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Abstract

Accurately predicting the mechanisms and proper-
ties of candidate drug molecules is critical for ad-
vancing drug discovery. However, existing mod-
els are often limited to structured outputs, fixed
task sets, and static, one-shot predictions. We
present DrugChat, a multi-modal large language
model that addresses these limitations through
three key capabilities: (i) free-form text genera-
tion for predicting complex drug attributes such as
indications, pharmacodynamics, and mechanisms
of action; (ii) generalization to an open-ended
set of tasks via prompt-based multi-task learn-
ing; and (iii) interactive, multi-turn dialogue for
dynamic exploration for molecules. DrugChat in-
tegrates a molecular graph encoder, a molecular
image encoder, and an instruction-tuned large lan-
guage model. Pretrained on 248 million molecule-
bioactivity records, DrugChat outperforms exist-
ing baselines across both unstructured and struc-
tured tasks, demonstrating strong zero-shot gener-
alization.

1. Introduction

Accurate prediction of the mechanisms and properties of
small molecules is crucial for advancing pharmaceutical
research and facilitating drug discovery (Kirchmair et al.,
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2015). A significant body of work has focused on develop-
ing quantitative structure-activity relationship (QSAR) mod-
els (Tropsha, 2010). QSAR models enable virtual screening
of large chemical libraries (Kitchen et al., 2004), reducing
the need for costly synthesis and animal testing in pharma-
cology and toxicology (Luechtefeld et al., 2018; Madden
et al., 2020). Deep learning has been used in QSAR mod-
eling (Chen et al., 2018). Although substantial progress
has been made in deep learning approaches for molecular
property prediction, existing methods still face critical limi-
tations that restrict their effectiveness and flexibility. Many
key attributes of candidate drug molecules—such as indica-
tions, pharmacodynamics, and mechanisms of action—are
inherently complex and context-dependent, making them
better suited for description in free-form texts rather than
rigid categorical or numerical formats. Despite their im-
portance, most current methods are limited to producing
structured outputs, such as discrete classes, scalar values,
and dose-response curves (Yang et al., 2019a; Lu et al.,
2021; Chen et al., 2020; Zeng et al., 2019).

In addition to their reliance on structured outputs, many
existing multi-task deep learning methods for molecular
property prediction (Dahl et al., 2014; Simdes et al., 2018;
Allenspach et al., 2024; Qian et al., 2023) face another
fundamental limitation: they restrict predictions to a fixed
set of tasks defined during training. These models rely on
task-specific output heads, which restrict them to making
predictions only for tasks they were explicitly trained on.
As a result, they lack the flexibility to generalize to new,
previously unseen tasks that arise at inference time—such
as predicting activities for novel assays, emerging biological
targets, or new therapeutic contexts.

To address these challenges, we propose DrugChat, a
multi-modal large language model (LLM) framework de-
signed to advance molecular property prediction beyond
the limitations of traditional methods. First, DrugChat
is capable of generating free-form textual predictions, en-
abling rich and nuanced descriptions of complex drug at-
tributes such as indications, pharmacodynamics, and mech-
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anisms of action. Second, DrugChat enables open-ended,
prompt-based multi-task learning. By combining a large,
instruction-tuned language model with specialized molec-
ular encoders, DrugChat can generalize to a large set of
prediction tasks, including tasks not encountered during
training. Finally, DrugChat enables dynamic, interactive
exploration of molecules through multi-turn dialogue. Users
can ask follow-up questions, refine their inquiries, and it-
eratively investigate different aspects of a molecule’s prop-
erties and mechanisms within a continuous conversational
flow. Together, these capabilities allow DrugChat to provide
a more flexible, expressive, and powerful framework for
molecular property prediction and analysis.

We conducted extensive experiments to evaluate DrugChat’s
capabilities across a range of tasks. For free-form prediction
tasks involving drug indications, pharmacodynamics, and
mechanisms of action, DrugChat significantly outperformed
Galactica and GPT-4 in both human expert evaluations and
automatic metrics. For structured QSAR tasks, including
cytotoxicity prediction, administration route classification,
and molecular property prediction on the MoleculeNet (Wu
et al., 2018) benchmark, DrugChat consistently outper-
formed GNN-based models, multi-modal models, and scien-
tific and general-purpose LLMs. Notably, on the challeng-
ing FS-Mol benchmark (Stanley et al., 2021)—where tasks
and compounds are both unseen during training—DrugChat
achieved strong zero-shot generalization. These results
demonstrate DrugChat’s ability to flexibly handle both un-
structured and structured tasks, generalize to unseen molec-
ular prediction tasks, and support interactive exploration of
drug properties.

2. DrugChat Overview

DrugChat integrates a molecular graph encoder, a molecular
image encoder, an instruction-tuned large language model
(LLM), and two adapters that map molecular features into
the LLM’s latent space (Fig.1b). The graph encoder is a
Graph Isomorphism Network (GIN)(Xu et al., 2018), the im-
age encoder is a ResNet (He et al., 2016), and the LLM is Vi-
cuna (Chiang et al., 2023). A molecule is input as a SMILES
string, which is transformed into a molecular graph and im-
age. The GIN encodes the graph using node/edge features
and iterative message passing (Goodfellow et al., 2016), fol-
lowed by attention-based pooling (Wu et al., 2020). It is pre-
trained on two million ZINC15 molecules (Sterling & Irwin,
2015) via self-supervised learning (Hu et al., 2020). The
ResNet, trained on ten million PubChem molecules (Kim
et al., 2023), processes the image using convolutional layers
and average pooling (Krizhevsky et al., 2012) to generate a
representation vector. Linear adapters convert graph and im-
age vectors into a unified molecule token, compatible with
the LLM. This token is inserted into the LLM’s language

token stream, enabling Vicuna-13B (Chiang et al., 2023)
to generate outputs via autoregressive decoding (Vaswani
et al., 2017). Each output token includes a probability score,
supporting confidence estimation and performance metrics
like AUROC and AAUPRC.

DrugChat is trained in two stages: large-scale pretrain-
ing on 4M compounds and 248M activity records from
PubChem (Kim et al., 2023), followed by finetuning on
500K compound-activity records across >5,000 tasks. Fine-
tuning datasets include QSAR benchmarks (Stanley et al.,
2021; Wu et al., 2018), DrugBank (Wishart et al., 2006),
and ChEMBL (Mendez et al., 2019), covering >230,000
compounds with both structured and free-text activity la-
bels. Training data consist of molecule-prompt-answer
triplets, with answers ranging from yes/no to descriptive
text. DrugChat is optimized by minimizing the negative
log-likelihood between its predictions and the annotated
answers (Sutskever et al., 2014). The details of our method
can be found in Sec. B.

3. Experiments

3.1. DrugChat generates free-form predictions for drug
indications, pharmacodynamics, and mechanisms
of action

We evaluated DrugChat’s ability to predict drug attributes
such as indications, pharmacodynamics, mechanisms of
action, and drug overviews using free-form prompts (e.g.,
“what is its indication?”’). These attributes were curated from
DrugBank (Wishart et al., 2006), which includes 5,846 ap-
proved and experimental compounds. Each drug also has an
expert-written overview, which DrugChat was tasked with
generating. We employed nested 5-fold cross-validation
with scaffold-based splits (Bemis & Murcko, 1996) to avoid
compound-series bias (Baumann & Baumann, 2014), en-
suring structurally similar molecules were not in both train-
ing and test sets. DrugChat was compared against Galac-
tica (Taylor et al., 2022), a 6.7B-parameter scientific LLM,
and GPT-4 (Achiam et al., 2023), a general-purpose model
likely exposed to chemical data via CommonCrawl. All
models received SMILES strings as input (Methods).

Human experts scored model outputs (0 = incorrect, 1
= partially correct, 2 = correct) based on DrugBank an-
notations. DrugChat outperformed GPT-4 and Galactica
across all tasks, with average scores of 1.025 (indication),
1.001 (pharmacodynamics), 0.846 (mechanism), and 0.925
(overview). GPT-4 and Galactica scored significantly lower
(p < 1.6 x 107® and p < 3.2 x 1074, respectively). For
example, DrugChat had 40% correct predictions for indi-
cations, versus 12.5% for GPT-4 and 6.2% for Galactica.
Fig. 3 shows qualitative differences. DrugChat correctly
identified a diabetes drug’s indication and pharmacodynam-
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ics, while GPT-4 and Galactica failed. Galactica often gave
irrelevant outputs due to lack of instruction tuning, and GPT-
4 sometimes contradicted itself—Ilikely due to its limited
grounding in molecular structure. In contrast, DrugChat’s
outputs remained consistent and chemically grounded. Au-
tomated evaluations using semantic similarity, BLEU (Pa-
pineni et al., 2002), and METEOR (Lavie & Denkowski,
2009) confirmed DrugChat’s superiority. It scored 0.460 in
semantic similarity (vs. 0.317 for GPT-4, 0.238 for Galac-
tica), 0.311 in BLEU (vs. 0.175 and 0.120), and 0.219 in
METEOR (vs. 0.141 and 0.092). DrugChat’s advantage lies
in its molecule-aware architecture. While GPT-4 and Galac-
tica treat SMILES as plain text, DrugChat uses a GIN and
ResNet, pretrained on large-scale chemical data, to extract
structural and visual features. This enables better under-
standing of molecular context, critical for accurate drug
attribute prediction.

3.2. DrugChat achieves competitive results in multi-task
QSAR modeling

Beyond generating free-form responses, DrugChat performs
traditional QSAR modeling by predicting binary outcomes
(yes/no) with associated confidence scores. These token-
level probabilities enable computation of standard metrics
such as AUROC and AAUPRC (Methods).

We evaluated DrugChat on three benchmark datasets: (1)
a cytotoxicity dataset (Wong et al., 2024) with 39,043
compounds tested against HepG2, HSKMC, and IMR-
90 cell lines (117,129 measurements), (2) the ChEMBL
dataset (Gaulton et al., 2012) with 3,462 compounds across
four classification tasks (e.g., oral/parenteral/topical ad-
ministration and prodrug potential), and (3) subsets from
MoleculeNet (Wu et al., 2018), including BACE, BBBP,
ClinTox, and SIDER. Cytotoxicity and ChEMBL evalua-
tions used scaffold-based 5-fold cross-validation to reduce
compound-series bias. MoleculeNet tasks followed stan-
dard splits, with scaffold-based splits for BACE/BBBP
and random splits for ClinTox/SIDER. Results were aver-
aged over five runs, reporting mean and standard deviation.
Evaluation used AUROC and AAUPRC, which adjusts for
dataset imbalance by subtracting the base rate of actives
from AUPRC (Wu et al., 2018). We compared DrugChat
against Galactica (Taylor et al., 2022), general-domain
LLMs (ChatGLM (GLM et al., 2024), FastChat-T5 (Zheng
etal., 2024), LLaMA v2 (Touvron et al., 2023b)), GNN base-
lines (MPNN (Gilmer et al., 2017), Chemprop (Yang et al.,
2019b)), and multi-modal models (Text2Mol (Edwards et al.,
2021), KV-PLM (Zeng et al., 2022b), CLAMP (Seidl et al.,
2023)). All models received SMILES strings as input
prompts and returned binary predictions.

DrugChat outperformed all baselines across the three cyto-
toxicity tasks in both AUROC and AAUPRC (Fig. 4a), with

statistically significant improvements (p < 0.03). It also sur-
passed all baselines on ChHEMBL tasks, including prodrug
status and administration routes, with 70% of improvements
being statistically significant (p < 0.05). On MoleculeNet
datasets, DrugChat exceeded Galactica, Text2Mol, and K'V-
PLM, and matched or slightly outperformed Chemprop,
MPNN, and CLAMP. DrugChat’s edge stems from its
dual molecular encoders—a GIN for graph structure and a
ResNet for molecular images—enabling richer molecular
representations than GNN-only (e.g., MPNN, Chemprop)
or single-encoder models (e.g., KV-PLM). Unlike LLMs
that treat SMILES as plain text, DrugChat’s encoders are
pretrained on large chemical datasets, allowing it to ex-
tract chemically meaningful features. Its instruction-tuned
LLM further enhances understanding of biomedical prompts.
Even compared to CLAMP, DrugChat’s design enables bet-
ter generalization and accuracy across diverse QSAR tasks.

3.3. DrugChat demonstrates strong zero-shot
generalization to unseen compounds and tasks

We evaluated DrugChat’s zero-shot generalization using
the FS-Mol benchmark (Stanley et al., 2021), which in-
cludes 5,120 protein-target assays and 233,786 compounds.
Each assay is a separate prediction task. Following the of-
ficial split, we assessed performance on 157 test tasks and
27,520 compounds, including 58 entirely unseen tasks and
14,064 unseen compounds. Two evaluation settings were
used: full zero-shot (only unseen tasks and compounds) and
partial zero-shot (all test tasks, including seen and unseen
compounds). DrugChat was compared against multi-modal
models (Text2Mol, KV-PLM), Galactica, and the zero-shot
model CLAMP. GNN-based models (e.g., Chemprop) were
excluded as they can’t generalize to new tasks without re-
training. In the full zero-shot setting, DrugChat achieved
the highest AUROC (0.598) and AAUPRC (0.106), out-
performing CLAMP (AUROC 0.549, AAUPRC 0.078;
p < 107%), as well as Galactica, Text2Mol, and KV-PLM
(all p < 2.6 x 10~%). In partial zero-shot, DrugChat contin-
ued to outperform all but performed on par with CLAMP
(Fig. 6b). DrugChat’s superior generalization is driven by
its dual encoders (GIN and ResNet), which extract rich
chemical features, and its large language model, which un-
derstands complex biomedical contexts. Combined with
pretraining on hundreds of millions of activity records,
DrugChat shows strong zero-shot performance across novel
molecular tasks.

3.4. Pretraining on large-scale bioassay data
significantly improves DrugChat’s generalization

To assess the value of pretraining, we trained DrugChat
From Scratch (DC-FS) using only the cytotoxicity dataset,
without initializing from the PubChem checkpoint. DC-
FS achieved mean AAUPRCSs of 0.210, 0.207, and 0.190
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on the HepG2, HSKMC, and IMR-90 tasks, respectively.
In comparison, pretrained DrugChat achieved significantly
higher scores: 0.306, 0.318, and 0.235 (p = 0.002, 0.022,
and 0.027; Fig. 7).

These results underscore the importance of large-scale pre-
training. It equips DrugChat’s GIN and ResNet encoders
with stronger feature extractors and helps the adapters
align molecular and textual features more effectively (Li
et al., 2022). Pretraining also mitigates overfitting on small
datasets (Hendrycks et al., 2019), providing generalizable
molecular representations and reducing reliance on spurious
correlations during fine-tuning.

3.5. DrugChat’s integration of molecular graph and
image modalities surpasses single-modality variants

To evaluate the role of different molecular encoders, we
created two DrugChat variants: DrugChat-Graph, using
only graph-based representations via a GNN, and DrugChat-
Image, using only image-based features via a CNN (ResNet).
On the cytotoxicity dataset, the original DrugChat—which
integrates both modalities—consistently outperformed both
variants (Fig. 7), confirming the advantage of combining
graph and image features. Graphs capture atomic connec-
tivity, while images highlight spatial and functional pat-
terns. The fusion of these complementary views enables a
richer, more comprehensive molecular representation, im-
proving prediction accuracy. In contrast, single-modality
models miss important information, limiting performance.
Notably, DrugChat-Image (DC-I) performed comparably
to GNN models like MPNN (Gilmer et al., 2017) and
Chemprop (Yang et al., 2019b), demonstrating the strength
of image-based encoders in extracting meaningful molecular
features.

3.6. DrugChat enables dynamic, iterative exploration of
drug mechanisms and properties

DrugChat supports multi-turn interactions, allowing users to
ask follow-up questions about the same molecule. Starting
with an initial query, users can engage in iterative dialogue to
explore molecular properties in greater depth. Fig. 8 shows
an example where DrugChat accurately answered questions
about a molecule’s indication (hypertension), mechanism
of action (ACE inhibition), site of action (lungs), and the
RAAS pathway. This dialogue demonstrates DrugChat’s
ability to interpret user intent and deliver precise, coher-
ent biomedical responses, enabling rich and informative
exploration.

4. Discussion and Future Work

DrugChat is a multi-modal large language model (LLM) that
introduces three key capabilities: (1) Free-form Text Pre-

dictions: Unlike prior models that output structured labels
or values (Yang et al., 2019a; Chen et al., 2020), DrugChat
generates natural language descriptions for complex drug at-
tributes such as indications, pharmacodynamics, and mech-
anisms of action. While Galactica (Taylor et al., 2022)
supports text generation, it lacks molecular encoders and
instruction tuning, both crucial to DrugChat’s accuracy. (2)
Prompt-based Multi-task Learning: DrugChat generalizes
to an open-ended task space without retraining. By sim-
ply modifying prompts, it can handle both standard QSAR
tasks and complex biomedical queries, including unseen
tasks. In contrast, traditional GNNs and multi-task mod-
els (Yang et al., 2019b; Dahl et al., 2014) require fixed
output heads and retraining. Existing multi-modal models
like KV-PLM (Zeng et al., 2022b), CLAMP (Seidl et al.,
2023), and Text2Mol (Edwards et al., 2021) support struc-
tured outputs for unseen tasks but not free-form responses.
(3) Interactive Dialogue: DrugChat enables multi-turn con-
versations, allowing users to refine questions and explore
molecular properties iteratively—a feature not available in
other models.

DrugChat embeds structured (e.g., cytotoxicity) and unstruc-
tured (e.g., pharmacodynamics) molecular features into a
shared latent space, allowing it to learn richer represen-
tations and generalize better than models trained on iso-
lated tasks. This unified approach helps uncover cross-
domain patterns missed by more narrowly focused models
like Chemprop. While databases like DrugBank are authori-
tative, they are static. DrugChat can suggest new properties
for known compounds, supporting drug repurposing efforts
by identifying alternative indications or mechanisms of ac-
tion. Crucially, DrugChat doesn’t rely on simple chemical
similarity. Using scaffold-based data splits for key datasets,
it demonstrated strong generalization to structurally dis-
tinct molecules (Figs.2,4), suggesting it learns deeper struc-
ture—function relationships. DrugChat provides token-level
confidence scores for its outputs, aiding uncertainty esti-
mation in classification tasks. However, it is not intended
for clinical use or public deployment. Instead, it serves
as a research tool for experts who can interpret its proba-
bilistic outputs responsibly. Future versions will include
disclaimers and improved calibration and factuality checks
to promote safe usage.

A known limitation is interpretability—DrugChat’s reason-
ing is not transparent, typical of LLMs. This opacity can
hinder trust in high-stakes contexts like drug risk assessment.
Future work will focus on enhancing explainability. Future
directions include expanding training data, integrating with
simulation tools (e.g., docking), applying it in real-world
pipelines (e.g., drug-drug interaction prediction), and ex-
tending support to complex molecules like biologics. These
enhancements could significantly broaden DrugChat’s im-
pact in pharmaceutical research.
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Figure 1. DrugChat is a multi-modal LLM capable of predicting drug attributes in either free-form texts or as discrete categories.
a, DrugChat facilitates versatile predictions of drug attributes, enabling users to submit queries through flexible natural language (known
as prompts). By using task-specific prompts, DrugChat can perform a wide range of prediction tasks within a unified framework, without
requiring changes to model parameters. For classification tasks, DrugChat simultaneously outputs a probability associated with each
prediction. b, Model architecture of DrugChat. It takes the SMILES representation of a molecule along with a prompt as inputs and
generates a prediction in natural language. It comprises two molecular encoders—a graph neural network and a convolutional neural
network—that learn representation vectors for the molecular graph and image derived from the SMILES input, two adapters that transform
these representations into a format compatible with LLMs, and an LLM that generates a prediction based on the molecular representations
and the prompt.

A. Related Work

In recent years, deep learning (DL) has emerged as a powerful tool for QSAR modeling and drug discovery (Chen et al.,
2018; Vamathevan et al., 2019; Wieder et al., 2020; Tropsha et al., 2024), thanks to its capacity to analyze large-scale
datasets and uncover complex patterns. DL methods have improved efficiency and accuracy across multiple stages of drug
discovery (Lo et al., 2018; Gupta et al., 2021), from predicting protein-ligand binding affinity (Oztiirk et al., 2018; Jiménez
et al., 2018; Stepniewska-Dziubinska et al., 2018) and toxicity (Mayr et al., 2016; Banerjee et al., 2018), to enabling drug
repositioning (Cheng et al., 2012; Keiser et al., 2009; Gottlieb et al., 2011; Cheng et al., 2018; Chen et al., 2020). For
example, graph neural networks (GNNs) such as MPNN (Gilmer et al., 2017) and Chemprop (Yang et al., 2019b) have been
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Figure 2. DrugChat significantly outperformed GPT-4 and Galactica in predicting drug indications, pharmacodynamics, mech-
anisms of action, and overviews expressed in free-form texts. a, Human expert evaluations demonstrated DrugChat’s superior
performance, with results reported as average scores and standard deviations from five-fold cross-validation. Predictions were scored on a
0-2 scale: 2 for fully correct, 1 for partially correct, and 0 for incorrect. b, DrugChat produced a higher proportion of correct predictions
compared to GPT-4 and Galactica. ¢, In automated evaluations—using semantic similarity, BLEU, and METEOR metrics—DrugChat also
substantially outperformed both baselines, with results reported as average scores and standard deviations from five-fold cross-validation.

widely adopted for molecular property prediction, leveraging molecular graph structures as input. Multi-task deep learning
approaches (Dahl et al., 2014; Unterthiner et al., 2014; Ramsundar et al., 2015; Allenspach et al., 2024; Yang et al., 2019b;
Mayr et al., 2018; Jastrzebski et al., 2016; Qian et al., 2023) have demonstrated strong efficacy in simultaneously predicting
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Overview

It is a medication used to lower blood sugars in patients with
type 2 diabetes.

It is a medication primarily used to treat the symptoms of an
enlarged prostate (benign prostatic hyperplasia, BPH).

[~

This drug is a non-selective beta-adrenergic receptor
antagonist. It is used to treat asthma, bronchitis,
emphysema, and other lung diseases. It is also used to treat
high blood pressure, heart failure, and other heart conditions.

It is a medication that is used to treat diabetes. It is a type of
drug called an oral medication that helps to lower blood
sugar levels in people with diabetes. It is used to treat type 2
diabetes, which is a type of diabetes that occurs when your
body does not make or properly use insulin, a hormone that
helps regulate blood sugar levels in the body.

Pharmacodynamics

Based on the pharmacological properties, the drug is a
second generation sulphonylurea which acts as a
hypoglycemic agent. It stimulates beta cells of the islet of
Langerhans in the pancreas to release insulin. It also
enhances peripheral insulin sensitivity. Overall, it potentiates
insulin release and improves insulin dynamics.

It is a P2Y12 receptor antagonist. The pharmacodynamics
involves its activity as an antiplatelet agent by selectively and
reversibly binding to the P2Y12 receptor on platelets, thereby
inhibiting platelet activation and aggregation.

[~
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It is a sulfonylurea oral medication that is used to control
blood sugar levels in people with diabetes. It works by
stimulating the pancreas to produce insulin, a hormone that
regulates blood sugar levels. The medication is taken orally,
usually as a tablet or capsule, usually with meals. The
medication works by increasing the sensitivity of cells in the
pancreas to insulin, allowing the pancreas to produce more
insulin to regulate blood sugar levels.

]

® @& xX

Indication

For the treatment of type 2 diabetes in conjunction with diet
and exercise.

It is indicated for the treatment of Parkinson's disease.

This drug is used in the treatment of bronchial asthma.

It is indicated for the treatment of type 2 diabetes mellitus in
adults and children and adolescents (4 years and older) as
an adjunct to diet and exercise to improve glycemic control in
patients with type 2 diabetes mellitus.

Mechanism of action

It binds to the beta cell sulfonyl urea receptor (SUR1). This
binding subsequently blocks the ATP sensitive potassium
channels. The binding results in closure of the channels and
leads to a resulting decrease in potassium efflux leads to
depolarization of the beta cells. This opens voltage-
dependent calcium channels in the &beta; cell resulting in
calmodulin activation, which in turn leads to exocytosis of
insulin containing secretorty granules.

It enhances mitochondrial function and exhibit
neuroprotective effects. It potentially works through muiltiple
mechanisms, including the inhibition of cholinesterase,
interaction with NMDA receptors, and modulation of calcium
channels.

-0.00017675900000000

It is a medication used to treat type 2 diabetes. It belongs to
the class of drugs called alpha-glucosidase inhibitors. It
works by blocking the enzyme called alpha-glucosidase,
which is responsible for breaking down carbohydrates in the
body. The medication blocks the enzyme, which in turn
blocks the release of glucose into the bloodstream. This
reduces the amount of glucose that is available to the body,
which in turn reduces the amount of insulin that is produced.
As a result, it lowers blood sugar levels.

Figure 3. Examples of free-form predictions generated by DrugChat, Galactica, and GPT-4, along with their corresponding human
evaluation scores. Text highlighted in green indicates correct predictions, while text in red denotes incorrect predictions.

ADME (Absorption, Distribution, Metabolism, Excretion) properties (Pires et al., 2015; Daina et al., 2017; Xiong et al.,
2021). More recently, multi-modal models (Zeng et al., 2022b; Seidl et al., 2023; Edwards et al., 2021; Liu et al., 2024,
Xu et al., 2023) such as KV-PLM (Zeng et al., 2022b), CLAMP (Seidl et al., 2023), and Text2Mol (Edwards et al., 2021)
have been proposed to jointly model molecular structures and textual descriptions of prediction tasks, combining molecular
encoders with language encoders. In parallel, molecule-focused scientific large language models (LLMs) (Thirunavukarasu
et al., 2023) such as Galactica (Taylor et al., 2022) have been developed to leverage large-scale molecular and textual data
for scientific question answering and property prediction.
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Due to the structured outputs in most existing deep learning models for molecule property prediction, they are unable to
generate rich, natural language descriptions that mirror the way these properties are discussed in biomedical literature and
expert annotations. While KV-PLM (Zeng et al., 2022b), CLAMP (Seidl et al., 2023), and Text2Mol (Edwards et al., 2021)
combine molecular features with textual inputs, they are primarily designed for classification or retrieval tasks, producing
scalar similarity or likelihood scores for molecule-text pairs. These models are not capable of generating free-form textual
responses. While Galactica (Taylor et al., 2022) supports free-form text generation, it relies on a single language model to
process both SMILES strings and textual queries without incorporating dedicated molecular structure encoders. This design
limits its ability to accurately capture chemical structures and spatial relationships, thereby impairing its capacity to predict
pharmacological properties and mechanisms of action with high fidelity.

A further limitation of current molecular prediction models is that they generate one-shot predictions without supporting
interactive, multi-turn exploration. Once a model provides an output for a given input, there is no mechanism for users to
iteratively refine their questions, ask follow-up inquiries, or progressively explore different aspects of a molecule within a
conversational workflow. This static approach to prediction limits the depth and flexibility of molecular analysis, hindering
the discovery of nuanced or context-specific insights that could be revealed through dynamic, iterative interaction.

B. Methods

B.1. Data collection and processing

We curated training data for DrugChat from publicly available compound databases, including PubChem, ChEMBL, and
DrugBank. The PubChem database! contains information on 66,469,244 chemical compounds. We downloaded the
bioassay dataset, last updated on January 9, 2025, which includes 4,019,927 unique compounds and 248,667,695 activity
records across 636,397 bioassays. The ChEMBL database” provides information on 2,354,965 chemical compounds. We
downloaded the SQLite version of the dataset, last updated on February 28, 2023. From this, we selected 3,462 compounds
that contain information about administration routes and prodrug status. The DrugBank database® (version 5.1.10, released
on January 4, 2023) contains 16,428 drug entries. We selected 11,583 entries with available SMILES strings, focusing
exclusively on small molecules and excluding biotech-classified compounds. After further filtering to retain only entries
with annotations for drug indications, pharmacodynamics, or mechanisms of action, we curated 5,846 drug molecules for
use in DrugChat. The distribution of drug categories is shown in Fig. 9. For each selected compound, we collected its
SMILES string along with a variety of attributes, such as free-form descriptions (e.g., indications, pharmacodynamics,
mechanisms of action) and structured bioassay activities. Additionally, the cytotoxicity, MoleculeNet, and FS-Mol datasets
used in our work were curated by (Wong et al., 2024), (Wu et al., 2018), and (Stanley et al., 2021), respectively.

Using these drugs and their annotated attributes, we curated the training data for DrugChat. For each attribute a of a
compound molecule m, we created a triplet consisting of the molecule’s SMILES representation, a textual prompt querying
the value of a, and the corresponding ground truth for a. Each attribute type had its own tailored prompt. For instance, for
the attribute ‘drug indication’, the corresponding prompt is “What is its indication?’. The answer is a textual description of
the drug compound’s indication, provided by human experts from the DrugBank database. As another example, for the
attribute ‘prodrug status’, the corresponding prompt is ‘Is the molecule a prodrug?’ The ground truth answer is ‘Yes’ if the
compound is a prodrug, and ‘No’ otherwise. The distribution of ground truth answers in the cytotoxicity and ChEMBL
datasets is shown in Fig. 10. We created similar molecule-prompt-answer triplets from the bioassay activities in PubChem
and FS-Mol. For each bioassay, we incorporated the textual description of the bioassay into the prompt using the following
template: ‘is the compound active in this bioassay: <bioassay description>’. The ground truth answer is ‘Yes’ if
the compound is labeled as active in the bioassay, and ‘No’ otherwise. An example prompt for an assay in the FS-Mol dataset
is: ‘is the compound active in this bioassay: qHTS assay for identifying a potential treatment of Ataxia-Telangiectasia’. For
a complete description of all prompts used across different datasets, please refer to the Prompts subsection below.

B.2. Model architecture

DrugChat is a multi-modal model that integrates information from three distinct modalities: graphs, images, and text. It
consists of a Graph Isomorphism Network (GIN) (Xu et al., 2018), a ResNet (He et al., 2016), and a large language model

'"https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
*https://go.drugbank.com/releases/latest
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(LLM) (Chiang et al., 2023). For a given molecule, its SMILES string is converted into both a molecular graph and a
molecular image using the RDKit software®.

In the molecular graph, nodes correspond to the molecule’s atoms, while edges represent the chemical bonds between them.
Each atom is defined by its atom type and chirality, with 120 atom types in total, including a special ‘Unknown’ category
for unidentified atoms. Atom chirality is categorized into four types: tetrahedral clockwise, tetrahedral counter-clockwise,
unrecognized, and other. These atom type and chirality attributes serve as the initial features for each node. Chemical
bonds are characterized by their type and direction, with bond types classified as single, double, triple, or aromatic, and
bond directions as none, end upright, or end downright. These bond attributes are used as the initial features for each
edge. All node and edge features are categorical, with each category encoded as a vector with learnable parameters. The
molecular graph is input into the GIN to learn a representation vector for the entire graph. The GIN leverages the graph’s
connectivity, along with the initial node and edge features, to learn multi-layer representations for each node. Using a
neighborhood aggregation approach, the GIN iteratively updates each node’s vector by aggregating information from
its neighbors and connecting edges (Kipf & Welling, 2017). After K layers of representation learning, information is
propagated through K -hop paths across the graph. An average pooling operation is then applied to compute the mean of the
final node representations, yielding a single vector that summarizes the entire graph. The GIN in DrugChat consists of five
layers and approximately 1.9 million parameters. Both node and edge embeddings have a dimensionality of 300. The GIN
was pretrained using a self-supervised context prediction approach (Hu et al., 2020), in which the model learns to predict a
molecule’s subgraphs based on its surrounding subgraphs. Pretraining was performed on 2 million unlabeled molecules
from the ZINC15 database (Sterling & Irwin, 2015).

For the molecular image, we employed a ResNet to extract a representation vector. The ResNet processes the input image
through multiple layers of 2D convolution, where each layer applies convolutional filters to detect specific patterns in the
image or in the feature maps from the previous layer. We used a ResNet-18 (He et al., 2016) model, which consists of 18
convolutional layers and approximately 11 million parameters. A global average pooling layer converts the output of the final
convolutional layer into a molecular image representation vector with a dimensionality of 512. Following the approach in
ImageMol (Zeng et al., 2022a), the ResNet was pretrained on 10 million unlabeled images of drug-like, bioactive molecules
from the PubChem database using self-supervised learning (SSL) techniques, such as molecular image reconstruction and
contrastive learning. These SSL methods enable the ResNet to map structurally similar molecules to nearby points in the
embedding space, allowing it to learn molecular features at scale without requiring human-annotated labels.

After extracting representation vectors from the molecule using the GIN and ResNet, we apply two separate linear
layers—each consisting of a matrix multiplication followed by a bias addition—referred to as adapters, to transform these
molecular representations into a format compatible with the LLM. LLMs typically use Transformer decoders (Vaswani
et al., 2017) to model natural language as sequences of tokens, with each token represented as a vector (Brown et al.,
2020). In DrugChat, the transformed molecular representations are treated as tokens and appended to the sequence of
language tokens derived from the input prompt. This combined sequence is then passed into the LLM, which uses multi-
head self-attention (Vaswani et al., 2017) to generate new tokens. These generated tokens constitute the final prediction.
DrugChat employs Vicuna-13B (Chiang et al., 2023) as its LLM, which has 13 billion parameters. Vicuna-13B was
fine-tuned from LLaMA-13B (Touvron et al., 2023a) using a dataset of 70K user-shared conversations from ShareGPT.com
(containing interactions between humans and ChatGPT). It retains the architecture of LLaMA-13B, including 40 Transformer
layers, 40 attention heads, and an embedding dimension of 5120. The base model was pretrained on a multi-terabyte
text corpus—including Wikipedia and various web sources—to predict the next token given preceding context. In our
experiments, the LLM weights were frozen and not updated during training. The adapter that converts molecular graph
representations into LLM-compatible tokens is a linear layer with input dimension 300 and output dimension 5120, totaling
1.5 million parameters. The adapter for molecular image representations is similarly a linear layer, with an input dimension
of 512 and output dimension of 5120, totaling 2.6 million parameters.

For a target answer 7T that has L text tokens, DrugChat computes the probability of generating 1" as follows:

L
p(T | M, P) = pw (Ty | M, P) [ [ pw (T; | M, P, T<;), (1

1=2

where M represents the input molecule and P is the input prompt. We denote the i-th token as 7; and all preceding tokens as
T.;. Model parameters are denoted by W. The generated token sequence is compared to the ground truth tokens to compute

4https ://www.rdkit.org
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the negative log-likelihood (NLL). The parameters ¥ are optimized by minimizing the sum of NLL over all training data.

B.3. Model training

We first pretrained DrugChat using 248 million molecule-prompt-answer triplets derived from the bioassay activities in
PubChem. To avoid data leakage, we removed all compounds present in the DrugBank, ChREMBL, cytotoxicity, MoleculeNet,
and FS-Mol datasets from the pretraining data. Pretraining was conducted for one epoch with a batch size of 48. We used
the AdamW optimizer (Loshchilov & Hutter, 2019) with a constant learning rate of 1073, 81 = 0.9, By = 0.999, and a
weight decay of 0.001. Due to the strong class imbalance in the PubChem bioassay labels (with only approximately 3%
of samples labeled as active), we performed class balancing by applying a 1:30 weighting scheme for the inactive and
active samples when computing the loss function. After pretraining, we finetuned DrugChat using the training splits of
the MoleculeNet and FS-Mol datasets. Finetuning was conducted for 5 epochs with a batch size of 64, using the AdamW
optimizer with 8; = 0.9, 82 = 0.999, and a weight decay of 0.01. A linear warmup was applied during the first epoch,
gradually increasing the learning rate from 107° to 5 x 10, followed by cosine decay to 2 x 10~° over the remaining
epochs. For evaluation on the DrugBank, cytotoxicity, and ChEMBL datasets, we performed nested 5-fold cross-validation
using scaffold-based splits. For each held-out fold, hyperparameters (learning rate and number of epochs) were tuned on
the remaining four folds via 2-fold cross-validation. The model was then retrained on all four folds and evaluated on the
held-out fold. All experiments were conducted using NVIDIA A100 GPUs with 80 GB of memory.

B.4. Baselines

For the DrugBank dataset, we experimented with different prompt templates for GPT-4 and Galactica and selected those that
produced the most coherent and relevant responses. GPT-4 was prompted using the following template:

Given the SMILES of a molecule:
<SMILES>, <question>

where <SMILES> is replaced with the SMILES string of the molecule and <question> is replaced with the specific
inquiry, such as ‘what is its indication?’, ‘what are its pharmacodynamics?’, or ‘what is its mechanism of action?’.
Following (Taylor et al., 2022), Galactica was prompted with the following template:

Question: <question> [START_SMILES]
<SMILES>[END_SMILES] Answer:

On the cytotoxicity dataset, we used the following prompt template for ChatGLM, FastChat-T5, and Llama:

Given the SMILES of a molecule:
<SMILES>, is the molecule cytotoxic
to <cell>?

where <SMILES> is replaced with the SMILES representation of the molecule and <ce 11> is replaced with the target cell
line (HepG2, HSKMC, or IMR-90). Galactica’s prompt template was:

Question: Is the molecule
[START_SMILES]<SMILES> [END_SMILES]
cytotoxic to <cell> Answer:

Similar to DrugChat, we extracted the probabilities of generating the ‘Yes’ and ‘No’ tokens from the outputs of ChatGLM,
FastChat-T5, Llama, and Galactica, and used the likelihood ratio P(Yes)/P(No) as the decision value for calculating
AUROC and AAUPRC. For the other baselines, including MPNN, Chemprop, Text2Mol, KV-PLM, and CLAMP, we
utilized their official codebases for training and evaluation, where the decision values needed to compute AUROC and
AAUPRC were directly provided by the models’ outputs. On the ChEMBL dataset, we reused the prompt templates
described above but replaced the questions with: ‘Is the drug taken orally?’, ‘Is the drug administered parenterally?’, ‘Is the
drug applied topically?’, or ‘Is the molecule a prodrug?’. For the other baselines, including MPNN, Chemprop, Text2Mol,
KV-PLM, and CLAMP, we utilized their official codebases to perform training and evaluation. On the MoleculeNet and
FS-Mol datasets, we adopted the following prompt template for Galactica:
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Question: Is the molecule
[START_SMILES]<SMILES>[END_SMILES]
active in <task>? Answer:

where <task> is replaced with the description of the target bioassay in FS-Mol or the task in MoleculeNet. For KV-PLM
and CLAMP, we cited their evaluation results on MoleculeNet and FS-Mol directly from the CLAMP paper (Seidl et al.,
2023). For Text2Mol, we evaluated its performance using its official codebase.

B.5. Prompts

The prompts used by DrugChat to predict cytotoxicity to HepG2, HSkMC, and IMR-90 were ‘Is the molecule cytotoxic
to human liver carcinoma cells (HepG2)?’, ‘Is the molecule cytotoxic to primary skeletal muscle cells (HSkMC)?’, and
‘Is the molecule cytotoxic to human lung fibroblast cells (IMR-90)?". The prompts used by DrugChat on the ChEMBL
dataset were: ‘Is the drug taken orally?’, ‘Is the drug administered parenterally?’, ‘Is the drug applied topically?’, and ‘Is the
molecule a prodrug?’. The prompts used by DrugChat on the DrugBank dataset were “What is its indication?’, ‘What are
its pharmacodynamics?’, “What is its mechanism of action?’, and ‘What is its overview?’. For the MoleculeNet dataset,
DrugChat used the prompt template: ‘Is the compound active in <task description>?" For the FS-Mol dataset,
DrugChat used the prompt template: ‘Is the compound active in this bioassay: <bioassay description>?

B.6. Model evaluation

We evaluated the free-form predictions of drug indications, pharmacodynamics, and mechanisms of action using both human
assessment and automated metrics.

Human evaluation. In the human evaluation, experts specializing in drug molecules assessed the model’s predictions using
a 3-point Likert scale with an additional ‘Unknown’ option. The scales were defined as follows: 1) [Correct]—The prediction
is mostly consistent with the ground truth or a subset of the ground truth, possibly extending it with additional plausible
details; 2) [Partially Correct]—The prediction includes some correct descriptions but also introduces conflicting elements
when compared to the ground truth or domain knowledge; and 3) [Incorrect]—The prediction is incorrect, irrelevant, or
incomplete. Evaluators were asked to choose one of the three options and they did not know which model generated the
predictions.

Automatic evaluation metrics. We conducted automatic evaluations using three metrics: semantic similarity, BLEU (Pa-
pineni et al., 2002), and METEOR (Lavie & Denkowski, 2009) scores. Semantic similarity was calculated as the cosine
similarity between the sentence embeddings of the ground-truth and model-predicted texts, with embeddings generated
using a pretrained sentence Transformer model All-MiniLM-L6-v2 (Reimers & Gurevych, 2019). Let SE represent the
sentence embedding model. The embedding of the ground-truth text ¢, is denoted as e, = SE(¢,), while the embedding of
the predicted text ¢, is e, = SE(t,,). The cosine similarity between these embeddings is defined as

_ <€gaep>
cos(eq &) = e TaTeplla”

where (e4, ep) represents the dot product between the two vectors, and ||e,4||2 denotes the L2 norm of the vector e,. With
this sentence Transformer, the embeddings of semantically similar sentences are positioned closer in the embedding space,
resulting in higher cosine similarity values. For BLEU scores (Papineni et al., 2002), we used the BLEU-1 score without
applying the brevity penalty (Papineni et al., 2002). The BLEU-1 score is a special case of the general BLEU-n metric,
which measures the modified precision of n-grams (sequences of n consecutive words). Let ¢ represent the predicted
sentence, and y the ground-truth sentence. Define G, (i) as the set of all n-grams in the predicted sentence. Let C(s, y)
be an indicator function, which equals 1 if the n-gram s appears in y; otherwise, C(s,y) = 0. The BLEU-n score is then

calculated as follows: ' A
> secn (g min(C(s,9),C(s,y))
>secn ) C(8,9)

The METEOR score (Lavie & Denkowski, 2009) is viewed as an enhancement over the BLEU score. It is calculated using
the harmonic mean of unigram precision and recall, with greater emphasis on recall. Additionally, it accounts for stemming
and synonym matching, in addition to exact word matching.

BLEU, (4, y) =
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On the ChEMBL, cytotoxicity, MoleculeNet, and FS-Mol datasets, we evaluated performance using AUROC and AAUPRC.
These metrics were computed based on the probabilities of generating the “Yes” and ‘No’ tokens. During token generation,
DrugChat’s LLM produces a probability distribution over the entire vocabulary at each step and selects the token with the
highest probability. We extracted the probabilities associated with the “Yes’ and ‘No’ tokens directly from this distribution

without requiring additional computation. The ratio P(Yes)/P(No) was then used as the decision score to compute AUROC
and AAUPRC.

16



DrugChat

0 LLM s GNN - 0 Multi-modal model  # DrugChat

Q

10 HepG2 cytotoxicity HepG2 cytotoxicity
08 o 0.3
© 08
x
g % 0.2
2 0.6 5
’ 0.1
04 - 0.0 N T T
CG FC Llama GAL MPNN CP T2M KV CLAMP DC CG FC Llama GAL MPNN CP T2M KV CLAMP DC
10 HSKMC cytotoxicity HSKMC cytotoxicity
0.4
o 08 — [}
el £
=] S 02+
< 06 3
0.4 0.0 —F —F
CG FC Llama GAL MPNN CP T2M KV CLAMP DC CG FC Llama GAL MPNN CP T2M KV CLAMP DC
10 IMR-90 cytotoxicity IMR-90 cytotoxicity
o 0.8 @)
o &
x =}
2
2 06 1 5
04 -
CG FC Llama GAL MPNN CP T2M KV CLAMP DC CG FC Llama GAL MPNN CP T2M KV CLAMP DC
b 10 Oral administration Oral administration
o 0.8 1 O 0.2
¢ &
x =1
2
< 06 S 01
0.4 - 0.0 -
CG FC Llama GAL MPNN CP T2M KV CLAMP DC CG FC Llama GAL MPNN CP T2M KV CLAMP DC
10 Parenteral administration Parenteral administration
’ 0.3
8 0.8 E) 02 4
x =}
=)
< 06 g
04 - T T T
CG FC Llama GAL MPNN CP T2M KV CLAMP DC CG FC Llama GAL MPNN CP T2M KV CLAMP DC
10 Topical administration Topical administration
IS (&)
e i
ox =}
2
< 3
CG FC Llama GAL MPNN CP T2M KV CLAMP DC CG FC Llama GAL MPNN CP T2M KV CLAMP DC
10 Prodrug status Prodrug status
) (&)
o g
g =
z 3

CG FC Llama GAL MPNN CP T2M KV CLAMP DC CG FC Llama GAL MPNN CP T2M KV CLAMP DC

Figure 4. DrugChat demonstrated strong performance across a variety of structured QSAR tasks. a, For cytotoxicity predic-
tion (Wong et al., 2024), DrugChat (DC) significantly outperformed (1) graph neural network (GNN)-based models including MPNN
and Chemprop (CP), (2) multi-modal models including Text2Mol (T2M) and KV-PLM (KV), (3) the molecule-focused scientific LLM,
Galactica, and (4) general-purpose LLMs including ChatGLM (CG)iliastChat-TS (FC), and LLaMA. DrugChat also slightly outperformed
CLAMP in most cases. b, For administration route and prodrug status prediction on the ChEMBL dataset, DrugChat outperformed all
baselines across all four tasks.
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Figure 5. On the MoleculeNet datasets, DrugChat (DC) consistently outperforms Galactica (GAL), Text2Mol (T2M), and KV-PLM
(KYV), while achieving performance comparable to MPNN, Chemprop (CP), and CLAMP. Some baseline results were obtained
from (Seidl et al., 2023), where only AAUPRC was reported; therefore, we report AAUPRC for consistency in these comparisons.
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Figure 6. DrugChat demonstrated strong zero-shot generalization on the FS-Mol dataset. a, In the full zero-shot setting—where both
the tasks and compounds in the test set were unseen during training—DrugChat (DC) significantly outperformed all baselines, including
CLAMP, Text2Mol (T2M), KV-PLM (KV), and Galactica (GAL). b, In the partial zero-shot setting—where all test tasks were unseen and
a subset of test compounds were unseen during training—DrugChat significantly outperformed Text2Mol, KV-PLM, and Galactica, and
performed comparably to CLAMP.
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Figure 7. Ablation studies of DrugChat. Integrating both molecular graph and image modalities, DrugChat (DC) outperformed its
single-modality variants—DC-G (graph only) and DC-I (image only)—on the cytotoxicity dataset. Additionally, the version of DrugChat
pretrained on PubChem bioassay data outperformed the variant trained from scratch (DC-FS).
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What are the indications for this drug?

It is a non-peptide angiotensin-converting enzyme inhibitor (ACE
inhibitor) used to treat hypertension, heart failure, and renal disease. It
is also used to reduce the risk of cardiovascular events in patients with
diabetes mellitus and left ventricular dysfunction.

What is the mechanism of action?

It works by blocking the action of angiotensin-converting enzyme (ACE)
on renin-angiotensin-aldosterone system (RAAS) in regulating blood
pressure and electrolyte balance. ACE is responsible for converting
angiotensin | to angiotensin I, which causes vasoconstriction, leading to
an increase in blood pressure. By inhibiting ACE, blocks the formation of
angiotensin Il, leading to relaxation of blood vessels and decrease in
blood pressure. This results in decreased levels of RAAS, which in turn
decreases the production of aldosterone, a hormone that regulates
electrolyte balance.

In which organ is angiotensin | converted to angiotensin 11?7

Angiotensin | is converted to angiotensin Il by the action of angioten-
sin-converting enzyme (ACE) in the lungs.

Can you explain RAAS in more detail?

Yes, of course! RAAS stands for Renin-Angiotensin-Aldosterone
System. It is a hormonal pathway in the regulation of blood pressure
and electrolyte balance.

Renin is a hormone produced by the kidneys in response to low blood
pressure or a decrease in blood volume. Renin activates the
renin-angiotensin-aldosterone system (RAAS) by activating the
intrarenal renin-angiotensin-aldosterone pathway. The renin-angioten-
sin-aldosterone pathway increases blood pressure by increasing the
production of angiotensin Il, a potent vasoconstrictor.

Aldosterone is a hormone produced by the adrenal gland in response
to the renin-angiotensin-aldosterone pathway. Aldosterone regulates
blood pressure and sodium level in the kidneys.

The RAAS is a complex hormonal pathway that plays a crucial role in
regulation of blood pressure and electrolyte balance. The activity of the
RAAS can be regulated by several factors, including blood pressure,
salt and water balance, and hormones like renin and angiotensin II.

Figure 8. An exemplar multi-turn dialogue between DrugChat and a user regarding the same molecule.
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Figure 9. Our curated dataset features a diverse distribution of compound categories. The inner disk represents the compound
superclasses, while the outer ring shows the corresponding subclasses.
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Figure 10. The distribution of ground-truth answers in the test set across the tasks of predicting cytotoxicity, administration routes, and
prodrug status.
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