Information Fusion 117 (2025) 102839

Contents lists available at ScienceDirect

Information Fusion
journal homepage: www.elsevier.com/locate/inffus /’
Full length article R
Conti-Fuse: A novel continuous decomposition-based fusion framework for e’

infrared and visible images

Hui Li *®>*, Haolong Ma ?, Chunyang Cheng?, Zhongwei Shen > Xiaoning Song ?, Xiao-Jun Wu?®

aSchool of Artificial Intelligence and Computer Science, Jiangnan University, 214122, Wuxi, China
b School of Electronic & Information Engineering, Suzhou University of Science and Technology, 215009, Suzhou, China

ARTICLE INFO

Keywords:

Image decomposition
Image fusion
Multimodality
Common feature

ABSTRACT

For better explore the relations of inter-modal and inner-modal, even in deep learning fusion framework, the
concept of decomposition plays a crucial role. However, the previous decomposition strategies (base & detail
or low-frequency & high-frequency) are too rough to present the common features and the unique features
of source modalities, which leads to a decline in the quality of the fused images. The existing strategies treat
these relations as a binary system, which may not be suitable for the complex generation task (e.g. image
fusion). To address this issue, a continuous decomposition-based fusion framework (Conti-Fuse) is proposed.
Conti-Fuse treats the decomposition results as few samples along the feature variation trajectory of the source
images, extending this concept to a more general state to achieve continuous decomposition. This novel
continuous decomposition strategy enhances the representation of complementary information of inter-modal
by increasing the number of decomposition samples, thus reducing the loss of critical information. To facilitate
this process, the continuous decomposition module (CDM) is introduced to decompose the input into a series
continuous components. The core module of CDM, State Transformer (ST), is utilized to efficiently capture the
complementary information from source modalities. Furthermore, a novel decomposition loss function is also
designed which ensures the smooth progression of the decomposition process while maintaining linear growth
in time complexity with respect to the number of decomposition samples. Extensive experiments demonstrate
that our proposed Conti-Fuse achieves superior performance compared to the state-of-the-art fusion methods.

1. Introduction

As a fundamental field of image processing, image fusion seeks to
create informative and visually appealing images by extracting the most
significant information from various source images [1-4]. One of the
notable challenges in image processing is Infrared and Visible Image
Fusion (IVIF), which entails integrating complementary information
from distinct modalities [5-7]. In the IVIF task, the input comprises
both infrared and visible images. Visible images are distinguished by
their abundant texture information, which aligns more closely with
human visual perception. However, they are susceptible to lighting
variations, occlusion, and other factors, resulting in the loss of vital
information. In contrast, infrared images excel in highlighting targets
in extreme conditions (e.g., low light) by capturing thermal radiation
but are prone to noise. Consequently, in IVIF tasks, the fused image
must mitigate the shortcomings of both modalities to achieve superior
visual quality [8].

Image decomposition, as a crucial technique, is frequently applied
in image fusion tasks. Depending on the spatial domain in which the
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decomposition occurs, image decomposition methods can be broadly
classified into the Shallow Feature space-based Image Decomposition
Methods (SFID) [10,11] and the Deep Feature space-based Image De-
composition Methods (DFID) [9,12,13]. In early traditional image fu-
sion methods, SFIDs are the most prevalent. Among these, multi-scale
transform (MST)-based decomposition methods [14,15] are particu-
larly popular. These methods employ manually design decomposition
operations, such as discrete Fourier transforms, to decompose the orig-
inal image into coefficients at multiple scales. Subsequently, fusion
strategies and corresponding inverse transformations are applied to the
coefficients to obtain the fused image. These methods achieve excel-
lent results in early image fusion methods. However, since they only
perform decomposition at the shallow feature space using manually
designed strategies, these SFIDs lack adaptability to the source images,
resulting in poor generalization capabilities.

To overcome the limitations of SFID, many approaches utilize deep
neural networks to decompose at deeper feature space [16-18], rep-
resenting source images. These methods typically consist of Encoders,
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Fig. 1. A schematic of the unified deep feature space between the common SFID (e.g. DeFusion [9]) methods and our proposed continuous decomposition method.

Decomposition Modules, Fusion Modules, and Decoders. The Encoder
is responsible for extracting basic features from the source images
and mapping them into the Unified Deep Feature Space (UDFS) for
representation. The UDFS refers to a unified feature space where two
different input modalities are mapped. This enables the representation
of information from different modalities within a unified space, lay-
ing the foundation for the subsequent image decomposition process.
Subsequently, the Decomposition Module decomposes the features of
the source images within this unified feature space into several de-
composed features. Finally, these decomposed features are fused by the
Fusion Module and mapped back to the pixel space by the Decoder to
obtain the fused image.

Taking DeFusion [9] as an example, it uses convolutional networks
as the Encoder to decompose the two source images into a shared
feature and two modality-specific features within a feature space. These
three sets of decomposed features are then fused and reconstructed by a
learnable convolutional network to produce the fused result. However,
these methods roughly decompose the original images into few non-
overlapping features, leading to the loss of some critical information
from the source images (such as detailed information).

To address these shortcomings, we propose a continuous
decomposition-based fusion framework, referred to as Conti-Fuse. As
illustrated in Fig. 1(a), we consider the decomposed features of two
source images as sample points along a continuous change trajectory
in the unified deep feature space from one source image feature to
another. Taking DeFusion [9] as an example, its common features can
be viewed as sample points in the middle of its trajectory, while the
two unique features can be approximated as sample points near the two
ends of its trajectory. Based on this concept, as depicted in Fig. 1(b),
the proposed Conti-Fuse generalizes the decomposition in the unified
deep feature space beyond the past simple decomposition method such
as the common and unique features in DeFusion [9]. By performing
multiple decompositions along the continuous transition trajectory in
the feature space, we obtain richer and more diverse decomposed
features, referred to as transition states, which more finely represent
the critical information of the two source images.

Inspired by MST-based methods [19,20], we apply our continuous
decomposition method to a multi-scale framework and propose the
Continuous Decomposition Module (CDM) to decompose features and
obtain transition states. Additionally, to fully capture the complemen-
tary information between transition states, we introduce the State
Transformer to enhance the complementarity between transition states.
Finally, to guide the entire decomposition process, we design a novel
continuous decomposition loss function and the corresponding compu-
tational strategy, termed as Support Decomposition Strategy (SDS). SDS

employs the Monte Carlo method to perform random sampling of the
continuous decomposition loss, approximating the true decomposition
loss with sufficient loss samples, thereby reducing the computational
complexity of the continuous decomposition loss from quadratic to
linear, which accelerates the training speed of the model.

The contributions of our work are summarized as follows:

» A novel decomposition strategy is introduced, which achieves
enriched decomposition features by densely sampling along the
variation trajectories of deep features across the two modalities.
This method effectively reduces the loss of crucial information in
fused images.

An efficient decomposition loss is designed to facilitate con-
tinuous decomposition. By leveraging the Monte Carlo method,
this loss function accelerates computation, thereby enhancing the
scalability of the proposed approach.

Extensive qualitative and quantitative experiments were con-
ducted, demonstrating excellent performance of our approach
compared to other state-of-the-art fusion methods.

2. Related work
2.1. Shallow feature space-based image decomposition (SFID) methods

SFID methods are commonly used in image fusion [21-23,23].
Among these methods, multi-scale transformation-based decomposition
techniques are particularly popular [14,15,24]. Typically, multi-scale
transformation methods involve three steps [25]: (1) Decomposing
the original image into coefficients at various scales using a specific
transformation, (2) Integrating the coefficients of different modalities
through carefully designed fusion rules, (3) Generating the fused image
from the aggregated coefficients using the inverse transformation.

For instance, Pajares et al. [14] proposed a fusion model based on
discrete wavelet transform decomposition. This model decomposed two
source images into multi-scale coefficients using discrete wavelet trans-
form, followed by manually designed merging strategies and inverse
discrete wavelet transform to obtain the fused image. These models
reliance on manually designed decomposition operations and fusion
strategies lead to poor robustness of the models.

Compared to SFID methods, our method does not rely on manually
designed decomposition operations and fusion strategies, providing
better robustness.
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Fig. 2. The architecture of Conti-Fuse. (a) The pipeline of proposed method. (b, c, d) The internal structure diagrams for Encoder Block, CDM and Decoder Block in the /-th layer,
respectively. The input of Encoder Block (X’) can be visible feature or infrared feature. ’Channel-wise concatenation’ and ’State-wise concatenation’ refer to concatenation along
the channel and state dimensions of the tensors, respectively; 'Linear Transformation’ refers to a 1 x 1 convolution, and 'Group Conv’ refers to grouped convolution.

2.2. Deep feature space-based image decomposition (DFID) methods

With the development of deep learning, many image fusion methods
leverage the powerful representation capabilities of deep learning for
image decomposition [26-29]. These methods typically include an En-
coder and a Decoder. The Encoder maps the two source images from the
original pixel space to a unified deep feature space for representation.
The Decoder maps the fused features, rich in deep semantic informa-
tion, back to the original pixel space to obtain the fused image [9].
The decomposition and fusion processes of features of source images
are carried out in the unified deep feature space to ensure the model
learns robust representations of them.

This representation can be further uniformly described as follows
[30]: In a high-dimensional unified feature space, the decomposed fea-
tures are considered as several sampling points on a feature transition
trajectory between the source images. For example, in DeFusion [9], the
three decomposed features (infrared unique features, common features,
and visible unique features) are considered as three feature sampling
points on the variation trajectory from infrared to visible features.
Its recent successor, DeFusion++[31], follows the same decomposi-
tion strategy of common and unique features. However, existing DFID
crudely decompose the source images into non-overlapping multiple
features, which are sparse sampling points. This leads to insufficient
representation of source images, losing much critical information.

Compared to existing DFID methods, our method offers a more gen-
eral decomposition strategy with richer decomposed features, capable
of preserving key information in the source images, thereby improving
image quality.

3. Proposed method

In this section, firstly, the workflow of our proposed model and
the detailed design of each module are introduced. Then, we provide
the formulas for calculating the proposed loss function and explain the
underlying design principles.

3.1. Overview

Conti-Fuse is mainly composed of three types of modules: En-
coder, Decoder and The Continuous Decomposition Module (CDM).
Encoder and Decoder are designed to extract shallow features from the
source images and reconstructing the fused image, respectively. CDM
is designed for interaction between two modalities and for generating
transition states. In addition to the above three modules, there are two
linear transformations (LN) at the input and output positions to adjust
the number of feature channels.

As shown in Fig. 2(a), the multi-scale structure is adopted in the
proposed framework. The Encoder and Decoder have several Blocks and
are marked EN"> and DE"(I € {1,2,..., N}, N = 3), respectively. For
more general discussion, we set the number of transition states to K
and the number of layers to N in this section.

3.2. Encoder block

As shown in Fig. 2(b), the Encoder Block is composed of two
convolutional layers with 3 x 3 kernels, two ReLU activation functions,
and one average pooling (2 x 2). These settings are shared for both
infrared and visible branches. The Encoder Block is utilized to extract
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Fig. 3. Illustration of Transition State Wise MHSA (TSWM).

basic shallow features while mapping source images into a Unified Deep
Feature Space (UDES).

In this section, we introduce the following notation: I,V € R#XW
denote the input infrared image and visible image. Thus, the processing
of input by the /th layer Encoder Block can be expressed as follows,
70 = EN(I)(I(I_I)), v = EN(I)(V(I—U)

(€9)
st. 1€{1,2,...,N}

where I® and V'© are obtained by the input linear transformation (LN,
1 x 1 Conv) of the sources image I and V, respectively.

3.3. Continuous decomposition module

The Continuous Decomposition Module (CDM) is proposed to de-
compose the input features into a continuous transition states, approx-
imately. To do this, it is necessary to first extract information within
each transition states, and then capture the complementary information
from multiple modalities.

As illustrated in Fig. 2(c), a linear transformation and several group
convolutions are employed. The linear transformation are utilized to
generate preliminary transition states. Group convolutions further ex-
tract finer information within each transition state.

Concretely, 3 x 3 convolutional layer is employed in which the num-
ber of groups is set to K. Then, we obtain K transition states denoted
as § € RKxCxH XW, where C represents the number of channels, and
H x W represents the size of the feature maps of transition states.
The sub-module in CDM is denoted as P(-) which is consisted by a
linear transformation, two group convolutional layers and two ReLU
activation functions.

3.3.1. State transformer

To leverage the complementary information as much as possible, a
novel feature extractor is designed which is named State Transformer,
ST(-). The core module of ST is the Transition State Wise MHSA
(TSWM), which leverages the multi-head self-attention mechanism to
capture complementary relationships between transition states.

As shown in Fig. 3, the TSWM first generate Q, K, and V from
S, which is accomplished through a linear transformation. Then, we
reshape and split Q, K and V into multiple attention heads, yielding
Q.K,V € RPXKXE where Exh = Cx H xW and h denotes the number
of attention heads.

Next, standard multi-head and self-attention is applied along the
transition state wise. State Transformer can be formulated as follows,
Q =2,(5),K=D¢(5),V=0Du(5)

Atten = softmax(Q . KT/\/E)

U = ¢,V Atten) + S
T=GDFNU)+U

(2)

where @(-), ¢(-) represent 3 x 3 and 1 x 1 convolutional layers,
respectively. T denotes the result of State Attention.

To better handle complementary information between modalities in
Eq. (2), we utilize the Gated-Dconv Feed-forward Network (GDFN) [32]
proposed in Restormer as the Feed-Forward layer, enabling a gated ap-
proach to effectively focus on processing complementary information.

In summary, for the /th CDM module CDM"(.,.), we can express
its transformation in the following formula,

s = P(l)([V(I);I(1)|C]), 7O = ST(I)(S(I))
z0 = [V(I);T(l); I(l)|s] 3)
st. 1€{l,2,....N}

where [-|c] and [-|s] denote concatenation operators along with the
channel wise and the state wise, respectively. The symbols mentioned
above are added indexes with / to indicate they belong to the /th CDM.
For instance, ST represents the State Transformer in the /th CDM.

3.4. Decoder block

The Decoder Block is used for feature fusion and image reconstruc-
tion. Specifically, different layers of the Decoder Block perform feature
fusion and image reconstruction at their respective scales. The Decoder
Block conducts elementary feature fusion of the output of CDM through
a 3 x 3 convolutional layer. Subsequently, as illustrated in Fig. 2(d),
this result is concatenated with the upsampled output of the previous
layer of Decoder Block along with the channel wise. Then, through two
3 x 3 convolutional layer and two ReLU activation functions, further
fusion and reconstruction at this scale are performed.

In summary, the /th Decoder Block can be expressed as follows,

f(N) =N L)
4D = pEO(O, Z0) 4
st 1ef{l,2,...,N}
where we perform element-wise addition on the outputs of the Nth
Encoder Block to obtain f®), which serves as the input to the Nth

Decoder Block. The fused image F can be generated through a linear
transformation from f©.

3.5. Loss function

The loss function L, consists of three parts and can be written as
follows:

Lall = Ldecom + 0flL + a2Lgrad (5)

int
where L, is the proposed decomposition loss, L;, = ﬁllF -

max(I,V)|3. and L, = #mvn — max(|VI|,|VV ]2 represent
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Fig. 4. An example of M) in the /th layer when K = 4. The color depth represents
the constraint of distance, with darker colors indicating them closer to 1.
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Fig. 5. An example of SDS in the /th layer when K = 4. The yellow boxes
represent randomly sampled constraints, while the red boxes represent those calculated
consistently each time.

the intensity loss and the gradient loss used in SwinFusion [33], re-
spectively.! V denotes the Sobel operator. «; and a, are trade-off
parameters.

To achieve continuous decomposition, it is necessary to constrain
the transition states within a UDFS. Let I'(-,-) denote the distance
metric function in the UDFS. For the sake of simplifying subsequent
calculations, we set that the greater the distance between two features,
the smaller the value computed by I', the formula is given as follows,

c
1
rx.n=z k; pers(X,,Y,)

Y., (A, — A)XB,; - B)
\/Zi,j(Ai,j - AP \/Zi,j(B,-,j —_ By

where, X,Y € ROW represent two arbitrary features, with X
and Y, denoting the corresponding feature maps in the kth channel.
Additionally, A and B represent the mean values of feature maps A
and B, respectively.

(6)
pers(A, B) =

1 For more details please refer to SwinFusion [33]
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We set the distance between two features with no difference as 1.
Initially, we compute the distance between two source features V) and
1® at Ith layer in this space using I', denoted as y = I'(V ", 1), where
n<l.

As illustrated in Fig. 4, for the output Z() of the /th layer CDM, we
calculate the pairwise distances along the direction of state to obtain a
symmetric distance matrix M,. For the distance matrix M’ of the Ith
layer:

Dei 1) —
MO, j) =
st i,je{0,1,...

rz?, z"
@
K +1)

where i and j are matrix indices, and Zl.(l) and Z/(.’) represent the ith and
jth features at the /th layer. According to Eq. (3), Z(()I) and Z;?H repre-
sent the visible and infrared features at the /th layer, respectively. The
remaining ZI.(I) fori e {1,2,...,K} correspond to the transitional states.
Since the matrix is symmetric, we analyze only its lower triangular part.

By constraining the distance matrix M,, we can impose overall
constraints on the decomposition process. In M, the values on the main
diagonal equal to 1, and we approximate the value at the lower left
corner M 5’ >(1< + 1,0) to be equal to the distance u between the source
images.

For the remaining distances, we let them decay from 1 to u along
the direction from the main diagonal to the lower left corner. Thus, we
construct a target matrix M,,

MG, j) = Qi = jl u, K +1)
LK +1)

(8)
st i,j€{0,1,...
where (-, -, ) is a designed function used to compute distances during

the decay process.
In this paper, the decay function denoted as Gaussian decay function

and the formula are given as follows,
2

p

Qg(pp5) = exp (=57 —) o
. C(s—1)
s.t. 20

where @, denote Gaussian decay which reduces the distance following
a Gaussian function along the sub-diagonal direction. We also explore
alternative methods for constructing the decay function, with detailed
experiments provided in Section 5.3.
In summary, the decomposition loss Lg,.,, can be formulated as
follows,
| N
_ O _ AgDy2
Ldecom _N(Kz + 3K) ; ”Mc Mt ”F
st. MOO,K+1)=M"0,K+1)=0

MO(K +1,00= MP(K +1,0) =

(10)

Note that Mc(l)(O,K + 1) and ME(I)(K + 1,0) are not constrained.
Because they represent the distances between source features (V)
and I at Ith layer). The constraints within s.t. are established to
ensure that the corresponding values at the lower left corner and the
upper right corner of the two matrices are equal, thereby relaxing the
constraints on the features of the two source images.

Furthermore, the values on the main diagonal are equal. Thus, in
both M, and M,, a total of (K +2)?> — (K +2) — 2 = K? + 3K distances
require constraints. In practice, we only compute the lower triangular
part of the matrix and ignore the main diagonal and M (K + 1,0) in
Ith layer.

3.6. Support decomposition strategy

The time complexity of the decomposition loss Lg,.,, is O(K?)
which means that as the number of transition states K increases,
the computational cost of calculating the decomposition loss grows
quadratically.
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Fig. 6. Illustrative example of Fig. 5, where arrows between features represent distance constraints.
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Fig. 7. Qualitative comparison of image “00327” in MSRS.

Table 1

Quantitative comparison on MSRS(361 image pairs). The bolded and underlined values represent the best and the second best

results.
Methods Year MI SF AG VIF Qabf LIQE TOPIQ
SwinFusion [33] 2022 4.529 11.089 3.566 0.99 0.654 1.048 0.231
DeFusion [9] 2022 3.345 8.606 2.781 0.763 0.530 1.025 0.214
DDFM [34] 2023 2.728 7.388 2.522 0.743 0.474 1.025 0.217
IRFS [35] 2023 2.151 9.888 3.155 0.735 0.477 1.020 0.224
LRRNet [12] 2023 1.108 4.162 0.966 0.194 0.103 1.036 0.229
GIFuse [36] 2024 2.409 10.425 3.310 0.857 0.625 1.081 0.239
CrossFuse [37] 2024 3.124 9.621 3.006 0.836 0.560 1.051 0.232
Conti-Fuse Ours 5.457 11.478 3.718 1.040 0.710 1.067 0.245

To enhance the scalability of the proposed fusion model and ensure
proper decomposition, we propose the Support Decomposition Strategy
(SDS) to compute L,,.,,. Instead of constraining the distances between
all features for each decomposition loss calculation, we only constrain
a subset.

Specifically, we constrain the distances between adjacent features
and add some randomly sampled distance constraints. For instance,
as illustrated in Figs. 5 and 6, when the number of transition states
is set to 4, we constrain the distances between all adjacent features
(indicated in red) and randomly sample some distances from the re-
maining ones for constraint (indicated in yellow). Statistically, with
sufficient training epochs and ample training data, this partial distance
constraint approach approximates the desired decomposition method,
thereby reducing the complexity of calculating the decomposition loss.

For a more general case with K transition states, at the /th layer,
we define the sampling strategy as follows,
SDS(B, K) ={G+ 1,0} K0

{Q;, )1, 0) < ﬂ},-lio
st ow #FK+1Lv #0,u; +1#v;,
w; > v,u,0; € {0,1,...,K+1}

(1)

where SDS(-,-) represents the set of constraints sampled at the /th
layer, {(u;, ”i)},-li o 1s a set of non-repetitive ordered pairs sampled ran-
domly and (u;, v;) denotes the ith sampled unique ordered pair. § is a

()

random seed. Clearly, |SDS(f, K)| = 2K + 2.
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Fig. 8. Qualitative comparison of image “9” in TNO.

Table 2

Quantitative comparison on TNO(21 image pairs). The bolded and underlined values represent the best and the second best

results.
Methods Year MI SF AG VIF Qabf LIQE TOPIQ
SwinFusion [33] 2022 3.208 10.283 3.928 0.708 0.522 1.009 0.225
DeFusion [9] 2022 2.530 5.652 2.298 0.509 0.332 1.013 0.213
DDFM [34] 2023 1.605 7.852 3.183 0.258 0.227 1.012 0.201
IRFS [35] 2023 2.094 8.347 2.950 0.563 0.416 1.013 0.223
LRRNet [12] 2023 3.945 6.471 2.601 0.727 0.314 1.019 0.223
GIFuse [36] 2024 1.502 9.916 3.706 0.35 0.345 1.022 0.246
CrossFuse [37] 2024 3.124 9.936 3.701 0.751 0.453 1.018 0.251
Conti-Fuse Ours 4.539 10.479 3.773 0.801 0.553 1.031 0.289

Based on the sampled constraints, we can rewrite the decomposition
loss as follows,
1
NQ2K +2)
N 12)
(MG, j) - MG, P
I=1 (i,/)eS DS(+,K)

Ldecom =

where * denotes the random seed determined by the operating system
in our training processing, which is used to ensure that the sampling
results are as diverse as possible.

Evidently, by using SDS, we control the time complexity of the de-
composition loss to O(K), thereby significantly enhance the scalability
of our proposed model.

4. Experiments
4.1. Setup

4.1.1. Implementation details

The number of blocks (Encoder and Decoder) and transition states
in our model is set to N = 3 and K = 7. The model width is
configured to 8, which corresponds to the number of channels obtained
from the linear layer mapping the input source image. Each layer in
the CDM contains one State Transformer, and the number of heads in
the TSWM is set to 4. We employ average pooling for downsampling
and bilinear interpolation for upsampling. For model training, training
images are randomly cropped to 192 x 192, with random flipping being
the only data augmentation technique used. The batch size and number
of epochs are set to 20 and 250, respectively. To mitigate potential
instability during training, we implement gradient clipping to prevent
the occurrence of gradient explosion. AdamW [38] is utilized as the
optimizer, and WarmupCosine serves as the learning rate adjustment
strategy. We gradually increase the learning rate from 107> to 6x 107>
during the first 50 epochs, and subsequently, it is gradually decayed

to 5 x 10~ over the remaining epochs. The proposed Gaussian decay
function is employed as the decay strategy (Eq. (9)) to compute the
decomposition loss, with hyperparameters a; and «, both set to 15. Our
code is implemented using the PyTorch framework, and all experiments
are conducted on a NVIDIA GeForce RTX 3090 Ti.

4.1.2. Datasets and metrics

Our model is trained on the training set of MSRS [39]. For the
test set, the testing images on M3FD [40] and TNO are used in Cross-
Fuse [37]. The testing images on MSRS [39] are provided by the
dataset.

Furthermore, we evaluate the quality of fused images from both
reference and non-reference perspectives using seven objective metrics,

» Mutual Information (MI) is employed to assess the amount of
information retained in the fused image from the two source
images.

« Spatial Frequency (SF) [41] is used to evaluate the sharpness of
the fused image.

» Average Gradient (AG) measures the richness of texture details in
the fused image.

+ Visual Information Fidelity (VIF) [42] quantifies the preservation
of visual information between the fused image and the two source
images.

+ Qabf [43] assesses the representation of salient information in the
fused image.

» LIQE [44] employs the image-language model to evaluate image
quality, with higher values indicating better quality.

» TOPIQ [45] utilizes the attention mechanism to assess the levels
of distortion and noise in an image, with higher values indicating
better quality.

Higher values of these five metrics indicate better quality of the
fused image.
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(f) IRFS (g) LRRNet ‘

(h) GIFuse

(1) CrossFuse

Fig. 9. Qualitative comparison of image “00274” in M3FD.

Table 3

Quantitative comparison on M3FD(300 image pairs). The bolded and underlined values represent the best and the second

best results.

Methods Year MI SF AG VIF Qabf LIQE TOPIQ
SwinFusion [33] 2022 3.907 10.869 3.363 0.897 0.621 1.399 0.363
DeFusion [9] 2022 2.767 6.107 1.976 0.611 0.356 1.233 0.325
DDFM [34] 2023 2.551 7.161 2.219 0.586 0.374 1.227 0.336
IRFS [35] 2023 2.572 8.469 2.578 0.733 0.510 1.316 0.357
LRRNet [12] 2023 4.801 5.384 1.557 0.682 0.227 1.416 0.354
GIFuse [36] 2024 2.186 11.203 3.442 0.913 0.658 1.422 0.385
CrossFuse [37] 2024 3.476 9.851 2.964 0.815 0.564 1.391 0.376
Conti-Fuse Ours 4.919 11.850 3.475 0.902 0.638 1.423 0.377
Table 4

Quantitative of the multi-modality semantic segmentation task on MSRS [39]. The bolded and underlined values represent

the best and the second best results.

IR VI DDFM  GIFuse IRFS

DeFusion

LRRNet CrossFuse SwinFusion Conti-Fuse

mloU  62.58 59.78  65.96 66.78 67.00

66.59

63.99 67.35 65.88 67.80

4.2. Comparison with other methods

The proposed model is compared with seven state-of-the-art fusion
methods, including one diffusion-based method (DDFM [34]), two
decomposition-based methods (DeFusion [9] and LRRNet [12]), one
downstream task-integrated method (IRFS [35]), one unified fusion
method (GIFuse [36]), and two Transformer-based methods (Cross-
Fuse [37] and SwinFusion [33]). The implementations of these ap-
proaches are publicly available.

4.2.1. Qualitative comparison

Fig. 7, Fig. 8, and Fig. 9 present the qualitative comparison results
on MSRS, TNO and M3FD, respectively. It can be observed that our
method significantly highlights salient targets and retains more detailed
information.

In Fig. 7, our method produces more vibrant colors and sharper
edges of buildings. In contrast, DDFM, GIFuse, IRFS, DeFusion, and
LRRNet exhibit color shifts, CrossFuse results in blurry images, and
SwinFusion loses the edge details of buildings. In Fig. 8, our method
shows more prominent salient targets (highlighted in the green box)
compared to all methods except SwinFusion.

Additionally, compared to SwinFusion, our method preserves more
texture details and provides sharper edges of salient targets. Similarly,
in Fig. 9, our method demonstrates more pronounced salient targets
and clearer edges of the figures (green box) compared to other methods.
Other methods, such as SwinFusion, DDFM, and IRFS, produce blurrier
edges of salient targets. This indicates that our method retains more
critical information, demonstrating its effectiveness.

4.2.2. Quantitative comparison

Table 1, Table 2, and Table 3 present the results of the qualitative
comparisons on MSRS, TNO and M3FD, respectively. Compared to
other methods, our approach consistently achieves superior results
across all three datasets. The higher AG and SF values indicate that our
method retains more texture information and produces clearer images.

Additionally, our method demonstrates higher VIF, LIQE and Qabf
scores, suggesting that the fused images align better with human visual
perception and contain more salient information. Finally, the higher MI
score indicates that our method preserves more information from the
source images.

It is noteworthy that our method is trained only on the MSRS dataset
and is not fine-tuned on other datasets, which demonstrates its strong
generalization capability.

4.2.3. Multi-modality semantic segmentation

The multi-modality semantic segmentation task is applied as a high-
level visual task to further validate the effectiveness of our approach.
Specifically, the fused results from all methods are divided into identi-
cal training, testing, and validation sets, and the pretrained B2 model
of Segformer [46] is fine-tuned on the fused results of each method.
Finally, qualitative and quantitative evaluations are conducted on the
respective test sets.

All methods are fine-tuned using identical experimental parameters,
including the same random seed. We utilize AdamW as the optimizer,
set the learning rate to 107>, and configure the batch size to 12,
without employing any data augmentation techniques. Each method is
fine-tuned for 50 epochs.
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(b) IR

(d) DDFM (e) GIFuse

(g) DeFusion

(h) LRRNet

(i) CrossFuse

(j) SwinFusion (k) Ours

Fig. 10. Qualitative evaluation of the multi-modality semantic segmentation task on the MSRS [39] dataset.

The multi-modality semantic segmentation experiments are con-
ducted on the MSRS [39] dataset. The fused results of all methods on
the training set are randomly partitioned into new training and valida-
tion sets with a 9:1 ratio. The testing set is provided by MSRS [39]. The
mloU metric is employed for qualitative evaluation of the segmentation
results.

As shown in Fig. 10, our method achieves outstanding results in the
multimodal object segmentation task. By employing sequential decom-
position to obtain multiple intermediate states and thereby mitigating
the loss of critical information, our fused results exhibit clearer edges,
which leads to superior segmentation performance.

For instance, our method excels in segmenting the Bump (high-
lighted in green), a particularly subtle object, outperforming other
methods such as SwinFusion, CrossFuse, and DDFM, which struggle
with incomplete segmentation due to unclear edges.

Similarly, as demonstrated in Table 4, our method also demonstrates
strong performance in quantitative comparisons. This evidence con-
firms that our approach effectively retains key information from the
source images, benefiting high-level downstream tasks.

5. Ablation studies

In this section, the ablation studies are conducted to verify the
rationality of module design, the effectiveness of decomposition loss,
and the appropriateness of parameter selection.

5.1. The number of transition states

To determine the most suitable number of transition states K, we
conducted ablation experiments. Starting from K = 3, we incremented
the number of transition states by two in each subsequent experiment.

As shown in Table 5, it can be observed that as K increases, the
model’s performance gradually improves. However, when K reaches
around 7, the performance gains slow down and show a tendency to
decline. Therefore, considering the overall performance of the model,
K =7 is reasonable.

The first row of Fig. 11 presents a qualitative comparison for
different values of K. It can be seen that when K is small, the model

Table 5
The ablation experiment of the number of transition states K. The bolded values
represent the best results.

MI SF AG VIF Qabf LIQE TOPIQ

5.252 11.474 3.710 1.029 0.706 1.064 0.236
5.374 11.464 3.682 1.039 0.708 1.062 0.238
5.457 11.478 3.718 1.040 0.710 1.067 0.245
5.437 11.459 3.703 1.021 0.703 1.060 0.241
5.423 11.447 3.697 1.038 0.705 1.061 0.239

NWTNW
= O N U W

-

lacks sufficient representational capacity, leading to significant loss
of detail information. Conversely, when K becomes excessively large
and exceeds the suitable representation range, unnecessary redundant
information may be overrepresented (for instance, harmful background
information from the visible image), while the originally salient infor-
mation may become diluted by the excess of transition states, leading
to the potential loss of some important information.

5.2. Visualization of transition states

Fig. 12 presents the visualization results related to transition states.
We visualize the transition state features {Zil), Z;l), e Zgl)} of image
“00004N” from the MSRS dataset, as well as the features of the visible
and infrared images {Z(()”, Zé”} according to Eq. (3).

From left to right and top to bottom, the feature maps exhibit a
continuous changing trend, consistent with our previous discussion.
Clearly, these decomposed states are not mutually exclusive. There are
overlapping parts and unique parts among them, with each transition
state retaining some critical information from the source images.

For instance, Zi” preserves low-frequency information from both
source images, while Z;l) retains more high-frequency information
from the infrared image. These transition states, which encapsulate
rich information from the source images, contribute to retaining more
important information from the source images.
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(f) w/o decom (g) using ssim (h) using linear

(i) w/o SDS () W/o ST (k) Ours

Fig. 11. Visualization of ablation experiments in MSRS “00327D”.

Z,® z,®

Z,0
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Fig. 12. Visualization of transition states and two source images’ feature maps in 1-th layer.

Table 6
The ablation experiments of other factors. The bolded values represent the best results.
MI SF AG VIF Qabf  LIQE  TOPIQ FLOPs| Memoryl
w/o decom  5.337 11.432 3.707 1.038 0.706 1.060 0.238 - -
using linear  5.442 11.248 3.581 1.030 0.704 1.061 0.240 - -
using ssim 5412 11.473 3702 1.044 0709 1.064 0.241 - -
w/o SDS 5455 11.472 3714 1.039 0.701 1.065 0.244 7178M  19452M
w/o ST 5.316 11.476 3.701 1.036 0.708 1.063 0.239 - -
Ours 5.457 11.478 3.718 1.040 0.710 1.067 0.245 2871M  14356M

5.3. Other factors

The ablation experiments on other influencing factors are shown in
Table 6 and Fig. 11.

5.3.1. Decomposition 10ss L ;o.om

Firstly, we conduct an ablation study on the proposed loss function
by removing the decomposition loss L,,,,,, while keeping other condi-
tions constant. The results, presented in the first row of the table and
the “w/o decom” plot, indicate that the absence of the decomposition
constraint leads to a significant loss of detail in the fused images,
resulting in decreased model performance.

5.3.2. Distance metric

We experimented with using another common metric for measuring
image distance, SSIM, as a replacement for the Pearson correlation
coefficient. The results are shown in the second row of Table 6 and
the “using ssim” plot in Fig. 11. As can be observed, image qual-
ity deteriorates when using SSIM. SSIM emphasizes structural differ-
ences within images, whereas CC considers differences based on pixel

10

values. Measuring structural differences between deep features using
conventional structural metrics for images is somewhat inappropriate;
instead, directly measuring value differences between features in deep
representations aligns better with intuition.

5.3.3. Decay function of Lecom
Secondly, we replaced the decay function with a linear one. The

linear decay function applies an arithmetic decay with a fixed step size

along the sub-diagonal of the distance matrix M,:

1—p

s—1

Qp,u,s)=1-p 13)

where @, represents the linear decay function.

The outcomes, shown in the third row of the Table 6 and the
“using linear” plot, reveal that the window region within the green box
becomes blurred, leading to a decline in image quality. We hypothesize
that this is due to the linear attenuation being too gradual compared to
Gaussian attenuation, failing to effectively separate low-frequency and
high-frequency information.
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5.3.4. SDS strategy

To verify the effectiveness of the SDS strategy, we removed the
SDS component. The results, illustrated in the fourth row of the table
and the “w/o SDS” plot, clearly show a significant increase in the
computational load of the loss function, with a quadratic growth trend.

It can be observed that without SDS, both the computational cost
and memory usage during training significantly increase. It should be
noted that the computational cost mentioned here only includes the
calculation of L,,.,,. Additionally, we surprisingly found that the SDS
can enhance the model’s ability to preserve edge textures. This may
be because the randomness introduced by SDS increases the model’s
robustness.

5.3.5. State transformer

Finally, to validate the effectiveness of the State Transformer, we
replaced it with several convolution operations while maintaining a
similar number of parameters.

The results, as shown in the fifth row of the table and the “w/o ST”
plot, demonstrate that without the State Transformer, the model fails
to effectively capture complementary information between transitional
states, resulting in a substantial loss of critical information.

6. Conclusion

In this paper, a novel fusion framework (Conti-Fuse) based on the
designed continuous decomposition strategy is proposed. Conti-Fuse
densely samples the trajectory in the unified high-dimensional feature
space to decompose the source deep features into multiple transition
states, thereby mitigating the loss of critical information from the
source input. Additionally, the CDM (including the State Transformer)
is introduced to leverage its powerful feature interaction capability,
capturing complementary information between transition states and
enabling continuous decomposition. Finally, to drive the process of
continuous decomposition, a novel and efficient loss function Lgecom
is proposed.

Both qualitative and quantitative comparisons of our proposed
method with seven state-of-the-art (SOTA) approaches from the past
three years are conducted. In quantitative evaluations, Conti-Fuse
achieved best or second-best results across most metrics, demonstrat-
ing the superiority of our approach. Visually, our method effectively
preserves the salient information of the source images while capturing
fine details, thereby mitigating the loss of important information. In
the multimodal semantic segmentation task, Conti-Fuse’s fusion results
retain more edge information from the source images, which enhances
segmentation performance compared to the above methods.
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