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Abstract

The advent of large-scale neural recordings has enabled new approaches that1

aim to discover the computational mechanisms of neural circuits by understand-2

ing the rules that govern how their state evolves over time. While these neural3

dynamics cannot be directly measured, they can typically be approximated by4

low-dimensional models in a latent space. How these models represent the map-5

ping from latent space to neural space can affect the interpretability of the latent6

representation. Typical choices for this mapping (e.g., linear layer or MLP) lack the7

property of injectivity, meaning that changes in latent state may have no effect on8

neural activity. During training, non-injective readouts incentivize the invention of9

dynamics that misrepresent the underlying system and the computation it performs.10

Combining our injective Flow readout with prior work on interpretable latent dy-11

namics models, we created the Ordinary Differential equations autoencoder with12

Injective Nonlinear readout (ODIN), which learns to capture latent dynamical13

systems that are nonlinearly embedded into observed neural firing rates via an14

approximately injective nonlinear mapping. We show that ODIN can recover non-15

linearly embedded systems from simulated neural activity, even when the nature of16

the system and embedding are unknown. Additionally, we show that ODIN enables17

the unsupervised recovery of underlying dynamical features (e.g., fixed-points) and18

embedding geometry. When applied to biological neural recordings, ODIN can19

reconstruct neural activity with comparable accuracy to previous state-of-the-art20

methods while using substantially fewer latent dimensions. Overall, ODIN’s accu-21

racy in recovering ground-truth latent features and ability to accurately reconstruct22

neural activity with low dimensionality make it a promising method for distilling23

interpretable dynamics that can help explain neural computation.24

1 Introduction25

Recent evidence has shown that when artificial recurrent neural networks are trained to perform26

tasks, the rules that govern how the internal activity evolves over time (i.e., the network dynamics)27

can provide insight into how the network performs the underlying computation [1–4]. Given the28

conceptual similarities between artificial neural networks and biological neural circuits, it may be29

possible to apply these same dynamical analyses to brain activity to gain insight into how neural30

circuits perform complex sensory, cognitive, and motor processes [5–7]. However, unlike in artificial31

networks, we cannot easily interrogate the dynamics of biological neural circuits and must instead32

estimate them from observed neural activity.33

Fortunately, advances in recording technology have dramatically increased the number of neurons34

that can be simultaneously recorded, providing ample data for novel population-level analyses of35

neural activity [8–10]. In these datasets, the activity of hundreds or thousands of neurons can often36
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be captured by relatively low-dimensional subspaces [11], orders-of-magnitude smaller than the total37

number of neurons. Neural activity in these latent spaces seems to evolve according to consistent sets38

of rules (i.e., latent dynamics) [12, 6]. Assuming no external inputs, these rules can be expressed39

mathematically as:40

zt+1 = zt + f(zt) (1)
yt = exp g(zt) (2)
xt ∼ Poisson(yt) (3)

where zt ∈ RD represents the latent state at time t, f(·) : RD → RD is the vector field governing the41

dynamical system, yt ∈ RN denotes the firing rates of the N neurons, g(·) : RD → RN maps latent42

activity into log-firing rates, and xt ∈ RN denotes the observed spike counts at time t, assuming the43

spiking activity follows a Poisson distribution with time-varying rates given at each moment t by yt.44

Unfortunately, any latent system can be equivalently described by many combinations of dynamics f45

and embeddings g, which makes the search for a unique latent system futile. However, versions of a46

latent system’s dynamics f and embedding g that are less complex and use fewer latent dimensions47

can be much easier to interpret than alternative representations that are more complex and/or higher-48

dimensional. Models of latent dynamics that can discover simple and low-dimensional representations49

will make it easier to link latent dynamics to neural computation.50

A popular approach to estimate neural dynamics [13–15] is to use neural population dynamics models51

(NPDMs), which model neural activity as a latent dynamical system embedded into neural activity.52

We refer to the components of an NPDM that learn the dynamics and embedding as the generator f̂53

and the readout ĝ, respectively. When modeling neural activity, the generator and readout are jointly54

trained to infer firing rates ŷ that maximize the likelihood of the observed neural activity x.55

Using NPDMs to estimate underlying dynamics and embedding implicitly assumes that good recon-56

struction performance (i.e., x̂ ≈ x) implies interpretable estimates of the underlying system (i.e.,57

ẑ ≈ z, f̂ ≈ f , ĝ ≈ g). However, recent work has shown that when the state dimensionality of58

the generator D̂ is larger than a system’s latent dimensionality D, high reconstruction performance59

may actually correspond to estimates of the latent system that are overly complex or misleading60

and therefore harder to interpret [15]. Thus at present, reconstruction performance is seemingly an61

unreliable indicator for the interpretability of the learned dynamics.62

This vulnerability to learning overly complex latent features might come from the fact that, in general,63

changes in the latent state are not obligated to have an effect on predicted neural activity. Thus,64

NPDMs can be rewarded for inventing latent activity that boosts reconstruction performance, even if65

that latent activity has no direct correspondence to the neural activity. A potential solution is to make66

the readout ĝ injective, which obligates all latent activity to affect neural reconstruction. This would67

penalize any latent activity that is not reflected in the observed neural activity and puts pressure on68

the generator f̂ and readout ĝ to learn a more interpretable (i.e., simpler and lower dimensional)69

representation of the underlying system.70

In addition, most previously used readouts ĝ were not expressive enough to model diverse mappings71

from latent space to neural space, assuming the embedding g to be a relatively simple (often linear)72

transformation (though there are exceptions [16–18]). Capturing nonlinear embeddings is important73

because neural activity often lives on a lower-dimensional manifold that is nonlinearly embedded74

into the higher-dimensional neural space [7]. Therefore, assumptions of linearity are likely to prevent75

NPDMs from capturing dynamics in their simplest and lowest-dimensional form, making them less76

interpretable than the latent features learned by NPDMs that can approximate these nonlinearities.77

To address these challenges, we propose a novel architecture called the Ordinary Differential equa-78

tion autoencoder with Injective Nonlinear readout (ODIN), which implements f̂ using a Neural79

ODE (NODE [19]) and ĝ using a network inspired by invertible ResNets [20–22, 19, 23]. ODIN80

approximates an injective nonlinear mapping between latent states and neural activity, obligating all81

latent state variance to appear in the predicted neural activity and penalizing the model for inventing82

excessively complex or high-dimensional dynamics. On synthetic data, ODIN learns representations83

of the latent system that are more interpretable, with simpler and lower-dimensional latent activity and84

dynamical features (e.g., fixed-points) than alternative readouts. ODIN’s interpretability is also more85

robust to overestimates of latent dimensionality and can recover the nonlinear embedding of synthetic86

data that evolves on a simulated manifold. When applied to neural activity from a monkey performing87
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a reaching task with obstacles, ODIN reconstructs neural activity comparably to state-of-the-art88

recurrent neural network (RNN)-based models while requiring far fewer latent state dimensions.89

In summary, ODIN estimates interpretable latent features from synthetic data and can reconstruct90

biological neural recordings with high accuracy, making it a promising tool for understanding how91

the brain performs computation.92

2 Related Work93

Many previous models have attempted to understand neural activity through the lens of neural94

dynamics. Early efforts limited model complexity by constraining both f̂ and ĝ to be linear [24–26].95

While these models were relatively straightforward to analyze, they often failed to adequately explain96

neural activity patterns [27].97

Other approaches increased the expressiveness of the modeled dynamics f̂ . RNNs can learn to98

approximate complex nonlinear dynamics, and have been shown to substantially outperform linear99

dynamics models in reconstructing neural activity [27]. Unfortunately, RNNs implicitly couple the100

capacity of the model to the latent state dimensionality, meaning their ability to model complex101

dynamics relies on having a high-dimensional latent state. In contrast, NODEs can model arbitrarily102

complex dynamics of embedded dynamical systems at the dimensionality of the system [19, 15].103

On synthetic data, NODEs have been shown to recover dynamics more accurately than RNN-104

based methods [28, 15]. In contrast to our approach, previous NODE-based models used a linear105

readout ĝ that lacks injectivity. This can make the accuracy of estimated latent activity vulnerable106

to overestimates of the latent dimensionality (i.e., when D̂ > D) and/or fail to capture potential107

nonlinearities in the embedding g.108

Early efforts to allow greater flexibility in ĝ preserved linearity in f̂ , using feed-forward neural109

networks to nonlinearly embed linear dynamical systems in high-dimensional neural firing rates110

[16]. More recently, models have used Gaussian Processes to approximate nonlinear mappings111

from latent state to neural firing with tuning curves [17]. Other models have combined nonlinear112

dynamics models and nonlinear embeddings for applications in behavioral tracking [29] and neural113

reconstruction [18]. Additional approaches extend these methods to incorporate alternative noise114

models that may better reflect the underlying firing properties of neurons [16, 30]. While nonlinear,115

the readouts of these models lacked injectivity in their mapping from latent activity to neural activity.116

Many alternative models seek to capture interpretable latent features of a system from observations.117

One popular approach uses a sparsity penalty on a high-dimensional basis set to derive a sparse118

symbolic estimate of the governing equations for the system [31]. However, it is unclear whether119

such sparse symbolic representation is necessarily a benefit when modeling dynamics in the brain.120

Another recent model uses contrastive loss and auxiliary behavioral variables to learn low-dimensional121

representations of latent activity [32]. This approach does not have an explicit dynamics model,122

however, so is not amenable to the dynamical analyses performed in this manuscript.123

Normalizing flows – a type of invertible neural network – have recently become a staple for generative124

modeling and density estimation [20, 23]. Some latent variable models have used invertible networks125

to approximate the mapping from the latent space to neural activity [33] or for generative models of126

visual cortex activity [34]. To allow this mapping to change dimensionality between the latent space127

and neural activity, some of these models used a zero-padding procedure similar to the padding used128

in this manuscript (see Section 3.3.1), which makes the transformation injective rather than invertible129

[33, 23]. However, these previous approaches did not have explicit dynamics models, making our130

study, to our knowledge, the first to test whether injective readouts can improve the interpretability of131

neural population dynamics models.132

3 Methods133

3.1 Synthetic Neural Data134

To determine whether different models can distill an interpretable latent system from observed135

population activity, we first used reference datasets that were generated using simple ground-truth136

dynamics f and embedding g. Our synthetic test cases emulate the empirical properties of neural137

systems, specifically low-dimensional latent dynamics observed through noisy spiking activity [13, 35–138

37]. We sampled latent trajectories from the Arneodo system (f , D = 3) and nonlinearly embedded139

these trajectories into neural activity via an embedding g. We consider models that can recover the140

dynamics f and embedding g used to generate these data as providing an interpretable description of141
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Figure 1: A) Synthetic neural data generation (left to right). Trajectories from the Arneodo system
are projected onto random encoding vectors to compute activations at each timepoint. A scaled
sigmoid nonlinearity is applied to convert the activations into firing rates. B) Zero-padded latent
dynamics (green) are reversibly warped into higher-dimensional neural activity space (blue). C) The
Flow readout maps from latent space to neural space by applying a sequence of K small updates
(parameterized by an MLP, bottom). Reverse pass maps from neural space to latent space and is
implemented by serial subtraction of updates from the same MLP.

the latent system and its relation to the neural activity. Additional detail on data generation, models,142

and metrics can be found in the Supplementary Material.143

We generated activations for N neurons (N = 12) by projecting the simulated latent trajectories Z144

through a 3×N matrix whose columns were random encoding vectors with elements sampled from a145

uniform distribution U [−0.5, 0.5] (Fig. 1A, left). We standardized these activations to have zero mean146

and unit variance and applied a different scaled sigmoid function to each neuron, yielding a matrix of147

non-negative time-varying firing rates Y. The scaling of each sigmoid function was evenly spaced on148

a logarithmic scale between 100.2 and 10. This process created a diverse set of activation functions149

ranging from quasi-linear to nearly step-function-like behavior (Fig. 1A, Activation Functions).150

We simulated spiking activity X by sampling from inhomogeneous Poisson processes with time-151

varying rate parameters equal to the firing rate Y of the simulated neurons (Fig. 1A, right). We152

randomly split 70-point segments of these trials into training and validation datasets (training and153

validation proportions were 0.8 and 0.2, respectively).154

3.2 Biological Neural Data155

We evaluated how well our model could reconstruct biological neural activity on a well-characterized156

dataset [38] included in the Neural Latents Benchmark (NLB) [27]. This dataset is composed of157

single-unit recordings from primary and pre-motor cortices of a monkey performing a visually-guided158

reaching task with obstacles, referred to as the Maze task. Trials were trimmed to the window [-250,159

350] ms relative to movement onset, and spiking activity was binned at 20 ms. To compare the160

reconstruction performance of our model directly against the benchmark, we split the neural activity161

into held-in and held-out neurons, comprising 137 and 35 neurons, respectively, using the same sets162

of neurons as were used to assess models for the NLB leaderboard.163

3.3 Model Architecture164

We used three sequential autoencoder (SAE) variants in this study, with the main difference be-165

ing the choice of readout module, ĝ(·). In brief, a sequence of binned spike counts x1:T was166

passed through a bidirectional GRU encoder, whose final hidden states were converted to an initial167

condition ẑ0 via a mapping ϕ(·). A modified NODE generator unrolled the initial condition into168

time-varying latent states ẑ1:T . These were subsequently mapped to inferred rates via the readout169

ĝ(·) ∈ {Linear,MLP,Flow}. All models were trained for a fixed number of epochs to infer firing170

rates ŷ1:T that minimize the negative Poisson log-likelihood of the observed spikes x1:T .171

hT =
[
hfwd

∣∣hbwd

]
= BiGRU(x1:T ) (4)

ẑ0 = ϕ(hT ) (5)
ẑt+1 = ẑt + α · MLP(ẑt) (6)

ŷt = exp ĝ(ẑt) (7)
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For models with Linear and MLP readouts, ϕ(·) was a linear map to RD̂. For models with Flow172

readouts, ϕ(·) was a linear map to RN followed by the reverse pass of the Flow (see Section 3.3.1).173

We unrolled the NODE using Euler’s method with a fixed step size equal to the bin width and trained174

using standard backpropagation for efficiency. A scaling factor (α = 0.1) was applied to the output175

of the NODE’s MLP to stabilize the dynamics during early training. Readouts were implemented as176

either a single linear layer (Linear), an MLP with two 150-unit ReLU hidden layers (MLP), or a Flow177

readout (Flow) which contains an MLP with two 150-unit ReLU hidden layers. We refer to these178

three models as Linear-NODE, MLP-NODE, and ODIN, respectively.179

3.3.1 Flow Readout180

The Flow readout resembles a simplified invertible ResNet [23]. Flow learns a vector field that can181

reversibly transform data between latent and neural representations (Figure 1B). The Flow readout182

has three steps: first, we increase the dimensionality of the latent activity zt to match that of the183

neural activity by padding the latent state with zeros. This corresponds to an initial estimate of184

the log-firing rates, log ŷt,0. Note that zero-padding makes our mapping injective rather than fully185

invertible (see [33, 23]). The Flow network then uses an MLP to iteratively refine log ŷt,k over K186

steps (K = 20) after which we apply an exponential to produce the final firing rate predictions, ŷt.187

A scaling factor (β = 0.1) was applied to the output of the Flow’s MLP to stabilize the dynamics188

during early training.189

log ŷt,0 = [ẑt|0]T (8)
log ŷt,k+1 = log ŷt,k + β · MLP(log ŷt,k) (9)

ĝ (ẑt) = log ŷt,K = log ŷt (10)

We also use the approximate inverse of the Flow to transform the output of the encoders to initial190

conditions in the latent space via ϕ(·). We approximate the inverse using a simplified version of191

the fixed-point iteration procedure described in [23]. Our method subtracts the output of the MLP192

from the state rather than adding it as in the forward mode (Fig 1C). From here, we trim the excess193

dimensions to recover ẑ ∈ RD̂ (in effect, removing the zero-padding dimensions).194

log ŷt,k−1 = log ŷt,k − β · MLP(log ŷt,k) (11)

ĝ−1 (log ŷt) = [log ŷt,0,1, . . . , log ŷt,0,D̂]T = ẑt (12)

The Flow mapping is only guaranteed to be injective if changes in the output of the MLP are195

sufficiently small relative to changes in the input (i.e., Lipschitz constants for the MLP that is196

strictly less than 1) [23]. The model can be made fully injective by either restricting the weights197

of the MLP (e.g., spectral norm [39]), or using a variable step-size ODE solver that can prevent198

crossing trajectories (e.g., continuous normalizing flows [19]. In practice, we found that using a199

moderate number of steps allows Flow to preserve approximate injectivity of the readout at all tested200

dimensionalities (Supp. Fig. 1).201

3.4 Metrics and characterization of dynamics202

All metrics were evaluated on validation data. Reconstruction performance for the synthetic data was203

assessed using two key metrics. The first, spike negative log-likelihood (Spike NLL), was defined204

as the Poisson NLL employed during model training. The second, Rate R2, was the coefficient of205

determination between the inferred and true firing rates, averaged across neurons. We used Spike206

NLL to assess how well the inferred rates explain the spiking activity, while Rate R2 reflects the207

model’s ability to find the true firing rates. These metrics quantify how well the model captures208

the embedded system’s dynamics (i.e., that f̂ captures the system described by f ), but give no209

indication of the interpretability of the learned latent representation (i.e., that the learned f̂ is simple210

and low-dimensional).211

To assess the interpretability of the latent activity inferred by the model ẑ, we used a previously212

published metric called the State R2 [15]. State R2 is defined as the coefficient of determination (R2)213

of a linear regression from simulated latent trajectories z to the inferred latent trajectories ẑ. State R2214

will be low if the inferred latent trajectories contain features that cannot be explained by an affine215

transformation of the true latent trajectories. We use this to assess the degree to which models can216

preserve the simplicity and low dimensionality of the embedded dynamics, thereby maintaining an217

interpretable latent representation. Together, high Rate R2 and State R2 indicate that the modeled218

latent activity reflects the simulated latent dynamics without inventing extra features that make the219

model harder to interpret (i.e., ẑ ≈ z).220
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Figure 2: Flow-NODE (ODIN) recovers latent activity more accurately than alternative models and
is robust to overestimates of latent dimensionality. A) Diagram of model readouts tested, including
Linear (green), Flow (red), MLP (orange). B) Inferred latent activity of representative model at each
state dimensionality D̂. True latent activity (affine-transformed to overlay inferred latent activity)
shown in light blue. C) All: Model metrics as a function of D̂. Shaded areas represent one standard
deviation around the mean. Dashed vertical line indicates D̂ = 3 Top: Spike NLL, Middle: Rate R2,
Bottom: State R2.

As a direct comparison of the estimated dynamics f̂ to the simulated dynamics f , we extracted221

the fixed-point (FP) structure from our trained models and compared it to the FP structure of the222

underlying system. We used previously published FP-finding techniques [40] to identify regions of223

the generator’s dynamics where the magnitude of the vector field was close to zero, calling this set of224

locations the putative FPs. We linearized the dynamics around the FPs and computed the eigenvalues225

of the Jacobian of f̂ to characterize each FP. Capturing FP location and character gives an indication226

of how closely the estimated dynamics resemble the simulated dynamics (i.e., f̂ ≈ f ).227

To determine how well our embedding ĝ captures the simulated embedding g, we projected the228

encoding vectors used to generate the synthetic neural activity from the ground-truth system into our229

model’s latent space using the same affine transformation from ground-truth latent activity to inferred230

latent activity as was used to compute State R2. We projected the inferred latent activity onto each231

neuron’s affine-transformed encoding vector to find the predicted activation of each synthetic neuron.232

We then related the predicted firing rates of each neuron to its corresponding activations to derive233

an estimate of each neuron’s activation function. Because the inferred latent activity is arbitrarily234

scaled/translated relative to the true latent activity, we fit an affine transformation from the predicted235

activation function to the ground-truth activation function. The coefficient of determination R2 of236

this fit quantifies how well our models were able to recover the synthetic warping applied to each237

neuron (i.e., ĝ ≈ g).238

For the biological neural data, we measured model performance using two metrics from the Neural239

Latents Benchmark (NLB) [27], co-smoothing bits-per-spike (co-bps) and velocity decoding perfor-240

mance on predicted firing rates (Vel R2). co-bps quantifies how well the model predicts the spiking of241

the held-out neurons, while Vel R2 quantifies how well the denoised rates can predict the monkey’s242

hand velocity during the reach. We compare these metrics to models from the NLB leaderboard. Of243

note, models submitted to NLB are assessed by their performance on a hidden test set, while our244

model performance is computed on the validation data.245

4 Results246

4.1 Finding interpretable latent activity across state dimensionalities with ODIN247

We began by training Linear-, MLP-, and Flow-NODEs (i.e., ODIN) (Fig 2A) to reconstruct synthetic248

neural activity from the Arneodo system [41] and compared reconstruction performance (i.e. Spike249

NLL and Rate R2) and latent recovery (i.e. State R2) as functions of the dimensionality D̂ of250

the state space. We trained 5 different random seeds for each of the 3 model types and 5 state251

dimensionalities (75 total models, model hyperparameters in Supp. Table 1). First, we observed that252

the Linear-NODE learned latent states that did not closely resemble the simulated latent activity, with253

all tested dimensionalities performing worse than either the Flow or the MLP readout at D̂ = 3 (Fig254

2B,C, mean State R2 = 0.70 for Linear vs. 0.89, 0.93 for MLP, Flow respectively). We also found255

that Linear-NODE required many more dimensions to reach the peak reconstruction performance256
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Figure 3: Flow-NODE (ODIN) recovers fixed-point properties accurately at the correct dimensionality.
A,B) Representative latent activity and fixed-points from the true (blue, ◦), ODIN (red, ×), and Linear
(green, +) systems. Each fixed point is labeled with reference to C. C) Plots of the real vs. imaginary
part of the eigenvalues of the Jacobian evaluated at each fixed point. Unit circle in the complex plane
(black curve) shows boundary between attractive and repulsive behavior (the attractive and repulsive
sides of the boundary are indicated by inset).

(Fig 2C, Rate R2). These results demonstrate that models that are unable to account for nonlinear257

embeddings are vulnerable to learning more complex and higher dimensional dynamics than those258

learned by models with nonlinear readouts.259

Next, we compared ODIN to MLP-NODE and found that at the correct dimensionality (D̂ = 3),260

these models had similar performance for both reconstruction and latent recovery. However, we found261

that as the dimensionality increased beyond the true dimensionality (D̂ > 3), the latent recovery of262

the MLP-NODE degraded rapidly while ODIN’s latent recovery remained high (Fig 2C, as D̂ > 3).263

This result provides evidence that readouts that lack injectivity (like MLPs) tend to learn misleading264

latent activity that can make their representations less interpretable when the true dimensionality D̂ is265

unknown.266

4.2 Recovering fixed-point structure with ODIN267

A common method to compare how well dynamics models capture the underlying dynamics from268

synthetic data is to examine the character and structure of the inferred fixed-points (FPs) to the FPs269

of the ground-truth system[15]. At a high-level, FPs enable a concise description of the dynamics270

in a small region of state-space around the FP, and can collectively provide a qualitative picture of271

the overall dynamical landscape. To obtain a set of candidate FPs, we searched the latent space for272

points at which the magnitude of the vector field ∥f̂∥ is minimized (as in [1, 40]). We computed the273

eigenvalues (λs) of the Jacobian of f̂ at each FP location. The real and imaginary components of274

these eigenvalues identify each FP as attractive, repulsive, etc.275

We found that 3D ODIN models and 3D Linear-NODEs were both able to recover three fixed-points276

that generally matched the location of the three fixed points of the Arneodo system (Fig 3A), However,277

while ODIN was also able to capture the eigenspectra of all three FPs (Fig. 3B, red ×), the Linear-278

NODE failed to capture the rotational dynamics of the central FP (Fig 3B, middle column, green +).279

Both models were able to approximately recover the eigenspectra of outermost FPs of the system280

(Fig. 3B, left, right columns). We found that the MLP-NODE was also able to find FPs with similar281

accuracy to ODIN at 3D. These results show that the inability to model the nonlinear embedding can282

lead to impoverished estimates of the underlying dynamics f̂ .283
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4.3 Recovering simulated activation functions with ODIN284

Figure 4: Flow-NODE (ODIN) can re-
cover nonlinear activation functions of
neurons. A) True encoding vectors
(numbered lines over true latent ac-
tivity (blue)) were affine-transformed
into a representative model’s latent
space. B) Inferred activation function
for two example neurons (columns),
color coded by readout type (Linear
= green, MLP = orange, Flow = red,
True = black). Plots show the predicted
firing rate vs. the activation of the se-
lected neuron. C) Comparison of the
R2 values of the fits from B across
model types. Left: Flow vs. MLP.
Right: Flow vs. Linear

While obtaining interpretable dynamics is our primary goal,285

models that allow unsupervised recovery of the embedding286

geometry may provide additional insight about the compu-287

tations performed by the neural system [42, 7]. For this288

section, we considered a representative model from each289

readout class with the correct number of latent dimensions290

(D = 3). We performed an affine transformation from the291

ground truth encoding vectors into the modeled latent space292

and computed the projection of the modeled latent activ-293

ity onto the affine-transformed encoding vectors (Fig 4A).294

From this projection, we derived an estimate of the activa-295

tion function for each neuron, and compared this estimate296

to the ground-truth activation function.297

We found, as expected, that the linear readout was unable to298

approximate the sigmoidal activation function of individual299

neurons (Fig 4B, green). On the other hand, both ODIN300

and MLP-NODE were able to capture activation functions301

ranging from nearly linear to step function-like in nature302

(Fig 4B, red, orange). Across all simulated neurons, we303

found that ODIN more accurately estimated the activation304

function of individual neurons compared to both Linear- and305

MLP-NODEs (Fig 4C), suggesting that the injectivity of the306

Flow readout allows more accurate estimation of nonlinear307

embeddings.308

4.4 Modeling motor cortical activity with ODIN309

To validate ODIN’s ability to fit neural activity from a bio-310

logical neural circuit, we applied ODIN to the Maze dataset311

from the Neural Latents Benchmark, composed of record-312

ings from the motor and pre-motor cortices of a monkey313

performing a reaching task (Fig. 5A). After performing hy-314

perparameter sweeps across regularization parameters and315

network size (Supp. Table 2), we trained a set of ODIN316

and Linear-NODE models to reconstruct the neural activity317

with a range of state dimensionalities D̂. We visualized318

the top 3 PCs of the condition-averaged latent trajectories319

and predicted single-neuron firing rates for example models320

from each readout type. We found no visually obvious differences in the inferred latent trajectories321

(Fig. 5B), but when we computed condition-averaged peri-stimulus time histograms (PSTHs) of322

single neuron firing rates, we found that ODIN typically produced firing rate estimates that more323

closely resembled the empirical PSTHs than those from the Linear-NODE (Fig. 5C).324

Without access to a ground truth dynamics f and embedding g that generated these biological data, the325

dimensionality required to reconstruct the neural activity was our primary measure of interpretability.326

We computed co-bps –a measure of reconstruction performance on held-out neurons– for each model327

and found that 10D ODIN models substantially outperformed Linear-NODE models, even when the328

Linear-NODE had more than twice as many dimensions (10D ODIN: 0.333, vs 25D Linear: 0.287).329

This suggests that ODIN’s injective non-linear readout is effective at reducing the required latent330

state dimensionality to capture the data relative to a simple linear readout.331

We also compared ODIN to other models on the NLB leaderboard for this dataset [27, 43]. The best332

reported AutoLFADS model (a RNN-based variational SAE with D̂ = 100) had only modestly higher333

co-bps than the 10D ODIN (0.333 vs 0.355) [44]. These results suggest that ODIN is effective at334

reducing the required dimensionality for neural reconstruction, which may provide more interpretable335

latent representations than alternative models.336
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Figure 5: ODIN can reconstruct cortical activity with low-dimensional dynamics A) Top: Schematic
of task [38] Bottom: example hand trajectories and condition-averaged firing rates aligned to move
onset. B) Example condition-averaged latent activity from ODIN and Linear-NODE models ap-
plied to neural activity recorded during the Maze task. C) Example single-neuron peri-stimulus
time histograms for ODIN and Linear-NODE models across conditions. D) Effects of latent state
dimensionality D̂ on reconstruction (top, co-bps) and decoding (bottom, Vel R2) performance. Plot
shows mean (point) and standard deviation (shading) of 5 randomly initialized models at each D̂.
Horizontal lines represent NLB performance by AutoLFADS (black) and GFPA (grey) [27].

5 Discussion337

Dynamics models have had great success in reproducing neural activity patterns and relating brain338

activity to behavior [45, 27, 46]. However, it has been difficult to use these models to investigate neural339

computation directly. If neural population models could be trusted to find interpretable representations340

of latent dynamics, then recent techniques that can uncover computation in artificial networks could341

help to explain computations in the brain [1, 40, 47]. In this work, we created a new model called342

ODIN that can overcome major barriers to learning interpretable latent dynamical systems. By343

combining Neural ODE generators and approximately injective nonlinear readouts, ODIN offers344

significant advantages over the prior state-of-the-art, including lower latent dimensionality, simpler345

latent activity that is robust to the choice of latent dimensionality, and the ability to model arbitrary346

nonlinear activation functions.347

Circuits in the brain are densely interconnected, and so a primary limitation of this work is that348

ODIN is not yet able to account for inputs to the system that may be coming from areas that are not349

directly modeled. Thus ODIN is currently only able to model the dynamics of a given population of350

neurons as an autonomous system. Inferring inputs is difficult due to ambiguity in the role of inputs351

compared to internal dynamics for driving the state of the system. While some RNN-based models352

have methods for input inference [45], more work is needed to develop solutions for NODE-based353

models. Injective readouts are an important step towards addressing the fundamental difficulties of354

input inference, as models without injective readouts can be incentivized to imagine latent features355

that are actually the result of inputs.356

Interpretable dynamics derived from neural population recordings could answer critical scientific357

questions about the brain and help improve brain-machine interface technology. A potential negative358

consequence is that human neural interfaces combined with an understanding of neural computation359

might make it possible and profitable to develop strategies that are effective at influencing behavior.360

Future researchers should focus on applications of this research that are scientific and medical rather361

than commercial or political.362
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