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ABSTRACT

Hierarchical reinforcement learning (HRL) addresses complex long-horizon tasks
by skillfully decomposing them into subgoals. Therefore, the effectiveness of HRL
is greatly influenced by subgoal reachability. Typical HRL methods only consider
subgoal reachability from the unilateral level, where a dominant level enforces
compliance to the subordinate level. However, we observe that when the dominant
level becomes trapped in local exploration or generates unattainable subgoals, the
subordinate level is negatively affected and cannot follow the dominant level’s
actions. This can potentially make both levels stuck in local optima, ultimately
hindering subsequent subgoal reachability. Allowing real-time bilateral information
sharing and error correction would be a natural cure for this issue, which motivates
us to propose a mutual response mechanism. Based on this, we propose the
Bidirectional-reachable Hierarchical Policy Optimization (BrHPO)—a simple yet
effective algorithm that also enjoys computation efficiency. Experiment results on
a variety of long-horizon tasks showcase that BrHPO outperforms other state-of-
the-art HRL baselines, coupled with a significantly higher exploration efficiency.

1 INTRODUCTION

Reinforcement learning (RL) has demonstrated impressive capabilities in decision-making scenarios,
ranging from achieving superhuman performance in games (Mnih et al., 2015; Lample & Chaplot,
2017; Silver et al., 2018), developing complex skills in robotics (Levine et al., 2016; Schulman et al.,
2015) and enabling smart policies in autonomous driving (Jaritz et al., 2018; Kiran et al., 2021;
Cao et al., 2023). Most of these accomplishments are attributed to single-level methods (Sutton
& Barto, 2018), which learn a flat policy by trial and error without extra task decomposition or
subgoal guidance. While single-level methods excel at short-horizon tasks involving inherently
atomic behaviors (Levy et al., 2018; Nachum et al., 2018b; Pateria et al., 2021b), they often struggle
to optimize effectively in long-horizon complex tasks that require multi-stage reasoning or sparse
reward signals. To address this challenge, hierarchical reinforcement learning (HRL) has been
proposed, aiming to decompose complex tasks into a hierarchy of subtasks or skills (Kulkarni et al.,
2016; Bacon et al., 2017; Vezhnevets et al., 2017). By exploiting subtask structure and acquiring
reusable skills, HRL empowers agents to efficiently solve long-horizon tasks.

Subgoal-based HRL methods, a prominent paradigm in HRL, partition complex tasks into simpler
subtasks by strategically selecting subgoals to guide exploration (Vezhnevets et al., 2017; Nachum
et al., 2018b). Subgoal reachability is crucial in evaluating how effectively the low-level policies’
exploration trajectory aligns with the high-level policy’s subgoal, ultimately determining task perfor-
mance (Vezhnevets et al., 2017; Zhang et al., 2020). However, existing approaches for improving
subgoal reachability predominantly focus on one level of the hierarchical policy, imposing dom-
inance on the other level. This can be categorized as either low-level dominance or high-level
dominance (Nachum et al., 2018b; Zhang et al., 2020; Andrychowicz et al., 2017; Chane-Sane et al.,
2021; Eysenbach et al., 2019; Jurgenson et al., 2020). Low-level dominance (Figure 1a) refers to
the accommodation of low-level passive exploratory behaviour by the high-level policy, causing the
agent to get stuck near the starting position. On the other hand, high-level dominance (Figure 1b) may
result in unattainable subgoals, causing repeated failure and sparse learning signals for the low-level
policy. To assess these methods, we applied them to two HRL benchmarks, AntMaze and AntPush,
and generated state-subgoal trajectories for visualization. The results reveal that the former methods
exhibit lower exploration efficiency as the high level must generate distant subgoals to guide the low
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Figure 1: A motivating example of our proposed
BrHPO. The earth, brain, and robot symbols stand
for the environment, high-level policy, and low-
level policy, respectively.
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Figure 2: The state-subgoal trajectory comparison
of HIRO (a), RIS (b) and BrHPO (c). BrHPO
can improve the alignment between states and
subgoals, thus benefitting overall performance.

level (Figure 2a), while the latter methods may create unattainable subgoals, resulting in the low-level
policy’s inability to track them (Figure 2b).

Enforcing subgoal reachability through unidirectional communication between the two levels has
limitations in overall performance improvement. A bidirectional reachability approach, illustrated
in Figure 1c, holds the potential to be more effective in HRL. From an optimization perspective,
bidirectional reachability provides two key benefits: 1) the high-level policy can generate subgoals
that strike a balance between incentive and accessibility, and 2) the low-level policy can take
more effective actions that drive subtask trajectories closer to the subgoal. Despite its potential
advantages, bidirectional subgoal reachability has not been extensively studied in previous research,
and its effectiveness in enhancing HRL performance requires further investigation. We explore the
theoretical benefits of bidirectional insights, and empirically demonstrate its effectiveness through
visualizing the alignment between states and subgoals in Figure 2 and our ablation studies.

This paper aims to investigate the potential of bidirectional subgoal reachability in improving subgoal-
based HRL performance, both theoretically and empirically. Specially, we propose a joint value
function and then derive a performance difference bound for hierarchical policy optimization. The
analysis suggests that enhancing subgoal reachability, from the mutual response of both-level policies,
can effectively benefit overall performance. Motivated by these, our main contribution is a simple
yet effective algorithm, Bidirectional-reachable Hierarchical Policy Optimization (BrHPO) which
incorporates a mutual response mechanism to efficiently compute subgoal reachability and integrate
it into hierarchical policy optimization. Through empirical evaluation, we demonstrate that BrHPO
achieves promising asymptotic performance and exhibits superior training efficiency compared to
state-of-the-art HRL methods. Additionally, we investigate different variants of BrHPO to showcase
the effectiveness and robustness of the proposed mechanism.

2 PRELIMINARIES

We consider an infinite-horizon discounted Markov Decision Process (MDP) with state space S,
action space A, goal/subgoal space G, unknown transition probability P a

s,s′ : S × A× S → [0, 1],
reward function r : S ×A× G → R, and discounted factor γ ∈ (0, 1).

Framework of subgoal-based HRL. Subgoal-based HRL, also called Feudal HRL (Dayan &
Hinton, 1992; Vezhnevets et al., 2017), comprises two hierarchies: a high-level policy generating
subgoals, and a low-level policy pursuing subgoals in each subtask. Assume that each subtask
contains a fixed length of k timesteps. At the beginning of the i-th subtask where i ∈ N, the high-
level policy πh observes state sik and then outputs a subgoal g(i+1)k ∼ πh(·|sik) ∈ G. Then, in
each subtask, the low-level policy πl performs actions conditioned on the subgoal and the current
state, aik+j ∼ πl(·|sik+j , g(i+1)k) ∈ A, where j ∈ [0, k − 1] is a pedometer in a subtask. With the
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guidance from the subgoal, the state-subgoal-action trajectory in the i-th subtask comes out to be

τπh,πl

i ≜
{
(sik+j)|sik, g(i+1)k ∼ πh(·|sik, ĝ), aik+j ∼ πl(·|sik+j , g(i+1)k)

}k−1

j=0
, (2.1)

and the whole task trajectory forms by stitching all subtask trajectories as τ = ∪∞i=0 (τ
πh,πl

i ).

Following prior methods (Andrychowicz et al., 2017; Nachum et al., 2018b; Zhang et al., 2020), we
optimize πh based on the high-level reward rh, defined as the environment reward feedback summed
over a subtask

rh(τ
πh,πl

i ) = rh(sik, g(i+1)k) =

k−1∑
j=0

r(sik+j , aik+j , ĝ), (2.2)

and the intrinsic reward for the low-level policy πl is

rl(sik+j , aik+j , g(i+1)k) = −D(ψ(sik+j+1), g(i+1)k). (2.3)

where ψ : S 7→ G is a pre-defined state-to-goal mapping function and D : G × G → R≥0 is a chosen
binary or continuous distance measurement.

Unilateral subgoal reachability in hierarchical policy optimization. To optimize both πh and πl,
previous methods would establish the separated value functions with the initial state s0 ∈ d0(s),

V πh(s0) =

∞∑
i

γiEs∼Pπl,g

ik (·|s0),g∼πh(·|s,ĝ)
[
rh(sik, g(i+1)k)

]
, (2.4)

V πl(s0) =

∞∑
t

γtEs,a∼Pπl,g
t (·,·|s0),g∼πh(·|s,ĝ) [rl(st, at, g)] , (2.5)

where Pπl,g
t (s, a|s0) represents the probability of πl(·|s, g) reaching the state-action pair (s, a) at

time step t and Pπl,g
t (s|s0) =

∑
a P

πl,g
t (s, a|s0) as the state reaching probability.

Directly maximizing the high- and low-level value functions in isolation through off-policy training
methods, such as Vanilla HRL (Kulkarni et al., 2016; Wöhlke et al., 2021), would result in per-
formance oscillation or task failure due to the dynamically varying and inter-nested nature of the
hierarchical policies. To mitigate these issues, recent studies (Pateria et al., 2021b) have proposed
incorporating subgoal reachability to bridge the high- and low-level optimization. However, relying
solely on unilateral subgoal reachability can lead to the over-optimization of the value function in
the dominant layer, while imposing additional constraints (Zhang et al., 2020) or changing training
experience (Nachum et al., 2018b) for the follower level’s optimization, both of which can lead to
increased computational complexity and passive exploration.

3 INVESTIGATION ON BIDIRECTIONAL SUBGOAL REACHABILITY IN HRL

In this section, we investigate the theoretical benefits of bidirectional subgoal reachability compared
with the unilateral one. Specifically, we first construct a joint value function to estimate the perfor-
mance of hierarchical policies. Following up, a performance difference bound of subgoal-based HRL
is derived, which supplies the design insight of the mutual response mechanism.

3.1 JOINT VALUE FUNCTION FOR SUBGOAL-BASED HRL

To evaluate the overall performance of subgoal-based HRL, we construct a joint value function by
calculating the discounted sum of step-wise rewards accumulated along the trajectory generated by
both the high- and low-level policies, as presented below:

Definition 3.1 (Joint Value Function of Hierarchical Policies). The long-term cumulative return
V πh,πl(s0) of the subgoal-based HRL in the real environment can be defined as,

V πh,πl(s0) =

∞∑
t

γtEs,a∼Pπl,g
t (·,·|s0),g∼πh(·|s) [r(st, at, ĝ)] . (3.1)
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Then, we turn to derive a refined joint value function, by decomposing it via the summation of
subtasks (refer to the blue part),

V πh,πl(s0) =

∞∑
i=0

Eg∼πh(·|s)

γik
k−1∑

j=0

γjEs,a∼Pπl,g

ik+j(·,·|s0)
r(sik+j , aik+j , ĝ)

 . (3.2)

With the joint value function established, we could use a single value function to assess the overall
performance of bi-level policies, which enables us to easily construct a performance difference bound.

3.2 THEORETICAL INSIGHTS FROM PERFORMANCE DIFFERENCE BOUND

To investigate the optimality of the policies, we derive a performance difference bound between an
induced optimal hierarchical policy Π∗ = {π∗

h, π
∗
l } and a learned one Π = {πh, πl}, which can be

formulated as V Π∗
(s)− V Π(s) ≤ C. Hence, the learned hierarchical policy Π can be optimized by

minimizing the upper bound C.
Theorem 3.2 (Sub-optimal performance difference bound of HRL). The performance difference
bound C between the induced optimal hierarchical policies Π∗ and the learned one Π can be

C(πh, πl) =
2rmax

(1− γ)2

[
(1 + γ)Eg∼πh

(
1 +

π∗
h

πh

)
ϵgπ∗

l ,πl︸ ︷︷ ︸
(i) hierarchical policies’ inconsistency

+ 2
(
Rπh,πl

max + 2γk
)︸ ︷︷ ︸

(ii) subgoal reachability penalty

]
, (3.3)

where ϵgπ∗
l ,πl

is the distribution shift between π∗
l and πl, and Rπh,πl

max is the maximum subgoal
reachability penalty from the learned one Π, both of which are formulated as,

ϵgπ∗
l ,πl

= max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g)) and Rπh,πl

max = max
i∈N
Rπh,πl

i .

Summary of proof. We first divide the bound into three parts, V Π∗
(s) − V Π(s) =

V π∗
h,π

∗
l (s0)− V π∗

h,πl(s0)︸ ︷︷ ︸
L1

+V π∗
h,πl(s0)− V πh,π

∗
l (s0)︸ ︷︷ ︸

L2

+V πh,π
∗
l (s0)− V πh,πl(s0)︸ ︷︷ ︸

L3

. Then, we find

the similarity of L1 and L3, both of which denote that under the same high-level policy (π∗
h in L1

while πh in L3). By Performance Difference Lemma (Kakade & Langford, 2002), we have

L1 + L3 ≤
2rmax

(1− γ)2
Eg∼πh

(
1 +

π∗
h

πh

)
ϵgπ∗

l ,πl
. (3.4)

To deal with the middle term L2, in each subtask we define the variableRπh,πl

i by
Rπh,πl

i = Eg(i+1)k∼πh,s(i+1)k∼τ
πh,πl
i

[
D(ψ(s(i+1)k), g(i+1)k)/D(ψ(sik), g(i+1)k)

]
. (3.5)

Then, we derive that
L2 ≤

rmax

(1− γ)2
(Rπh,πl

max + 2γk). (3.6)

Thus, we take the results of Equations (3.4) and (3.6) and achieve the final bound.

The variableRπh,πl

i emerges as a pivotal element for several reasons. Firstly, it serves as a crucial
bridge connecting high- and low-level policies. The denominator reflects subgoal guidance by πh,
while the numerator represents the final distance achieved through exploration by πl. This dual
perspective highlights its significance in the hierarchical framework. Secondly, in contrast to prior
work where subgoal reachability relies on environmental dynamics (Zhang et al., 2020) or policy
behavior (Nachum et al., 2018b; Kreidieh et al., 2019), our metric focuses on task completion,
measured by the final distance divided by the initial distance. This shift of focus allows us to centre
our attention squarely on the task itself. As a result, we proposeRπh,πl

i as a novel subgoal reachability
metric in this paper, which lays the foundation for our algorithm design.

3.3 ALGORITHMIC INSTANTIATION

Motivated by theoretical insights in the previous section, here we turn to design the core mutual
response mechanism, which prompts the hierarchical policy optimization. Instantiating mutual
response mechanism amounts to specify two main designs: 1) how to measure the dynamically
varying subgoal reachability; 2) how to incorporate subgoal reachability into the high-level policy
optimization and low-level policy optimization?
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Efficient subgoal reachability computation. Although equation (3.5) provides a method for
computing subgoal reachability, the computational efficiency may be hindered when the low-level
distance function D is complex. Fortunately, by recognizing that the low-level intrinsic reward
shares the same form as the distance computation, we can replace the distance computation with the
low-level reward. Thus, we can calculate the subgoal reachability by

Rπh,πl

i = Eg(i+1)k∼πh,s(i+1)k∼τ
πh,πl
i

[D(ψ(s(i+1)k), g(i+1)k)

D(ψ(sik), g(i+1)k)

]
= Erl∼τ

πh,πl
i

rl,(i+1)k

rl,ik
. (3.7)

Specifically, we use a temporary replay buffer for storing subtask trajectory τπh,πl

i upon subtask
completion. Then, we can sample the first low-level reward rl,ik = rl(sik, aik, g(i+1)k) and the last
one rl,(i+1)k = rl(s(i+1)k, a(i+1)k, g(i+1)k) from the temporary buffer to calculate the reachability.
If rl,ik = 0, it indicates that the initial state has already reached the subgoal, and the subtask is
deemed complete. Then, we setRπh,πl

i = 0, and πl can be inactive for the remainder of the subtask.

Notably, our design mitigates over-reliance on the summation of step-wise low-level reward or the
environmental dynamic property, but merely considers the start and end point of the subtask trajectory,
consequently relaxing the constraint on low-level policy exploration. Further, such a design is quite
lightweight, incurring O(1) computational complexity, without introducing additional training costs.

High-level policy optimization. In our approach, we opt to use Rπh,πl

i as a regularization for
optimizing πh rather than reward penalties. This choice offers several advantages. During the
high-level policy evaluation phase, we exclusively rely on rewards from the environment to iteratively
compute Q-values, which ensures the accuracy of guidance performance evaluation. Furthermore, in
the policy improvement phase, usingRπh,πl

i as the regularization explicitly constrains the high-level
policy’s subgoal generation. This focus allows it to concern the subgoal-reaching performance of the
low-level policy within a subtask. Specifically, when using soft-actor-critic (SAC) (Haarnoja et al.,
2018b) as the backbone, we evaluate the high-level policy in the usual manner,

Qπh(s, g) = argmin
Q

1

2
Es,g∼Dh

[rh(s, g) + γEs′∼Dh,g′∼πh
Qπh(s′, g′)−Qπh(s, g)]

2
, (3.8)

while the policy updates by minimizing the expected KL-divergence with the reachability term as,

πh = argmin
πh

Es∼Dh
[DKL(πh(·|s)∥ exp(Qπh(s, g)− V πh(s))) + λ1Rπh,πl

i ] , (3.9)

where V πh(s) = Eg∼πh(·|s) [Q
πh(s, a)− log πh(·|s)] is the high-level soft state value function and

λ1 is a weight factor. Thus, we can adjust the response of the high level through tuning λ1.

Low-level policy optimization. In contrast to high-level policy, we utilize Rπh,πl

i as a reward
bonus for low-level policy. This approach is designed to enable πl to simultaneously focus on both
low-level rewards and subgoal reachability during subgoal exploration. It’s important to note that
enhancing low-level rewards by πl can not guarantee improved subgoal reachability. For instance, in
Subtask 1, a subgoal that is nearby yet challenging may result in poor subgoal reachability (e.g., initial
distance is 10, but final distance is 5). Conversely, in Subtask 2, distant yet accessible subgoals can
achieve better subgoal reachability (e.g., initial distance is 20, and final distance is 8). To address this,
we introduce subgoal reachability as well as the low-level reward in low-level policy optimization,
aiming to enhance the overall performance of πl. Thus, the surrogate low-level reward is

r̂l(sik+j , aik+j , g(i+1)k) = rl(sik+j , aik+j , g(i+1)k)− λ2Rπh,πl

i . (3.10)

With the surrogate low-level reward established, various policy optimizers (Fujimoto et al., 2018;
Haarnoja et al., 2018b) could be adopted, here we also opt for SAC as the backbone algorithm for
low-level policy optimization,

Qπl(s, a) = argmin
Q

1

2
Es,g,a∼Dl

[r̂l(s, a, g) + γEs′,g∼Dl,a′∼πl
Qπl(s′, a′)−Qπl(s, a)]

2
, (3.11)

πl = argmin
πl

Es,g∼Dl
[DKL(πl(·|s, g)∥ exp(Qπl(s, a)− V πl(s)))] . (3.12)
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(a) AntMaze (b) AntBigMaze (c) AntPush (d) AntFall (e) Reacher3D (f) Pusher

Figure 3: Environments used in our experiments. In maze tasks, the red square indicates the start
point and the blue square represents the target point. In manipulation tasks, a robotic arm aims to
make its end-effector and (puck-shaped) grey object reach the target position, which is marked as a
red ball, respectively.
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Figure 4: The average success rate in various continuous control tasks of BrHPO and baselines. The
solid lines are the average success rate, while the shades indicate the standard error of the average
performance. All algorithms are evaluated with 5 random seeds.

4 EXPERIMENT

Our experimental evaluation aims to investigate the following questions: 1) How does BrHPO’s
performance on long-term goal-conditioned benchmark tasks compare to that of state-of-the-art
counterparts in terms of sample efficiency and asymptotic performance? 2) How effective is the
mutual response mechanism in enhancing subgoal reachability and improving performance?

4.1 EXPERIMENTAL SETUP

We evaluate BrHPO on two categories of challenging long-horizon continuous control tasks, which
feature both dense and sparse environmental reward, as illustrated in Figure 3. In the maze navigation
environments, the reward is determined by the negative L2 distance between the current state and the
target position within the goal space. In the robotics manipulation environments with sparse rewards,
the reward is set to 0 when the distance is below a predefined threshold; otherwise, it’s set to −1.
Task success is defined as achieving a final distance to the target point of d ≤ 5 for the maze tasks
and d ≤ 0.25 for the manipulation tasks. To ensure a fair comparison, all agents are initialized at the
same position, eliminating extra environmental information introduction from random initialization,
as discussed in (Lee et al., 2022). Detailed settings can be found in Appendix B.
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4.2 COMPARATIVE EVALUATION

We compared BrHPO with the following baselines. 1) HIRO (Nachum et al., 2018b): designed an
off-policy correction mechanism which required high-level experience to obey the current low-level
policy; 2) HIGL (Kim et al., 2021): relied on the off-policy correction mechanism and introduced a
k-step adjacent constraint (Zhang et al., 2020) and the novelty to discover appropriate subgoals; 3)
RIS (Chane-Sane et al., 2021): utilized the hindsight method to generate the least-cost middle points
as subgoals, forcing the low-level policy to follow the given subgoals; 4) CHER (Kreidieh et al.,
2019): considered the cooperation of hierarchical policies, and the high-level policy needs to care
about the low-level behaviour per step; 5) SAC (Haarnoja et al., 2018b): served as a benchmark of
flat off-policy model-free algorithm and was applied as the backbone of BrHPO. Simply put, HIRO
and HIGL focused on low-level domination, and RIS focused on high-level domination. CHER also
considers the cooperation of different level policies while it requires step-by-step consideration.

The learning curves of BrHPO and the baselines across all tasks are plotted in Figure 4. Overall, the
results demonstrate that BrHPO outperforms all baselines both in exploration efficiency and asymp-
totic performance. In particular, when dealing with large-scale (AntBigMaze) and partially-observed
environments (AntPush and AntFall), BrHPO achieves better exploration and training stability, bene-
fitting from the mutual response mechanism with information sharing and error correction for both
levels. In contrast, acceptable baselines like HIRO, HIGL and CHER exhibit performance fluctuations
and low success rates. It’s worth noting that BrHPO can handle sparse reward environments without
any reward shaping or hindsight relabeling modifications, indicating that our proposed mechanism
can capture serendipitous success and provide intrinsic guidance.

4.3 ABLATION STUDY

Next, we make ablations and modifications to our method to validate the effectiveness and robustness
of the mechanism we devised.

Ablation on design choices. To investigate the effectiveness of each component, we compared
BrHPO with several variants through AntMaze and AntPush tasks. The BrHPO variants include, 1)
Vanilla, which removes the mutual response mechanism in both-level policies, resulting in πh and πl
being trained solely by conventional SAC; 2) NoReg, which keeps the low-level reward bonus but
disables the regularization term in high-level policy training; 3) NoBonus, where only the high-level
policy concerns subgoal reachability but the low-level reward bonus is removed.

The learning curves and state-subgoal trajectory visualizations from different variants are presented in
Figure 6. BrHPO outperforms all three variants by a significant margin, highlighting the importance
of the mutual response mechanism at both levels. Interestingly, the NoBonus variant achieves better
performance than the NoReg variant, suggesting that the subgoal reachability addressed by the high-
level policy has a greater impact on overall performance. This observation is further supported by the
trajectory visualization results.
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Figure 5: Training wall-time

Computation load. The training wall-time is reported
in Figure 5, where methods are benchmarked on a sin-
gle RTX3090 GPU. Our method demonstrates efficient
computational performance, with training times compara-
ble to a flat SAC policy. Notably, compared to previous
approaches that utilize adjacency matrices or graphs to
model subgoal reachability, our method achieves at least
a 2x improvement in training efficiency with performance
guarantee. More details are provided in Table 4 of Ap-
pendix B.5.

Hyperparameters. We empirically studied the sensitiv-
ity of weight factors λ1 and λ2 in Figure 7. The results
show that λ1 and λ2 within a certain range are accept-
able. Upon closer analysis, we observed that when λ1
is too small, the regularization term in high-level policy

7
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Figure 6: The performance and state-subgoal trajectory visualization from different BrHPO variants.
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Figure 7: The learning curves with different
weight factors λ1 and λ2 by AntMaze task.
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Figure 8: The learning curves from different D
and k to verify the robustness of the mechanism.

optimization has minimal influence. Consequently, the high-level policy tends to disregard the perfor-
mance of the low-level policy during tuning, resembling a high-level dominance scenario. Conversely,
when λ1 is too large, the high-level policy overly prioritizes subgoal reachability, diminishing its
exploration capability and resembling a low-level dominance scenario. These observations validate
the effectiveness of the mutual response mechanism in maintaining a balanced interaction between the
high- and low-level policies. Additionally, the results for λ2 suggest that a larger value can generally
improve subgoal reachability from the perspective of the low-level policy, leading to performance
improvements and enhanced stability.
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Figure 9: Performance comparison be-
tween BrHPO and baselines by Hu-
manoidMaze. Mean and std by 4 runs.

Robustness of mutual response mechanism. We con-
ducted additional experiments on the AntMaze task to
verify the robustness of the proposed mechanism. The
computation of subgoal reachability, a key factor in the
mutual response mechanism, depends on the choice of
the distance measurement D and the subtask horizon k.
To test the distance measurement D, we compared three
distance functions: L2 norm, L∞ norm, and L1 norm.
Figure 8a shows that our method performs well regardless
of the distance function used, highlighting the adaptability
of the proposed mechanism. Additionally, we varied the
subtask horizon by setting k = 5, 10, 20, 50 (Figure 8b).
Surprisingly, we achieved success rates of around 0.9 with
different subtask horizons, indicating that the performance
is robust to variations in the subtask horizon, only with
a slight effect on the convergence speed during training.
This flexibility of BrHPO in decoupling the high- and low-level horizons without the need for extra
graphs, as required in DHRL (Lee et al., 2022), is noteworthy. More ablations by Reacher3D task are
provided in Figure 14 of Apppendix B.5.

In addition to evaluating parametric robustness, we subjected BrHPO to testing in stochastic environ-
ments to further evaluate its robustness. As depicted in Figure 15 of Apppendix B.5, we introduce
varying levels of Gaussian noise into the state space. The results demonstrate our BrHPO can
effectively mitigate the impact of noise and ensure consistent final performance.

Extension in complex environment. To further evaluate BrHPO’s performance, we introduce a
challenging HumanoidMaze task, where a humanoid robot navigates through a maze with right-angled
turns. In this task, the simulated humanoid operates in a state space comprising 274 dimensions and

8
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an action space of 17 dimensions. The primary goal of πl is to maintain body balance while following
subgoals generated by the high-level policy. Consequently, extensive training is required for the πl
to enable the humanoid to acquire proficient walking skills. This training process demands that πh
exhibits “patience”, gradually adjusting subgoals to effectively guide the humanoid’s progress. As
shown in Figure 9, the performance comparison clearly demonstrates the significant advantage of
BrHPO over the baselines, even when dealing with high-dimensional continuous tasks. For additional
insights, trajectory visualizations are available in Figure 12 of Appendix B.5.

5 RELATED WORKS

Hierarchical Reinforcement Learning (HRL) methods have emerged as promising solutions for
addressing long-horizon complex tasks, primarily due to the synergistic collaboration between high-
level task division and low-level exploration (Jong et al., 2008; Haarnoja et al., 2018a; Nachum et al.,
2019; Pateria et al., 2021b; Eppe et al., 2022). Generally, HRL methods can be broadly categorized
into two groups, option-based HRL (Sutton et al., 1999; Precup et al., 1998; Zhang et al., 2021;
Mannor et al., 2004) and subgoal-based HRL (Dayan & Hinton, 1992; Nachum et al., 2019; Campos
et al., 2020; Li et al., 2021b; Islam et al., 2022), that highlights the scope of guidance provided by the
high-level policy. The first avenue in HRL involves the use of options to model the policy-switching
mechanism in long-term tasks, which provides guidance to the low-level policy on when to terminate
the current subtask and transition to a new one (Machado et al., 2017; Zhang & Whiteson, 2019).
In contrast, the subgoal-based HRL avenue (Vezhnevets et al., 2017; Nachum et al., 2018a; Gürtler
et al., 2021; Czechowski et al., 2021; Li et al., 2021a) focuses on generating subgoals in fixed horizon
subtasks rather than terminal signals, and our work falls under this category. Notably, subgoal-based
HRL approaches prioritize subgoal reachability as a means of achieving high performance (Stein
et al., 2018; Paul et al., 2019; Li et al., 2020; Czechowski et al., 2021; Pateria et al., 2021a).

Various methods have been proposed to enhance subgoal reachability, from either the high-level
or low-level perspectives. When the low level is considered to be dominant, several works have
proposed relabeling or correcting subgoals based on the exploration capacity of the low-level policy.
Examples include off-policy correction in HIRO (Nachum et al., 2018b) and hindsight relabeling
in HER (Andrychowicz et al., 2017), RIS (Chane-Sane et al., 2021) and HAC (Levy et al., 2019).
On the other hand, when the high-level dominates, subgoals are solved from given prior experience
or knowledge, and the low-level policy is trained merely to track the given subgoals (Savinov et al.,
2018; Huang et al., 2019; Eysenbach et al., 2019; Jurgenson et al., 2020). In contrast to the listed
prior works, BrHPO proposes a mutual response mechanism for ensuring bidirectional reachability.

Meanwhile, our method relates to previous research that encourages cooperation between the high-
level policy and the low-level one, where they explored various techniques for modelling subgoal
reachability, including k-step adjacency matrix (Ferns et al., 2004; Castro, 2020; Zhang et al., 2020)
or state-subgoal graph (Zhang et al., 2018; Kim et al., 2021; Lee et al., 2022). However, these
methods can be computationally intensive and conservative. Our proposed method provides a more
computationally efficient and flexible approach to gain subgoal reachability. By avoiding an explicit
representation of the state-subgoal adjacency, our method can be more easily deployed and applied to
a variety of different environments.

6 CONCLUSION

In this work, we identify that bilateral information sharing and error correction have been long
neglected in previous HRL works. This will potentially cause local exploration and unattainable
subgoal generation, which hinders overall performance and sample efficiency. To address this
issue, we delve into the mutual response of hierarchical policies, both theoretically and empirically,
revealing the crucial role of the mutual response mechanism. Based on these findings, we proposed
the Bidirectional-reachable Hierarchical Policy Optimization (BrHPO) algorithm. BrHPO not only
matches the best HRL algorithms in asymptotic performance, but it also shines in low computational
load. Although BrHPO offers many advantages, a main challenge is to design an appropriate low-level
reward to compute the subgoal reachability, thus limiting the application in sparse low-level reward
settings (Lee et al., 2022). Future work that merits investigation are integrating up-to-date reachability
measurement and policy optimization backbone to develop strong HRL algorithm.
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A THEORETICAL ANALYSIS

A.1 OMITTED PROOFS

Theorem A.1 (Sub-optimal performance difference bound of HRL). The performance difference
bound C between the induced optimal hierarchical policies Π∗ and the learned one Π can be

C(πh, πl) =
2rmax

(1− γ)2

[
(1 + γ)Eg∼πh

(
1 +

π∗
h

πh

)
ϵgπ∗

l ,πl︸ ︷︷ ︸
(i) hierarchical policies’ inconsistency

+ 2
(
Rπh,πl

max + 2γk
)︸ ︷︷ ︸

(ii) subgoal reachability penalty

]
, (A.1)

where ϵgπ∗
l ,πl

is the distribution shift between π∗
l and πl, and Rπh,πl

max is the maximum subgoal
reachability penalty from the learned one Π, both of which are formulated as,

ϵgπ∗
l ,πl

= max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g)) and Rπh,πl

max = max
i∈N
Rπh,πl

i .

Proof. To derive the performance difference bound between Π∗ and Π, we first divide the bound into
three terms,

V Π∗
(s0)− V Π(s0) = V π∗

h,π
∗
l (s0)− V πh,πl(s0)

= V π∗
h,π

∗
l (s0)− V π∗

h,πl(s0)︸ ︷︷ ︸
L1

+V π∗
h,πl(s0)− V πh,π

∗
l (s0)︸ ︷︷ ︸

L2

+ V πh,π
∗
l (s0)− V πh,πl(s0)︸ ︷︷ ︸

L3

. (A.2)

Then, our proof can be obtained to by tackling L1, L2 and L3, respectively.

• Derivation of L1

By adding and subtracting the same term in L1, we obtain

L1 = V π∗
h,π

∗
l (s0)−

[
Ṽ

π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h,s∼P
π∗
l
,g

k (·|s0)
V π∗

h,πl(sk)

]
+

[
Ṽ

π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h,s∼P
π∗
l
,g

k (·|s0)
V π∗

h,πl(sk)

]
− V π∗

h,πl(s0)

=

[
Ṽ

π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h,s∼P
π∗
l
,g

k (·|s0)
V π∗

h,π
∗
l (sk)

]
← By Lemma A.3

−
[
Ṽ

π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h,s∼P
π∗
l
,g

k (·|s0)
V π∗

h,πl(sk)

]
+

[
Ṽ

π∗
h,π

∗
l

0 (s0) + γkE
g∼π∗

h,s∼P
π∗
l
,g

k (·|s0)
V π∗

h,πl(sk)

]
−
[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h,s∼Pπl,g

k (·|s0)V
π∗
h,πl(sk)

]
= γkE

g∼π∗
h,s∼P

π∗
l
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k (·|s0)

[
V π∗

h,π
∗
l (sk)− V π∗

h,πl(sk)
]

︸ ︷︷ ︸
part a

+
[
Ṽ

π∗
h,π

∗
l

0 (s0)− Ṽ
π∗
h,πl

0 (s0)
]

︸ ︷︷ ︸
part b

+ γk
[
E
g∼π∗

h,s∼P
π∗
l
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k (·|s0)
V π∗

h,πl(sk)− Eg∼π∗
h,s∼Pπl,g

k (·|s0)V
π∗
h,πl(sk)

]
︸ ︷︷ ︸

part c

. (A.3)

Then, we can deal with the three parts one by one to obtain the derivation of L1. Note that, part b
represents the performance discrepancy in the first subtask, caused by different low-level policies π∗

l
and πl. Thus, consider the policy shift of the low-level policies, we suppose

ϵgπ∗
l ,πl

= max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g)) . (A.4)
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Then, recall rmax to be the maximum environmental reward, i.e., r ≤ rmax, we have

part b = Ṽ
π∗
h,π

∗
l

0 (s0)− Ṽ
π∗
h,πl

0 (s0)

=

k−1∑
j=0

E
gk∼π∗

h,s,a∼P
π∗
l
,g

j (·,·|s0)

[
γjr(sj , aj , ĝ)

]
−
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j=0
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[
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≤
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j=0
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h
2
[
γjr(sj , aj , ĝ)

]
DTV
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Pπ∗
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)
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j=0
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h
γjjϵgπ∗

l ,πl
. ← By Lemma A.4 (A.5)

For part c, note that the joint value function can be bounded as V πh,πl(s0) ≤ rmax/(1− γ). We can
apply Lemma A.4 to bound the discrepancy of the low-level policies, and have

part c = γk
[
E
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h,s∼P
π∗
l
,g

k (·|s0)
V π∗
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]
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l ,πl
, (A.6)

At last, for part a, we can apply the same recursion every k steps,

part a = γkE
g∼π∗

h,s∼P
π∗
l
,g

k (·|s0)

[
V π∗

h,π
∗
l (sk)− V π∗

h,πl(sk)
]

≤ γ2kE
g∼π∗

h,s∼P
π∗
l
,g

2k (·|s0)

[
V π∗

h,π
∗
l (s2k)− V π∗

h,πl(s2k)
]

+ 2rmax

2k−1∑
j=k

Eg∼π∗
h
γjjϵgπ∗

l ,πl
+

2γ2krmax

1− γ
Eg∼π∗

h
2kϵgπ∗

l ,πl
. (A.7)

Now, with the derivation of part a, part b and part c, we can combine these andrepeat the recursion
step for infinitely many times

L1 = part a + part b + part c

≤ 2rmax

k−1∑
j=0

Egk∼π∗
h
γjjϵgπ∗

l ,πl
+

2γkrmax

1− γ
Eg∼π∗

h
kϵgπ∗

l ,πl

+ 2rmax

2k−1∑
j=k

Eg2k∼π∗
h
γjjϵgπ∗

l ,πl
+

2γ2krmax

1− γ
Eg∼π∗

h
2kϵgπ∗

l ,πl

+ γ2kE
g∼π∗

h,s∼P
π∗
l
,g

2k (·|s0)

[
V π∗

h,π
∗
l (s2k)− V π∗

h,πl(s2k)
]

...

≤ 2rmax

∞∑
i=0

k−1∑
j=0

Eg∼π∗
h
γ(ik+j)(ik + j)ϵgπ∗

l ,πl
+
γ(i+1)k

1− γ
Eg∼π∗

h
(i+ 1)kϵgπ∗

l ,πl

≤ 2rmax
1 + γ

(1− γ)2
Eg∼π∗

h
ϵgπ∗

l ,πl
. (A.8)

Thus, we complete the derivation of L1.
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• Derivation of L3

Compared with L1, the term L3 replaces the high-level policy from π∗
h to πh. Thus, we directly can

get L3 from the results of L1 as

L3 ≤ 2rmax
1 + γ

(1− γ)2
Eg∼πh

ϵgπ∗
l ,πl

. (A.9)

• Derivation of L2

Similar to the derivation of L1, by adding and subtracting the same term in L2, we have

L2 = V π∗
h,πl(s0)−

[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h,s∼Pπl,g

k (·|s0)V
πh,π

∗
l (sk)

]
+
[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h,s∼Pπl,g

k (·|s0)V
πh,π

∗
l (sk)

]
− V πh,π

∗
l (s0)

=
[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h,s∼Pπl,g

k (·|s0)V
π∗
h,πl(sk)

]
−
[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h,s∼Pπl,g

k (·|s0)V
πh,π

∗
l (sk)

]
+
[
Ṽ

π∗
h,πl

0 (s0) + γkEg∼π∗
h,s∼Pπl,g

k (·|s0)V
πh,π

∗
l (sk)

]
−
[
Ṽ

πh,π
∗
l

0 (s0) + γkE
g∼πh,s∼P

π∗
l
,g

k (·|s0)
V πh,π

∗
l (sk)

]
= γkEg∼π∗

h,s∼Pπl,g

k (·|s0)

[
V π∗

h,πl(sk)− V πh,π
∗
l (sk)

]
︸ ︷︷ ︸

part d

+
[
Ṽ

π∗
h,πl

0 (s0)− Ṽ
πh,π

∗
l

0 (s0)
]

︸ ︷︷ ︸
part e

+ γk
[
Eg∼π∗

h,s∼Pπl,g

k (·|s0)V
πh,π

∗
l (sk)− E

g∼πh,s∼P
π∗
l
,g

k (·|s0)
V πh,π

∗
l (sk)

]
︸ ︷︷ ︸

part f

. (A.10)

According to Assumption A.5, we suppose r(st, at, ĝ) = Eg∼πh,s,a∼Pπl,g
t

rl(st, at, g)/D(g, ĝ), thus
we summate the k-step reward in the first subtask in part e as

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j (·,·|s0)

[
γjr(sj , aj , ĝ)

]

= r(s0, a0, ĝ)

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j (·,·|s0)

[
γj
r(sj , aj , ĝ)

r(s0, a0, ĝ)

]

= r(s0, a0, ĝ)

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j (·,·|s0)

[
γj
rl(sj , aj , g)

D(g, ĝ)
D(g, ĝ)

rl(s0, a0, g)

]

= r(s0, a0, ĝ)

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j (·,·|s0)

[
γj
rl(sj , aj , g)

rl(s0, a0, g)

]
. (A.11)

Since the low-level policy is trained as a goal-conditioned policy, we have rl(sj , aj , g) ≤ rl(sk, ak, g).
And the summation in the first subtask can be

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j (·,·|s0)

[
γjr(sj , aj , ĝ)

]

≤ r(s0, a0, ĝ)
k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j (·,·|s0)

[
γj
rl(sk, ak, g)

rl(s0, a0, g)

]

= r(s0, a0, ĝ)
1− γk

1− γ
rl(sk, ak, g)

rl(s0, a0, g)
. (A.12)
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Thus, we let the fractionRπh,πl

i = rl(sk, ak, g)/rl(s0, a0, g) be the subgoal reachability definition,
and the part e in L2 can be

part e = Ṽ
π∗
h,πl

0 (s0)− Ṽ
πh,π

∗
l

0 (s0)

=

k−1∑
j=0

Eg∼π∗
h,s,a∼Pπl,g

j (·,·|s0)
[
γjr(sj , aj , ĝ)

]
−

k−1∑
j=0

E
g∼πh,s,a∼P

π∗
l
,g

j (·,·|s0)

[
γjr(sj , aj , ĝ)

]
≤ r(s0, a0, ĝ)

1− γk

1− γ
Rπ∗

h,πl

0 −
k−1∑
j=0

E
g∼πh,s,a∼P

π∗
l
,g

j (·,·|s0)

[
γjr(sj , aj , ĝ)

]
≤ rmax

1− γk

1− γ

(
Rπh,πl

0 −Rπ∗
h,π

∗
l

0

)
← Π∗ can achieve best subgoal reachability

≤ rmax
1− γk

1− γ
Rπh,πl

0 . (A.13)

The penultimate inequality is based on the property of the induced optimal hierarchical policies.
Compared with the learned πh, Figure 3 shows that π∗

h can balance the subgoal reachability and the
guidance, thus Rπh,πl

0 ≥ Rπ∗
h,πl

0 (note that the smaller R implies the better subgoal reachability).
And, the optimal policies Π∗ can achieve the optimal subgoal reachability, i.e. Rπ∗

h,π
∗
l

0 ≤ Rπh,π
∗
l

0 .

Thus, we have
(
Rπ∗

h,πl

0 −Rπh,π
∗
l

0

)
≤

(
Rπh,πl

0 −Rπ∗
h,π

∗
l

0

)
.

Then, we turn to part f in L2. Consider the upper bound of joint value function, we have

part f = γk
[
Eg∼π∗

h,s∼Pπl,g

k (·|s0)V
πh,π

∗
l (sk)− E

g∼πh,s∼P
π∗
l
,g

k (·|s0)
V πh,π

∗
l (sk)

]
≤ γk

∫
g∈G

∫
s∈S

[π∗
h(g|s)− πh(g|s)]

[
Pπl,g
k (s|s0)− Pπ∗

l ,g
k (s|s0)

] rmax

1− γ
dsdg

≤ 2γk
∫
g∈G

∫
s∈S

rmax

1− γ
dsdg

=
2γkrmax

1− γ
. (A.14)

With the derivation of part e and part f, we deal with part d by the recursion each k-steps as

part d = γkEg∼π∗
h,s∼Pπl,g

k (·|s0)

[
V π∗

h,πl(sk)− V πh,π
∗
l (sk)

]
≤ γ2kEg∼π∗

h,s∼Pπl,g

2k (·|s0)

[
V π∗

h,πl(s2k)− V πh,π
∗
l (s2k)

]
+ rmax

γk − γ2k

1− γ
Rπh,πl

1 +
2γ2krmax

1− γ
. (A.15)

Thus, we combine the result of part d, part e and part f to obtain the results of L2 as

L2 = part d + part e + part f

≤ rmax
1− γk

1− γ
Rπh,πl

0 + rmax
γk − γ2k

1− γ
Rπh,πl

1 +
2γkrmax

1− γ
+

2γ2krmax

1− γ

+ γ2kEg∼π∗
h,s∼Pπl,g

2k (·|s0)

[
V π∗

h,πl(s2k)− V πh,π
∗
l (s2k)

]
...

≤ rmax

∞∑
i=0

(1− γk)γik

1− γ
Rπh,πl

i +
2γ(i+1)k

1− γ

≤ rmax

(1− γ)2
(Rπh,πl

max + 2γk). (A.16)
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In the last inequality, we define
Rπh,πl

max = max
i∈N
Rπh,πl

i . (A.17)

Now, we have the results of L1, L2 and L3. The performance difference bound between Π∗ and Π
can be obtained as

V Π∗
(s0)− V Π(s0) = L1 + L2 + L3

≤ 2rmax
1 + γ

(1− γ)2
Eg∼π∗

h
ϵgπ∗

l ,πl
+

rmax

(1− γ)2
(Rπh,πl

max + 2γk)

+ 2rmax
1 + γ

(1− γ)2
Eg∼πh

ϵgπ∗
l ,πl

=
2rmax

(1− γ)2

[
(1 + γ)Eg∼πh

(
1 +

π∗
h

πh

)
ϵgπ∗

l ,πl
+ 2

(
Rπh,πl

max + 2γk
)]
. (A.18)

And the proof is complete.

Proposition A.2 (Equivalence between π∗ and Π∗). With the k-step trajectory slicing and the
alignment method, the performance of Π∗ and π∗ is equivalent, i.e., V π∗

(s) = V Π∗
(s).

Proof. According to the k-step trajectory slicing and the alignment method, the induced optimal
hierarchical policies Π∗ can be generated by aligning with the k-step trajectory slice derived by π∗,
thus we have

g(i+1)k ∼ π∗
h(·|sik) = Pπ∗

k (s(i+1)k|sik)

= p(sik)

k−1∏
j=0

P (sik+j+1|sik+j , aik+j)π
∗(aik+j |sik+j), (A.19)

aik+j ∼ π∗
l (·|sik+j , g(i+1)k) = π∗(aik+j |sik+j). (A.20)

Thus, the value function for π∗ and the joint value function for Π∗ can be

V π∗
(s0) =

∞∑
t

γtEs∼p(s′|s,a),a∼π∗ [r(st, at, ĝ)]

=

∞∑
i=0

k−1∑
j=0

Es∼p(s′|s,a),a∼π∗γik+j [r(sik+j , aik+j , ĝ)]

=

∞∑
i=0

Eg∼π∗
h

γik
k−1∑
j=0

Es∼p(s′|s,a),a∼π∗
l
γj [r(sik+j , aik+j , ĝ)]


=

∞∑
i=0

Eg∼π∗
h(·|s)

γik
k−1∑

j=0

γjE
s,a∼P

π∗
l
,g

ik+j(·,·|s0)
r(sik+j , aik+j , ĝ)


= V Π∗

(s0) (A.21)

Thus, through the k-step trajectory slicing and the alignment method, the performance of Π∗ and π∗

is equivalent. And the proof is complete.

A.2 USEFUL LEMMA AND ASSUMPTION

Lemma A.3 (Bellman Backup in HRL). Consider that the joint value function can be decomposed
by the summation of subtasks. Given the initial state sik at the i-th subtask, the Bellman Backup of
HRL defined in each subtask can be

V πh,πl(sik) = Ṽ πh,πl

i (sik) + γkEg∼πh,s∼Pπl,g

(i+1)k
(·|sik)

[
V πh,πl(s(i+1)k)

]
, (A.22)
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where Ṽ πh,πl

i (sik) is the the environment return of Π with the i-th subtask, formulated as

Ṽ πh,πl

i (sik) =

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

ik+j(·,·|sik)
[
γjr(sik+j , aik+j , ĝ)

]
. (A.23)

Proof. According to the decomposition of the joint value function V πh,πl(s), we have

V πh,πl(s0) =

∞∑
i=0

Eg∼πh

γik
k−1∑

j=0

γjEs,a∼Pπl,g

ik+j(·,·|s0)
r(sik+j , aik+j , ĝ)


=

k−1∑
j=0

Eg∼πh,s,a∼Pπl,g

j (·,·|s0)
[
γjr(sj , aj , ĝ)

]

+

∞∑
i=1

Eg∼πh

γik
k−1∑

j=0

γjEs,a∼Pπl,g

ik+j(·,·|s0)
r(sik+j , aik+j , ĝ)


= Ṽ πh,πl

0 (s0) + γkEg∼πh,s∼Pπl,g

k (·|sk) [V
πh,πl(sk)] . (A.24)

Thus, we can conclude that

V πh,πl(sik) = Ṽ πh,πl

i (sik) + γkEg∼πh,s∼Pπl,g

(i+1)k
(·|sik)

[
V πh,πl(s(i+1))

]
. (A.25)

And the proof is complete.

Lemma A.4 (Markov chain TVD bound, time-varying). Suppose the expected KL-divergence between
two policy distributions is bounded as ϵgπ∗

l ,πl
= maxs∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g)), and the

initial state distributions are the same. Then, the distance in the state-action marginal is bounded as,

DTV

(
Pπ∗

l ,g
t (·, ·|s0)

∥∥∥Pπl,g
t (·, ·|s0)

)
≤ tϵgπ∗

l ,πl
(A.26)

Proof. Let p(s′|s) as the adjacent state transition probability, which can be defined as

p(s′|s) = p(s)P (s′|s, a)π(a|s). (A.27)

Replacing the policy as the low-level policy πl, we can derive the Markov chain TVD bound caused
by the different low-level policy,

max
t

Es∼pt
1(s)

DKL(p1(s
′|s)∥p2(s′|s))

= max
t

Es∼pt
1(s)

p(s)P a
s,s′(s

′|s, a)DKL(π
∗
l (a|s, g)||πl(a|s, g))

≤ max
t

Es∼pt
1(s)

DKL(π
∗
l (a|s, g)||πl(a|s, g))

≤ max
s∈S,g∼πh

DTV (π∗
l (·|s, g)∥πl(·|s, g))

= ϵgπ∗
l ,πl

(A.28)

Thus, follow the Lemma B.2 in Janner et al. (2019), the distance in the state-action marginal is
bounded as,

DTV

(
Pπ∗

l ,g
t (·, ·|s0)

∥∥∥Pπl,g
t (·, ·|s0)

)
≤ tϵgπ∗

l ,πl
. (A.29)

And the proof is complete.

Assumption A.5 (Refer to Assumption 1 in Zhang et al. (2022)). For all s ∈ S and g ∈ G, the
environmental reward can be written as

r(s, a, ĝ) =
∑
s′

P a
s,s′(s

′|s, a)πl(a|s, g)r̃(s, s′) = Eg∼πh,s,a∼Pπl,g
t

rl(st, at, g)/D(g, ĝ). (A.30)

where r̃ : S × G → [0, rmax] is a state-reachability reward function.
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In this assumption, the subgoal g generated by the high-level policy represents the desired state to
be reached, while the intermediate low-level state and action details are controlled by the low-level
policy. Therefore, consider that the subgoals are generated towards the environmental goal ĝ, when
given a low-level optimal/learned policy, it is natural to assume that the k-step stage reward only
depends on the state where the agent starts and the state where the agent arrives.

B EXPERIMENTAL DETAILS

B.1 IMPLEMENTATION DETAILS

Our method BrHPO and all baselines are implemented based on PyTorch.

BrHPO. We employ the soft actor-critic (SAC) algorithm Haarnoja et al. (2018b) as the backbone
framework for both high- and low-level policies. For the high-level policy, considering that the
subtask trajectory τπh,πl

i in each subtask would be abstracted as one transition in high level, we
convert the trajectory (sik:(i+1)k−1, aik:(i+1)k−1, g(i+1)k, rh,ik, s(i+1)k) into a high-level transition
tuple (sik, g(i+1)k, rh,ik, s(i+1)k). Then, when a subtask ends, we compute the subgoal reachability
by

Rπh,πl

i = Erl∼τ
πh,πl
i

rl,(i+1)k

rl,ik
.

Then, we can optimize the high-level policy by

Qπh(s, g) = argmin
Q

1

2
Es,g∼Dh

[rh(s, g) + γEs′∼Dh,g′∼πh
Qπh(s′, g′)−Qπh(s, g)]

2
,

πh = argmin
πh

Es∼Dh
[DKL(πh(·|s)∥ exp(Qπh(s, g)− V πh(s))) + λ1Rπh,πl

i ] .

For the low-level policy which can be trained as a goal-conditioned one, we design the reachability-
aware low-level policy as

r̂l(sik+j , aik+j , g(i+1)k) = rl(sik+j , aik+j , g(i+1)k)− λ2Rπh,πl

i .

The training tuples for the low-level policy are formed as the per-step state-action transitions
(sik+j , g(i+1)k, aik+j , rl,ik+j , sik+j+1, g(i+1)k)

1, which then are stored in the low-level buffer Dl.
Thus, with the training tuples, we can optimize the low-level policy as,

Qπl(s, a) = argmin
Q

1

2
Es,g,a∼Dl

[r̂l(s, a, g) + γEs′,g∼Dl,a′∼πl
Qπl(s′, a′)−Qπl(s, a)]

2
,

πl = argmin
πl

Es,g∼Dl
[DKL(πl(·|s, g)∥ exp(Qπl(s, a)− V πl(s)))] .

Algorithm framework. We briefly give an overview of our proposed BrHPO in algorithm 1.
Notably, the mutual response mechanism effectively calculates the subgoal reachability for bilateral
information and then incorporates it into hierarchical policy optimization for mutual error correction,
promoting performance and reducing computation load.

HIRO. In this work Nachum et al. (2018b), to deal with the non-stationarity, where old off-policy
experience may exhibit different transitions conditioned on the same goals, they heuristically relabel
the subgoal g̃ as

logµlo(at:t+c+1|st:t+c+1, g̃t:t+c+1) ∝ −
1

2

t+c−1∑
i=t

∥ai − µlo(si, g̃i)∥22 + const.

To solve this problem efficiently, they calculated the quantity on eight candidate goals sampled
randomly from a Gaussian centred at st+c − st. Then, with the correcting high-level experience,
the high-level policy can be optimized by off-policy methods. Compared with our methods, the off-
correction can be regard as a low-level domination method, which requires the high-level experience
to be modified by the subgoal reachability demonstrated at low level.

1We use the absolute subgoal in this paper, that is, g(i+1)k = sik + πh(·|sik).
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Algorithm 1 Bidirectional-reachable Hierarchical Policy Optimization (BrHPO)

initialize: policy networks πh, πl, Q-networks Qπh , Qπl , replay buffers for high-level Dh and
low-level Dl

for each training episode do
while not done do

sample subgoals g ∼ πh(·|s)
for each step in a subtask do

Sample actions a ∼ πl(·|s, g)
Store (s, g, a, rl, s

′, g) into a temp buffer
Update πl by (3.11) and (3.12) from Dl ▷ low-level policy optimization

end for
CalculateRπh,πl

i by (3.7) ▷ subgoal reachability computation
Compute r̂l by (3.10) and push the tuples in Dl ▷ reachability-aware low-level reward
Store (s, g, rh, s

′, R̂πh,πl

i ) into Dh

Update πh by (3.8) and (3.9) from Dl ▷ high-level policy optimization
end while

end for

HIGL. In this work Kim et al. (2021), to restrict the high-level action space from the whole goal
space to a k-step adjacent region, they introduced the shortest transition distance as a constraint in
high-level policy optimization. Besides, they utilized farthest point sampling and priority queue Q to
improve the subgoal coverage and novelty. To enhance the subgoal reachability, they made pseudo
landmark be placed between the selected landmark and the current state in the goal space as follows:

gpseudo
t := gcur

t + δpseudo ·
gsel
t − gcur

t

∥gsel
t − gcur

t ∥2
.

To establish the adjacency constraint by the shortest transition distance, they refer to HRAC Zhang
et al. (2020) and adopt an adjacent matrix to model it. Specifically, we note that the performance of
HIGL in AntMaze task is different from the original report in their paper, mainly due to the different
scales. Thus, we set the same scale for all tasks for fairness. To ensure that HIGL performs well in
these tasks, we adjusted hyper-parameters such as "landmark coverage" and "n landmark novelty".

BrHPO HIGL

Figure 10: Comparison of the scales in the maze tasks between BrHPO and HIGL.

CHER. This work Kreidieh et al. (2019) proposed a cooperation framework for HRL. In this work,
the HRL problem can similarly be framed as a constrained optimization problem,

max
πm

[
Jm +min

λ≤0

(
λδ − λmin

πw

Jw

)]
.

To deal with this problem, they update the high- (πm) and low-level (πw) policies by

θw ← θw + α∇θwJw, and, θm ← θm + α∇θw(Jw + λJw).

Compared to CHER, our BrHPO method distinguishes itself in several key aspects. In CHER,
hierarchical cooperation is achieved solely through high-level policy optimization, while the low-level
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policy is trained as a generally goal-conditioned policy without further improvement. Moreover,
the high-level optimization in CHER introduces Jw as (Jw + λJw), necessitating a focus on the
step-by-step behavior of the low-level policy.

In contrast, our BrHPO method incorporates the concept of subgoal reachability, which considers the
initial and final states of the subtasks. This design choice empowers the high-level policy to relax the
exploration burden on the low-level policy. By leveraging subgoal reachability, our approach enables
more efficient exploration for the low-level policy and facilitates effective hierarchical cooperation
between the high-level and low-level policies.

RIS. In this work Chane-Sane et al. (2021), based on hindsight method, they collected feasible
state trajectories and predicted an appropriate distribution of imagined subgoals. They first defined
subgoals sg as midpoints on the path from the current state s to the goal g, and further minimized the
length of the paths from s to sg and sg to g. Thus, the high-level policy can be updated as

πH
k+1 = argmin

πH
E(s,g)∼D,sg∼πH(·|s,g)[Cπ(sg|s, g)].

Then, with the imagined subgoals, the low-level policy can be trained by

πθk+1
= argmax

θ
E(s,g)∼DEa∼πθ(·|s,g)

[
Qπ(s, a, g)− αDKL

(
πθ∥πprior

k

)]
.

B.2 NETWORK ARCHITECTURE

For the hierarchical policy network, we employ SAC Haarnoja et al. (2018b) as both the high-level
and the low-level policies. Each actor and critic network for both high level and low level consists
of 3 fully connected layers with ReLU nonlinearities. The size of each hidden layer is (256, 256).
The output of the high- and low-level actor are activated using the linear function and is scaled to the
range of corresponding action space.

We use Adam optimizer Kingma & Ba (2014) for all networks in BrHPO.

B.3 ENVIRONMENTAL SETUP

We adopt six challenging long-term task to evaluate BrHPO, which can be categorized into the
dense case and the sparse case. For the maze navigation tasks, a simulated ant starts at (0, 0) and
the the environment reward is defined as r = −

√
(x− gx)2 + (y − gy)2 (except for AntFall, r =

−
√
(x− gx)2 + (y − gy)2 + (z − gz)2). While in the robotics manipulation tasks, a manipulator

is initialized with horizontal stretch posture. The environmental reward is defined as a binary one,
determined by the distance between the end-effector (or the object in Pusher) to the target point

r =

{
−1, d > 0.25,

0, d ≤ 0.25.
(B.1)

And, the success indicator is defined as whether the final distance is less than a pre-defined threshold,
where the maze navigation tasks require d < 5 and the robotics manipulation tasks require d < 0.25.

AntMaze. A simulated eight-DOF ant starts from the left bottom (0, 0) and needs to approach the
left top corner (0, 16). At each training episode, a target position is sampled uniformly at random from
gx ∼ [−4, 20], gy ∼ [−4, 20]. At the test episode, the target point are fixed at (gx, gy) = (0, 16).

AntBigMaze. Similar to AntMaze task, we design a big maze to evaluate the exploration capability
of BrHPO. Specially, the target position is chosen randomly from one of (gx, gy) = (32, 8) and
(gx, gy) = (66, 0), which makes it harder to find feasible path.

AntPush. A movable block at (0, 8) is added into this task. The ant needs to move to the left side
of the block and push it into the right side of the room, for a chance to reach the target point above,
which requires the agent to avoid training a greedy algorithm. At each episode, the target position is
fixed to (gx, gy) = (0, 19).
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AntFall. In this task, the agent is initialized on a platform of height 4. Like AntPush environment,
the ant has to push a movable block at (8, 8) into a chasm to create a feasible road to the target, which
is at the opposite side of the chasm, while a greedy policy would cause the ant to walk towards target
and fall into the chasm. At each episode, the target position is fixed to (gx, gy, gz) = (0, 27, 4.5).

Reacher3D. A simulated 7-DOF robot manipulator needs to move its end-effector to a desired
position. The initial position of the end-effector is at (0, 0, 0) while the target is sampled from a
Normal distribution with zero mean and 0.1 standard deviation.

Pusher. Pusher additionally includes a puck-shaped object based on the Reacher3D task, and the
end-effector needs to find the object and push it to a desired position. At the initialization, the object
is placed randomly and the target is fixed at (gx, gy, gz) = (0.45,−0.05,−0.323).
We summary these six tasks in Table 1.

Table 1: Overview on Environment settings.

Environment state action environment reward episode step success indicator

AntMaze 32 8 negative x-y distance 500 rfinal ≥ −5
AntBigMaze 32 8 negative x-y distance 1000 rfinal ≥ −5

AntPush 32 8 negative x-y distance 500 rfinal ≥ −5
AntFall 33 8 negative x-y-z distance 500 rfinal ≥ −5

Reacher3D 20 7 negative x-y-z distance 100 dfinal ≤ 0.25

Pusher 23 7 negative x-y-z distance 100 dfinal ≤ 0.25
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B.4 HYPER-PARAMETERS

Table 2 lists the hyper-parameters used in training BrHPO over all tasks.

Table 2: The hyper-parameters settings for BrHPO.

AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher

Q-value
network (both
high and low)

MLP with hidden size 256

policy network
(both high and

low)
Gaussian MLP with hidden size 256

discounted
factor γ 0.99

soft update
factor τ 0.005

Q-network
learning rate 0.001

policy network
learning rate 0.0001

automatic
entropy tuning

(high-level)
False True False

automatic
entropy tuning

(low-level)
False

batch size 128

update per step 1

target update
interval 2

high-level
replay buffer 1e5

low-level
replay buffer 1e6

start steps 5e3

subtask
horizon 20 10

reward scale 1

high-level
responsive
factor λ1

2 0.5 2

low-level
responsive
factor λ2

10 5
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B.5 ADDITIONAL EXPERIMENTS
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Figure 11: The performance comparison between
BrHPO and baselines by HumanoidMaze. Mean
and std by 4 runs.

Mutual response mechanism in complex en-
vironment. In our main experiment, AntBig-
Maze uses a more complex maze than AntMaze,
which requires more guidance ability from the
high-level policy. Conversely, given simpler
maze, we consider a more complex robot which
is controlled by the low-level policy, to further
evaluate the mutual response mechanism. In
the HumanoidMaze task, the simulated ant is
replaced by a high-dimensional simulated hu-
manoid. At each episode, the target point is set
at (gx, gy) = [6, 6] which is the up-right corner
of the maze.

We need to specify that, the simulated humanoid,
where the state space contains 274 dimensions
and the action space is 17, needs to maintain
body balance while being guided by the subgoal
from the high-level policy. Consequently, the
low-level policy necessitates extensive training to facilitate the humanoid’s ability to learn how
to walk proficiently. This training process requires the high-level policy to exhibit “patience”,
gradually adjusting the subgoals to guide the humanoid’s progress effectively. Figure 11 demonstrates
the performance comparison, which showcases the superior advantage of BrHPO over HIRO. We
additionally visualize the trajectory by Figure 12. We find that, our mutual response mechanism can
encourage cooperation between the high- and the low-level policies, while the erroneous guidance
from HIRO makes it difficult for humanoid to maintain balance and easily fall, thus failing the task.

(a) HumanoidMaze by BrHPO

(b) HumanoidMaze by HIRO

Figure 12: The performance comparison of HumanoidMaze task by BrHPO and HIRO.
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Additional Metrics. We report additional (aggregate) performance metrics of BrHPO and other
baselines on the six tasks using the rliable toolkit Agarwal et al. (2021). As show in Figure 13,
BrHPO outperforms other baselines in terms of Median, interquantile mean (IQM), Mean and
Optimality Gap results.
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Normalized ScoreFigure 13: Median, IQM, Mean (higher values are better) and Optimality Gap (lower values are
better) performance of BrHPO and all baselines on six tasks.

Subgoal reachability report. We report the average subgoal reachabilityRπh,πl

i of each environ-
ment by Table 3. Note that, the valueRπh,πl

i → 0 means the final distanceD(ψ(s(i+1)k), g(i+1)k)→
0, thus implying the better subgoal reachability. From the results, our implementation is simple yet
effective, which can improve subgoal reachability significantly. Besides, the results shows that when
there are contact dynamics in the environment, such as AntPush, AntFall and Pusher, the subgoal
reachability may be decreased, which inspires us to further develop investigation in these cases.

Table 3: The average subgoal reachability of BrHPO.

Environment AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher

subgoal
reachability 0.22 0.29 0.33 0.32 0.13 0.18

Ablation by the sparse environment. Additionally, we provide ablation studies conducted on
Reacher3D task (sparse) instead of the AntMaze task (dense). We investigate the effectiveness of
mutual response mechanism by 1) the three variants of BrHPO, containing Vanilla, NoReg and
NoBonus, and 2) the weighted factors λ1 and λ2. We show the results in Figure 14. Overall, we
find that the tendency from the Reacher3D task are similar to the AntMaze task, which verifies the
effectiveness of our BrHPO in the sparse reward case.
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Figure 14: The ablation of mutual response mechanism by Reacher3D task. Mean and std by 4 runs.
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Empirical study in stochastic environments. To empirically verify the stochasticity robustness
of BrHPO, we utilize it the a set of stochastic tasks, including stochastic AntMaze, AntPush and
Reacher3D, which are modified from the original tasks. Referring to HRAC Zhang et al. (2020), we
interfere with the position of the ant (x,y) and the position of the end-effector (x,y,z) with Gaussian
noise of different standard deviations, including σ = 0.01, σ = 0.05 and σ = 0.1, to verify the
robustness against the increasing environmental stochasticity. As shown in Figure 15, BrHPO can
achieve similar asymptotic performance with different noise magnitudes in stochastic AntMaze,
AntPush and Reacher3D, which shows the robustness to stochastic environments.
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(a) Stochastic AntMaze
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(b) Stochastic AntPush
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(c) Stochastic Reacher3D

Figure 15: The empirical evaluation of BrHPO by stochastic environments. Mean and std by 4 runs.

B.6 COMPUTING INFRASTRUCTURE AND TRAINING TIME

For completeness, we list the computing infrastructure and benchmark training times for BrHPO and
all baselines by Table 4. As discussed in section 4.3, the training complexity of BrHPO is much less
than other HRL methods, which can be comparable to the flat policy.

Table 4: Computing infrastructure and training time on each task (in hours).

AntMaze AntBigMaze AntPush AntFall Reacher3D Pusher

CPU AMD EPYC™ 7763

GPU NVIDIA GeForce RTX 3090

HIRO 16.66 23.14 18.29 25.43 3.42 4.25

HIGL 31.59 48.45 30.95 49.60 5.96 7.05

CHER 15.38 20.53 16.71 21.37 2.96 3.16

RIS 40.83 53.49 38.46 57.05 8.63 9.88

SAC 10.57 11.36 11.75 15.64 2.35 2.68
BrHPO 12.75 18.74 13.43 19.17 2.73 3.53

comparison
(Ours - SAC) 2.18 7.38 1.68 3.53 0.38 0.85
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