∈ Q (where Q = B|G| is the set of system states in the GRN), this

condition can be formally written as follows:

• If r is an activator of gene g:195

fg(G− {r} = q|G−{r}, r = 1) ≥ fg(G− {r} = q|G−{r}, r = 0) (3)

• If r is a repressor of gene g:

fg(G− {r} = q|G−{r}, r = 1) ≤ fg(G− {r} = q|G−{r}, r = 0) (4)

which can be rewritten equivalently as:

εg(r)×fg(G−{r} = q|G−{r}, r = 1) ≤ εg(r)×fg(G−{r} = q|G−{r}, r = 0), (5)
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where:

εg(r) =

0 if r is not a regulator of gene g

1 if r is a repressor of gene g

−1 if r is an activator of gene g

. (6)

Monotonicity has been sometimes described by the study of signs in the as-

sociated Jacobian matrix, but this last definition may not apply to systems with200

positive self-regulatory interactions [19]. It should be noted, that our definition

cannot be directly applied to regulatory networks where the same TF represses

and activates regulatory elements of its target gene. In this case, monotonicity

of the regulatory functions in the resulting models cannot be assessed; how-

ever, our method still works (i.e. finds solutions) for models involving such205

bifunctional genes.

2.4. Network Inference Given Experiments And Abstract Expanded Model.

Provided an abstract model, such as described in Section 1, to which the

expansion procedure has been applied, and an experiment file (that is, a file

that contains the time-series gene expression patterns obtained from a wet-lab210

experiment, for a given subset of the genes present in the model), we use a

similar method to [43] to infer a plausible model candidate. That means that

this network satisfies all experiments provided in the input file. This inference is

performed by a tool called SMT (Satisfiability Modulo Theories) solver, which

finds solutions to a problem described with Boolean variables, that is equivalent215

to the network ”reverse-engineering” problem. This method can be used directly

on the expanded abstract model. However, in order to use fully the knowledge

about regulatory modules, we slightly modified the procedure by adding two

other types of constraints, such as an interaction between a gene and one of its

regulating module is selected iff. at least one interaction between a TF and this220

regulatory module is selected:

Let g be a gene, cg one of its associated regulatory modules, t a TF binding

to cg, and s ∈ {+,−}:
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• If an optional interaction (t, cg, s) is selected, then the interaction (cg, g,+)

is also selected.225

• If none of the interactions (t, cg, s) is selected, then (cg, g,+) is not se-

lected.

Using a SMT solver allows to return one or several network solutions that

are completely consistent with the experimental results (described as binary

time-series gene expression patterns). Such a method can then automatically230

enumerate multiple solutions, i.e. different sets of model parameters, up to a

user-selected number, which give a same transcriptomic response. This is con-

sistent with the biological fact that different arrangements of binding sites can

give a same expression pattern [38]. Eventually, using this method of network

inference is a flexible method, as logical conditions on solutions and regulatory235

function types can easily be modified, according to the considered biological

phenomenon.

3. Analysis

Modelling explicitly cis-regulatory modules besides the regular Boolean net-

work actually rules out some types of regulatory functions, that is, some types240

of Boolean functions. We assume in the following that solution models are a set

of selected node pairwise interactions (among interactions defined as optional

in the abstract model), and a set of GRFs, one per node, which characterizes

the way the associated biological entity is regulated. Variation in either the set

of selected interactions, or the set of GRFs (modulo logical equivalence), results245

in a different solution. Since we require decomposability property (because it

directly affects the input of the GRFs), all the solution models, using GRFs

that do not satisfy Definition 2.2, will not be representable by our expanded

model. It means that, for instance, in the left-hand example depicted in Figure

2, with a non decomposable function with respect to its two CRMs, there is no250

way to select three Boolean functions (in the whole space of Boolean functions,
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not only limited to the GRF types in RE:IN) for the gene and CRM nodes, such

as the resulting GRF of this gene in the expanded model (as defined in Defi-

nition 2.2) is logically equivalent to the initial non decomposable GRF in the

regular model. Biologically speaking, this constraint implements the TF bind-255

ing and transcriptional regulation by the CRMs. The TFs cannot act on the

gene expression without binding to CRMs, which adds a biological meaningful

uncompressible time step to the regulation of the considered gene.

3.1. Regular Solution Models to Expanded Solution Models.

Let us focus on the Krumsiek model [23], for instance, which describes260

myeloid differentiation of myeloid progenitors to megakaryocytes, erythrocytes,

granulocytes and monocytes in the mouse (network shown on the left-hand

side of Figure 1). In this model, gene Gfi1 is activated when TF C/EBPα

is active, and TFs Egr1, Egr2, Nab2 (denoted EgrNab in Krumsiek et al.’s

work) give a global repressed response. According to the results from RE:IN,265

if Q is the set of global system states, the associated Boolean GRF is ∀q ∈

Q, fGfi1(q) = q(C/EBPα) ∧¬q(EgrNab), with the same notations provided

in Definition 2.2. According to CisView database [29], Egr1 binds to one

promoter of Gfi1 noted CM05020166, and C/EBPα binds to another pro-

moter of Gfi1 noted CM05020167. Thus the corresponding Boolean function270

is decomposable with respect to the TF bindings found: ∀q ∈ Q, fGfi1(q) =

fCM05020166(q) ∧ fCM05020167(q), where fCM05020166(q) = q(C/EBPα), and

fCM05020167(q) = ¬q(EgrNab).

Yet, there might be GRFs that cannot be decomposed this way. For in-

stance, let us consider a gene G, such as it requires either the activation of both275

transcription factors t1 and t2, or only the repression of transcription factor t3

(rule #13 in RE:IN). Let us denote the two cis-regulatory modules that regulate

G respectively C1 and C2, such as t1 and t3 bind to module C1, and t2 binds

to module C2 (see Figure 2). Then the regulatory function fG associated with

gene G is: ∀q ∈ Q, fG(q) = (q(t1) ∧ q(t2)) ∨ ¬q(t3). It is not decomposable280

with respect to C1 and C2. It can be proven using Ashenhurst’s criterion [3]
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Figure 1: Examples of Boolean Networks Quoted in the Paper. Krumsiek model from

[23] (left). Drosophila gap-gene model from [28]. Activating (resp. repressive) interactions

have regular (resp. tee)-headed arrows.
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for disjunctive decompositions of Boolean functions, for instance. Thus there

are solution models found using the ”regular” Boolean model that cannot be di-

rectly converted to solutions for the expanded model; i.e. solutions that involve

non-decomposable functions.285

Some types of GRFs may also not be monotonous (in the sense of Equation

C.1). For instance, in the Drosophila gap-gene network, involved in early em-

bryonic development (shown on the right-hand side of Figure 1), TF Hunchback

can both repress and activate gap-gene Krppel [28], by repressing the distal

and activating the proximal shadow enhancers of the latter [41]. But Hunch-290

back does not seem to act directly on at least one of the shadow enhancers

[41]. The same phenomenon occurs with the eve 2+7 and eve 3+7 enhancers

of stripe 7 : Hunchback directly represses eve 3+7 [31], and indirectly activates

2+7 by counter-repression by Caudal binding [39]. Many TFs have a docu-

mented bifunctional behaviour [31], e.g. Dorsal [14]. The method we suggested295

here accepts models with bifunctional genes, and can generate solutions, if they

exist. The main issue is to give a biological significance to this situation when

dealing with CRMs. This issue can dealt with different strategies, depending

on the molecular mechanism that enables bifunctionality. If bifunctionality is

assumed to be concentration-dependent [28, 33], then it might be best modelled300

by a multi-level formalism [25], which can be converted into a Boolean model

[32]. If it is caused by activator synergy, then a better definition of monotonicity

which is not at single-gene level, but at (gene+enhancers) level, might be more

useful – this is close to the representation of gene nodes in the cis-regulatory

logics defined by [13]. It should be noticed that difficulties in representing non305

monotonous GRFs are not limited to expanded models, and present the same

challenges in more classical GRN models. Because defining monotonicity only at

single node-level might not be enough to describe a higher-order cis-regulatory

property [4], that has an impact on several nodes at a time.

14



3.2. Expanded Solution Models to Regular Solution Models.310

Let us then prove that solutions for expanded models satisfy some useful

properties (see Appendix for proofs).

Properties of the Solutions For Expanded Models. A solution model,

when it exists, returned by the SMT solver we defined on an expanded model,

satisfies the three following conditions:315

1. Decomposability: All GRFs are physically decomposable with respect

to their regulatory modules (Equation 2).

2. Consistency: The model satisfies all gene expression patterns at each

step in every experiment provided.

3. Monotonicity: All gene regulatory functions found are monotonic (Equa-320

tion C.1).

3.3. Cases When No Solution Is Found.

There might be several reasons why no solution is found by the solver when

using an expanded model: firstly, there might be no solution found by the solver

when using the associated regular model, which means that the constraints pro-325

vided (either on the gene nodes, or on the experiments/system dynamics) cannot

be satisfied. It can be useful to check the experiment file in order to make it

consistent, or to relax the constraints on the nodes (for instance, increase the

number of possible types of regulatory functions that can be used for a given

node). Secondly, all solutions found with the original model might involve non-330

decomposable functions for some nodes. Since we assume that a decomposable

function, with respect to the actual binding sites, is biologically more relevant

that an arbitrary Boolean function, it may mean that the TF bindings found are

incorrect, or incomplete, for this node. Eventually, if one regulatory function

in the model candidates cannot be described as one of the regulatory functions335

implemented in RE:IN, or as a Boolean composition of such subfunctions, then

this GRF is considered invalid. Either the assumptions on the GRFs –that is,

the subset of acceptable regulatory functions– should be modified, or either the
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TF bindings might again be faulty. The monotonicity property, as defined in

Equation C.1, does not provide a constraint on the resulting models, contrary340

to the decomposability property. Our lemma only ensures that, provided the

regulatory function types are monotonic (in the sense of our definition), and

that there is no bifunctional genes, the resulting models only involve monotonic

regulatory functions. But, since the monotonicity is not actually used in the con-

straint building (unlike the decomposability property which acts on the inputs345

of GRFs), our method finds solutions (or not), regardless of the monotonicity

of the regulatory function types and the presence of bifunctional TFs.

4. Results

We have tested our method on two published Boolean models about dif-

ferent differentiation pathways, and compared our results with the associated350

published data.

4.1. Dunn Mouse Pluripotency Model

This model aims at describing the phenomenon of cell differentiation in the

mouse [15]. To decrease the computational cost and the running time, it has

only been partially expanded, as described in Appendix. The original (non355

expanded) model and the experiments files needed were available on the web

interface of RE:IN [2].

4.1.1. Analysis of the Resulting Model Candidates.

When provided the partially expanded model alone, the solver does not find

any solution, because some data about the regulatory modules was incomplete.360

In order to overcome this issue, we applied the TF-inference procedure on only

a subset of the edges of type ”TF to gene” so that a viable solution could be

found. For the corresponding solution displayed in the Appendix, TF-inference

procedure has been applied to the following edges: ”Sall4 to Sox2” and ”Tcf3 to

Esrrb”. Adding only one of the preceding edges was not leading to a solution.365
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The decomposition of the gene regulatory functions with respect to their

modules is clearly shown in the model. It helps interpreting the regulatory

function of gene Esrrb for instance, by grouping regulatory interactions into

modules. The importance of redundancy in the TF bindings can be shown

when removing module CM03005877 for gene Sox2; for instance, TF Nanog370

binds to both of the modules CM03005877 and CM03005876. In absence of

binding site on CM03005877, Nanog may bind to CM03005876. Same situ-

ation occurs when removing module CM12018795 of gene Esrrb: TF Nanog

binds to both modules CM12018772 and CM12018795, allowing Nanog to act

on the module CM12018772, when the binding site for CM12018795 is not375

available. All this redundancy might be helping the pluripotency system to

maintain its behavior even in case of some potential mutations. Redundancy

of TF bindings between regulatory elements then matches redundancy of gene

expression patterns [4]. The expansion thus gives us a possible interpretation of

different solutions found by the solver, in terms of binding site availability. In380

turn, this can lead to speculation on different possible molecular scenarii behind

the identified regulatory functions.

We also noticed that some of the optional interactions that are defined as

”required” by the authors of the original study (meaning that they should be

selected in every model considered by RE:IN) are not selected in the expanded385

model. This includes many interactions including: Klf4 to Klf2, Klf4 to Tfcp2l1,

Oct4 to Nanog, Sall4 to Klf2 and Oct4 to Tfcp2l1. While we cannot completely

determine the necessity of these interactions purely on the grounds of a com-

putational model, one can speculate that some of these interactions might be

unnecessary, given the overall redundancy in a solution model. On the other390

hand, adding more constraints, based on perturbation experiments to the sys-

tem, might prove these interactions to be indeed necessary. Nonetheless, in our

opinion, these examples are indeed showing that our analysis can identify some

potential points of improvement of the original model, by considering the actual

connectivity and redundancy between the regulatory modules.395
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4.2. Collombet Lymphoid/Myeloid Differentiation Model

This model aims at describing the phenomena of lymphoid and myeloid dif-

ferentiation into macrophages and B cells, and transdifferentiation from cells

of B cell lineage into cells of Macrophage lineage [10]. To decrease the com-

putational cost and the running time, it has only been partially expanded,400

as described in Appendix. The XML file from BioModels has been converted

to a RE:IN-formatted file using our custom scripts (function sbml2rein in the

GitHub). For the experiments file, we used the experiments describing stimu-

lation with CSF1 and Il7 of lymphoid/myeloid progenitor cells. The expanded

model generated from the RE:IN-formatted version of the original model was405

not modified, as the solver could find solutions. It could be noticed that the

splitting of node associated with gene Spi1 (or PU.1 ) into two nodes accord-

ing to the concentration-level of its expression was indeed necessary for the

expected behavior: considering the gene Spi1 as a single Boolean variable lead

to oscillations instead of a stable state.410

4.2.1. Analysis of the Resulting Model Candidates.

The redundancy of TF bindings among regulatory modules connected to

the same gene could be once again noticed (for instance, for Runx1, Mef2c and

Ebf1 ). In each of the found model solutions, functions associated with regula-

tory modules can influence the regulation of the target gene in several different415

ways. For example, in one of the solutions, functions associated with modules

that target gene Egr2 appear in a disjunction (that is, the modules act comple-

mentarily); whereas for gene Runx1, the functions associated with its regulatory

modules appear in a conjunction (that is, the modules operate cooperatively).

It can also be noticed that, in this very solution, modules associated with gene420

Ebf1 are not relevant for its regulatory function. Again, such situations may

indicate that some of the interactions identified based on the binding ChipSeq

data may indeed not be functional to a detectable degree, but more likely, this

may indicate that more perturbation experiments are needed to uncover their

relevance.425
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4.2.2. Study of The Stable States

In order to investigate more deeply into the preservation of stable states

by the expansion operation, we have applied the following procedure to the

Collombet model [10]:

1. We have downloaded the last stable release of GINsim and the associated430

GINsim model.

2. We have searched for all stable states using the static analysis procedure

developped in GINsim (with no perturbation). GINsim finds 8 stable

states, and among them, transcriptomic signatures related to the four cel-

lular states reported in the original paper, namely, Macrophage cells, B-435

cells, granulocyte-monocyte progenitor (GMP) cells, and common myeloid

progenitor (CMP) cells (according to the annotation provided in the GIN-

sim model).

3. We then have checked whether these stable states found by GINsim are

actually preserved by the (partial) expansion procedure described in our440

paper, by simulation.

For the partially expanded Collombet model (where CRM-gene regulatory

interactions are all activatory and where CRM with less than one TF binding

have been removed, with the splitting of Spi1 into two nodes), with the asyn-

chronous model update, all 8 stable states from GINsim are indeed preserved,445

meaning that the corresponding phenotypes are stable states in the expanded

model.

5. Conclusions

In this paper, we show an expansion procedure that works reliably for GRNs

with Boolean regulatory functions. We show that it can be applied in realis-450

tic situations using two different biological models as examples; one originally

developed in RE:IN formalism, and the other in GINsim. However, it is not

restricted to either of the formalisms and can be quite easily applied to any
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other Boolean GRN, provided a good coverage of the regulatory modules and

their binding patterns. It is also possible to apply the expansion only to parts455

of the model if the ChipSeq data is not available for some TFs or some target

genes.

Our method is based on the presence of discrete cis-regulatory modules.

Hence, it requires accurate definition of such regions to yield a modular descrip-

tion of the gene regulatory network, associated with a higher degree of biological460

relevance. This leaves the user responsible for finding a method for delineating

module boundaries, and their binding profiles. Since, for most model organ-

isms, we have large scale databases of regulatory modules already available (e.g.

CisView for the mouse and human [29], RedFly [17] for the Drosophila), we

think that the identification of CRMs will be less problematic in the future.465

Nonetheless, the user decision on the exact boundaries of CRMs may have

profound influence on the resulting model, as we make extensive use of the

assumption of functional independency of CRMs that regulate the same gene.

This assumption justifies the separated computation of each CRM regulatory

function, and leads to lowering the number of functions that need to be con-470

sidered [40]. These functions are only allowed to depend on the TFs binding

to their associated CRM. While in most studied systems, the experimental ev-

idence is consistent with the independent action of enhancers, there might be

contexts where this assumption can be violated. For example, it might fail in

cases where cooperative action of some enhancers [26] was shown, i.e. when475

the regulatory response of a given enhancer depends on the actions of other

enhancers. This might be alleviated by allowing cis-regulatory modules to have

cooperative interaction terms in the associated response function.

Regarding the limitations of any such approach, it should be stressed, that

providing diverse (in terms of types of perturbations) experiments to the solver,480

and very clear annotations of the perturbations, is the most important factor

for the biological relevance of the results. And, in this area, there is much more

work to be done (compared to identification of CRMs) in terms of experimental

methods to measure gene expression patterns in diverse cell types, under diverse

20



conditions, and in multiple perturbation (gene knock-out or over expression)485

situations. Recent advances in single-cell sequencing are giving us hope that

there will be a significant progress in this area in the coming years.

Our method can be compared to the ”multiplex” model (introduced in [6]).

This modelling framework is based on a regulatory automata formalism [36], but

the number of parameter values is decreased using biological information about490

TF cooperativity or concurrency on a common target gene. This is implemented

in practice by adding intermediate nodes between TFs and genes. Contrary to

our method, which is limited to a single additional level of cis-regulation (via

enhancers and promoters), the number of intermediate nodes can represent any

type of complex needed to ensure the transcription of the target gene, thus can495

be arbitrary. Hence, rather than elements of regulation, these nodes represent

interaction labels between TFs. Using the argument of decomposability we

have exhibited before, having more than one intermediate ”level” of nodes adds

a stronger constraint on the system dynamics than in our framework. This

reduces in practice the number of parameters needed, as noticed in [6], and500

in our work. Indeed, a combination of parameter values in their framework

corresponds to a logical function; the decrease of the number of parameters

is performed by ”merging” the regulatory functions at each additional level of

nodes. We believe our work formalizes, and explains in mathematical terms

where this decrease in the number of parameters originates from. Moreover, we505

think that our work is a reasonable tradeoff between a biological description at

a fixed level of accuracy (which takes into account TFs binding to cis-regulatory

modules), and a tractable model synthesis (the more nodes and interactions are

added, especially when they are labelled as optional, the longer it takes for the

solver to generate the first solution).510

In summary, we think that given the fast progress both in identification of

CRMs, and quicker sampling of expression, we should have an increasing need

for extension of regulatory network models to include actual connectivity based

on molecular measurements. Our work gives a proof-of-concept implementation

of one such approach, which has clear limitations, but may be modified and ex-515
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tended. We provide an open-source implementation of our method, in the hope

that the community of researchers interested in gene regulation modelling will

not only be able to apply our method to other models, but also create improved

solutions to this problem.
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& DePace, A. H. (2015). Krüppel expression levels are maintained through

compensatory evolution of shadow enhancers. Cell reports, 12 , 1740–1747.

[42] Xiao, Y. (2009). A tutorial on analysis and simulation of boolean gene

regulatory network models. Current genomics, 10 , 511–525.655

[43] Yordanov, B., Dunn, S.-J., Kugler, H., Smith, A., Martello, G., & Emmott,

S. (2016). A method to identify and analyze biological programs through

automated reasoning. NPJ systems biology and applications, 2 , 16010.

[44] Zinzen, R. P., Girardot, C., Gagneur, J., Braun, M., & Furlong, E. E.

(2009). Combinatorial binding predicts spatio-temporal cis-regulatory ac-660

tivity. Nature, 462 , 65.

27



Appendix A. Methods

Appendix A.1. Boolean Network Expansion Procedure

A ”fully expanded” model comprises all the CRMs which regulate one (or

several) genes of the original model. A ”partially expanded” model is only665

componed of ”relevant” CRMs among the latter, according to a given criterion.

We also explain how TF bindings to known regulatory modules can be inferred

with such a type of model.

Appendix A.1.1. Full Expansion.

Let us denote G the set of genes which appear in the original model M ,670

I = Idef ] Iopt the set of interactions (which is a disjoint union of definite and

optional interactions) in this model. Let C be the set of cis-regulatory modules:

Cg, g ∈ G is the set of CRMs that regulate gene g, and let Tcg be the set of TF

bindings to cg ∈ Cg, g ∈ G, and Tg = ∪cg∈Cg
Tcg . The notation (a, b, .) means

either an activating interaction (a, b,+) of gene a on gene b, or a repressive675

interaction (a, b,−) of gene a on gene b, according to the context.

From a model M(G, I) and (C = ∪g∈GCg, T = ∪g∈GTg), we build a ”fully

expanded” model M ′(G′, I ′ = I ′def ] I ′opt) such as:

G′ = G ∪ ∪g∈GCg . (A.1)

∪{(g1, g2, .)|(g1, g2, .) ∈ Idef , g1 ∈ G− T, g2 ∈ G}

∪{(g1, g2, .)|(g1, g2, .) ∈ Idef , g1 ∈ T, g2 ∈ G,Cg2 = ∅} . (A.2)
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∪{(t, cg, .)|(t, g, .) ∈ Iopt, t ∈ Tcg}

∪{(g1, g2, .)|g1 ∈ G− T, g2 ∈ G, (g1, g2, .) ∈ Iopt}

∪{(g1, g2, .)|g1 ∈ T, g2 ∈ G,Cg2 = ∅, (g1, g2, .) ∈ Iopt}. (A.3)

One can notice that only activating interactions are set between a CRM and680

the gene(s) it regulates. This is because a CRM that has a repressive impact on

the expression level (cis-regulatory information as black arrows in first case in

Figure A.1) can equivalently be modelled: either by a CRM linked to the target

gene with a repressive interaction (middle case in Figure A.1); either by a CRM

with an activating interaction, which associated input function uses negated685

values of the TF expression levels (third case in Figure A.1, with TF input

negation in parentheses). This case corresponds to an input function giving a

value above the threshold of the response function, as such described in the

”problem statement” section of the core paper. This negation will be sound

because, in the regulatory function types provided in RE:IN [43], activators and690

repressors have a symmetric role in the regulation.

If no regulatory module is known/deemed useful (see next section) for a given

gene g (i.e. Cg = ∅), then all regulatory interactions present in the initial model

are added to the expanded model (even those having as input a TF), in order

to comply with Definition 2.2. Thus, according to this definition, the regulatory695

function associated with gene g will automatically be decomposable. The main

reason why we decided to use this strategy instead of, for instance, creating

one ”shadow regulatory” node to which would be bound all interactions of type

”TF to g” (that would be not necessarily match a known shadow enhancer

as defined in [4]), is because the absence of regulatory elements is probably700

due to incomplete data; thus, adding one node provides a constraint on the
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Figure 2: Counter-Examples to Decomposability and Monotonicity. Example of

a non-decomposable regulatory function (where three TFs, t1, t2, and t3, bind to CRMs

module1, module2, that regulate gene g, which needs either both t1 and t2 active, either t3

inactive). Arrow heads represent the interaction effects on each CRM: regular (activating),

tee-headed inhibiting. Undirected edges are cis-regulatory connections (left). Example of a

gene g regulated by bifunctional TF t, which binds to both of the regulatory modules of g.

Figure A.1: Converting a Regular Model to an Expanded Model. The initial model

(first figure from the left) can be modelled equivalently in two ways (provided a given CRM

which regulates the gene and to which TFs 1 and 2 bind): either according to the middle

figure, either according to the right-hand figure. Undirected edges are TF bindings and cis-

regulatory interactions. Tee-headed (resp. regular) arrows are inhibitory (resp. activating)

interactions. The ”(-)” sign means that the TF input is negated in the function associated

with the CRM it binds to.
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decomposability of the regulatory function that might be incorrect (e.g. there

might be more than one regulatory element in reality, and any function matching

the experimental results is deemed non-decomposable whereas it can actually

be fit). Another strategy would have been removing all interactions of type ”TF705

to gene”, but then again, incompleteness of data could have caused the lack of

regulatory elements, and thus the model itself would be incomplete, and unable

to find a solution that explains correctly the experiments. The main goal of

a solution model found by the solver is to generate falsifiable hypotheses from

current, possibly incorrect or incomplete, assumptions; not necessarily to give710

the ground truth biological mechanism [18]. If the solution returned is found to

be wrong, then the abstract model automatically expanded might be modified,

and tested again.

If one is confident enough in the TF binding data they have, TF bindings

non documented in the model can also be added. Non-documented TF bindings715

are interactions such as (t, g, .) does not belong to the initial interaction set of

the model, where g is a gene, and t binds to a given CRM of g. The expansion

procedure is then modified as follows:

∪{(t, cg, .)|(t, g, .) ∈ Iopt, t ∈ Tcg}

∪{(t′, cg,+), (t′, cg,−)|(t′, g, .) /∈ I, t′ ∈ Tcg}

∪{(g1, g2, .)|g1 ∈ G− T, g2 ∈ G, (g1, g2, .) ∈ Iopt}. (A.4)

Appendix A.1.2. Partial Expansion.720

It can be seen that not all CRMs will actually be useful; for instance, if no

known TF binding has been detected in a given CRM, or if there is only one

CRM associated with a given gene (see preceding section). Partial expansion
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allows to get a smaller model, by avoiding to build useless CRM nodes, thus

reducing the computing time without altering the system dynamics. Let us725

denote Cv as the set of ”valid” cis-regulatory modules, and the associated set

of genes Gv = {g ∈ G, |Cv
g | ≥ 1}, and:

∀g ∈ Gv, Cv
g = ∪cg∈Cg,cg 6=∅{cg} and Cv = ∪g∈GvCv

g (A.5)

Then full expansion is applied to the model M(G, I) with data Cv, T v =

{T v
g |g ∈ Gv}.

Appendix A.1.3. TF Binding Inference.730

This subsection explains how to transform an expanded model to identify

further on unknown possible TF bindings to a CRM. Data from ChIP-seq ex-

periments is often incomplete, thus we might miss some existing TF bindings

that are not detected. The goal is then, for an initial interaction from TF g1 on

gene g2, to infer which CRM regulating g2 the TF might bind to. This is done735

by creating one optional interaction between the considered TF g1 and every

CRM of gene g2. Note that, after applying this operation, interactions between

TFs and CRMs are not necessarily direct anymore. Let us use the previous

notations, and let us denote, for any subset Is ⊆ I:

PDIIs = {(g1, g2, .)|g1 ∈ T − Tg2 , g2 ∈ G such as Cg2 6= ∅, (g1, g2, .) ∈ Is}.

(A.6)

PDIIs is the set of possible direct interactions, i.e. TF binding interactions,740

in the interaction subset Is. ”g1 ∈ T − Tg2” means that g1 is a known TF, but

there is no known binding to any of the CRMs of gene g2.

In the model, we then replace interaction subset PDIIs , Is ⊆ I, by the

following set:

PDITF
Is = ∪(g1,g2,.)∈PDIIs

{(g1, cg2 , .)|cg2 ∈ Cg2} (A.7)
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Note that for all three types of expansion procedures, the algorithm pre-745

serves the GRF type conditions on all pre-existing nodes (that is, the possible

regulatory roles played by activators and repressors of the considered node on

its expression), and allows as a default value all possible regulatory functions

for CRM nodes, so not to implement a too restrictive constraint on the model.

This can be modified manually by manipulating the text file associated with750

the model, if needed.

Appendix B. About the Expansion Procedures

Appendix B.1. Tables for Some Expanded Models

Appendix B.2. Runtime for Dunn and Collombet Partially-Expanded Models

The following table show the runtimes to find the first model solution for755

the regular and partially-expanded versions of the Dunn [15] and Collombet

[10] models. Tests were run on a single thread (non-parallel run) Intel Xeon

2.20GHz, all using less 6GB in RAM, using Python 2.7.6, Z3 4.5.1, and R 3.4.4

on Ubuntu 14.04.5 (64 bit).

Runtime-fold change is approximately 3 between regular and expanded ver-760

sions of the Collombet model, while it goes up to 14 for the Dunn model. This

can be explained by the difference in the number of optional-labelled interac-

tions (see the tables in Subsection Appendix B.1). When more information is

added to the abstract model, solutions are more quickly found, which seems

consistent.765

Appendix C. Proofs for the Solutions of Expanded Models

Appendix C.1. Proof of the Monotonicity of Template Functions In RE:IN

Monotonicity is defined such as, fg is monotonic iff. for all nodes g, r ∈ G

and system state q ∈ Q:

ε(r)×fg(G−{r} = q|G−{r}, r = 1) ≤ ε(r)×fg(G−{r} = q|G−{r}, r = 0), (C.1)
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Properties
Original

Model

Full

Expansion

Model

FE + TF-

inference

Model

# nodes

- CRMs

16

- 0

40

- 24

40

- 24

# edges

- definite

- optional

83

- 13

- 70

54

- 9

- 44

155

- 7

- 148

# Edges TF to CRM

- definite

- optional

0

- 0

- 0

21

- 1

- 20

125

- 1

- 124

Table B.1: Statistics (1) For Fully Expanded Dunn Model Structure.
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Properties
Original

Model

Partial

Expansion

Model

PE + TF-

inference

Model

# nodes

- CRMs

16

- 0

30

- 14

30

- 14

# edges

- definite

- optional

83

- 13

- 70

85

- 12

- 73

135

- 12

- 123

# Edges TF to CRM

- definite

- optional

0

- 0

- 0

16

- 1

- 15

66

- 1

- 65

Table B.2: Statistics (2) For Partially Expanded Dunn Model Structure.

35



Properties
Original

Model

Full

Expansion

Model

FE + TF-

inference

Model

# nodes

- CRMs

33

- 0

86

- 53

86

- 53

# edges

- definite

- optional

89

- 89

- 0

148

- 95

- 53

232

- 151

- 81

# Edges TF to CRM

- definite

- optional

0

- 0

- 0

28

- 28

- 0

126

- 28

- 98

# TF-gene edges to infer 0 0 98

Table B.3: Statistics (1) For Fully Expanded Collombet Model Structure.
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Properties
Original

Model

Partial

Expansion

Model

PE + TF-

inference

Model

# nodes

- CRMs

33

- 0

59

- 26

59

- 26

# edges

- definite

- optional

89

- 89

- 0

127

- 101

- 26

187

- 101

- 86

# Edges TF to CRM

- definite

- optional

0

- 0

- 0

22

- 22

- 0

82

- 22

- 60

# TF-gene edges to infer 0 0 60

Table B.4: Statistics (2) For Partially Expanded Collombet Model Structure.
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where:770

ε(r) =

0 if r is not a regulator of gene g

1 if r is a repressor of gene g

−1 if r is an activator of gene g

. (C.2)

Let us denote in the remaining part of this section fr=i = f(V − {r} =

q|V−{r}, r = i), and qi such as qi|V−{r} = q|V−{r} and qi(r) = i, where i ∈ {0, 1}.

Appendix C.1.1. Closure by Regularization Function in RE:IN.

Let us assume that fg is a monotonic GRF on a given GRN G(V, I), where V

is the set of nodes, and I the network topology (i.e. the positive and repressive775

interactions between nodes), associated with a gene g ∈ V . Then reg(f) = q →

(fg(q)∧InducibleRegulation(q))∨ RepressibleRegulation(q) is monotonic.

Let r ∈ V, q ∈ Q. If r is not a regulator of g, EQ. C.2 is satisfied. If r is a

regulator of g:

Using the monotonicity of function f , reg(f) is thus monotonic.780

Appendix C.1.2. Closure by Boolean Composition.

Let us assume that f, f ′ are two monotonic GRFs on a same given GRN

G(V, I), where V is the set of nodes, and I the network topology (i.e. the

positive and repressive interactions between nodes), respectively associated with

genes g, g′ ∈ V . Then, if every activator (resp. repressor) of g (resp. g′) that is785

a present regulator of g′ (resp. g) is an activator (resp. repressor) of g′ (resp.

g), f ∧ f ′ = q → f(q) ∧ f ′(q), f ∨ f ′ = q → f(q) ∨ f ′(q) and ¬f = q → ¬f(q)

are monotonic.

Function f ∧ f ′ is the GRF of a (possibly intermediate) node g” of G that is

active if and only if both nodes f and f ′ are active. This means that actually790

every regulator of g or of g′, which is a causal variable in the logical formula

associated with f ∧ f ′, is a regulator of this node g”. Let us consider r a

regulator of g (symmetrically for g′) that is a causal variable in the logical

formula associated with f ∧ f ′, and q ∈ Q a system state (”x” means that the

result is the same whatever the value of x is on the whole line).795
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Models
Time for Original

Model (sec.)

Time for Expanded

Model (sec.)

Collombet

28.67

(constraint building)

+ 25.20 (checking)

83.26

(constraint building)

+ 116.91 (checking)

Dunn

123.69

(constraint building)

+ 745.57 (checking)

260.29

(constraint building)

+ 12, 689.97

(checking)

Table B.5: Time (in seconds) for the First Model Solution.

InducibleRegulation(q) RepressibleRegulation(q) reg(f)r=1 reg(f)r=0

1 0 (fr=1∧1)∨0 = fr=1 (fr=0∧1)∨0 = fr=0

0 0 (fr=1 ∧ 0) ∨ 0 = 0 (fr=0 ∧ 0) ∨ 0 = 0

0 1 (fr=1 ∧ 0) ∨ 1 = 1 (fr=0 ∧ 0) ∨ 1 = 1

1 1 (fr=1 ∧ 1) ∨ 1 = 1 (fr=0 ∧ 1) ∨ 1 = 1

Table C.1: Checking for Each Case of Regularization Function if Equation C.1Stands (pro-

vided f is monotonic).
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r activates g r regulates g′ fr=1 fr=0 f ′r=1 f ′r=0 Is EQ. C.2 satisfied?

0 0 0 0 x x fr=1 ∧ f ′r=1 = 0 ∧ x = fr=0 ∧ f ′r=0

0 0 1 1 x x fr=1 ∧ f ′r=1 = 1 ∧ x = fr=0 ∧ f ′r=0

0 0 0 1 x x fr=1 ∧ f ′r=1 = 0 ∧ x ≤ 1 ∧ x = fr=0 ∧ f ′r=0

0 1 0 0 0 0 fr=1 ∧ f ′r=1 = 0 = fr=0 ∧ f ′r=0

0 1 1 1 0 0 fr=1 ∧ f ′r=1 = 0 = fr=0 ∧ f ′r=0

0 1 0 0 1 1 fr=1 ∧ f ′r=1 = 0 = fr=0 ∧ f ′r=0

0 1 1 1 1 1 fr=1 ∧ f ′r=1 = 1 = fr=0 ∧ f ′r=0

0 1 0 1 0 0 fr=1 ∧ f ′r=1 ≤ 1 ∧ 0 = fr=0 ∧ f ′r=0

0 1 0 1 0 1 fr=1 ∧ f ′r=1 < 1 ∧ 1 = fr=0 ∧ f ′r=0

0 1 0 0 0 1 fr=1 ∧ f ′r=1 ≤ 0 ∧ 1 = fr=0 ∧ f ′r=0

1 0 0 0 x x fr=1 ∧ f ′r=1 = 0 ∧ x = fr=0 ∧ f ′r=0

1 0 1 1 x x fr=1 ∧ f ′r=1 = 1 ∧ x = fr=0 ∧ f ′r=0

1 0 1 0 x x fr=1 ∧ f ′r=1 = 1 ∧ x ≥ 0 ∧ x = fr=0 ∧ f ′r=0

1 1 0 0 0 0 fr=1 ∧ f ′r=1 = 0 = fr=0 ∧ f ′r=0

1 1 1 1 0 0 fr=1 ∧ f ′r=1 = 0 = fr=0 ∧ f ′r=0

1 1 0 0 1 1 fr=1 ∧ f ′r=1 = 0 = fr=0 ∧ f ′r=0

1 1 1 1 1 1 fr=1 ∧ f ′r=1 = 1 = fr=0 ∧ f ′r=0

1 1 1 0 0 0 fr=1 ∧ f ′r=1 = 1 ∧ 0 ≥ 0 ∧ 0 = fr=0 ∧ f ′r=0

1 1 1 0 1 0 fr=1 ∧ f ′r=1 = 1 > 0 ∧ 0 = fr=0 ∧ f ′r=0

1 1 0 0 1 0 fr=1 ∧ f ′r=1 = 0 ∧ 1 ≥ 0 ∧ 0 = fr=0 ∧ f ′r=0

Table C.2: Checking for Each Case of ∧ Composition if Equation C.1Stands (provided f and

f ′ are monotonic).
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r activates g r regulates g′ fr=1 fr=0 f ′r=1 f ′r=0 Is EQ. C.2 satisfied?

0 0 0 0 x x fr=1 ∨ f ′r=1 = 0 ∨ x = fr=0 ∨ f ′r=0

0 0 1 1 x x fr=1 ∨ f ′r=1 = 1 ∨ x = fr=0 ∨ f ′r=0

0 0 0 1 x x fr=1 ∨ f ′r=1 = 0 ∨ x = x ≤ 1 ∨ x = 1 = fr=0 ∨ f ′r=0

0 1 0 0 0 0 fr=1 ∨ f ′r=1 = 0 = fr=0 ∨ f ′r=0

0 1 1 1 0 0 fr=1 ∨ f ′r=1 = 1 = fr=0 ∨ f ′r=0

0 1 0 0 1 1 fr=1 ∨ f ′r=1 = 1 = fr=0 ∨ f ′r=0

0 1 1 1 1 1 fr=1 ∨ f ′r=1 = 1 = fr=0 ∨ f ′r=0

0 1 0 1 0 0 fr=1 ∨ f ′r=1 = 0 < 1 ∨ 0 = 1 = fr=0 ∨ f ′r=0

0 1 0 1 0 1 fr=1 ∨ f ′r=1 = 0 < 1 ∨ 1 = fr=0 ∨ f ′r=0

0 1 0 0 0 1 fr=1 ∨ f ′r=1 = 0 < 0 ∨ 1 = 1 = fr=0 ∨ f ′r=0

1 0 0 0 x x fr=1 ∨ f ′r=1 = 0 ∨ x = x = fr=0 ∨ f ′r=0

1 0 1 1 x x fr=1 ∨ f ′r=1 = 1 ∨ x = 1 = fr=0 ∨ f ′r=0

1 0 1 0 x x fr=1 ∨ f ′r=1 = 1 ∨ x = 1 ≥ x = 0 ∨ x = fr=0 ∨ f ′r=0

1 1 0 0 0 0 fr=1 ∨ f ′r=1 = 0 = fr=0 ∨ f ′r=0

1 1 1 1 0 0 fr=1 ∨ f ′r=1 = 1 = fr=0 ∨ f ′r=0

1 1 0 0 1 1 fr=1 ∨ f ′r=1 = 1 = fr=0 ∨ f ′r=0

1 1 1 1 1 1 fr=1 ∨ f ′r=1 = 1 = fr=0 ∨ f ′r=0

1 1 1 0 0 0 fr=1 ∨ f ′r=1 = 1 ∨ 0 = 1 > 0 ∨ 0 = fr=0 ∨ f ′r=0

1 1 1 0 1 0 fr=1 ∨ f ′r=1 = 1 > 0 ∨ 0 = fr=0 ∨ f ′r=0

1 1 0 0 1 0 fr=1 ∨ f ′r=1 = 0 ∨ 1 = 1 > 0 ∨ 0 = fr=0 ∨ f ′r=0

Table C.3: Checking for Each Case of ∨ Composition if Equation C.1Stands (provided f and

f ′ are monotonic).
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When the condition ”every regulator of both genes g and g′ has the same

(positive or repressive) effect on g and g′” is not fulfilled, there is harder to

define the sign of a given regulator: for instance, if r, a ∈ V , f : q → q[r]∧¬q[a]

and f ′ : q → ¬q[r] ∧ q[a], r has a repressive effect whenever a is present, and

vice-versa (f ∨ f ′ = a ⊕ r). Our definition of monotonicity does not account800

for this sort of regulators. Since in the expansion procedure we have chosen,

regulators of a given gene have the same effect on its CRMs than on the very

gene in the regular model, the condition required above is satisfied. However,

monotonicity is ill-defined for models having bifunctional genes (see paper).

¬f is the GRF for a node that is active if and only if g is inactive. All805

activators (resp. repressors) for g are repressors (resp. activators) for ”¬g”.

Thus ¬f is monotonic, for any monotonic function f .

Appendix C.1.3. Monotonicity of RE:IN Functions

Let us show that all 20 template functions introduced in RE:IN [43] are

monotonic as defined by EQ. C.2 (without composing with the regularization810

function, since we have proved above that monotonicity was stable by this oper-

ation). For the remaining part of this section, let us denote g ∈ G an arbitrary

gene and r one of its regulators (otherwise, the condition in EQ. C.2 is always

satisfied). Since we also proved that monotonicity was stable by boolean com-

position, let us show only that all ”atom” terms of the functions are monotonic:815

AllActivators(g, q), NoActivators(g, q), AllRepressors(g, q), NoRepressors(g,

q), and #A(g, q) > #R(g, q) (there are strictly more activators than repressors),

and #A(g, q) > #R(g, q)∨ (#A(g, q) = #R(g, q)∧ q(g)) (there are as many ac-

tivators as repressors, and gene g is active in the current state) are monotonic.

See [43] for the exact definition of those terms.820

Note that the term ”#A(g, q) = #R(g, q) ∧ q(g)” alone is not monotonic.

Appendix C.2. Proof of the Lemma

The lemma about the properties of solutions found by the RE:IN method

on expanded models is as follows:
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r activates g fr=1 fr=0 Is EQ. C.2 satisfied?

0 0 0 ¬fr=1 = 1 = ¬fr=0

0 0 1 ¬fr=1 = 1 ≥ 0 = ¬fr=0

0 1 1 ¬fr=1 = 0 = ¬fr=0

1 0 0 ¬fr=1 = 1 = ¬fr=0

1 1 0 ¬fr=1 = 0 ≤ 1 = ¬fr=0

1 1 1 ¬fr=1 = 0 = ¬fr=0

Table C.4: Checking for Each Case of ¬ if Equation C.1Stands (provided f is monotonic).

r activates g fr=0 fr=1

0 0 0

0 1 1

1 0 if A(g, q1) = {r}, then 1, otherwise 0

1 1 impossible, because activator r is not active in q0

Table C.5: Checking for Each Case of f : q → AllActivators(g, q) if Equation C.1Stands

(provided f is monotonic).

r activates g fr=0 fr=1

0 0 0

0 1 1

1 0 0

1 1 0

Table C.6: Checking for Each Case of f : q → NoActivators(g, q) if Equation C.1Stands

(provided f is monotonic). When r activates g, then it represses node whose regulatory

function is f .
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r activates g fr=0 fr=1

0 0 if R(g, q1) = {r}, then 1, otherwise 0

0 1 impossible, because repressor r is not active in q0

1 0 0

1 1 1

Table C.7: Checking for Each Case of f : q → AllRepressors(g, q) if Equation C.1Stands

(provided f is monotonic). When r represses g, then it activates node whose regulatory

function is f .

r activates g fr=0 fr=1

0 0 0

0 1 0

1 0 0

1 1 1

Table C.8: Checking for Each Case of f : q → NoRepressors(g, q) if Equation C.1Stands

(provided f is monotonic).

r activates g fr=0 fr=1

0 0 0

0 1 if #A(g, q0) = #R(g, q0) + 1, then 0, otherwise 1

1 0 if #A(g, q0) = #R(g, q0), then 1, otherwise 0

1 1 1

Table C.9: Checking for Each Case of f : q → #A(g, q) > #R(g, q) if Equation C.1Stands

(provided f is monotonic).
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r activates g q(g) fr=0 fr=1

0 0 0 0

0 1 0 0

0 0 1 0

0 1 1 if #A(g, q0) = #R(g, q0), then 0, otherwise 1

1 0 0 0

1 1 0 if #A(g, q0) = #R(g, q0)− 1, then 1, otherwise 0

1 0 1 1

1 1 1 1

Table C.10: Checking for Each Case of f : q → #A(g, q) > #R(g, q)∨ (#A(g, q) = #R(g, q)∧

q(g)) if Equation C.1Stands (provided f is monotonic).

r activates g q(g) fr=0 fr=1

0 0 0 0

0 1 0 if #A(g, q0)−#R(g, q0) = 1, then 1, else 0

0 0 1 0

0 1 1 0

1 0 0 0

1 1 0 if #R(g, q0)−#A(g, q0) = 1, then 1, else 0

1 0 1 0

1 1 1 0

Table C.11: Checking for Each Case of f : q → #A(g, q) = #R(g, q) ∧ q(g) if Equation

C.1Stands (provided f is monotonic).
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A solution model, when it exists, returned by the SMT solver we defined on825

an expanded model, satisfies the three following conditions:

1. Decomposability: All GRFs are physically decomposable with respect

to their regulatory modules (Equation 2).

2. Consistency: The model satisfies all gene expression patterns at each

step in every experiment provided.830

3. Monotonicity: All gene regulatory functions found are monotonic (Equa-

tion C.1).

1. The only nodes that are linked to a given gene are its regulatory modules,

and genes that are not TFs.

2. The model is a solution of a SMT problem where experiment-related con-835

straints have been implemented, so by construction it satisfies all the gene

expression patterns at each given step present in every experiment.

3. Finally, it can be proven that every regulatory function template in RE:IN

is monotonic, as defined in Equation C.1, and that monotonicity is pre-

served by Boolean composition by connectors ∧, ∨, ¬ (see Subsection840

Appendix C.1). Then, let g ∈ G be a gene, and fg having the same form

as described in Definition 2.2:

∀q ∈ B|G|, if Cg = {c1, c2, ..., cn},

fg(q) = rg(fc1(q|Tc1
), ..., fcn(q|Tcn

), q|G−T ),
(C.3)

where rg is the response function for gene g, and fci is the input function

associated with the ith regulatory module ci of g.

Each of the input functions is a regular regulatory function (meaning that845

it is one of the 20 available templates, or a function with only one variable),

thus is monotonic. rg only comprises connectors ∧, ∨ and ¬. Thus fg is

also monotonic.
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Appendix D. Figures for the Tested Models

Since all solutions returned by the solver are equally valid with respect to850

the expansion procedure, we have decided to only display the first returned

solution, in order to clearly illustrate our method.

[Colors should be used for these figures when printing].
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Result for the Regular Dunn Model. GRN Associated With the First855

Returned Solution For the Regular (Non Expanded) Dunn Model.
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Result for the Expanded Dunn Model. GRN Associated With the

First Returned Solution For the Expanded Dunn Model.

860
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Result for the Regular Collombet Model. GRN Associated With the

First Returned Solution For the Regular (Non Expanded) Collombet Model.

Result for the Expanded Collombet Model. GRN Associated With

the First Returned Solution For the Expanded Collombet Model.865
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