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Abstract

We present MGB (Material Generation Benchmark), a comprehensive and standard-
ized platform for evaluating deep generative models in materials science. MGB
covers a diverse range of tasks—including crystal structure prediction, de novo
material generation, MOF structure prediction, and out-of-distribution (OOD) gen-
eration—spanning datasets from inorganic crystals to complex MOFs. It integrates
cutting-edge methodologies, from large language models (LLMs) to diffusion-
based and hybrid approaches. A key feature of MGB is the construction of dedi-
cated OOD test sets, enabling rigorous evaluation of generalization capabilities.
To ensure fair comparison, MGB employs multi-dimensional metrics that jointly
assess structural accuracy, chemical validity, distributional coverage, physical
plausibility, and computational efficiency. Extensive experiments highlight clear
performance patterns: diffusion models excel in predicting complex crystalline
systems, LLMs achieve competitive local accuracy, and MOF-specific flow models
substantially outperform general-purpose approaches on MOF prediction. While
most methods yield nearly perfect structural validity in de novo generation, their
ability to balance accuracy, generalization, and efficiency varies considerably.

Importantly, we select LLMs for OOD case studies given their relatively state-of-
the-art performance on in-distribution benchmarks. However, our results reveal a
critical limitation: despite strong in-distribution accuracy, LLMs completely fail to
generalize to unseen structural families. By establishing a unified framework and
offering transparent comparative insights, MGB aims to drive the development of
more robust and efficient generative models for materials discovery.

We are organizing all the code and model weights, and we are committed to making
the cleanest open-source release possible.

1 Introduction

The discovery and design of novel materials are pivotal to addressing many of the world’s most
pressing challenges, ranging from energy storage [14, 49] to environmental sustainability [12, 62, 64].
Traditionally, material discovery has relied heavily on trial-and-error methods [62, 3] or computation-
ally expensive first-principles simulations [45, 17]. However, these approaches face significant limita-
tions. Trial-and-error experimentation is inherently slow and resource-intensive, while first-principles
simulations often suffer from high computational cost, limited scalability when extending to large or
complex systems, and low efficiency in exploring vast chemical design spaces [54, 38]. To overcome
these obstacles, deep generative models [27, 18, 51] have recently emerged as promising tools to
accelerate material discovery by generating candidate structures directly from data [13, 56, 24]. These
models, including large language models (LLMs) [2, 20, 52, 59], diffusion models [24, 25, 31], and
hybrid architectures [56, 35], have demonstrated the ability to predict diverse material structures and
perform de novo generation [56, 37], ranging from molecular compounds [56, 35] to complex crystal
lattices [24, 25]. Despite these advances, there is currently no unified platform to systematically
evaluate and compare the performance of generative models in material discovery [55, 41, 63, 46].
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The diversity of model architectures and the breadth of tasks they can address—such as crystal
structure prediction, de novo generation, and MOF structure prediction—further complicate objective
assessment. The absence of standardized evaluation protocols has hindered direct comparisons
between methods and limited their practical applicability to real-world material design problems.

To address this gap, we introduce the Material Generation Benchmark (MGB), a comprehensive
and standardized evaluation platform for generative models in materials science. MGB aims to
provide a rigorous framework for assessing generative models across multiple key tasks: (i) crystal
structure prediction—predicting atomic arrangements given chemical compositions; (ii) de novo
material generation—creating novel, valid materials beyond those observed in training datasets; (iii)
MOF structure prediction—modeling the atomic configurations of metal-organic frameworks; and
(iv) out-of-distribution (OOD) generation—evaluating the generalization ability of models when
applied to novel compositions, structures, or property regimes that lie outside the training distribution.
These tasks are fundamental to advancing materials design, especially in contexts where direct
experimentation or first-principles simulations are prohibitively time-consuming or computationally
expensive.

As shown in Figure 1, MGB includes a diverse set of benchmarking datasets, such as MP-20 [22],
Perov-5 [5], Carbon-24 [43], MPTS-52 [22], and Boyd MOF [4], spanning materials from simple
single-element structures to complex multi-element systems and metal-organic frameworks (MOFs).
These datasets are carefully curated to ensure that they represent realistic, experimentally stable mate-
rials, and they provide a robust foundation for evaluating the accuracy, diversity, and generalization
capabilities of generative models. The benchmark intergrates a variety of leading generative methods:
large language models such as CrystalLLM (25M and 200M)[2] and Llama 3.1[19], diffusion models
such as DiffCSP [24] and FlowMM [37], and hybrid models that combine variational autoencoders
(VAEs) with diffusion, including CDVAE [56] and Cond-CDVAE [35]. Considering fair and mean-
ingful evaluations, MGB adopts a suite of multi-dimensional metrics that go beyond prediction
accuracy to assess generation quality, generalization, physical plausibility, symmetry awareness, and
computational complexity. This holistic protocol enables standardized and balanced benchmarking of
generative models, aligning performance assessments with the practical needs of real-world materials
discovery.

Through extensive benchmarking, MGB provides key insights into the current landscape of generative
models for materials science: (1) Diffusion-based models consistently perform well on challenging
crystalline benchmarks. Notably, DiffCSP++ excels in large and high-symmetry systems due to
its explicit modeling of space group features and physical constraints, such as SE(3)-equivariant
architectures and crystal periodicity. This aligns well with the underlying physics of materials, offering
advantages over VAEs, including better mode coverage and more stable training dynamics. Also,
MOF-specific flow models like MOFFlow outperform general-purpose models on MOF prediction
tasks. (2) Large language models (e.g., CrystalLLM) exhibit competitive local accuracy, achieving
low coordinate errors once a correct match is identified, benefiting from their large model size and
extensive pretraining data. (3) In de novo generation, most methods maintain near-perfect structural
validity, with diffusion models demonstrating superior preservation of target property distributions.
(4) Despite strong in-distribution performance, LLM-based models like CrystaLLM struggle with
out-of-distribution (OOD) generation, failing to produce valid structures on diverse OOD datasets.
This highlights the distribution-bound nature of these models and emphasizes the importance of
evaluating OOD generalization for assessing robustness. (5) Physical plausibility remains a challenge
for diffusion models, as atomic collision rates increase significantly on complex datasets. While
advances like Diff CSP++ reduce collision rates, they do not eliminate failures, making it crucial to
evaluate steric validity to ensure physically realizable materials. These findings highlight the trade-
offs between accuracy, generalization, physical constraints, and computational efficiency, suggesting
the need for more refined models that better incorporate physical constraints to enable robust material
discovery.

Together, these findings underscore the need for a unified and transparent benchmarking framework
to drive progress in generative materials modeling. Our primary goal with MGB is to establish a
transparent and reproducible benchmarking suite that can catalyze the development of more robust
and efficient generative models for materials science. By providing a unified platform, MGB seeks to
accelerate the discovery of novel materials with tailored properties and promote fair comparisons
across diverse methodological approaches.
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Figure 1: The overview of MGB.
2 Preliminaries
2.1 Crystal Structure

Representation of Crystal Structures and MOF Structures. A periodic material can be represented
by a unit cell M = (A, F, L), where A € A" (or one-hot A € R"*¥) encodes the atom types of
N atoms, F = [f1,..., fn] € [0,1)3*¥ are fractional coordinates, and L = [(1, {5, (3] € R?>*3 is
the lattice matrix. Cartesian coordinates are given by X = LF'. Periodicity induces an equivalence
relation (a},2}) =r (a;,x;)) <= ) =x; + Lk, k € Z3, so the infinite crystal is obtained
by tiling the unit cell with L. For MOFs we can use either the same atomistic representation or a
block-wise one. Let B = {C,,, }_, be building blocks (metal nodes or organic linkers) with local
coordinates Y;,, and atom types a.,. Each block is placed by a roto-translation (g, 7m) € SE(3),
giving X,;, = (G, Tm)* Yom, and X = Concat(Xy, ..., Xs) forms the global atomic coordinates.

Space Group. Space-group symmetry is modeled as the action of g = (O, t) € E(3) on coordinates
g-X = OX + 17 (with O € O(3) and t € R3). A crystal M is invariant to g if there exists a
permutation matrix Py such that

A=AP,, ¢g-X =, XP,

The set of all such symmetries forms the space group G(M); in 3D there are 230 distinct space
groups. MOFs may realize a subset of symmetry operations depending on their topology and building
blocks.

Equivariance. Learning algorithms should respect the physical symmetries. Given a model f acting
on structures, f is SF(3)-equivariant if

f(OX +t17, OL) = p(0) f(X,L)

for a suitable representation p. For atom sets, outputs (e.g., per-atom vectors) should also be
permutation-equivariant. In block-wise MOF models, the placement predictor over {(¢,, 7m)} is
S E(3)-equivariant.

Invariant Density. Generative models define a probability density on the guotient space induced by
symmetries. Practically, most of benchmark models parameterize only invariants: (i) use fractional
coordinates on the torus T3>V = [0, 1) to factor out global translations; (ii) represent the lattice by
its Gram matrix G, = L L or by lattice parameters (a,b,c,a, B,7) to factor out global rotations;
and (iii) enforce permutation invariance by symmetrization or permutation-invariant architectures.
Densities or scores can also be averaged over the space-group orbit to impose G-invariance.

Symmetries of Crystal. Key symmetries include: (1) atom index permutation; (2) periodic transla-
tion (choice of origin and integral lattice shifts); (3) global rotation/reflection of (X, L); (4) lattice
basis change L — LU with U € GL(3,Z) (e.g., supercells); and (5) space-group operations
combining rotations with fractional translations (screws/glides).

2.2 Task Formulation

The generative modeling tasks for periodic crystals are formulated as follows. A crystal is rep-
resented by M = (L, F, A), where L is the lattice, F' are the fractional atomic coordinates, and
A denotes atom types or elemental fractions c. The first task, Crystal Structure Prediction (CSP),
aims to recover a valid periodic structure given a composition (elemental fractions ¢ or atom types
A). This is modeled by the conditional distribution p(L, F' | A) or equivalently p(M | A). In De
Novo Generation, both unconditional and conditional sampling of crystals are considered, repre-
sented by p(M) and p(M | G), where G is a target space group. For MOF Structure Prediction,
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Figure 2: Examples of crystal data structures: (1) demo of periodic crystalline material, (2) inorganic
crystal (NaCl), and (3) MOF (Zn4Cs1H44NgO15s).

two settings are studied: (i) atomistic CSP, which follows the same formulation as in the crystal
structure prediction task with p(L, F' | A); and (ii) block-wise assembly, where we predict block
placements and connectivity given a block library B and, optionally, a target topology 7', modeled
by p (L, (gm, Tm)f\le, connectivity | B, T ) with (g, T ) representing the pose (orientation and
translation) of block m.

Table 1: Algorithms are grouped by modeling paradigm, datasets by composition and experimental
setting type, and evaluations by six standardized criteria: matching, generation quality, out-of-
distribution generalization, physical plausibility, symmetry awareness, and computational complexity.

Models
Large Language Models CrystaLLM (25M) [2], CrystaLLM (200M) [2], Llama 3.1 (8B) [19]
Diffusion Flow Models DiffCSP [24], DiffCSP++ [25], EquiCSP [31], FlowMM [37], MOFFlow [26]
Hybrid Models CDVAE [56], Cond-CDVAE [35]
Datasets

Single-element Composition Carbon-24 [43]
Multi-element Composition Perov-5 [5], MP-20 [22], MPTS-52 [22]
Multi-element (complex) Composition Boyd MOF [4]
Curated OOD Test Sets OOD-DPC, OOD-AC, OOD-LPC, OOD-HUCC, OOD-FDMOFs

Evaluations
Matching Accuracy Match Rate, RMSE
Generation Quality Validity, coverage, property distribution alignment
Out-of-Distribution Generation Generation on real world compostion
Physical Plausibility Obey fundamental physical constraints arising from the balance of attractive and repulsive forces
Symmetry Awareness for LLMs IPT (Increase in Perplexity under Translation)
Computational Complexity Model Size, sampling efficiency

3 MGB: The Material Generation Benchmark

3.1 Benchmark Models

Table 1 summarizes the algorithms integrated in our benchmark, which are divided into three
categories: diffusion and flow-based models, hybrid models and large language models. We briefly
introduce each category and representative algorithms below, and more details are provided in
Appendix B.

Diffusion-based Models. These models generate crystal structures by simulating continuous stochas-
tic processes and modeling physical symmetries. DiffCSP [24] and DiffCSP++ [25] incorporate
geometric constraints and space group in diffusion modeling. EquiCSP [31] focuses on equivariant
diffusion with respect to permutation and periodicity. FlowMM [37] extends flow matching on
riemannian manifold for crystal structure prediction and generation. MOFFlow [26] is a riemannian
flow matching model for MOF structure prediction.

Hybrid Models. This class integrates variational autoencoders with diffusion processes to generate
stable and diverse periodic materials. CDVAE [56] combines VAE and diffusion for periodic material
generation. Cond-CDVAE [35] enables conditional generation under user-defined constraints such as
composition and pressure.
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Table 2: Summary of the benchmark crystalline and MOF datasets.

Dataset Scope/Type # Structures Elements Atoms/cell
PEROV-5 [5] Perovskites ABX3 18,928 56 5
Carbon-24 [43]  C allotropes (AIRSS, 10 GPa) 10,153 1(C) 6-24
MP-20 [22] Exp. grounded inorganic crystals 45,231 89 1-20
MPTS-52 [22] Inorganic crystals (larger cells) 40,476 - 1-52

Boyd MOF [26] Hypothetical MOFs (adsorption) 247,066 Multi-metal/organic ~ Variable

Large Language Models. This category covers approaches that leverage large language models for
generative crystal design. CrystalLLM (25M) and CrystalLLM (200M) [2] employ autoregressive
language modeling directly on CIF files. To further demonstrate the comprehensiveness of MGB,
we also include the general-purpose large language models, Llama 3.1 (8B) [19]—to assess the
performance on diverse materials design tasks. |

3.2 Benchmark Datasets

To comprehensively evaluate material generative models under diverse, realistic conditions, we
benchmark on five datasets spanning crystalline solids and metal-organic frameworks (MOFs):
PEROV-5 [5], Carbon-24 [43], MP-20 [22], MPTS-52 [22], and the Boyd MOF [26] for main tasks.
Additionally, we benchmark on 5 out-of-distribution (OOD) evaluation datasets to assess the models’
ability to generalize to unseen structures and functionalities, including shifts in composition, topology,
and intended applications. These OOD datasets test the robustness of the generative models across
different material classes and properties. Table 2 and 3 summarize their key statistics.

Axes of diversity and why they matter. Across these datasets, diversity arises along (i) composi-
tional axes (number/types of elements and allowed chemistries), (ii) structural axes (unit-cell size,
symmetry/space groups, dimensionality/topology), (iii) thermodynamic axes (stable vs. metastable
distributions, pressure conditions), and for MOFs also (iv) functional axes (intended application such
as adsorption, storage, catalysis). These orthogonal sources of variation stress different capabilities of
generative models—from capturing composition—structure relationships to handling large, complex
topologies and distributions with substantial metastability.

Crystalline datasets. PEROV-5 contains 18,928 perovskites with the nominal ABX3 formula (A/B
are nonradioactive metals; X € {O,N, S, F} and may be mixed). All structures are DFT-relaxed
and many are not thermodynamically stable, making composition-to-structure mapping nontrivial.
Carbon-24 comprises 10,153 carbon allotropes curated from ab initio random structure searching
(AIRSS) at 10 GPa: following the previous work [56], we select the lowest-energy 10% from 101,529
candidates and relax all with DFT; diamond at 10 GPa is the most stable while most others are
metastable. MP-20 gathers 45,231 experimentally grounded Materials Project entries (originally
from ICSD) with < 20 atoms/cell, filtered by energy-above-hull < 0.08 eV/atom and formation
energy < 2 eV/atom; all are DFT-relaxed and largely synthesizable. MPTS-52 extends this regime
to 40,476 structures with up to 52 atoms/cell, providing substantially larger search spaces and
symmetry/topology variety.

MOF dataset. The Boyd MOF Database targets adsorption-driven carbon capture. It starts from
324,426 hypothetical MOFs generated by topology-based construction and evaluated for CO,/N;
uptake under dry/humid conditions. Following [26], we exclude structures with < 200 building
blocks, retaining 247,066 MOFs. We adopt an 8:1:1 split (train/val/test) with approximately 197,653
/24,707 /24,707 structures. This dataset emphasizes functional and topological diversity at scale,
complementing the crystalline benchmarks.

OOD evaluation datasets. To probe extrapolation beyond each training distribution, we design
out-of-distribution (OOD) test suites that deliberately shift structure/composition/function while
preserving related motifs (details in Appendix E). For PEROV-5 we test: (i) OOD-DPC (Double
perovskites, AoBB’Og) with ordered B-site cations and rich magnetism/multiferroicity; (ii) OOD-
AC (Antiperovskites, M3 AX) with inverted cation/anion roles and often Pm3m symmetry; and (iii)
OOD-LPC (Layered Ruddlesden—Popper phases, A,,+1B,,O3,+1) exhibiting tunable dimension-
ality (n). For Carbon-24, we use OOD-HUCC (huge unit cell carbon crystals) spanning 28-240

'We note that several other large language models have been developed for materials discovery—for example,
CrystaltextLLM [20], FlowLLM [37], and Mat2Seq [59]. Their model weights are not publicly available, and no
inference platforms exist; retraining them from scratch would require prohibitive computational resources. As is
common in the LLM community, we therefore rely on existing checkpoints, making it infeasible to include these
models in our benchmark.



201
202
203
204
205

206
207
208
209

210

211
212
213
214
215
216
217
218

219
220
221
222

223
224
225
226
227

228
229
230
231
232
233

234
235
236
237
238

239

240

241

242
243

Table 3: Out-of-distribution (OOD) test suites curated in this work.

OOD Suite In-Distribution Target Primary Shift Tested Source

OOD-DPC (double perovskites) PEROV-5 B-site ordering; magnetic/multiferroic variants Materials Project
OOD-AC (antiperovskites) PEROV-5 Inverted cation/anion topology; symmetry shift Materials Project
OOD-LPC (RP phases) PEROV-5 Reduced dimensionality (n = 1-3), layered stacking ~Materials Project
OOD-HUCC (carbon) Carbon-24 Large unit cells (28-240 atoms); symmetry variety Materials Project/ICSD
OOD-FDMOFs (MOFs) Boyd MOF Function shift (delivery/storage/catalysis) COD

atoms/cell with varied space groups and mixed synthesis status (experimental vs. hypothetical). For
the Boyd MOF, we use OOD-FDMOFs (Function-Distinct MOFs) curated from COD, covering drug
delivery, methane storage, and catalysis. These OOD suites challenge models along motif changes
(perovskite—double/anti/layered), cell-size scaling (carbon), and function shift (MOFs), thereby
directly testing generalization beyond in-distribution statistics.

Overall, the combination of (i) compositional/structural/thermodynamic/functional diversity (Table 2)
and (ii) principled OOD shifts (Table 3) yields a robust testbed for assessing both accuracy in-
distribution and generalization out-of-distribution in crystal/ MOF generative modeling. Further
dataset details and representative examples are provided in Appendix C and E.

3.3 Benchmark Evaluations

To rigorously assess generative models for materials discovery, we evaluate them in six categories: (1)
Matching Accuracy — agreement between predicted and reference structures; (2) Generation Quality —
validity, diversity, and property distribution alignment of generated materials; (3) Out-of-Distribution
Generation — ability to generate valid, novel materials beyond training data; (4) Physical Plausibility
— detection of atomic collisions to ensure physical realism; (5) Symmetry Awareness — capturing
invariances such as translation symmetry; and (6) Computational Complexity — model size and
inference time, indicating efficiency and scalability. These metrics provide a standardized protocol for
fair, comprehensive benchmarking across models and tasks. More details are provided in Appendix D.

Matching Accuracy. For crystal and MOF structure prediction, we evaluate accuracy using the match
rate (MR)—the fraction of generated structures that match ground truth via StructureMatcher [40],
accounting for symmetries. We also report the root mean squared error (RMSE) of atomic coordinates,
normalized by cell volume and atom count, to measure geometric fidelity.

Generation Quality. For de novo generation, we assess validity (structural: interatomic distances
> 0.5 A; compositional: charge neutrality via SMACT [10]), and diversity through coverage recall
(COV-R) and precision (COV-P). Additional metrics include average minimum structure distance
(AMSD), composition distance (AMCD), and Earth Mover’s Distance (EMD) between generated
and reference distributions of density (d,) and number of unique elements (dejem ).

OOD Generation. We evaluate out-of-distribution (OOD) generalization by assessing a model’s
ability to generate meaningful and valid samples in regimes unseen during training on the crystal and
MOF structure prediction task, particularly for complex and previously unknown structures. This
evaluation covers performance on novel compositions and structures, and quantifies both the novelty
and robustness of generated materials through targeted OOD benchmarks as well as real-world
sampling tasks.

Physical Plausibility. Drawing inspiration from recent works [33, 36], we incorporate explicit atomic
collision checks to ensure that generated crystals obey fundamental physical constraints arising from
the balance of attractive and repulsive interatomic forces. We define an atomic collision as a case
where atoms are unrealistically close in space, violating covalent-radius thresholds under explicit
periodic boundary conditions (PBC). Given Cartesian coordinates x;, X; in the unit cell and lattice
matrix L = [a, b, c] T, all translations

ne{-101}, Ar,=x— (x;+ nTL)
are examined, and the minimum image distance is defined as
Amin (4, 7) = mI}n | Ary .
A collision is flagged if
Amin(2,7) <1 + 715,

where r;, r; are triple-bond covalent radii, falling back to double-bond values if missing [8]. To
quantify collision prevalence, we compute the periodic-aware pairwise collision ratio

Zstructures Ei<j H(dmin (i’ j) <7+ Tj)
K )
Estructures ( 2 )

PLCR e =
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Table 4: The benchmarking results (global seed) on the crystal structure prediction task for diffusion-
based models.

Perov-5 Carbon-24 MP-20 MPTS-52
MR (1) RMSE() MR(1) RMSE() MR(1) RMSE({) MR (1) RMSE)

Cond-CDVAE [35] 42.31 0.1356 14.65 0.3216 2991 0.1098 491 0.2387
DiffCSP [24] 51.81 0.0922 16.45 0.2865 47.07 0.0654 11.91 0.1493

" DiffCSP++ [25] (w/CSPML) 1~~~ 53 ar 0 0880 - - 7094 " 700295 3317 | 0.0893
DiffCSP++ [25] (w/ GT) 1 98.47 0.0398 - - 79.76 0.0293 42.13 0.1134

EquiCSP [31]
FlowMM [37]

Method # of samples

CrystaLLM-raw 55 1 4795 7700966 21.13 T 0.0687 5585 00437 1747 01113
CrystaLLM 5, 1 4565 00977 2187 0173 5658 00426 1754  0.1028

" CrystaLLMeraw o000, 1 46.10 ~  0.0953 2025  0.1761 5870 ~ 0.0408 1921 ~ 0.1110
CrystaLLM 5y, 1 4587 00970  20.64  0.1971 5898  0.0345 1897  0.1123
Cond-CDVAE [35] 20 9135 00312 7860 02657 6612 00985 2698  0.2250
DiffCSP [24] 20 98.60  0.0118 8748 02102 7754 00611  33.13  0.1843
EquiCSP [31] 20 9738 00173 8472 02278 7265 00782  30.12  0.1985
FlowMM [37] 20 9458 00231 8145 02483  69.10 00904 2834 02123

" CrystalLLM-raw o5y 20 9826  0.0236  83.60  0.1523 7514~ 0.0395 3298  0.1197
CrystaLLM 55 20 9834 00228 8404  0.I518 7536 00398 3296  0.1206

" CrystalLLM-raw o0y 20 97.60 ~  0.0249 8517 © 0.1514 7397 ~ 0.0349 ~ 3375 ~ 0.1059
CrystaLLM 50y 20 97.73 00261 | 8547  0.1542 7411 | 0.0345 3400  0.1076

where I(-) is the indicator function. Collisions are further classified as same-cell (n = 0) or cross-cell
(n # 0), enabling a more detailed assessment of both intra- and inter-cell stability.

Symmetry Awareness for LLMs. Motivated by recent work [20], we evaluate a model’s ability
to capture invariances inherent to crystalline materials by assessing its translation symmetry using
the Increase in Perplexity under Transformation (IPT) metric. For a transformation group G with
elements g and group action ¢, the IPT for an input sequence s is defined as

IPT(s) = Egec [PPL(ty(s)) — PPL(t5(s))]

where
g = argmin PPL(¢,(s))
9

is the translation yielding the lowest perplexity, and PPL(s) = 2CE(s)/7 is the exponentiated length-
normalized cross-entropy. In our setting, G is the group of lattice translations, and ¢, performs
coordinate translation with periodic boundary conditions before re-encoding the structure. IPT thus
measures how much a model’s compression ability (inverse perplexity) changes under continuous
symmetry operations: smaller IPT indicates better invariance. We approximate IPT by sampling
multiple translation offsets g (e.g., 20 uniformly spaced shifts), choosing § per sequence, and
averaging over the test set. In addition to IPT, we compute the percent metastable metric—i.e.,
the fraction of generated crystal candidates with predicted formation energies below a stability
threshold—on symmetry-augmented test inputs.

Computational Complexity. To assess the practical usability and scalability of various generative
methods, we evaluate their computational complexity in terms of model size and the inference time
required for structure generation or prediction. These metrics are especially critical for models
designed for large-scale deployments or real-time applications.

4 Experiments and Analysis

4.1 Configurations

All algorithms and models were developed using Python 3.9.18, with PyTorch 2.2.0, PyTorch
Geometric 2.2.0, and Transformers 4.55.0, under CUDA 12.1. For diffusion and hybrid models,
experiments were conducted on a server equipped with 8 NVIDIA V100 GPUs (32 GB memory each)
and an Intel® Xeon® Platinum 8255C CPU @ 2.50 GHz. For large language model experiments, we
utilized NVIDIA A100 and 3090 GPUs.

4.2 Experimental Setup

For training, we trained all diffusion models and hybrid models from scratch. For large language
models (LLMs), we used the official open-sourced models. To ensure fair and efficient comparison,
all models were trained strictly following the parameter settings provided in their official github
repository. For model saving, we retained the best checkpoint based on the minimum validation loss,
as well as the final checkpoint at the end of the last training epoch. Both checkpoints were used for
sampling and evaluation. For CrystaLLM and Llama 3.1 (8B), we employed prompt-based methods
for crystal structure prediction tasks (The specific prompts used are provided in the Appendix J).
More details are provided in Appendix H.
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Table 5: The benchmarking results of MOF structure prediction task.

Method # of samples stol = 0.5 stol = 1.0
MR (1) RMSE(l) MR(1) RMSE()
RS [58] 20 0.00 - 0.00 -
EA [58] 20 0.00 - 0.00 -
DiffCSP [24] 1 0.09 0.3961 23.12 0.8294
MOFFlow-raw [26] 1 31.69 0.2820 87.46 0.5183
MOFFlow-last [26] 1 34.47 0.2712 89.59 0.5037
1

MOFFlow-best [26]

34.45 0.2712 89.54 0.5036
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Figure 3: Model scale and inference speed. (a) Parameter counts (log-scale) grouped by paradigm;
colors denote families (LLMs, Diffusion/Flow, Hybrid). (b—c) Time to sample 20 structures on
Perov-5 and Carbon-24: VAE models are slowest (~ 260 s), while Diffusion/Flow models are much
faster (~ 30-46 s). LLM/Hybrid models have larger parameter counts and were not timed.

4.3 The Task of Crystal Structure Prediction

Experiment Analysis. We evaluate CSP on Perov-5, Carbon-24, MP-20, and MPTS-52. For each
composition in the test sets, we draw either 1 or 20 random samples per model. Metrics follow the
standard protocol: Match Rate (MRT) via pymatgen StructureMatcher and coordinate RMSE|
normalized by /V/N. Table 4 shows that multi-sample decoding is crucial: moving from 1 to 20
samples greatly increases MR on all datasets and models. Diffusion models (DiffCSP / DiffCSP++)
obtain the highest MR on the challenging MP-20 and MPTS-52 splits—DiffCSP++ is especially
strong on larger/complex cells—while LLMs (CrystaLLM-25M & 200M) are highly competitive in
RMSE with 20 samples, indicating very accurate local coordinates once a match is found. FlowMM
baselines improve with multi-sampling but generally trail diffusion models in MR on the hard
splits. Dataset-wise, Perov-5 nearly saturates MR with 20 samples (differences appear mainly in
RMSE), Carbon-24 is moderate, and MP-20/MPTS-52 remain the most discriminative. Practically,
we recommend enabling multi-sample decoding by default; choose DiffCSP++ when maximizing
MR is the priority, and CrystaLLM-200M when the lowest post-match RMSE is desired.

4.4 The Task of MOF Structure Prediction

Experiment Analysis. Table 5 shows that MOF-specific flow models dominate this task. Random
search and EA fail to recover any structures (MR= 0). DiffCSP improves but remains far from
practical, while MOFFlow variants achieve large gains under both strict (sto1=0.5) and loose
(stol=1.0) matching. With just 5 samples, MOFFlow reaches ~46% MR at sto1=0.5 and >97%
MR at stol=1.0, together with the lowest RMSE (~0.25-0.27). Multi-sample decoding consistently
helps all methods (1—5 samples), but the gap between MOFFlow and DiffCSP remains substantial,
indicating the importance of a MOF-aware generator and the benefit of modeling SE(3) placements
of building blocks.

4.5 The Task of De Novo Generation

Experiment Analysis. We report structural and composition validity, coverage (COV-R/P) and
property alignment via Earth Mover’s Distance (density, #elements) in Table 27. Across datasets,
all models achieve near-100% structural validity, and most diffusion models reach ~99% coverage,
showing excellent compositional and structural diversity. Property distributions are best aligned
by modern diffusion model families: Flow-based and equivariant baselines tend to give the lowest
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Table 6: The benchmarking results (global seed) on de novo generation task. The best results are
highlighted in bold.

Validity (1) Coverage (1) Property (J)
Dataset  Method Strue,  Comp. COV-R COV-P  dy @ duon
Perov-5 CDVAE [56] 100.00 96.73 97.33 96.25 0.1532 0.0842
Cond-CDVAE [35] | 100.00 96.32 96.43 95.56 0.1576 0.0932
DiffCSP [24] 100.00 98.66  99.67 98.25 0.1370 0.0542
DiffCSP++ [25] 100.00  98.65 99.76 98.76  0.1331 0.0407
EquiCSP [31] 100.00 9840  99.42 98.44 0.1350 0.0120
FlowMM [37] 100.00 96.80  97.40 96.10  0.1520 0.0840
Carbon-24 CDVAE [56] 100.00 - 98.50 92.10  0.1450 -
Cond-CDVAE [35] | 99.98 - 96.32 89.90 0.2132 -
DiffCSP [24] 100.00 - 99.90 93.61 0.1429 -
DiffCSP++ [25] 100.00 - 99.90 47.51  0.0562 -
EquiCSP [31] 99.99 - 99.90 96.15 0.2150 -
FlowMM [37] 100.00 - 94.32 91.21  0.2390
MP-20 CDVAE [56] 99.40  80.20  98.70 97.80 0.1600 0.7200
Cond-CDVAE [35] | 99.35 79.80  98.40 97.50 0.1650 0.7400
DiffCSP [24] 99.78  83.86 99.61 99.47  0.1027 0.6129
DiffCSP++ [25] 99.86 84.92 99.76 99.43  0.1386 0.4728
EquiCSP [31] 99.89 81.67 99.57 99.62 0.6665 0.3958
FlowMM [37] 99.50 80.80  98.90 98.20 0.1550 0.7000
MPTS-52 CDVAE [56] 99.20  63.00 98.50 85.00 1.0500 0.6400
Cond-CDVAE [35] | 99.10 6250  98.20 84.50 1.0700 0.6600
DiffCSP [24] 99.78 66.70  99.64 88.89  0.9409 0.5573
DiffCSP++ [25] 99.20 6450  99.10 85.50 1.0500 0.6300
EquiCSP [31] 99.65 6948  99.78 96.27 0.8244 0.5606

EMDs on small/medium sets, while DiffCSP++ and EquiCSP are highly competitive on the larger
MP-20/MPTS-52 splits. Overall, distributional fidelity differences are modest compared with the
strong across-the-board validity, suggesting that downstream metrics (e.g., stability or synthesis
proxies) are needed to further separate methods.

4.6 Computational Complexity

Figure 3 contrasts model scale and inference speed. Parameter counts stratify by paradigm: VAEs
are smallest ( ~ 4.7-4.9M), diffusion/flow models are mid-sized (~ 12-29M,; e.g., DiffCSP/EquiCSP
~12.3M, FlowMM ~ 22.5M, MOFFlow ~ 28.5M), while LLM/hybrid models are much larger
(CrystalLLM 25M/200M; Llama-3.1 8B). For sampling 20 structures, VAEs are slowest (~ 260 s
on both Perov-5 and Carbon-24; ~ 13 s/structure). Diffusion/flow models are substantially faster:
28.9-34.8 s on Perov-5 and 35.2-46.0 s on Carbon-24 (~ 1.4-2.3 s/structure), a ~ 6-9x speed-up over
VAEs with modest dataset-to-dataset variance. LLM/hybrid models were not timed due to their much
larger parameter counts. Overall, diffusion/flow offers the most favorable latency—scale trade-off for
practical generation workloads.

Due to space limitations, we provide detailed discussions of OOD Generation and Physical
Plausibility evaluation in the Appendix 1.2 and 1.3.

5 Conclusion and Future Work

In this work, we introduce MGB, a unified and standardized platform for evaluating deep generative
models in materials science. MGB covers diverse tasks—including crystal structure prediction, de
novo generation, MOF structure prediction, and out-of-distribution generation—across representative
datasets and models. Through multi-dimensional evaluation metrics, it enables fair, rigorous, and
transparent comparisons among models, allowing robust, efficient, and generalizable solutions for
material discovery. We hope MGB will serve as a catalyst for accelerating innovation in this field.
Also, our future work includes the incorporation of benchmarking for material geometry modeling.



333

334
335

336
337

338
339
340

341
342
343
344

345
346
347

349
350
351

352
353
354

355
356
357

358
359
360

361
362
363

364
365
366

367
368

369

371
372

373
374
375

376
377
378
379

References

[1] Nawaf Alampara, Santiago Miret, and Kevin Maik Jablonka. Mattext: Do language models
need more than text & scale for materials modeling? arXiv preprint arXiv:2406.17295, 2024.

[2] Luis M Antunes, Keith T Butler, and Ricardo Grau-Crespo. Crystal structure generation with
autoregressive large language modeling. Nature Communications, 15(1):1-16, 2024.

[3] Kihoon Bang, Jeongrae Kim, Doosun Hong, Donghun Kim, and Sang Soo Han. Inverse design
for materials discovery from the multidimensional electronic density of states. Journal of
Materials Chemistry A, 12(10):6004-6013, 2024.

[4] Peter G Boyd, Arunraj Chidambaram, Enrique Garcia-Diez, Christopher P Ireland, Thomas D
Daff, Richard Bounds, Andrzej Gtadysiak, Pascal Schouwink, Seyed Mohamad Moosavi,
M Mercedes Maroto-Valer, et al. Data-driven design of metal-organic frameworks for wet flue
gas co2 capture. Nature, 576(7786):253-256, 2019.

[5] Ivano E Castelli, David D Landis, Kristian S Thygesen, Sgren Dahl, Ib Chorkendorff, Thomas F
Jaramillo, and Karsten W Jacobsen. New cubic perovskites for one-and two-photon wa-
ter splitting using the computational materials repository. Energy & Environmental Science,
5(10):9034-9043, 2012.

[6] Ivano E Castelli, Thomas Olsen, Soumendu Datta, David D Landis, Sgren Dahl, Kristian S
Thygesen, and Karsten W Jacobsen. Computational screening of perovskite metal oxides for
optimal solar light capture. Energy & Environmental Science, 5(2):5814-5819, 2012.

[7] Yan Chen, Xueru Wang, Xiaobin Deng, Yilun Liu, Xi Chen, Yunwei Zhang, Lei Wang, and
Hang Xiao. Mattergpt: A generative transformer for multi-property inverse design of solid-state
materials. arXiv preprint arXiv:2408.07608, 2024.

[8] Beatriz Cordero, Verénica Gémez, Ana E Platero-Prats, Marc Revés, Jorge Echeverria, Eduard
Cremades, Flavia Barragdn, and Santiago Alvarez. Covalent radii revisited. Dalton Transactions,
(21):2832-2838, 2008.

[9] Callum J Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M Cole. 3-d inorganic crystal
structure generation and property prediction via representation learning. Journal of Chemical
Information and Modeling, 60(10):4518—4535, 2020.

[10] Daniel W Davies, Keith T Butler, Adam J Jackson, Jonathan M Skelton, Kazuki Morita, and
Aron Walsh. Smact: Semiconducting materials by analogy and chemical theory. Journal of
Open Source Software, 4(38):1361, 2019.

[11] Jyotirmoy Deb, Lakshi Saikia, Kripa Dristi Dihingia, and G Narahari Sastry. Chatgpt in the
material design: Selected case studies to assess the potential of chatgpt. Journal of Chemical
Information and Modeling, 64(3):799-811, 2024.

[12] Mohammad Mahdi Forootan, Iman Larki, Rahim Zahedi, and Abolfazl Ahmadi. Machine
learning and deep learning in energy systems: A review. Sustainability, 14(8):4832, 2022.

[13] Xiang Fu, Tian Xie, Andrew S Rosen, Tommi Jaakkola, and Jake Smith. Mofdiff: Coarse-
grained diffusion for metal-organic framework design. arXiv preprint arXiv:2310.10732, 2023.

[14] Addis S Fuhr and Bobby G Sumpter. Deep generative models for materials discovery and
machine learning-accelerated innovation. Frontiers in Materials, 9:865270, 2022.

[15] Jingru Gan, Peichen Zhong, Yuangi Du, Yanqgiao Zhu, Chenru Duan, Haorui Wang, Carla P
Gomes, Kristin A Persson, Daniel Schwalbe-Koda, and Wei Wang. Large language models are
innate crystal structure generators. arXiv preprint arXiv:2502.20933, 2025.

[16] Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William
Green, and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d con-
former ensembles. Advances in Neural Information Processing Systems, 34:13757-13769,
2021.

10



380
381

382
383
384

385
386
387

388
389
390

391
392
393

394
395
396
397

398
399

401
402

403
404

405
406
407

408
409

410
411
412

413
414

415
416
417

418
419
420

421
422
423

424
425
426

[17] Colin W Glass, Artem R Oganov, and Nikolaus Hansen. Uspex—evolutionary crystal structure
prediction. Computer physics communications, 175(11-12):713-720, 2006.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In NIPS, pages
2672-2680, 2014.

[19] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[20] Nate Gruver, Anuroop Sriram, Andrea Madotto, Andrew Gordon Wilson, C Lawrence Zitnick,
and Zachary Ulissi. Fine-tuned language models generate stable inorganic materials as text.
arXiv preprint arXiv:2402.04379, 2024.

[21] Xiao-Qi Han, Zhenfeng Ouyang, Peng-Jie Guo, Hao Sun, Ze-Feng Gao, and Zhong-Yi
Lu. Ai-accelerated discovery of high critical temperature superconductors. arXiv preprint
arXiv:2409.08065, 2024.

[22] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards,
Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, et al. Commentary:
The materials project: A materials genome approach to accelerating materials innovation. APL
materials, 1(1), 2013.

[23] Shuyi Jia, Chao Zhang, and Victor Fung. Llmatdesign: Autonomous materials discovery with
large language models. arXiv preprint arXiv:2406.13163, 2024.

[24] Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. Advances in Neural Information Processing
Systems, 36, 2024.

[25] Rui Jiao, Wenbing Huang, Yu Liu, Deli Zhao, and Yang Liu. Space group constrained crystal
generation. arXiv preprint arXiv:2402.03992, 2024.

[26] Nayoung Kim, Seongsu Kim, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Mofflow:
Flow matching for structure prediction of metal-organic frameworks. arXiv preprint
arXiv:2410.17270, 2024.

[27] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. International
Conference on Learning Representations, 2013.

[28] Bo Lei, Enze Chen, Hyuna Kwon, Tim Hsu, Babak Sadigh, Vincenzo Lordi, Timofey Frolov,
and Fei Zhou. Grand canonical generative diffusion model for crystalline phases and grain
boundaries. arXiv preprint arXiv:2408.15601, 2024.

[29] Ge Lei, Ronan Docherty, and Samuel J Cooper. Materials science in the era of large language
models: a perspective. Digital Discovery, 2024.

[30] Qi Li, Rui Jiao, Liming Wu, Tiannian Zhu, Wenbing Huang, Shifeng Jin, Yang Liu, Hongming
Weng, and Xiaolong Chen. Powder diffraction crystal structure determination using generative
models. arXiv preprint arXiv:2409.04727, 2024.

[31] Peijia Lin, Pin Chen, Rui Jiao, Qing Mo, Cen Jianhuan, Wenbing Huang, Yang Liu, Dan Huang,
and Yutong Lu. Equivariant diffusion for crystal structure prediction. In Forty-first International
Conference on Machine Learning, 2024.

[32] Hongxuan Liu, Haoyu Yin, Zhiyao Luo, and Xiaonan Wang. Integrating chemistry knowledge
in large language models via prompt engineering. Synthetic and Systems Biotechnology,
10(1):23-38, 2025.

[33] Shengchao Liu, Divin Yan, Weitao Du, Weiyang Liu, Zhuoxinran Li, Hongyu Guo, Christian
Borgs, Jennifer Chayes, and Anima Anandkumar. Manifold-constrained nucleus-level denoising
diffusion model for structure-based drug design. arXiv preprint arXiv:2409.10584, 2024.

11



427
428
429

430
431
432

433
434

435
436

437
438

440
441
442

443
444
445
446

447
448

449
450

451
452

453
454

464

470
471
472

[34] Shengchao Liu, Divin Yan, Hongyu Guo, and Anima Anandkumar. An equivariant flow
matching framework for learning molecular crystallization. In ICML 2024 Workshop on
Geometry-grounded Representation Learning and Generative Modeling, 2024.

[35] Xiaoshan Luo, Zhenyu Wang, Pengyue Gao, Jian Lv, Yanchao Wang, Changfeng Chen, and
Yanming Ma. Deep learning generative model for crystal structure prediction. arXiv preprint
arXiv:2403.10846, 2024.

[36] Jian Ma, Peilin Zhao, Tingyang Xu, and Qifeng Bai. Reducing atomic clashes in geometric
diffusion models for 3d structure-based drug design. 2023.

[37] Benjamin Kurt Miller, Ricky TQ Chen, Anuroop Sriram, and Brandon M Wood. Flowmm:
Generating materials with riemannian flow matching. arXiv preprint arXiv:2406.04713, 2024.

[38] Md Hosne Mobarak, Mariam Akter Mimona, Md Aminul Islam, Nayem Hossain, Fatema Tuz
Zohura, Ibnul Imtiaz, and Md Israfil Hossain Rimon. Scope of machine learning in materials
research—a review. Applied Surface Science Advances, 18:100523, 2023.

[39] Viggo Moro, Charlotte Loh, Rumen Dangovski, Ali Ghorashi, Andrew Ma, Zhuo Chen, Peter Y
Lu, Thomas Christensen, and Marin Soljaci¢. Multimodal learning for crystalline materials.
arXiv preprint arXiv:2312.00111, 2023.

[40] Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent L Chevrier, Kristin A Persson, and Gerbrand Ceder.
Python materials genomics (pymatgen): A robust, open-source python library for materials
analysis. Computational Materials Science, 68:314-319, 2013.

[41] Hyunsoo Park, Zhenzhu Li, and Aron Walsh. Has generative artificial intelligence solved inverse
materials design? Matter, 7(7):2355-2367, 2024.

[42] Junkil Park, Youhan Lee, and Jihan Kim. Multi-modal conditioning for metal-organic frame-
works generation using 3d modeling techniques. 2024.

[43] Chris J. Pickard. Airss data for carbon at 10gpa and the c+n+h+o system at 1gpa, 2020. URL:
https://archive.materialscloud.org/record/2020.0026/v1.

[44] Chris J Pickard and RJ Needs. High-pressure phases of silane. Physical review letters,
97(4):045504, 2006.

[45] Chris J Pickard and RJ Needs. Ab initio random structure searching. Journal of Physics:
Condensed Matter, 23(5):053201, 2011.

[46] Raffaele Pugliese, Silvia Badini, Emanuele Frontoni, and Stefano Regondi. Generative artificial
intelligence for advancing discovery and design in biomateriomics. Intelligent Computing,
4:0117, 2025.

[47] Zekun Ren, Juhwan Noh, Siyu Tian, Felipe Oviedo, Guangzong Xing, Qiaohao Liang, Armin
Aberle, Yi Liu, Qianxiao Li, Senthilnath Jayavelu, et al. Inverse design of crystals using
generalized invertible crystallographic representation. arXiv preprint arXiv:2005.07609, 3(6):7,
2020.

[48] Mara Schilling-Wilhelmi, Martifio Rios-Garcia, Sherjeel Shabih, Maria Victoria Gil, Santiago
Miret, Christoph T Koch, José A Marquez, and Kevin Maik Jablonka. From text to insight:
Large language models for materials science data extraction. arXiv preprint arXiv:2407.16867,
2024.

[49] Zhong-Hui Shen, Han-Xing Liu, Yang Shen, Jia-Mian Hu, Long-Qing Chen, and Ce-Wen Nan.
Machine learning in energy storage materials. Interdisciplinary Materials, 1(2):175-195, 2022.

[50] Naichen Shi, Hao Yan, Shenghan Guo, and Raed Al Kontar. Multi-physics simulation guided
generative diffusion models with applications in fluid and heat dynamics. arXiv preprint
arXiv:2407.17720, 2024.

12


https://archive.materialscloud.org/record/2020.0026/v1

473
474
475

476
477
478

479
480

481
482

484
485

486
487
488

490

491
492
493
494

496

497
498
499

500
501
502

503
504
505

506
507
508

509
510
511

512
513
514

[51] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International Conference on Machine
Learning, pages 2256-2265. PMLR, 2015.

[52] Anuroop Sriram, Benjamin Kurt Miller, Ricky TQ Chen, and Brandon M Wood. Flowllm:
Flow matching for material generation with large language models as base distributions. arXiv
preprint arXiv:2410.23405, 2024.

[53] Izumi Takahara, Kiyou Shibata, and Teruyasu Mizoguchi. Generative inverse design of crystal
structures via diffusion models with transformers. arXiv preprint arXiv:2406.09263, 2024.

[54] Rama Vasudevan, Ghanshyam Pilania, and Prasanna V Balachandran. Machine learning for
materials design and discovery. Journal of Applied Physics, 129(7), 2021.

[55] Logan Ward, Ankit Agrawal, Alok Choudhary, and Christopher Wolverton. A general-purpose
machine learning framework for predicting properties of inorganic materials. npj Computational
Materials, 2(1):1-7, 2016.

[56] Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crys-
tal diffusion variational autoencoder for periodic material generation. arXiv preprint
arXiv:2110.06197, 2021.

[57] Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, and Jian Tang. Learning neural generative
dynamics for molecular conformation generation. arXiv preprint arXiv:2102.10240, 2021.

[58] Tomoki Yamashita, Shinichi Kanehira, Nobuya Sato, Hiori Kino, Kei Terayama, Hikaru Sawa-
hata, Takumi Sato, Futoshi Utsuno, Koji Tsuda, Takashi Miyake, et al. Cryspy: a crystal struc-
ture prediction tool accelerated by machine learning. Science and Technology of Advanced
Materials: Methods, 1(1):87-97, 2021.

[59] Keqgiang Yan, Xiner Li, Hongyi Ling, and Shuiwang Ji. Invariant tokenization for language
model enabled crystal materials generation. arXiv preprint arXiv:2402.04320, 2024.

[60] Mengjiao Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor
Mordatch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. arXiv preprint
arXiv:2311.09235, 2023.

[61] Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L Gaunt, Brendan
McMorrow, Danilo J Rezende, Dale Schuurmans, Igor Mordatch, and Ekin D Cubuk. Generative
hierarchical materials search. arXiv preprint arXiv:2409.06762, 2024.

[62] Zhenpeng Yao, Yanwei Lum, Andrew Johnston, Luis Martin Mejia-Mendoza, Xin Zhou,
Yonggang Wen, Aldn Aspuru-Guzik, Edward H Sargent, and Zhi Wei Seh. Machine learning
for a sustainable energy future. Nature Reviews Materials, 8(3):202-215, 2023.

[63] Adrian Xiao Bin Yong, Tianyu Su, and Elif Ertekin. Dismai-bench: benchmarking and designing
generative models using disordered materials and interfaces. Digital Discovery, 3(9):1889-1909,
2024.

[64] Claudio Zeni, Robert Pinsler, Daniel Ziigner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha
Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for
inorganic materials design. arXiv preprint arXiv:2312.03687, 2023.

[65] Nils ER Zimmermann and Anubhav Jain. Local structure order parameters and site fingerprints
for quantification of coordination environment and crystal structure similarity. RSC advances,
10(10):6063-6081, 2020.

13



515

516

517
518

519

521
522
523

524
525
526
527
528
529

530
531
532

533
534
535
536

537
538
539
540

541
542
543
544
545

547
548
549
550
551

553
554
555
556

558

888

Appendix

Table of Contents
A Related Work 15
B The Details of the Benchmarking Algorithms 16
B.1 Large Language Models . . . . . . . . . ... ... 16
B.2 DiffusionModels . . . ... ... 16
B.3 HybridModels . . . . . . .. . 17
C The Details of the Benchmarking Datasets 18
C.1 PEROV-5 . . . 18
C2 Carbon-24 . . . . . . . e 18
C3 MP-20 . . . oo 18
Cd MPTS-52 . . o 18
C.5 Boyd MOF Database . . . . . ... .. ... 18
D The Details of the Benchmarking Evaluations 19
D.1 Matching Accuracy for Crystal (MOF) Structure Prediction . . . . ... .. .. 19
D.2 Quality for De Novo Generation . . . . . . . ... ... ... ... ...... 19
E Out-of-distribution Test 21
E.1 Out of Distribution Datasets for Perov-5 . . . . . .. ... ... ... ..... 21
E.2  Out of Distribution Datasets for Carbon-24 . . . . . .. ... ... ... .... 25
E.3 Out of Distribution Datasets for Boyd MOF Database . . . . .. ... ... .. 26
F Atomic Collision Problem in Crystal Structure 27
F.1 Problem Definition (withPBC) . . . . .. ... ... ... ... ... ..... 27
F2 Implementation Details . . . . . . . . . ... ... ... 27
F3 Metrics . . . . . o oo e e 27
G Measuring Symmetry Learning Capabilities in LLMs 29
G.1 Definitionof IPT . . . . . . . . . ... 29
G.2 Transformation Group and Implementation . . . . . . .. ... ... ...... 29
G.3 Experimental Procedure . . . . . . . ... L. oo 29
G.4 Additional Metrics: Percent Metastable . . . . . .. ... ... ... ... ... 29
G.5 Interpretation . . . . . . . . ... 29
H The Details of Experimental Setup 30
H.1 CDVAE . . . . 30
H.2 DiffCSP . . . . o 30
H3 DiffCSP++. . . . . o 32
H4 EquiCSP . . . . . . . 32
HS5 FlowMM . . . . ... 34
I More Comprehensive Results 36
I.L1  More Comprehensive Results about CSP&DNG . . . . . ... ... ... ... 36
1.2 Case Studies on OOD Generation . . . . . . . . . .. . oot e 38
I.3  Evaluations on the Physical Plausibility Problem . . . . . ... ... ... ... 39
J Prompts of LLMs 40

14



561

564

574

584

585
586
587
588
589

A Related Work

Beyond the models and datasets evaluated in our benchmark (MGB), there exists a range of related
works that, while highly relevant, are not included due to factors such as lack of open-source
implementation or differences in task scope. These studies provide complementary perspectives
on generative approaches for materials design and help contextualize the contributions of MGB.
In particular, recent advances in generative modeling have introduced a variety of methods and
application settings that inform and inspire the design of future benchmarking efforts.

Such advances have shown promising potential for the inverse design of materials, particularly
crystalline structures. Methods span diffusion models, GANSs, large language models (LLMs), flow
matching, and sequence-based encodings, as seen in IMD [41], UniMat [60], GenMS [61], PXRD-
Gen [30], CDS&CDI [53], GRIP [28], AIAD [21], MatterGPT [7], CrystalFlow [34], FlowLLM [52],
and Mat2Seq [59]. These works target objectives such as generating stable structures, optimizing
material properties, and solving structure determination tasks, while facing common challenges in
synthesizability, physical interpretability, and evaluation metrics.

In addition to individual generative approaches, specialized benchmarks and datasets have been
developed to rigorously evaluate model performance. Dismai-Bench [63] focuses on disordered
materials and interfaces, complementing benchmarks that target ordered crystalline systems, and
provides structure-comparison-based metrics to reveal strengths, weaknesses, and failure modes in
generative models.

Recent trends also highlight integration of multi-modal data, multi-physics simulations, and domain-
specific constraints. MultiMat [39] aligns multiple material modalities for representation learning;
MPDM [50] incorporates physics simulations into diffusion models; MOFFUSION [42] and MOFD-
iff [13] target MOF generation; and MatterGen [64] demonstrates multi-property optimization across
inorganic materials.

LLMs are increasingly applied in materials science for design, knowledge extraction, and scientific
assistance. Works such as ChatGPTMG [11], LLMatDesign [23], DKPE [32], CrystaltextLL.M [20],
LLMMSDE [48], MatText [1], and MicroGPT [29] explore applications from structure generation
and property prediction to literature mining and autonomous research agents, while also noting
limitations in data availability, controllability, and factual accuracy.

15



590

591

592
593
594
595
596
597
598

599
600
601
602
603
604
605
606

607
608
609
610
611
612
613
614
615
616

617

618
619
620
621
622

624
625

626
627
628
629
630
631

633
634

B The Details of the Benchmarking Algorithms

B.1 Large Language Models

CrystalLLM (25M & 200M) [2]. CrystaLLM proposes crystal structure generation by autoregressive
large language modeling directly on CIF files. Treating crystal structures as token sequences,
CrystaLLM is trained on millions of inorganic crystals and can generate valid, diverse structures for
unseen compositions and symmetries. It achieves competitive or superior match rates and geometric
accuracy compared to diffusion-based models. The model supports conditional generation on space
group or composition, and integrates MCTS and energy predictors for low-energy structure search.
Code and web app: https://github.com/lantunes/CrystalLLM, https://crystallm.com.

Llama 3.1 (8B) [19]. Llama 3.1 (8B) is an open-source large language model released by Meta Al in
2024. With 8 billion parameters, it supports context windows up to 128k tokens and incorporates
Grouped-Query Attention for efficient long-context reasoning. The model is pretrained on large-scale
text corpora and further instruction tuned, enabling strong performance on multilingual dialogue, text
generation, and classification tasks. Compared with larger variants, Llama 3.1 (8B) achieves a balance
between capability and computational efficiency, making it suitable for research and deployment
in resource-constrained environments. The model is open sourced at https://huggingface.co/meta-
Ilama/Llama-3.1-8B.

We note that Table 7 summarizes all currently available large language models for material de-
sign, including both open-source and closed-source efforts. In particular, models such as Crys-
taltextLLM [20], FlowLLM [37], and Mat2Seq [59] have been proposed for materials discovery.
However, their model weights are not publicly released, and no inference platforms exist to support
them. As indicated in the table, these models are either fine-tuned from proprietary checkpoints (e.g.,
CrystaltextLLM, FlowLLM) or trained from scratch without accessible artifacts (e.g., Mat2Seq). Re-
training them independently would require prohibitive computational resources, making it infeasible
to include them in our benchmark. Consistent with common practice in the LLM community, we
therefore rely on existing checkpoints with accessible weights and APIs, which ensures reproducibility
and fair comparison across models.

Table 7: Summary of LLMs for material design.

Model Open Source #Params Base LLM Training Type Benchmarked in MGB
CrystaLLM [2] v 25M/200M None Trained from scratch v
MatLLMSearch [15] v 70B Llama 3.1 No training X
CrystaltextLLM [20] X 7B/13B/70B  Llama-2 Fine-tuned X
FlowLLM [37] X 70B Llama-2 Fine-tuned X
Mat2Seq [59] X 25M/200M None Trained from scratch X

B.2 Diffusion Models

DiffCSP [24]. DiffCSP is a novel diffusion-based generative model designed for Crystal Structure
Prediction (CSP), addressing the challenges posed by the geometric symmetries of crystals, such
as translation, rotation, and periodicity. By leveraging fractional coordinates and a periodic-E(3)-
equivariant denoising model, DiffCSP jointly generates both lattice vectors and atom positions,
effectively capturing the intrinsic periodicity and symmetries of crystal structures. Unlike conven-
tional methods that rely on computationally expensive DFT or Cartesian coordinate-based generative
models, DiffCSP provides a more accurate and computationally efficient solution. The code for
DiffCSP is publicly available at: https://github.com/jiaor17/DiffCSP.

DiffCSP++ [25]. DiffCSP++ is a novel diffusion-based model designed for crystal generation that
incorporates space group constraints, which are crucial for capturing the geometric and symmetry
properties of crystals. It translates the space group constraint into two tractable components: the
basis constraint of the O(3)-invariant logarithmic space of the lattice matrix and the Wyckoff position
constraint of the fractional coordinates of atoms. These constraints are seamlessly integrated into the
diffusion process, allowing DiffCSP++ to generate lattices, atomic coordinates, and atom compo-
sitions while maintaining the symmetry of the crystal. By explicitly considering these constraints,
DiffCSP++ improves upon the previous DiffCSP model and achieves superior performance in tasks
such as crystal structure prediction, ab initio crystal generation, and controllable generation with
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specific space groups across various datasets. The code for DiffCSP++ is publicly available at:
https://github.com/jiaor17/DiffCSP-PP.

EquiCSP [31]. EquiCSP is a novel equivariant diffusion-based generative model developed to tackle
the challenges of Crystal Structure Prediction (CSP). It ensures both lattice permutation and periodic
translation equivariance, addressing limitations in previous models that overlooked these critical sym-
metries. To achieve this, EquiCSP introduces a specialized diffusion noising algorithm called Periodic
CoM-free Noising, which maintains periodic translation equivariance throughout both training and
generation. Additionally, it employs simple loss functions to enforce lattice permutation equivariance
without embedding it directly into the neural network architecture, thus improving computational
efficiency. The code for EquiCSP is publicly available at: https://github.com/EmperorJia/EquiCSP.

FlowMM [37]. FlowMM is a generative model framework developed to predict and generate stable
crystalline materials by extending the Riemannian Flow Matching method. It is specifically designed
to handle the unique symmetries of periodic crystals, including translation, rotation, permutation
invariances, and periodic boundary conditions. By modeling the joint distribution over lattice
parameters, atomic coordinates, and atom types, FlowMM provides a unified solution for both Crystal
Structure Prediction (CSP) and De Novo Generation (DNG). The code for FlowMM is publicly
available at: https://github.com/facebookresearch/flowmm.

MOFFlow [26]. MOFFlow is a generative framework designed for the discovery and design of
Metal-Organic Frameworks (MOFs). Built upon an equivariant flow-based model, it captures the
inherent symmetries of crystalline MOF structures, including translation, rotation, and periodic
boundary conditions. The model jointly generates atom types, coordinates, and lattice parameters,
enabling both crystal structure prediction and de novo MOF generation. Trained on large-scale
MOF datasets, MOFFlow demonstrates strong capability in generating stable and diverse MOF
structures while preserving chemical validity. The code for MOFFlow is publicly available at:
https://github.com/nayoung 10/MOFFlow.

B.3 Hybrid Models

CDVAE [56]. CDVAE is a Crystal Diffusion Variational Autoencoder designed to generate stable
periodic materials by addressing the challenge of material generation, where stability is dictated by
quantum mechanical energy minima and specific atomic bonding preferences. CDVAE employs a
diffusion process in its decoder that iteratively refines atomic coordinates and atom types, pushing
them towards stable configurations. Built upon SE(3) equivariant graph neural networks, CDVAE
respects critical physical invariances, including permutation, translation, rotation, and periodic
boundary conditions. The model outperforms previous methods in tasks such as input structure
reconstruction, generating diverse and realistic materials, and optimizing materials for specific
properties. Additionally, CDVAE contributes standard datasets and evaluation metrics to facilitate a
consistent comparison of generative models in material science. The code for CDVAE is publicly
available at: https://github.com/txie-93/cdvae.

Cond-CDVAE [35]. The Cond-CDVAE is a deep learning-based generative model developed for
crystal structure prediction (CSP) under user-defined conditions such as chemical composition and
pressure. Trained on a vast dataset of 670,979 stable crystal structures from the Materials Project and
CALYPSO databases, it can generate valid and diverse crystal structures with high accuracy. The
Cond-CDVAE outperforms conventional CSP methods in both efficiency and fidelity, particularly
for structures with fewer than 20 atoms per unit cell. Conditioning on physical parameters enables
the exploration of crystal structures across a wide range of pressures, facilitating materials discovery
without the need for computationally expensive local optimization. The code for Cond-CDVAE is
publicly available at:https://github.com/ixsluo/cond-cdvae.
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C The Details of the Benchmarking Datasets

C.1 PEROV-5

Perovskite is a class of materials that share a similar structure and have the general chemical formula
ABXj3. The ideal perovskites have a cubic structure, where the site A atom sits at a corner position,
the site B atom sits at a body-centered position and site X atoms sit at face centered positions.
Perovskite materials are known for their wide applications. We curate the Perov-5 dataset from an
open database that was originally developed for water splitting [5, 6]. All 18928 materials in the
original database are included. In the database, A, B can be any nonradioactive metal, and X can be
one or several elements from O, N, S, and F. Note that there can be multiple different X atoms in
the same material. All materials in Perov-5 are relaxed using density functional theory (DFT), and
their relaxed structure can deviate significantly from the ideal structures. A significant portion of the
materials is not thermodynamically stable, i.e., they will decompose to nearby phases and cannot
be synthesized. PEROV-5 [5] includes 18928 perovskite materials that share the same structure but
differ in composition. There are 56 elements, and all materials have 5 atoms in the unit cell.

C.2 Carbon-24

Carbon-24 includes various carbon structures obtained via ab initio random structure searching
(AIRSS) [44, 45] performed at 10 GPa. The original dataset includes 101529 carbon structures, and
we selected 10% of the carbon structures with the lowest energy per atom to create Carbon-24. All
10153 structures in Carbon-24 are relaxed using DFT. The most stable structure is diamond at 10
GPa. All remaining structures are thermodynamically unstable but may be kinetically stable. Most of
the structures cannot be synthesized. Carbon-24 [43] includes 10153 materials that are all made up of
carbon atoms but differ in structures. There is 1 element, and the materials have 6 - 24 atoms in the
unit cells.

C3 MP-20

MP-20 includes almost all experimentally stable materials from the Materials Project [22] with
unit cells including at most 20 atoms. We only include materials that are originally from ICSD []
to ensure the experimental stability, and these materials represent the majority of experimentally
known materials with at most 20 atoms in unit cells. To ensure stability, we only select materials
with energy above the hull smaller than 0.08 eV/atom and formation energy smaller than 2 eV/atom,
following [47]. Differing from [47], we do not constrain the number of unique elements per material.
All materials in MP-20 are relaxed using DFT. Most materials are thermodynamically stable and have
been synthesized. MP-20 [22] includes 45231 materials that differ in both structure and composition.
There are 89 elements, and the materials have 1 - 20 atoms in the unit cells.

C4 MPTS-52

MPTS-52 [22] is a more challenging extension of MP-20, consisting of 40,476 structures up to 52
atoms per cell, sorted according to the earliest published year in literature.

C.5 Boyd MOF Database

The Boyd MOF Database originates from the work [4], focusing on the data-driven design of
metal-organic frameworks (MOFs) for wet flue gas CO5 capture. The original dataset consists of
324,426 hypothetical MOF structures generated by high-throughput topology-based construction.
Each structure was evaluated for CO, and Ny adsorption properties under both dry and humid
conditions, aiming to identify robust adsorbent materials capable of selective CO2 capture in industrial
flue gas streams. In the benchmark setting, following prior work [26], structures with fewer than 200
building blocks were excluded, resulting in 247,066 MOFs retained. The dataset is randomly split into
training, validation, and test sets with an 8:1:1 ratio, yielding approximately 197,653 / 24,707 / 24,707
structures, respectively. This dataset is particularly challenging due to its large scale and diversity.
MOFs in the database span a wide range of compositions, topologies, and pore characteristics. While
many structures are hypothetical, they provide a rich testbed for machine learning algorithms in
materials discovery, particularly in the context of adsorption-based carbon capture.
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D The Details of the Benchmarking Evaluations

D.1 Matching Accuracy for Crystal (MOF) Structure Prediction

Match Rate. The Match Rate is the proportion of the matched structures over the test set. We
evaluate the match rate performance by matching the generated structure and the input structure
for all materials in the test set. We use StructureMatcher from pymatgen [40], , which finds the
best match between two structures considering all invariances of materials. The match rate is the
percentage of materials satisfying the criteria sto1=0.5, angle tol=10, 1tol=0.3.

RMSE. RMSE is calculated between the ground truth and the best matching candidate, normalized by

+/V/N where V is the volume of the lattice, N is the number of atoms in the unit cell, and averaged
over the matched structures.

D.2 Quality for De Novo Generation

Structural Validity. Following [9], a structure is valid as long as the shortest distance between any
pair of atoms is larger than 0.5 A, which is a relative weak criterion.

Compositional Validity. The composition is valid if the overall charge is neutral as computed by
SMACT [10].

Coverage Recall (COV-R) and Coverage Precision (COV-P). Inspired by [57, 16], we define
two coverage metrics, COV-R (Recall) and COV-P (Precision), to measure the similarity between
ensembles of generated materials and ground truth materials in the test set. Intuitively, COV-R
measures the percentage of ground truth materials being correctly predicted. COV-P measures the
percentage of predicted materials having high quality.

Inspired by [57, 16], we define six metrics to compare two ensembles of materials: materials
generated by a method { My} p¢[1.. k7, and ground truth materials in test data { M }¢[1..1). We use
the Euclidean distance of the CrystalNN fingerprint [65] and normalized Magpie fingerprint [55] to
define the structure distance and composition distance between generated and ground truth materials,
respectively. They can be written as Dy, (M, M) and Deomp. (M, M;*). We further define the
thresholds for the structure and composition distance as dstruc. and deomp., respectively. Following
the established classification metrics of Precision and Recall, we define the coverage metrics as:

1
COV-R (Recall) = Z\{l € [1..L] : 3k € [1..K], Dstruc. (M, M) < dstruc.

Dcomp‘(Mkle*) < 6comp.}| (1)
1 . .
AMSD-R (Recall) = - > nin Dstrue. (M, M) )
le1..L]
AMCD-R (Recall) ! Z min_ Deomp. (My, M) 3)
- = - 1 comp. P )
L ey K] PRy T

where COV is "Coverage", AMSD is "Average Minimum Structure Distance", AMCD is "Average
Minimum Composition Distance", and COV-P (precision), AMSD-P (precision), AMCD-P (precision)
are defined as in above equations, but with the generated and ground truth material sets swapped. The
recall metrics measure how many ground truth materials are correctly predicted, while the precision
metrics measure how many generated materials are of high quality (more discussions can be found in

[16]).

We note several points on why we define the metrics in their current forms. 1) COV requires both
structure and composition distances to be within the thresholds, because generating materials that are
structurally close to one ground truth material and compositionally close to another is not meaningful.
As a result, AMSD and AMCD are less useful than COV. 2) We use fingerprint distance, rather than
RMSE from StructureMatcher [40], because the material space is too large for the models to
generate enough materials to exactly match the ground truth materials. StructureMatcher first
requires the compositions of two materials to exactly match, which will cause all models to have
close-to-zero coverage. For Perov-5 and Carbon-24, we choose dstryc. = 0.2, dcomp. = 4. For MP-20
and MPTS-52, we choose §struc. = 0.4, 6comp. = 10.
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Property Statistics d,, dr and dc.m,,. To quantitatively evaluate the similarity between the
generated and test material property distributions, we compute the Earth Mover’s Distance (EMD,
i.e., Wasserstein distance) for three representative properties: (1) density (p, unit: g/cm?), (2)
formation energy per atom (F, unit: eV /atom), and (3) the number of unique elements (# elem.).
The formation energy is predicted using an independent graph neural network (GNN) trained on an
external dataset, ensuring unbiased property evaluation. For each property, the Wasserstein distance is
calculated between the distributions of generated structures and those of the test set. Unless otherwise
specified, the property metrics are evaluated on a subset of 1,000 valid generated samples. Validity
and coverage are computed over N (N € [5000, 10000, 15000, 20000]) materials randomly sampled
from A(0, 1). Property statistics is computed over 1,000 valid materials randomly sampled from
those that pass the validity test.
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E Out-of-distribution Test

In this section, we evaluate the generalization ability of models beyond their training distributions
through out-of-distribution (OOD) tests. We construct representative OOD datasets for three material
classes: (i) materials with perovskite-related motifs but outside the Perov-5 distribution, including
double perovskites, antiperovskites, and layered perovskites (Ruddlesden-Popper phases) as shown
in Tables 8, 9, and 10; (ii) carbon allotropes with large unit cells for testing the extrapolation of
Carbon-24 models (Table 11); and (iii) MOFs with distinct functions from CO5 adsorption, used
to assess the Boyd hypothetical MOF database (Table 12). Each dataset is curated from publicly
available sources (Materials Project, ICSD, COD) and follows a consistent selection criterion. The
OOD evaluation metrics include effectiveness, uniqueness/diversity, stability (e.g., Ey1 or phase
consistency), and property performance, facilitating cross-model and material class comparisons.

E.1 Out of Distribution Datasets for Perov-5

To comprehensively evaluate the generalization ability of generative models beyond the Perov-5
dataset, we construct several out-of-distribution (OOD) test sets. These datasets are designed to
include material families that share structural motifs with perovskites but are not part of the Perov-5
training distribution. Specifically, we consider three representative categories: double perovskites,
antiperovskites, and layered perovskites (Ruddlesden-Popper phases). All materials are collected
from the Materials Project, and they provide diverse structural and functional characteristics that
challenge models to extrapolate beyond the standard perovskite composition space.

Double Perovskite Crystals (OOD-DPC). Double perovskites (A;BB’Og) are an important class of
materials in which two distinct cations occupy alternating lattice sites. Their compositional tunability
leads to diverse functionalities, ranging from magnetism and multiferroicity to ferroelectricity and
catalysis. Owing to this structural and functional diversity, double perovskites provide a strong
out-of-distribution (OOD) benchmark for evaluating models trained on Perov-5. In Table 8, we
present representative double perovskite crystals collected from the Materials Project, covering
categories such as magnetic & spin-polarized, multiferroic, dielectric & ferroelectric, photocatalytic
& photoelectric, oxygen reduction & catalytic, and other representative compounds. Each entry
reports the chemical formula, Materials Project ID, and space group, highlighting the broad coverage
of double perovskites beyond the Perov-5 dataset.

Antiperovskite Crystals (OOD-AC). Antiperovskites (M3AX) are structural analogues of per-
ovskites in which anion and cation positions are inverted. They exhibit unique physical properties
such as metallic conductivity, mechanical robustness, and unconventional magnetism, making them
distinct from the perovskite family while still sharing related motifs. Their structural differences
render them a suitable OOD test set for Perov-5-based generative models. Table 9 summarizes
representative nitride-type (M3AN), carbide-type (M3AC), and other common antiperovskites, all
collected from the Materials Project. For each material, we provide the chemical formula, Materials
Project ID, and space group. The majority belong to the high-symmetry group Pm-3m (221), yielding
a simple yet clearly out-of-domain evaluation set.

Layered Perovskite Crystals (Ruddlesden-Popper Phase) (OOD-LPC). Layered perovskites, or
Ruddlesden-Popper (RP) phases, consist of perovskite layers separated by rock-salt layers, following
the general formula A,;1B,O3n41. Their tunable dimensionality, controlled by the stacking parameter
n, gives rise to rich electronic and optical behaviors, particularly in reduced-dimensional systems.
Since RP phases extend beyond the standard perovskites of Perov-5, they provide a challenging
benchmark for OOD evaluation. Table 10 reports representative RP phases collected from the Materi-
als Project, grouped inton = 1, n = 2, and n = 3 categories, together with 2D organic—inorganic
RP compounds and other RP variants. Each entry lists the chemical formula, Materials Project
ID, and space group, illustrating the structural diversity of layered perovskites outside the Perov-5
distribution.
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Table 8: Selected double perovskite crystals for out-of-distribution test.

Category Pretty Formula Material ID Space Group Source
Magnetic& Spin-polarized Materials Sr2CrReO6 mp-1205958  Fm-3m, 225 The Materials Project
Sr2CrOsO6 mp-1078354 R-3, 148 The Materials Project
Ca2FeMoO6 mp-18783 P2_1/c, 14 The Materials Project
Ba2FeReO6 mp-31756 Fm-3m, 225 The Materials Project
La2VMnO6 mp-560369 P2_1/c, 14 The Materials Project
La2CoMnO6 mp-19208 P2 _1/c, 14 The Materials Project
La2CrMnO6 mp-1223342  P2_1/c, 14 The Materials Project
Multiferroic Materials Bi2FeCrO6 mp-551086  R3, 146 The Materials Project
La2NiMnO6 mp-1079517  Fm-3m, 225 The Materials Project
Y2CoMnO6 mp-1189894  P2_l/c, 14 The Materials Project
Pb2CoWO6 mp-20069 C2/m, 12 The Materials Project
Dielectric & Ferroelectric Materials Sr2LaTaO6 mp-1205692  Fm-3m, 225 The Materials Project
Sr2GdNbO6 mp-1518774  Pn-3, 201 The Materials Project
Sr2ScSbO6 mp-1106218  P2_1/c, 14 The Materials Project
Ba2LaNbO6 mp-553281 C2/m, 12 The Materials Project
Photocatalytic & Photoelectric Materials ~ Sr2AlTaO6 mp-1147547 P4/mmm, 123  The Materials Project
Sr2FeTiO6 mp-1094048  Fm-3m, 225 The Materials Project
Ba2BiSbO6 mp-23091 R-3, 148 The Materials Project
Sr2MgMoO6 mp-1078539  14/m, 87 The Materials Project
Oxygen Reduction & Catalytic Materials Pr2NiMnO6 mp-1209751  P2_1/c, 14 The Materials Project
La2FeCoO6 mp-1223373  P2_l/c, 14 The Materials Project
La2MnCoO6 mp-19208 P2_1/c, 14 The Materials Project
La2NiCoO6 mp-1223259 R-3, 148 The Materials Project
Other Representative Double Perovskites  Sr2GaSbO6 mp-6065 Fm-3m, 225 The Materials Project
Ba2ScSbO6 mp-20709 Fm-3m, 225 The Materials Project
Ba2HoTaO6 mp-13000 14/m, 87 The Materials Project
Sr2MgWO6 mp-18848 Fm-3m, 225 The Materials Project
Sr2CoWO0O6 mp-18771 14/m, 87 The Materials Project
Ba2ErNbO6 mp-6653 Fm-3m, 225 The Materials Project
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Table 9: Selected antiperovskite crystals for out-of-distribution test.

Category Antiperovskite Material ID Space Group Source
Nitride (M3AN type) Mn3GaN mp-627439  Pm-3m, 221 The Materials Project
Mn3ZnN mp-15805 Pm-3m, 221 The Materials Project
Mn3CuN mp-510380  Pm-3m, 221 The Materials Project
Mn3NiN mp-20362 Pm-3m, 221 The Materials Project
Fe3Mo3N mp-510619  Fd-3m, 227 The Materials Project
Co3InN mp-1068786 Pm-3m, 221 The Materials Project
Ni3ZnN mp-1069270  Pm-3m, 221 The Materials Project
Carbide (M3AC type) Fe3SnC mp-21850 Pm-3m, 221 The Materials Project
Co3SnC mp-20679 Pm-3m, 221 The Materials Project
Mn3AIC mp-4593 Pm-3m, 221 The Materials Project
Ni3AIC mp-1207084  Pm-3m, 221 The Materials Project
Fe3ZnC mp-10266 Pm-3m, 221 The Materials Project
Other Common Antiperovskites Ni3InN mp-1070713  Pm-3m, 221 The Materials Project
Fe3SbN mp-1246554 Imma, 74 The Materials Project
Mn3GeN mp-1205588 I4/mcm, 140  The Materials Project
Mn3SbN mp-1206805 Pm-3m, 221 The Materials Project
Mn3SnN mp-505571 Pm-3m, 221 The Materials Project
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Table 10: Selected layered perovskite crystals for out of distribution test (Ruddlesden-Popper phase).

Category Layered Perovskite Material ID Space Group Source

n =1 RP phase Sr2TiO4 mp-5532 I4/mmm, 139  The Materials Project
La2Cu0O4 mp-19735 I4/mmm, 139  The Materials Project
K2NiF4 mp-556546  I4/mmm, 139  The Materials Project
Ca2MnO4 mp-19050 14_1/acd, 142 The Materials Project
Ba2CuO4 mp-1147762  I4/mmm, 139  The Materials Project
Sr2Ru0O4 mp-4596 I4/mmm, 139  The Materials Project

n =2 RP phase Sr3Ti207 mp-3349 I4/mmm, 139  The Materials Project
Ca3Ti207 mp-4163 Cmc2_1, 36 The Materials Project
La3Ni207 mp-18926 Cmcm, 63 The Materials Project
Sr3Fe207 mp-18820 I4/mmm, 139  The Materials Project
Sr3Ru207 mp-5868 I4/mmm, 139  The Materials Project

n =3 RP phase Sr4Ti3010 mp-31213 I4/mmm, 139  The Materials Project
La4Ni3010 mp-19298 I4/mmm, 139  The Materials Project
Sr4Ru3010 mp-680680 Cmce, 64 The Materials Project

2D Organic-Inorganic RP Perovskite (BA)2Pbl4 mp-6280 Pnma, 62 The Materials Project
(PEA)2Pbl4 mp-550306  I4/mmm, 139  The Materials Project
(BA)2MAPDL2I7 mp-720710  P-1,2 The Materials Project

Other RP perovskites Sr2FeO4 mp-19102 I4/mmm, 139  The Materials Project
La2NiO4 mp-20143 Cmce, 64 The Materials Project
Sr2Co04 mp-18724 I4/mmm, 139  The Materials Project
K2MgF4 mp-31212 I4/mmm, 139  The Materials Project
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E.2 Out of Distribution Datasets for Carbon-24

Huge Unit Cell Carbon Crystals (OOD-HUCC). The Carbon-24 dataset contains diverse carbon
allotropes generated via ab initio random structure searching (AIRSS) at 10 GPa, from which over
10,000 low-energy structures were curated and relaxed using DFT. While diamond remains the most
stable phase, most of these structures are metastable and not experimentally synthesizable, thereby
offering a wide structural diversity beyond well-known carbon forms such as diamond and graphite.
To construct a meaningful out-of-distribution (OOD) benchmark for Carbon-24, we further collected
representative carbon crystals from the Materials Project, as shown in Table 11. These crystals exhibit
varied huge unit cell sizes, space groups, and stability profiles, with some experimentally observed
and others hypothetical. Each entry reports the atom number, Materials Project ID, space group,
and whether it has been experimentally realized. This dataset highlights both the diversity of carbon

structures and their suitability for OOD evaluation beyond the Carbon-24 training distribution.

Table 11: Selected huge unit cell carbon crystals for the out-of-distribution test.

Atom Numbers Material ID Space Group Synthesis Status Source

240 mp-1196583  Pa-3, 205 v The Materials Project
140 mp-683919  Cmcm, 63 v The Materials Project
120 mp-1147718  Pnnm, 58 X The Materials Project
120 mp-568028  Pnnm, 58 v The Materials Project
120 mp-1205283  Pnnm, 58 X The Materials Project
100 mp-1245190 P1,1 X The Materials Project
100 mp-1244913  P1, 1 X The Materials Project
100 mp-1244964 P1, 1 X The Materials Project
80 mp-1197903 P1, 1 X The Materials Project
80 mp-1182684 P2 12 12 1,19 X The Materials Project
71 mp-1096869 Cm, 8 X The Materials Project
60 mp-680372  R-3m, 166 v The Materials Project
60 mp-667273  Fm-3, 202 v The Materials Project
60 mp-630227  Immm, 71 v The Materials Project
52 mp-1196857 Pnma, 62 v The Materials Project
48 mp-723638 P2_1/c, 14 v The Materials Project
29 mp-1192619  1-43m, 217 X The Materials Project
28 mp-731594 P2 1,4 v The Materials Project
32 icsd-673340 P2_1/c X ICSD

32 icsd-673342  P2lc X ICSD

96 icsd-671853  Pm-3m X ICSD
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E.3 Out of Distribution Datasets for Boyd MOF Database

Out of Distribution Datasets for Function-Distinct MOFs (OOD-FDMOFs). The Boyd MOF
Database consists of over 300,000 hypothetical MOF structures generated by topology-based con-
struction and primarily evaluated for CO5 capture. While this dataset is valuable for adsorption
studies, it does not fully represent the diversity of experimentally realized MOFs used in other
applications. To construct a meaningful out-of-distribution (OOD) benchmark, we deliberately
collected MOFs whose primary functions are distinct from COq adsorption, such as drug delivery,
methane storage, and heterogeneous catalysis. Table 12 summarizes representative MOFs from the
Crystallography Open Database, covering well-known families such as MIL, UiO, ZIF, and HKUST.
For each MOF, we provide the metal center, organic linker, space group, and data source, along with
CIF availability and reference links. This curated dataset highlights structural and functional diversity
outside the CO,-focused Boyd database, making it a suitable OOD benchmark for evaluating model
generalization.

Table 12: Representative MOFs with primary functions distinct from CO4 adsorption for the out-of-
distribution test.

Category MOF Metal Center Organic Linker Space Group CIF Source Link
Drug Delivery MIL-100(Fe) Fe(IIT), Cr(IIT) 1,3,5-benzenetricarboxylate (BTC) - v COD link
MIL-100(Cr) Fe(III), Cr(III) 1,3,5-benzenetricarboxylate (BTC) - v COD link
Ui0-66 Zr(IV) Terephthalic acid (BDC), Biphenyldicarboxylate v COD link
Ui0-67 Zr(IV) Terephthalic acid (BDC), Biphenyldicarboxylate v COD link
ZIF-8 Zn(II) 2-methylimidazolate v COD link
BioMOF-100 Zn(1D) Adenine, BTC X COD link
BioMOF-1 Various (e.g., Cu) Biomolecule, peptide or aromatic carboxylates v COD link
BioMOF-11 Various (e.g., Cu) Biomolecule, peptide or aromatic carboxylates v COD link
Methane Storage HKUST-1 (Cu-BTC)  Cu(Il) 1,3,5-benzenetricarboxylate (BTC) v COD link
MOF-177 Zn(1D) 1,3,5-tris(4-carboxyphenyl)benzene v COD link
Catalysis MIL-101(Cr) Cr, Fe Terephthalic acid (BDC) v COD link
MIL-53(Fe) Cr, Fe Terephthalic acid (BDC) v COD link
ZIF-67 Co(II) Imidazolate v COD link
MOF-5 (IRMOF-1)  ZnsO Terephthalic acid (BDC) v COD link
MIL-68 In(1II), Ga(III), AI(IIT)  Terephthalic acid (BDC) v COD link
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F Atomic Collision Problem in Crystal Structure

Motivation. An important failure mode in generative crystal modeling is the atomic collision
problem, where two atoms are placed unrealistically close, violating basic physical constraints (Pauli
exclusion and electrostatic repulsion) [33, 36]. Such collisions typically render structures nonphysical
or unstable and thus unsuitable for downstream use.

F.1 Problem Definition (with PBC)

Let x;,x; € R3 be the Cartesian coordinates of atoms 7 and j in a unit cell with lattice matrix
L = [a, b, c] € R3*3. Under periodic boundary conditions (PBC), we define the minimum-image
distance between atoms ¢ and j as

dmin(i,7) = ne{I—n1i,%,1}3 [|xi — (x; +n L), 4

Let r;, r; be the effective allowable radii (see below). We flag a collision iff
dmin(ia ]) < 1+ Tj. (5)
In practice, Eq. equation 4 enumerates the 3 x 3 x 3 = 27 images, which is sufficient whenever

max;,j (r; + ;) <min(|[al], |[b], [[c])-

Effective radii. Following our implementation, we prioritize tabulated covalent radii for triple bonds
and fall back to double-bond values only when the triple-bond entry for an element is unavailable. If
neither is available for an atomic number, the structure is marked as invalid for collision checking (no
heuristic imputation).

F.2 Implementation Details

Given fractional coordinates, species (atomic numbers), and lattice parameters (a, b, ¢, o, 3, 7), we
first build a pymatgen Structure to obtain L and Cartesian {xy}. For each unordered pair (i, j)
we:

1. enumerate n € {—1,0,1}* and compute dp, = ||x; — (x; + n"L)|

9
2. take dpin (i, j) = miny, d,, and the corresponding n*;

3. compare dmin (%, §) with r; + r; per Eq. equation 5.

We also classify collision pairs by the minimizing image: same-cell if n* = 0, and cross-cell
otherwise. This distinction is reported in all summaries.

F.3 Metrics

We report both structure-level summaries (for practitioners) and dataset-level rates.

Structure-level (per crystal). For a crystal with K atoms and (12( ) unordered pairs, define

#CollPairs = > T(dmin(i,5) < ri +75), ©)
1<i<i<K

#CrossCell = Z [(dwmin (i, j) < 7i + 75, n*#0), D
1<i<i<K

#SameCell = #CollPairs — #CrossCell, ®)

PLCRyq — 7 Colbairs, ©)

(5)

We also return a boolean HasCollision = [(#CollPairs > 0) and a list of collision details (pair of
atomic numbers, dpin, (4, j), and n*).
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sso Dataset-level (over N crystals). LetS = {1,..., N} index crystals and let #Pairs(®) = (K;>).
soo We aggregate:

1
MLCR = N Z H(#CollPairs(s) > O) (% structures with any collision), (10)

sES
s #CollPairs®)
PLCRper = ZES ##(; .al(rss) (pairwise collision ratio under PBC), an
ses #Pairs
CrossCell®
CrossCell% = éses :ZCHLS; .e ) SameCell% = 1 — CrossCell%. (12)
JpS ollPairs

891 We also report the absolute counts: total crystals, # with collisions, total collision pairs, and the
892  cross-/same-cell breakdown.

ses  Remarks. (i) Our PLCR; is a minimum-image metric—operationally equivalent to averaging
go4 over the 27 lattice images but counting each pair at most once using its minimizing image. (ii)
895 Prioritizing triple-bond covalent radii makes the criterion conservative; falling back to double-bond
s9s values avoids undefined entries while keeping a consistent lower bound on allowable separations.
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G Measuring Symmetry Learning Capabilities in LLMs

Large language models (LLMs) designed for materials science tasks should ideally respect fundamen-
tal physical invariances, such as translational symmetry in crystalline structures. To quantitatively
evaluate this capability, we adopt the Increase in Perplexity under Transformation (IPT) metric,
inspired by recent insights from CrystalTextLLM [20]. IPT measures how much a model’s sequence
likelihood changes under continuous group transformations, with smaller values indicating stronger
invariance.

G.1 Definition of IPT

For a transformation group G with group elements g and group action ¢, the IPT for an input sequence
s is defined as
IPT(s) = Egeq [PPL(t4(s))] — PPL(t,- (5)),

where
g = argmin PPL(¢,(s)).
g
Here, PPL(s) = 2CF(5)/™ is the exponentiated length-normalized cross-entropy loss, CE(s) is the
cross-entropy, and n is the sequence length. The element g* corresponds to the translation that yields
the minimum perplexity for the given input.

G.2 Transformation Group and Implementation

In our setting, G represents the group of lattice translations in fractional coordinates. Each transfor-
mation ¢, decodes the string representation of a crystal structure, translates its atomic coordinates by
a fractional vector g (wrapping around under periodic boundary conditions), and re-encodes it back
into the input format. The transformations are implemented using pymatgen [40], ensuring strict
adherence to periodic boundary conditions.

G.3 Experimental Procedure
We compute IPT for each model as follows:

1. Test set selection: Randomly sample 500 crystal structures from the held-out test set.

2. Transformation sampling: For each structure, generate 20 random translation vectors g,
each sampled uniformly from [0, 1) per dimension in fractional coordinates.

3. Perplexity computation: For each g, apply ¢, to obtain a transformed structure, and
compute its perplexity PPL(¢4(s)) using the target LLM.

4. Normalization: To prevent datapoints with inherently high perplexity from dominating the
metric, we normalize IPT values by the mean perplexity over the sampled transformations
for each structure.

5. Aggregation: Compute § as the translation yielding the lowest perplexity per structure,
evaluate ITPT(s), and then average over all test structures to obtain the model’s final IPT
score.

G.4 Additional Metrics: Percent Metastable

Alongside IPT, we also measure the Percent Metastable—the proportion of generated or transformed
crystal candidates predicted to have formation energies below a given metastability threshold, as
estimated by an independent property predictor. This serves as a complementary measure of physical
plausibility.

G.5 Interpretation

Lower IPT values indicate that the model’s likelihood estimates are more invariant under physically
valid transformations, reflecting better internalization of translational symmetry.
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H The Details of Experimental Setup

We observed that several public implementations of diffusion and hybrid models do not fix ran-
dom seeds during sampling, leading to non-reproducible crystal structures. To ensure fair and
reproducible evaluation, we fix the global seed to 42 in both training and sampling and set
torch.backends.cudnn.deterministic = True. This forces cuDNN to use deterministic ker-
nels for convolutions (forward/backward), certain reductions/normalizations (e.g., BatchNorm), and
cuDNN RNNs—eliminating their non-determinism—but it does not cover cuBLAS/GEMM or other
non-cuDNN operators, and may modestly slow down sampling.

H.1 CDVAE

Hyperparameters and Training Details. The total loss of CDVAE can be written as

L=ALe+ ML +ANLN FAxLx +AaLa+ LKL, (13)
——
Laca Lpec Lkr

where L. is the composition prediction loss, L, is the lattice parameter prediction loss, Ly is the
number-of-atoms prediction loss, £ x is the coordinate denoising loss, £ 4 is the atom-type denoising
loss, and L, is the variational KL divergence regularization.

To keep each loss term at a similar scale, the coefficients are set as A\, = 1, A, = 10, Ay = 1,
Ax = 10, and A4 = 1. The KL weight § is tuned among {0.01,0.03,0.1}, with 8 = 0.01 for
Perov-5 and MP-20, and 8 = 0.03 for Carbon-24.

For noise scheduling, the number of noise levels is set to L = 50; atom-type noise standard deviation
is sampled in the range o 4 € [0.01, 5], and coordinate noise standard deviation in o x € [0.01, 10].

During training, the initial learning rate is 0.001, decayed by a factor of 0.6 if the validation loss does
not improve after 30 epochs, with a minimum learning rate of 0.0001. During generation, the step
size is fixed at ¢ = 0.0001, and Langevin dynamics is run for 100 steps at each noise level.

H.2 DiffCSP

Hyperparameters and Training Details. For DiffCSP, we adopt the following experimental setup.
We use 4 layers and 256 hidden states for the Perov-5 dataset, and 6 layers with 512 hidden states
for other datasets. The dimension of the Fourier embedding is set to £ = 256. We apply a cosine
scheduler with s = 0.008 to control the variance of the DDPM process on £, and an exponential
scheduler with g1 = 0.005 and o7 = 0.5 to control the noise scale in the score matching process
on L. The diffusion step is set to 7" = 1000. Our model is trained for 3500, 4000, 1000, and 1000
epochs on Perov-5, Carbon-24, MP-20, and MPTS-52, respectively, with the same optimizer and
learning rate schedule as CDVAE. For the step size ~y in Langevin dynamics for the structure prediction
task, we apply v = 5 x 107 for Perov-5, 1 x 10~° for MP-20 and MPSTS-52, and v = 5 x 10~¢
for Carbon-24 to predict a single sample. For the ab initio generation and optimization tasks on
Perov-5, Carbon-24, and MP-20, we apply v = 1 x 107%, 1 x 1075, and 5 x 1075, respectively.

Table 13: The hyperparameters for training of DiffCSP in different datasets.

Datasets Training Epochs Number of Layers Hidden Dimension
Perov-5 3500 4 256
Carbon-24 4000 6 512
MP-20 1000 6 512
MPTS-52 1000 6 512
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Table 14: The step size y in Langevin dynamics for different datasets.
Datasets CSp CSP-multi De Novo

Perov-3 5x 1077 5x1077 1x10°6
Carbon-24 5x107% 5x1077 1x10°°
MP-20 1x107° 1x107° 5x10°°
MPTS-52 1x1075 1x1075 1x10°°

31



971

972
973
974
975
976
977
978
979
980
981

982

983
984
985
986
987
988
989
990
991

H.3 DiffCSP++

For DiffCSP++, we follow the same data split as proposed in CDVAE [56] and DiffCSP [24]. For the
implementation of the CSPML ranking models, we construct 100,000 positive and 100,000 negative
pairs from the training set for each dataset to train a 3-layer MLP with 100 epochs and a 1 x 103
learning rate. To train the DiffCSP++ models, we train a denoising model with 6 layers, 512 hidden
states, and 128 Fourier embeddings for each task and the training epochs are set to 3500, 4000, 1000,
1000, 1000 for Perov-5, Carbon-24, MP-20, and MPTS-52. The diffusion step is set to 7' = 1000.
We utilize the cosine scheduler with s = 0.008 to control the variance of the DDPM process on k and
A, and an exponential scheduler with oy = 0.005, o = 0.5 to control the noise scale on F'. The loss
coefficients are set as A, = Ap = 1, A4 = 20. We apply v = 2 x 10~° for Carbon-24, 1 x 107> for
MPTS-52 and 5 x 10~° for other datasets for the corrector steps during generation.

Table 15: The hyperparameters for training of DiffCSP in different datasets.

Datasets Training Epochs  Number of Layers Hidden Dimension
Perov-5 3500 6 512
Carbon-24 4000 6 512
MP-20 1000 6 512
MPTS-52 1000 6 512

Table 16: The step size v in Langevin dynamics for different datasets.

Datasets CSP CSP-multi  De Novo
Perov-5 5x 1077 - 1x10°6
Carbon-24 5 x 106 - 1x107°
MP-20 1x107° - 5x 1076

MPTS-52 1x 1075 - -

Table 17: The updated step size y in Langevin dynamics for different datasets in original paper.

Datasets CSP CSP-multi  De Novo
Perov-5 5x 106 - 5x 106
Carbon-24 2 x 1075 - 2x107°
MP-20 5x 1076 - 5x 1076
MPTS-52 1 x 1075 - 1x107°

H.4 EquiCSP

For EquiCSP, we employ a 4-layer setting with 256 hidden states for Perov-5 and a 6-layer setting
with 512 hidden states for other datasets. The dimension of the Fourier embedding is set to k = 256.
We utilize the cosine scheduler with s = 0.008 to regulate the variance of the DDPM process on
C%, and an exponential scheduler with o1 = 0.005, o = 0.5 to control the noise scale of the score
matching process on F;. The diffusion step is set to 7" = 1000. Our model undergoes training for
3500, 4000, 1000, and 1000 epochs respectively for Perov-5, Carbon-24, MP-20, and MPTS-52 using
the same optimizer and learning rate scheduler as CDVAE. For Langevin dynamics’ step size v, we
apply values of ¥ = 5 x 10~7 for Perov-5, v = 5 x 10~ for MP-20, v = 1 x 10~5 for MPTS-52;
while for ab initio generation in Carbon-24 case we use v = 1 x 1075,
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Table 18: The hyperparameters for training of DiffCSP in different datasets.

Datasets Training Epochs Number of Layers Hidden Dimension
Perov-5 3500 4 256
Carbon-24 4000 6 512
MP-20 1000 6 512
MPTS-52 1000 6 512

Table 19: The step size vy in Langevin dynamics for different datasets.
Datasets CSP CSP-multi  De Novo

Perov-5 5x 1077 5x1077 1x10°6
Carbon-24 5x107% 5x1077 1x10°°
MP-20 5x 1076 5x106 5x10°6
MPTS-52 1x107° 1x1075 1x107°
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H.5S FlowMM

In this benchmark, the hyperparameter configuration of FlowMM is divided into four parts: general
settings, network architecture, crystal structure prediction (CSP) task settings, and de novo generation
(DNG) task settings.

General Hyperparameters. As shown in Table 1, the maximum number of atoms and training
epochs vary across datasets to accommodate differences in data scale and structural complexity.
Carbon-24 and Perov-5 are trained for 8000 and 6000 epochs, respectively, while the larger MP-20
and MPTS-52 datasets require only 2000 and 1000 epochs to avoid overfitting. The batch size is also
dataset-dependent, e.g., Perov-5 employs a large batch size of 1024, whereas MPTS-52 is limited to
64 due to the larger unit cells.

Network Hyperparameters. As summarized in Table 2, FlowMM employs a six-layer architecture
with a hidden dimension of 512 and a time embedding dimension of 256. The silu activation
function is used throughout the network, and layer normalization is applied to improve training
stability.

CSP Hyperparameters. For crystal structure prediction (Table 3), the learning rate decreases with
increasing dataset complexity (0.001 for Carbon, 0.0001 for MP-20/MPTS-52). Weight decay is
enabled for all datasets except Carbon to improve generalization. In the loss function, the fractional

coordinate loss weight A ¢ is dataset-specific, with Perov-5 assigned the highest value (1500) to
emphasize structural accuracy. The lattice loss weight )\; is fixed to 1.0, while the anti-annealing
slope s’ is tuned per dataset to balance the optimization schedule.

DNG Hyperparameters. For the de novo generation task (Table 4), FlowMM is trained with a
learning rate of 0.0005 and weight decay of 0.005 to encourage generative diversity. The loss
function includes contributions from atom type (A, = 300), fractional coordinates (A = 600), lattice

(A\; = 1.0), and cross-entropy (Aee = 20). To improve stability, annealing is enabled for fractional
coordinates and lattice but not for atom types.

Table 20: General Hyperparameters
Carbon Perov MP-20 MPTS-52

Max Atoms 24 20 20 52
Max Epochs 8000 6000 2000 1000
Total Number of Samples 10153 18928 45231 40476
Batch Size 256 1024 256 64

Table 21: Network Hyperparameters

Value
Hidden Dimension 512
Time Embedding Dimension 256
Number of Layers 6
Activation Function silu
Layer Norm True

Table 22: CSP Hyperparameters
Carbon Perov. MP-20 MPTS-52

Learning Rate 0.001  0.0003 0.0001 0.0001
Weight Decay 0.0 0.001 0.001 0.001
Ay (Frac Coords) 400 1500 300 300
A; (Lattice) 1.0 1.0 1.0 1.0
s’ (Anti-Anneal Slope) 2.0 1.0 10.0 5.0
Anneal f False False True True
Anneal [ False False False False

34



Table 23: DNG Hyperparameters

Value
Learning Rate 0.0005
Weight Decay 0.005
Ao (Atom Type) 300
Ay (Frac Coords) 600
A (Lattice) 1.0
Ace (Cross Entropy) 20
s’ (Anti-Annealing Slope) 5.0
Anneal a False
Anneal f True
Anneal [ True
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I More Comprehensive Results

I.1 More Comprehensive Results about CSP&DNG

Building upon the official implementations of most benchmark models, we further report additional
results. Random sampling is employed during both generation and evaluation, and the outcomes are
presented for crystal structure prediction (CSP), de novo generation (DNG), and inference efficiency
across various generative models.

Crystal Structure Prediction. Table 24 summarizes CSP performance under both single-sample and
multi-sample (20) settings. Across datasets, diffusion-based approaches (e.g., Diff CSP, DiffCSP++)
generally outperform VAE-based models in terms of match rate (MR). DiffCSP++ in particular
achieves the highest MR across multiple datasets, while maintaining very low RMSE values. In-
creasing the number of samples consistently improves performance for all models, demonstrating
the benefit of multiple candidate generations. CrystalLLM variants also exhibit competitive results,
especially in terms of low RMSE, indicating strong local structural accuracy.

De Novo Generation. As shown in Table 25, nearly all models achieve close to 100% structural
validity, confirming their ability to generate physically plausible materials. In terms of coverage (COV-
R and COV-P), diffusion-based models maintain high scores above 97% across datasets. Property
alignment metrics (d,, deiem) further highlight differences: some models, such as DiffCSP++ and
EquiCSP, achieve particularly low deviations on specific datasets, indicating strong capability to
preserve realistic material properties. On more complex datasets (e.g., MP-20), model performance
varies more widely, reflecting challenges in generalization.

Inference Efficiency. Figure 4 compares inference time for generating 20 structures. Diffusion- and
flow-based methods (DiffCSP, DiffCSP++, EquiCSP, FlowMM) complete sampling within ~12—17
seconds, showing clear efficiency advantages. In contrast, VAE-based approaches (CDVAE, Cond-
CDVAE) require over 110 seconds, making them significantly slower for large-scale generation. These
results suggest that diffusion-based architectures are better suited for high-throughput applications
where both speed and quality are critical.

Overall, the comprehensive experiments show that diffusion-based methods consistently provide
strong performance in CSP and DNG tasks, with competitive accuracy, property preservation, and
substantially faster inference compared to VAE baselines. Language-model approaches demonstrate
promising structural precision, while traditional architectures still face trade-offs between accuracy,
efficiency, and generalization across datasets.

1 CDVAE [ DiffCcSP 1 EquiCSP [ CDVAE [ DiffCSP 1 EquiCSP
T Cond-CDVAE [ DiffCSP++ [ FlowMM T Cond-CDVAE [ DiffCSP++ [ FlowMM
120
112.91s 113.91s 11202 114325
100 100
O O
8 so 8 so
2 2
&) &)
3 2
7 7
o o
R 60 N 60
Q Q
Q a
£ £
& 3
8 8
o 40 o 40
£ £
[ [
20 16.80s 20
12.43s 14.94s 14.98s 12.42s 13.09s 14.98s 13.32s
0
CDVAE Cond-CDVAE DiffCSP DiffCSP++ EquiCSP  FlowMM CDVAE Cond-CDVAE DiffCSP DiffCSP++ EquiCSP  FlowMM
(a) Inference time comparison on Carbon-24. (b) Inference time compartion on Perov-5.

Figure 4: Inference time comparition across different GNN architectures (random sampling).
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Table 24: The benchmarking results (random sampling) on the crystal structure prediction task for
diffusion-based models.

Perov-5 Carbon-24 MP-20 MPTS-52
MR (1) RMSE({) MR(1) RMSE(}) MR() RMSE({) MR(?) RMSE()

Cond-CDVAE [35] 1 44.82 0.1178 16.89 0.2896 3391 0.1098 529 0.2071
DiffCSP [24] 1 51.26 0.0798 17.93 0.2842 50.42 0.0650 12.46 0.1832
DiffCSP++ [25] (w/ CSPML) 1 52.19 0.0819 15.78 0.3276 71.18 0.0276 35.98 0.0687
1
1

Method # of samples

EquiCSP [31] 4345 01254 1232 03212 4321  0.1254 943 02340
FlowMM [37] 4763 01087 1592 02784 5037  0.1168 832 02187

" CrystalLMeraw o5 1 4795~ 0.0966 ~ 21.13 ~ 0.1687 5585  0.0437 1747 ~ 01113
CrystaLLM 55y, 1 4565 00977  21.87 0173 5658 00426 1754  0.1028

" CrystaLLM-raw 5y 1 46.10 ~  0.0953 2025 0.1761 ~ 5870 ~ 0.0408° 1921 ~ 0.1110
CrystaLLM 500y 1 4587 00970 2064 01971 5898 00416 1897  0.1123
Cond-CDVAE [35] 20 8825 00513 8871 02252 6708 00994 2216 02107
DiffCSP [24] 20 9824 | 0.0127  89.00 02207 | 7745 00495 3426  0.1741
DiffCSP++ [25] (w/ CSPML) 20 9754 00132 8543 02304 7334 00576 3721  0.1465
EquiCSP [31] (ours) 20 89.54 00543 8231 02564 6943 00853 2876 02135
FlowMM [37] (ours) 20 8815 00502 8792 02325 6801 01009 2211 02052

" CrystalLLM-raw o5 20 9826  0.0236  83.60  0.1523 7514 ~ 0.0395 3298 ~ 0.1197
CrystalLLM 5, 20 9834 00228 8404  0.I518 7536 00398 3296  0.1206

" CrystalLM-taw o0y 20 97.60  0.0240 8517 ~ 0.1514 7397 00349 3375 ~ 0.1059
CrystaLLM 50y 20 9773  0.0261 8547  0.0542 7411 © 0.0345 3400  0.1076

Table 25: The benchmarking results (random sampling) on de novo generation task.

Validity (1) Coverage (1) Property (/)
Dataset  Method Stuc. Comp. COV-R COV-P d)  detem
Perov-5  CDVAE [56] 10000 9745 9832 9746 0.1500 0.0698
Cond-CDVAE [35] | 100.00 9873  99.59 9873 0.1412 0.0620
DIffCSP [24] 10000 98.85 99.74 9827 0.1110 0.0128
DiffCSP++[25] | 99.98 98.69  99.55 9873 0.0674 0.0043
EquiCSP [31] 1000 9872 9974 ~ 98.83  0.1095 0.0489
FlowMM [37] 10000 98.85 99.62 9881 0.0659 0.0040
Carbon-24 CDVAE [56] 10000 - 9986 8312 01421 -
Cond-CDVAE [35] | 100.00 - 9992 8321 01418 -
DiffCSP [24] 10000 - 9990 9727 00805  —
DiffCSP++[25] | 9995 - 9958 9876 00312  —
EquiCSP [31] 1000 - 9978 9725 00721 -
FlowMM [37] 9998  —  99.66 9889 0.0298
MP20  CDVAE [56] 10000 8675 9923 9953 0.6832 14210
Cond-CDVAE [35] | 100.00 8682 99290 9958 0.6838 1.4218
DiffCSP [24] 10000 8325 9971 9976 0350 -
DIffCSP++ [25] | 99.88 8527  99.62  99.63 02389 0.3721
EquiCSP [31] 1000 8245 9970 9974 01278 0.3942
FlowMM [37] 96.85 8319 9949 99.58 0239 -
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1.2 Case Studies on OOD Generation

Table 26 reports the OOD evaluation results for CrystaLLM (25M) and CrystaLLM (200M) on
four representative out-of-distribution datasets: double perovskites (OOD-DPC), antiperovskites
(OOD-AQ), layered perovskites (OOD-LPC), and huge unit cell carbon crystals (OOD-HUCC).
We focus on these two variants of CrystaLLM because they achieved state-of-the-art performance
on the in-distribution CSP benchmarks, making them strong candidates for testing whether high
in-distribution accuracy translates into robust generalization. Surprisingly, despite their superior
in-distribution results, both models completely failed to generate valid structures on all four OOD
datasets. In every case, the match rate (MR) drops to 0.00 and the RMSE values are undefined (NaN),
regardless of whether single or multiple samples (20) are generated.

This observation highlights a critical limitation of LLM-based approaches for crystallographic
generation. While CrystalLLM is highly effective at learning the statistical patterns present in the
training distribution (e.g., Perov-5, Carbon-24), it struggles to extrapolate beyond these domains
to unseen structural families. The OOD datasets were intentionally constructed to probe such
generalization: double perovskites introduce cation ordering complexity, antiperovskites invert
the canonical anion—cation arrangement, layered perovskites (Ruddlesden—Popper phases) impose
dimensional reduction and stacking variability, and huge unit cell carbons challenge the model with
drastically larger structural scales.

The complete failure of CrystalLLM on these datasets suggests that its generative capability remains
strongly distribution-bound, in contrast to diffusion-based models which often demonstrate partial
transferability to related material families. This finding underscores the importance of explicitly
evaluating OOD performance when assessing generative models for materials discovery, as in-
distribution accuracy alone does not guarantee broader scientific utility. In future work, we plan to
comprehensively evaluate all benchmarked models on their OOD generalization ability to provide a
more complete understanding of their robustness.

Table 26: The OOD evluation results on the crystal structure prediction task for CrystaLLM (25M)
and CrystaLLM (200M).

Method # of samples OOD-DPC OOD-AC OOD-LPC OOD-HUCC

P MR (1) RMSE() MR(f) RMSE({) MR(1) RMSE{) MR(T) RMSE()
CrystaLLM 55y 1 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan
CrystaLLM 50y 1 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan
CrystaLLM 55y 20 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan
CrystaLLM 50y 20 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan
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I.3 Evaluations on the Physical Plausibility Problem

Experiment Analysis. We benchmarked representative diffusion-based models under a fixed global
seed (42) to assess the prevalence of atomic collisions during crystal structure prediction. Several key
observations emerge:

(1) Dataset complexity effect. Collision rates increase markedly with dataset difficulty. On Perov-
5 and MP-20, the proportion of collided structures remains below ~12%, whereas on MPTS-52
more than one-third of generated crystals contain overlapping atoms. This confirms that large and
chemically diverse unit cells exacerbate steric violations.

(2) Model family differences. On Perov-5, all tested models yield comparable collision rates
(~9-10%), but differences become clearer on MP-20: DiffCSP++ variants achieve lower colli-
sion incidence (~7.3—-7.4%) relative to DiffCSP (10.5%) and EquiCSP (11.9%). Notably, DiffCSP++
(with CSPML) produces fewer collided structures but accumulates the largest number of total col-
lision pairs, suggesting that when collisions occur, they can be more severe. On MPTS-52, both
DiffCSP and EquiCSP show very high collision rates (~35-37%), underscoring the challenges of
complex systems.

(3) Cross-cell vs. same-cell breakdown. Across all datasets, collision pairs are split relatively evenly
between same-cell and cross-cell cases on Perov-5 and MP-20 (roughly 45-55%). However, on
MPTS-52, same-cell collisions dominate (70% or more), indicating that resolving local steric clashes
within the unit cell is the primary bottleneck at scale.

Overall, these results demonstrate that the atomic collision problem is a persistent failure mode in
generative crystal modeling, with severity strongly dependent on dataset complexity and architectural
choices. Evaluating collision metrics alongside traditional accuracy measures provides an essential
complementary perspective on the physical plausibility of generated materials. For completeness,
we note that DiffCSP++ (w/ GT) results on MPTS-52 are omitted due to prohibitive resource
requirements during sampling, which made large-scale evaluation impractical.

Table 27: The atomic collision benchmarking results on crystal structure prediction task (global seed).

Dataset Method # Crystals Collided (J) Collision Rate (|) # Collision Pairs (|]) Cross-cell (])  Same-cell (])
Perov-5 DiffCSP [24] 3785 350 9.25% 769 364 (47.33%) 405 (52.67%)
DiffCSP++ [25] (w/ GT) 3785 375 9.91% 860 198 (23.02%) 662 (76.98%)
DiffCSP++ [25] (w/ CSPML) 3785 376 9.93% 944 251 (25.59%) 693 (73.41%)
EquiCSP [31] 3785 367 9.70% 835 444 (53.17%) 391 (46.83%)
MP-20 DiffCSP [24] 9046 945 10.45% 2912 1434 (49.24%) 1478 (50.76%)
DiffCSP++ [25] (w/ GT) 9046 664 7.34% 4848 2103 (43.38%) 2745 (56.62%)
DiffCSP++ [25] (w/ CSPML) 9046 669 7.40% 9103 4089 (44.92%) 5014 (55.08%)
EquiCSP [31] 9046 1079 11.93% 3036 1494 (48.73%) 1572 (51.27%)
MPTS-52  DiffCSP [24] 8096 3008 37.15% 13818 4426 (32.03%) 9392 (67.97%)
DiffCSP++ [25] (w/ GT) - - - - - -
DiffCSP++ [25] (w/ CSPML) - - - - - -
EquiCSP [31] 8096 2875 35.51% 12138 3628 (29.89%) 8510 (70.11%)
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J Prompts of LLMs

Large language models (LLMs) require carefully designed prompts to ensure consistent and structured
outputs for scientific applications. In our experiments, we employed Llama 3.1 (8B) to generate
crystallographic information files (CIFs) directly from chemical formulas. To achieve reliable results,
the prompts explicitly instruct the model to adhere to the standard CIF format, fill in necessary
structural fields, and avoid producing any extraneous text. This section provides the exact prompts
used in our study, which were crafted to enforce strict formatting rules and to guarantee that the
generated outputs are both syntactically valid and physically meaningful.
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You are an expert in generating crystallographic data in structured text format.
— Your task is to output a single, clean CIF block for the given formula:
— {formula}.

Use the exact format below. Fill in all fields once only-**do not repeat any
« section**. Output **only** the CIF block. No markdown, no explanations, no
— formatting, no comments, no dash line, no extra text of any kind.

Strictly follow this structure:

_symmetry_space_group_name_H-M ?
_cell_length_a 7
_cell_length_b ?
_cell_length_c ?
_cell_angle_alpha ?
_cell_angle_beta 7
_cell_angle_gamma ?
_symmetry_Int_Tables_number ?
_chemical_formula_structural ?
_chemical_formula_sum ?
_cell_volume ?
_cell_formula_units_Z ?

loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
[ida] '[x, y, z]'

loop_

_atom_site_type_symbol

_atom_site_label

_atom_site_symmetry_multiplicity

_atom_site_fract_x

_atom_site_fract_y

_atom_site_fract_z

_atom_site_occupancy

[symbol] [label]l [multiplicity] [x] [yl [z] [occupancyl]
[symbol]l [labell [multiplicity] [x] [yl [z] [occupancy]

Instructions:

- Fill in all question marks (°7°) with reasonable, physically consistent values
— 1inferred from the given chemical formula.

- The first “loop_"~ section must contain symmetry equivalent position IDs and
< operations (in xyz format).

- The second “loop_~ section must list all atom sites present in the formula,
— 1including their element symbol, label, symmetry multiplicity, fractional
< coordinates (x, y, z), and occupancy.

- Output a clean CIF block only, with no duplication or extra content.

- All output must follow this structure precisely. Do **not** include notes,
— hints, explanations, or any formatting outside the CIF structure block.

Notes: Only output the CIF block, no any other reply.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are consistent with the
theoretical contributions, method design, and extensive experimental results presented
throughout the paper, including the development of the Material Generation Benchmark
(MGB) for evaluating deep generative models in materials science. The claims regarding
the evaluation of models across various tasks like crystal structure prediction and MOF
prediction are well-supported by the experiments.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper discusses the limitations and outlines potential future work of
the proposed benchmark, including the incorporation of methods for material geometry
modeling.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides sufficient details on datasets, model architectures, evalua-
tion metrics, and experimental setups to allow reproduction of the main results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper states that the detailed code implementation will be open sourced
recently.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.
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* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All necessary training and test details, including data splits, hyperparameters,
optimizer choices, and evaluation metrics, are specified in the appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The results are reported with using global seed, and the method for calculating
them is described in the experimental section.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

 The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The type of compute resources (e.g., GPU) and experimental settings are
discussed in the appendix.

Guidelines:
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conforms to the NeurIPS Code of Ethics. All data used are
publicly available and cited appropriately. No personally identifiable or sensitive data is
involved.

Guidelines:
e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The work focuses on foundational algorithmic research for materials generation
and does not have a direct societal impact. The paper does not focus on any specific
application scenarios.

Guidelines:
» The answer NA means that there is no societal impact of the work performed.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models and data used in this work pose no particular risk for misuse; no
high-risk assets are released.

Guidelines:
* The answer NA means that the paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and codebases used are publicly available, properly cited, and used
according to their respective licenses. Details are included in Section 5.1 and the references.

Guidelines:
* The answer NA means that the paper does not use existing assets.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new datasets or code assets are introduced beyond the model implementa-
tion; no new dataset is released.

Guidelines:
* The answer NA means that the paper does not release new assets.

Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This research does not involve human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable; there are no experiments involving human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?

Answer: [NA]

Justification: No large language model is used as an important or original component of the
core methodology; LLMs may only have been used for minor writing/editing assistance.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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