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Abstract

We present MGB (Material Generation Benchmark), a comprehensive and standard-1

ized platform for evaluating deep generative models in materials science. MGB2

covers a diverse range of tasks—including crystal structure prediction, de novo3

material generation, MOF structure prediction, and out-of-distribution (OOD) gen-4

eration—spanning datasets from inorganic crystals to complex MOFs. It integrates5

cutting-edge methodologies, from large language models (LLMs) to diffusion-6

based and hybrid approaches. A key feature of MGB is the construction of dedi-7

cated OOD test sets, enabling rigorous evaluation of generalization capabilities.8

To ensure fair comparison, MGB employs multi-dimensional metrics that jointly9

assess structural accuracy, chemical validity, distributional coverage, physical10

plausibility, and computational efficiency. Extensive experiments highlight clear11

performance patterns: diffusion models excel in predicting complex crystalline12

systems, LLMs achieve competitive local accuracy, and MOF-specific flow models13

substantially outperform general-purpose approaches on MOF prediction. While14

most methods yield nearly perfect structural validity in de novo generation, their15

ability to balance accuracy, generalization, and efficiency varies considerably.16

Importantly, we select LLMs for OOD case studies given their relatively state-of-17

the-art performance on in-distribution benchmarks. However, our results reveal a18

critical limitation: despite strong in-distribution accuracy, LLMs completely fail to19

generalize to unseen structural families. By establishing a unified framework and20

offering transparent comparative insights, MGB aims to drive the development of21

more robust and efficient generative models for materials discovery.22

We are organizing all the code and model weights, and we are committed to making23

the cleanest open-source release possible.24

1 Introduction25

The discovery and design of novel materials are pivotal to addressing many of the world’s most26

pressing challenges, ranging from energy storage [14, 49] to environmental sustainability [12, 62, 64].27

Traditionally, material discovery has relied heavily on trial-and-error methods [62, 3] or computation-28

ally expensive first-principles simulations [45, 17]. However, these approaches face significant limita-29

tions. Trial-and-error experimentation is inherently slow and resource-intensive, while first-principles30

simulations often suffer from high computational cost, limited scalability when extending to large or31

complex systems, and low efficiency in exploring vast chemical design spaces [54, 38]. To overcome32

these obstacles, deep generative models [27, 18, 51] have recently emerged as promising tools to33

accelerate material discovery by generating candidate structures directly from data [13, 56, 24]. These34

models, including large language models (LLMs) [2, 20, 52, 59], diffusion models [24, 25, 31], and35

hybrid architectures [56, 35], have demonstrated the ability to predict diverse material structures and36

perform de novo generation [56, 37], ranging from molecular compounds [56, 35] to complex crystal37

lattices [24, 25]. Despite these advances, there is currently no unified platform to systematically38

evaluate and compare the performance of generative models in material discovery [55, 41, 63, 46].39
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The diversity of model architectures and the breadth of tasks they can address—such as crystal40

structure prediction, de novo generation, and MOF structure prediction—further complicate objective41

assessment. The absence of standardized evaluation protocols has hindered direct comparisons42

between methods and limited their practical applicability to real-world material design problems.43

To address this gap, we introduce the Material Generation Benchmark (MGB), a comprehensive44

and standardized evaluation platform for generative models in materials science. MGB aims to45

provide a rigorous framework for assessing generative models across multiple key tasks: (i) crystal46

structure prediction—predicting atomic arrangements given chemical compositions; (ii) de novo47

material generation—creating novel, valid materials beyond those observed in training datasets; (iii)48

MOF structure prediction—modeling the atomic configurations of metal–organic frameworks; and49

(iv) out-of-distribution (OOD) generation—evaluating the generalization ability of models when50

applied to novel compositions, structures, or property regimes that lie outside the training distribution.51

These tasks are fundamental to advancing materials design, especially in contexts where direct52

experimentation or first-principles simulations are prohibitively time-consuming or computationally53

expensive.54

As shown in Figure 1, MGB includes a diverse set of benchmarking datasets, such as MP-20 [22],55

Perov-5 [5], Carbon-24 [43], MPTS-52 [22], and Boyd MOF [4], spanning materials from simple56

single-element structures to complex multi-element systems and metal-organic frameworks (MOFs).57

These datasets are carefully curated to ensure that they represent realistic, experimentally stable mate-58

rials, and they provide a robust foundation for evaluating the accuracy, diversity, and generalization59

capabilities of generative models. The benchmark intergrates a variety of leading generative methods:60

large language models such as CrystalLLM (25M and 200M)[2] and Llama 3.1[19], diffusion models61

such as DiffCSP [24] and FlowMM [37], and hybrid models that combine variational autoencoders62

(VAEs) with diffusion, including CDVAE [56] and Cond-CDVAE [35]. Considering fair and mean-63

ingful evaluations, MGB adopts a suite of multi-dimensional metrics that go beyond prediction64

accuracy to assess generation quality, generalization, physical plausibility, symmetry awareness, and65

computational complexity. This holistic protocol enables standardized and balanced benchmarking of66

generative models, aligning performance assessments with the practical needs of real-world materials67

discovery.68

Through extensive benchmarking, MGB provides key insights into the current landscape of generative69

models for materials science: (1) Diffusion-based models consistently perform well on challenging70

crystalline benchmarks. Notably, DiffCSP++ excels in large and high-symmetry systems due to71

its explicit modeling of space group features and physical constraints, such as SE(3)-equivariant72

architectures and crystal periodicity. This aligns well with the underlying physics of materials, offering73

advantages over VAEs, including better mode coverage and more stable training dynamics. Also,74

MOF-specific flow models like MOFFlow outperform general-purpose models on MOF prediction75

tasks. (2) Large language models (e.g., CrystalLLM) exhibit competitive local accuracy, achieving76

low coordinate errors once a correct match is identified, benefiting from their large model size and77

extensive pretraining data. (3) In de novo generation, most methods maintain near-perfect structural78

validity, with diffusion models demonstrating superior preservation of target property distributions.79

(4) Despite strong in-distribution performance, LLM-based models like CrystaLLM struggle with80

out-of-distribution (OOD) generation, failing to produce valid structures on diverse OOD datasets.81

This highlights the distribution-bound nature of these models and emphasizes the importance of82

evaluating OOD generalization for assessing robustness. (5) Physical plausibility remains a challenge83

for diffusion models, as atomic collision rates increase significantly on complex datasets. While84

advances like DiffCSP++ reduce collision rates, they do not eliminate failures, making it crucial to85

evaluate steric validity to ensure physically realizable materials. These findings highlight the trade-86

offs between accuracy, generalization, physical constraints, and computational efficiency, suggesting87

the need for more refined models that better incorporate physical constraints to enable robust material88

discovery.89

Together, these findings underscore the need for a unified and transparent benchmarking framework90

to drive progress in generative materials modeling. Our primary goal with MGB is to establish a91

transparent and reproducible benchmarking suite that can catalyze the development of more robust92

and efficient generative models for materials science. By providing a unified platform, MGB seeks to93

accelerate the discovery of novel materials with tailored properties and promote fair comparisons94

across diverse methodological approaches.95
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Figure 1: The overview of MGB.

2 Preliminaries96

2.1 Crystal Structure97

Representation of Crystal Structures and MOF Structures. A periodic material can be represented98

by a unit cell M = (A,F, L), where A ∈ AN (or one-hot A ∈ Rh×N ) encodes the atom types of99

N atoms, F = [f1, . . . , fN ] ∈ [0, 1)3×N are fractional coordinates, and L = [ℓ1, ℓ2, ℓ3] ∈ R3×3 is100

the lattice matrix. Cartesian coordinates are given by X = LF . Periodicity induces an equivalence101

relation (a′i, x
′
i) ≡L (ai, xi) ⇐⇒ x′

i = xi + Lk, k ∈ Z3, so the infinite crystal is obtained102

by tiling the unit cell with L. For MOFs we can use either the same atomistic representation or a103

block-wise one. Let B = {Cm}Mm=1 be building blocks (metal nodes or organic linkers) with local104

coordinates Ym and atom types am. Each block is placed by a roto-translation (qm, τm) ∈ SE(3),105

giving Xm = (qm, τm)· Ym, and X = Concat(X1, . . . , XM ) forms the global atomic coordinates.106

Space Group. Space-group symmetry is modeled as the action of g = (O, t) ∈ E(3) on coordinates107

g ·X = OX + t1⊤ (with O ∈ O(3) and t ∈ R3). A crystal M is invariant to g if there exists a108

permutation matrix Pg such that109

A = APg, g ·X ≡L XPg.

The set of all such symmetries forms the space group G(M); in 3D there are 230 distinct space110

groups. MOFs may realize a subset of symmetry operations depending on their topology and building111

blocks.112

Equivariance. Learning algorithms should respect the physical symmetries. Given a model f acting113

on structures, f is SE(3)-equivariant if114

f(OX + t1⊤, OL) = ρ(O) f(X,L)

for a suitable representation ρ. For atom sets, outputs (e.g., per-atom vectors) should also be115

permutation-equivariant. In block-wise MOF models, the placement predictor over {(qm, τm)} is116

SE(3)-equivariant.117

Invariant Density. Generative models define a probability density on the quotient space induced by118

symmetries. Practically, most of benchmark models parameterize only invariants: (i) use fractional119

coordinates on the torus T3N = [0, 1)3N to factor out global translations; (ii) represent the lattice by120

its Gram matrix GL = L⊤L or by lattice parameters (a, b, c, α, β, γ) to factor out global rotations;121

and (iii) enforce permutation invariance by symmetrization or permutation-invariant architectures.122

Densities or scores can also be averaged over the space-group orbit to impose G-invariance.123

Symmetries of Crystal. Key symmetries include: (1) atom index permutation; (2) periodic transla-124

tion (choice of origin and integral lattice shifts); (3) global rotation/reflection of (X,L); (4) lattice125

basis change L 7→ LU with U ∈ GL(3,Z) (e.g., supercells); and (5) space-group operations126

combining rotations with fractional translations (screws/glides).127

2.2 Task Formulation128

The generative modeling tasks for periodic crystals are formulated as follows. A crystal is rep-129

resented by M = (L,F,A), where L is the lattice, F are the fractional atomic coordinates, and130

A denotes atom types or elemental fractions c. The first task, Crystal Structure Prediction (CSP),131

aims to recover a valid periodic structure given a composition (elemental fractions c or atom types132

A). This is modeled by the conditional distribution p(L,F | A) or equivalently p(M | A). In De133

Novo Generation, both unconditional and conditional sampling of crystals are considered, repre-134

sented by p(M) and p(M | G), where G is a target space group. For MOF Structure Prediction,135
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(2) Inorganic  Crystal (NaCl) (3) MOF (Zn₄C₅₁H₄₄N₈O₁₈)(1) Periodic Crystalline Material

Figure 2: Examples of crystal data structures: (1) demo of periodic crystalline material, (2) inorganic
crystal (NaCl), and (3) MOF (Zn4C51H44N8O18).

two settings are studied: (i) atomistic CSP, which follows the same formulation as in the crystal136

structure prediction task with p(L,F | A); and (ii) block-wise assembly, where we predict block137

placements and connectivity given a block library B and, optionally, a target topology T , modeled138

by p
(
L, (qm, τm)

M
m=1, connectivity | B, T

)
, with (qm, τm) representing the pose (orientation and139

translation) of block m.140

Table 1: Algorithms are grouped by modeling paradigm, datasets by composition and experimental
setting type, and evaluations by six standardized criteria: matching, generation quality, out-of-
distribution generalization, physical plausibility, symmetry awareness, and computational complexity.

Models

Large Language Models CrystaLLM (25M) [2], CrystaLLM (200M) [2], Llama 3.1 (8B) [19]

Diffusion Flow Models DiffCSP [24], DiffCSP++ [25], EquiCSP [31], FlowMM [37], MOFFlow [26]

Hybrid Models CDVAE [56], Cond-CDVAE [35]

Datasets

Single-element Composition Carbon-24 [43]

Multi-element Composition Perov-5 [5], MP-20 [22], MPTS-52 [22]

Multi-element (complex) Composition Boyd MOF [4]

Curated OOD Test Sets OOD-DPC, OOD-AC, OOD-LPC, OOD-HUCC, OOD-FDMOFs

Evaluations

Matching Accuracy Match Rate, RMSE

Generation Quality Validity, coverage, property distribution alignment

Out-of-Distribution Generation Generation on real world compostion

Physical Plausibility Obey fundamental physical constraints arising from the balance of attractive and repulsive forces

Symmetry Awareness for LLMs IPT (Increase in Perplexity under Translation)

Computational Complexity Model Size, sampling efficiency

3 MGB: The Material Generation Benchmark141

3.1 Benchmark Models142

Table 1 summarizes the algorithms integrated in our benchmark, which are divided into three143

categories: diffusion and flow-based models, hybrid models and large language models. We briefly144

introduce each category and representative algorithms below, and more details are provided in145

Appendix B.146

Diffusion-based Models. These models generate crystal structures by simulating continuous stochas-147

tic processes and modeling physical symmetries. DiffCSP [24] and DiffCSP++ [25] incorporate148

geometric constraints and space group in diffusion modeling. EquiCSP [31] focuses on equivariant149

diffusion with respect to permutation and periodicity. FlowMM [37] extends flow matching on150

riemannian manifold for crystal structure prediction and generation. MOFFlow [26] is a riemannian151

flow matching model for MOF structure prediction.152

Hybrid Models. This class integrates variational autoencoders with diffusion processes to generate153

stable and diverse periodic materials. CDVAE [56] combines VAE and diffusion for periodic material154

generation. Cond-CDVAE [35] enables conditional generation under user-defined constraints such as155

composition and pressure.156
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Table 2: Summary of the benchmark crystalline and MOF datasets.
Dataset Scope/Type # Structures Elements Atoms/cell

PEROV-5 [5] Perovskites ABX3 18,928 56 5
Carbon-24 [43] C allotropes (AIRSS, 10 GPa) 10,153 1 (C) 6–24
MP-20 [22] Exp. grounded inorganic crystals 45,231 89 1–20
MPTS-52 [22] Inorganic crystals (larger cells) 40,476 – 1–52
Boyd MOF [26] Hypothetical MOFs (adsorption) 247,066 Multi-metal/organic Variable

Large Language Models. This category covers approaches that leverage large language models for157

generative crystal design. CrystalLLM (25M) and CrystalLLM (200M) [2] employ autoregressive158

language modeling directly on CIF files. To further demonstrate the comprehensiveness of MGB,159

we also include the general-purpose large language models, Llama 3.1 (8B) [19]—to assess the160

performance on diverse materials design tasks. 1161

3.2 Benchmark Datasets162

To comprehensively evaluate material generative models under diverse, realistic conditions, we163

benchmark on five datasets spanning crystalline solids and metal–organic frameworks (MOFs):164

PEROV-5 [5], Carbon-24 [43], MP-20 [22], MPTS-52 [22], and the Boyd MOF [26] for main tasks.165

Additionally, we benchmark on 5 out-of-distribution (OOD) evaluation datasets to assess the models’166

ability to generalize to unseen structures and functionalities, including shifts in composition, topology,167

and intended applications. These OOD datasets test the robustness of the generative models across168

different material classes and properties. Table 2 and 3 summarize their key statistics.169

Axes of diversity and why they matter. Across these datasets, diversity arises along (i) composi-170

tional axes (number/types of elements and allowed chemistries), (ii) structural axes (unit-cell size,171

symmetry/space groups, dimensionality/topology), (iii) thermodynamic axes (stable vs. metastable172

distributions, pressure conditions), and for MOFs also (iv) functional axes (intended application such173

as adsorption, storage, catalysis). These orthogonal sources of variation stress different capabilities of174

generative models—from capturing composition–structure relationships to handling large, complex175

topologies and distributions with substantial metastability.176

Crystalline datasets. PEROV-5 contains 18,928 perovskites with the nominal ABX3 formula (A/B177

are nonradioactive metals; X ∈ {O,N,S,F} and may be mixed). All structures are DFT-relaxed178

and many are not thermodynamically stable, making composition-to-structure mapping nontrivial.179

Carbon-24 comprises 10,153 carbon allotropes curated from ab initio random structure searching180

(AIRSS) at 10 GPa: following the previous work [56], we select the lowest-energy 10% from 101,529181

candidates and relax all with DFT; diamond at 10 GPa is the most stable while most others are182

metastable. MP-20 gathers 45,231 experimentally grounded Materials Project entries (originally183

from ICSD) with ≤ 20 atoms/cell, filtered by energy-above-hull < 0.08 eV/atom and formation184

energy < 2 eV/atom; all are DFT-relaxed and largely synthesizable. MPTS-52 extends this regime185

to 40,476 structures with up to 52 atoms/cell, providing substantially larger search spaces and186

symmetry/topology variety.187

MOF dataset. The Boyd MOF Database targets adsorption-driven carbon capture. It starts from188

324,426 hypothetical MOFs generated by topology-based construction and evaluated for CO2/N2189

uptake under dry/humid conditions. Following [26], we exclude structures with < 200 building190

blocks, retaining 247,066 MOFs. We adopt an 8:1:1 split (train/val/test) with approximately 197,653191

/ 24,707 / 24,707 structures. This dataset emphasizes functional and topological diversity at scale,192

complementing the crystalline benchmarks.193

OOD evaluation datasets. To probe extrapolation beyond each training distribution, we design194

out-of-distribution (OOD) test suites that deliberately shift structure/composition/function while195

preserving related motifs (details in Appendix E). For PEROV-5 we test: (i) OOD-DPC (Double196

perovskites, A2BB′O6) with ordered B-site cations and rich magnetism/multiferroicity; (ii) OOD-197

AC (Antiperovskites, M3AX) with inverted cation/anion roles and often Pm3̄m symmetry; and (iii)198

OOD-LPC (Layered Ruddlesden–Popper phases, An+1BnO3n+1) exhibiting tunable dimension-199

ality (n). For Carbon-24, we use OOD-HUCC (huge unit cell carbon crystals) spanning 28–240200

1We note that several other large language models have been developed for materials discovery—for example,
CrystaltextLLM [20], FlowLLM [37], and Mat2Seq [59]. Their model weights are not publicly available, and no
inference platforms exist; retraining them from scratch would require prohibitive computational resources. As is
common in the LLM community, we therefore rely on existing checkpoints, making it infeasible to include these
models in our benchmark.
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Table 3: Out-of-distribution (OOD) test suites curated in this work.
OOD Suite In-Distribution Target Primary Shift Tested Source

OOD-DPC (double perovskites) PEROV-5 B-site ordering; magnetic/multiferroic variants Materials Project
OOD-AC (antiperovskites) PEROV-5 Inverted cation/anion topology; symmetry shift Materials Project
OOD-LPC (RP phases) PEROV-5 Reduced dimensionality (n = 1–3), layered stacking Materials Project
OOD-HUCC (carbon) Carbon-24 Large unit cells (28–240 atoms); symmetry variety Materials Project/ICSD
OOD-FDMOFs (MOFs) Boyd MOF Function shift (delivery/storage/catalysis) COD

atoms/cell with varied space groups and mixed synthesis status (experimental vs. hypothetical). For201

the Boyd MOF, we use OOD-FDMOFs (Function-Distinct MOFs) curated from COD, covering drug202

delivery, methane storage, and catalysis. These OOD suites challenge models along motif changes203

(perovskite→double/anti/layered), cell-size scaling (carbon), and function shift (MOFs), thereby204

directly testing generalization beyond in-distribution statistics.205

Overall, the combination of (i) compositional/structural/thermodynamic/functional diversity (Table 2)206

and (ii) principled OOD shifts (Table 3) yields a robust testbed for assessing both accuracy in-207

distribution and generalization out-of-distribution in crystal/MOF generative modeling. Further208

dataset details and representative examples are provided in Appendix C and E.209

3.3 Benchmark Evaluations210

To rigorously assess generative models for materials discovery, we evaluate them in six categories: (1)211

Matching Accuracy – agreement between predicted and reference structures; (2) Generation Quality –212

validity, diversity, and property distribution alignment of generated materials; (3) Out-of-Distribution213

Generation – ability to generate valid, novel materials beyond training data; (4) Physical Plausibility214

– detection of atomic collisions to ensure physical realism; (5) Symmetry Awareness – capturing215

invariances such as translation symmetry; and (6) Computational Complexity – model size and216

inference time, indicating efficiency and scalability. These metrics provide a standardized protocol for217

fair, comprehensive benchmarking across models and tasks. More details are provided in Appendix D.218

Matching Accuracy. For crystal and MOF structure prediction, we evaluate accuracy using the match219

rate (MR)—the fraction of generated structures that match ground truth via StructureMatcher [40],220

accounting for symmetries. We also report the root mean squared error (RMSE) of atomic coordinates,221

normalized by cell volume and atom count, to measure geometric fidelity.222

Generation Quality. For de novo generation, we assess validity (structural: interatomic distances223

> 0.5 Å; compositional: charge neutrality via SMACT [10]), and diversity through coverage recall224

(COV-R) and precision (COV-P). Additional metrics include average minimum structure distance225

(AMSD), composition distance (AMCD), and Earth Mover’s Distance (EMD) between generated226

and reference distributions of density (dρ) and number of unique elements (delem).227

OOD Generation. We evaluate out-of-distribution (OOD) generalization by assessing a model’s228

ability to generate meaningful and valid samples in regimes unseen during training on the crystal and229

MOF structure prediction task, particularly for complex and previously unknown structures. This230

evaluation covers performance on novel compositions and structures, and quantifies both the novelty231

and robustness of generated materials through targeted OOD benchmarks as well as real-world232

sampling tasks.233

Physical Plausibility. Drawing inspiration from recent works [33, 36], we incorporate explicit atomic234

collision checks to ensure that generated crystals obey fundamental physical constraints arising from235

the balance of attractive and repulsive interatomic forces. We define an atomic collision as a case236

where atoms are unrealistically close in space, violating covalent-radius thresholds under explicit237

periodic boundary conditions (PBC). Given Cartesian coordinates xi,xj in the unit cell and lattice238

matrix L = [a,b, c]⊤, all translations239

n ∈ {−1, 0, 1}3, ∆rn = xi −
(
xj + n⊤L

)
are examined, and the minimum image distance is defined as240

dmin(i, j) = min
n

∥∆rn∥.

A collision is flagged if241

dmin(i, j) < ri + rj ,

where ri, rj are triple-bond covalent radii, falling back to double-bond values if missing [8]. To242

quantify collision prevalence, we compute the periodic-aware pairwise collision ratio243

PLCRper =

∑
structures

∑
i<j I

(
dmin(i, j) < ri + rj

)∑
structures

(
K
2

) ,
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Table 4: The benchmarking results (global seed) on the crystal structure prediction task for diffusion-
based models.

Method # of samples Perov-5 Carbon-24 MP-20 MPTS-52
MR (↑) RMSE (↓) MR (↑) RMSE (↓) MR (↑) RMSE (↓) MR (↑) RMSE (↓)

Cond-CDVAE [35] 1 42.31 0.1356 14.65 0.3216 29.91 0.1098 4.91 0.2387
DiffCSP [24] 1 51.81 0.0922 16.45 0.2865 47.07 0.0654 11.91 0.1493
DiffCSP++ [25] (w/ CSPML) 1 53.71 0.0880 - - 70.94 0.0295 33.17 0.0893
DiffCSP++ [25] (w/ GT) 1 98.47 0.0398 - - 79.76 0.0293 42.13 0.1134
EquiCSP [31] 1 51.89 0.0746 17.19 0.2751 52.33 0.0612 13.04 0.1293
FlowMM [37] 1 47.38 0.1183 15.53 0.2848 50.21 0.1192 8.20 0.2275
CrystaLLM-raw(25M) 1 47.95 0.0966 21.13 0.1687 55.85 0.0437 17.47 0.1113
CrystaLLM(25M) 1 45.65 0.0977 21.87 0.1734 56.58 0.0426 17.54 0.1028
CrystaLLM-raw(200M) 1 46.10 0.0953 20.25 0.1761 58.70 0.0408 19.21 0.1110
CrystaLLM(200M) 1 45.87 0.0970 20.64 0.1971 58.98 0.0345 18.97 0.1123

Cond-CDVAE [35] 20 91.35 0.0312 78.60 0.2657 66.12 0.0985 26.98 0.2250
DiffCSP [24] 20 98.60 0.0118 87.48 0.2102 77.54 0.0611 33.13 0.1843
EquiCSP [31] 20 97.38 0.0173 84.72 0.2278 72.65 0.0782 30.12 0.1985
FlowMM [37] 20 94.58 0.0231 81.45 0.2483 69.10 0.0904 28.34 0.2123
CrystaLLM-raw(25M) 20 98.26 0.0236 83.60 0.1523 75.14 0.0395 32.98 0.1197
CrystaLLM(25M) 20 98.34 0.0228 84.04 0.1518 75.36 0.0398 32.96 0.1206
CrystaLLM-raw(200M) 20 97.60 0.0249 85.17 0.1514 73.97 0.0349 33.75 0.1059
CrystaLLM(200M) 20 97.73 0.0261 85.47 0.1542 74.11 0.0345 34.00 0.1076

where I(·) is the indicator function. Collisions are further classified as same-cell (n = 0) or cross-cell244

(n ̸= 0), enabling a more detailed assessment of both intra- and inter-cell stability.245

Symmetry Awareness for LLMs. Motivated by recent work [20], we evaluate a model’s ability246

to capture invariances inherent to crystalline materials by assessing its translation symmetry using247

the Increase in Perplexity under Transformation (IPT) metric. For a transformation group G with248

elements g and group action t, the IPT for an input sequence s is defined as249

IPT(s) = Eg∈G [PPL(tg(s))− PPL(tĝ(s))] ,

where250

ĝ = argmin
g

PPL(tg(s))

is the translation yielding the lowest perplexity, and PPL(s) = 2CE(s)/n is the exponentiated length-251

normalized cross-entropy. In our setting, G is the group of lattice translations, and tg performs252

coordinate translation with periodic boundary conditions before re-encoding the structure. IPT thus253

measures how much a model’s compression ability (inverse perplexity) changes under continuous254

symmetry operations: smaller IPT indicates better invariance. We approximate IPT by sampling255

multiple translation offsets g (e.g., 20 uniformly spaced shifts), choosing ĝ per sequence, and256

averaging over the test set. In addition to IPT, we compute the percent metastable metric—i.e.,257

the fraction of generated crystal candidates with predicted formation energies below a stability258

threshold—on symmetry-augmented test inputs.259

Computational Complexity. To assess the practical usability and scalability of various generative260

methods, we evaluate their computational complexity in terms of model size and the inference time261

required for structure generation or prediction. These metrics are especially critical for models262

designed for large-scale deployments or real-time applications.263

4 Experiments and Analysis264

4.1 Configurations265

All algorithms and models were developed using Python 3.9.18, with PyTorch 2.2.0, PyTorch266

Geometric 2.2.0, and Transformers 4.55.0, under CUDA 12.1. For diffusion and hybrid models,267

experiments were conducted on a server equipped with 8 NVIDIA V100 GPUs (32 GB memory each)268

and an Intel® Xeon® Platinum 8255C CPU @ 2.50 GHz. For large language model experiments, we269

utilized NVIDIA A100 and 3090 GPUs.270

4.2 Experimental Setup271

For training, we trained all diffusion models and hybrid models from scratch. For large language272

models (LLMs), we used the official open-sourced models. To ensure fair and efficient comparison,273

all models were trained strictly following the parameter settings provided in their official github274

repository. For model saving, we retained the best checkpoint based on the minimum validation loss,275

as well as the final checkpoint at the end of the last training epoch. Both checkpoints were used for276

sampling and evaluation. For CrystaLLM and Llama 3.1 (8B), we employed prompt-based methods277

for crystal structure prediction tasks (The specific prompts used are provided in the Appendix J).278

More details are provided in Appendix H.279
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Table 5: The benchmarking results of MOF structure prediction task.

Method # of samples stol = 0.5 stol = 1.0

MR (↑) RMSE (↓) MR (↑) RMSE (↓)

RS [58] 20 0.00 - 0.00 -
EA [58] 20 0.00 - 0.00 -

DiffCSP [24] 1 0.09 0.3961 23.12 0.8294
MOFFlow-raw [26] 1 31.69 0.2820 87.46 0.5183
MOFFlow-last [26] 1 34.47 0.2712 89.59 0.5037
MOFFlow-best [26] 1 34.45 0.2712 89.54 0.5036

DiffCSP [24] 5 0.34 0.3848 38.94 0.7937
MOFFlow-raw [26] 5 44.75 0.2694 100.0 0.4645
MOFFlow-last [26] 5 45.82 0.2534 97.36 0.4667
MOFFlow-best [26] 5 45.79 0.2533 97.34 0.4646

(a) Parameter counts of benchmark models.
(b) Inference time comparison 

on Perov-5.

(b) Inference time comparison 

on Carbon-24.

Figure 3: Model scale and inference speed. (a) Parameter counts (log-scale) grouped by paradigm;
colors denote families (LLMs, Diffusion/Flow, Hybrid). (b–c) Time to sample 20 structures on
Perov-5 and Carbon-24: VAE models are slowest (~ 260 s), while Diffusion/Flow models are much
faster (~ 30–46 s). LLM/Hybrid models have larger parameter counts and were not timed.

4.3 The Task of Crystal Structure Prediction280

Experiment Analysis. We evaluate CSP on Perov-5, Carbon-24, MP-20, and MPTS-52. For each281

composition in the test sets, we draw either 1 or 20 random samples per model. Metrics follow the282

standard protocol: Match Rate (MR↑) via pymatgen StructureMatcher and coordinate RMSE↓283

normalized by
√
V/N . Table 4 shows that multi-sample decoding is crucial: moving from 1 to 20284

samples greatly increases MR on all datasets and models. Diffusion models (DiffCSP / DiffCSP++)285

obtain the highest MR on the challenging MP-20 and MPTS-52 splits—DiffCSP++ is especially286

strong on larger/complex cells—while LLMs (CrystaLLM-25M & 200M) are highly competitive in287

RMSE with 20 samples, indicating very accurate local coordinates once a match is found. FlowMM288

baselines improve with multi-sampling but generally trail diffusion models in MR on the hard289

splits. Dataset-wise, Perov-5 nearly saturates MR with 20 samples (differences appear mainly in290

RMSE), Carbon-24 is moderate, and MP-20/MPTS-52 remain the most discriminative. Practically,291

we recommend enabling multi-sample decoding by default; choose DiffCSP++ when maximizing292

MR is the priority, and CrystaLLM-200M when the lowest post-match RMSE is desired.293

4.4 The Task of MOF Structure Prediction294

Experiment Analysis. Table 5 shows that MOF-specific flow models dominate this task. Random295

search and EA fail to recover any structures (MR= 0). DiffCSP improves but remains far from296

practical, while MOFFlow variants achieve large gains under both strict (stol=0.5) and loose297

(stol=1.0) matching. With just 5 samples, MOFFlow reaches ∼46% MR at stol=0.5 and ≥97%298

MR at stol=1.0, together with the lowest RMSE (≈0.25–0.27). Multi-sample decoding consistently299

helps all methods (1→5 samples), but the gap between MOFFlow and DiffCSP remains substantial,300

indicating the importance of a MOF-aware generator and the benefit of modeling SE(3) placements301

of building blocks.302

4.5 The Task of De Novo Generation303

Experiment Analysis. We report structural and composition validity, coverage (COV-R/P) and304

property alignment via Earth Mover’s Distance (density, #elements) in Table 27. Across datasets,305

all models achieve near-100% structural validity, and most diffusion models reach ∼99% coverage,306

showing excellent compositional and structural diversity. Property distributions are best aligned307

by modern diffusion model families: Flow-based and equivariant baselines tend to give the lowest308
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Table 6: The benchmarking results (global seed) on de novo generation task. The best results are
highlighted in bold.

Dataset Method Validity (↑) Coverage (↑) Property (↓)
Struc. Comp. COV-R COV-P dρ delem

Perov-5 CDVAE [56] 100.00 96.73 97.33 96.25 0.1532 0.0842
Cond-CDVAE [35] 100.00 96.32 96.43 95.56 0.1576 0.0932
DiffCSP [24] 100.00 98.66 99.67 98.25 0.1370 0.0542
DiffCSP++ [25] 100.00 98.65 99.76 98.76 0.1331 0.0407
EquiCSP [31] 100.00 98.40 99.42 98.44 0.1350 0.0120
FlowMM [37] 100.00 96.80 97.40 96.10 0.1520 0.0840

Carbon-24 CDVAE [56] 100.00 - 98.50 92.10 0.1450 -
Cond-CDVAE [35] 99.98 - 96.32 89.90 0.2132 -
DiffCSP [24] 100.00 - 99.90 93.61 0.1429 -
DiffCSP++ [25] 100.00 - 99.90 47.51 0.0562 -
EquiCSP [31] 99.99 - 99.90 96.15 0.2150 -
FlowMM [37] 100.00 - 94.32 91.21 0.2390

MP-20 CDVAE [56] 99.40 80.20 98.70 97.80 0.1600 0.7200
Cond-CDVAE [35] 99.35 79.80 98.40 97.50 0.1650 0.7400
DiffCSP [24] 99.78 83.86 99.61 99.47 0.1027 0.6129
DiffCSP++ [25] 99.86 84.92 99.76 99.43 0.1386 0.4728
EquiCSP [31] 99.89 81.67 99.57 99.62 0.6665 0.3958
FlowMM [37] 99.50 80.80 98.90 98.20 0.1550 0.7000

MPTS-52 CDVAE [56] 99.20 63.00 98.50 85.00 1.0500 0.6400
Cond-CDVAE [35] 99.10 62.50 98.20 84.50 1.0700 0.6600
DiffCSP [24] 99.78 66.70 99.64 88.89 0.9409 0.5573
DiffCSP++ [25] 99.20 64.50 99.10 85.50 1.0500 0.6300
EquiCSP [31] 99.65 69.48 99.78 96.27 0.8244 0.5606

EMDs on small/medium sets, while DiffCSP++ and EquiCSP are highly competitive on the larger309

MP-20/MPTS-52 splits. Overall, distributional fidelity differences are modest compared with the310

strong across-the-board validity, suggesting that downstream metrics (e.g., stability or synthesis311

proxies) are needed to further separate methods.312

4.6 Computational Complexity313

Figure 3 contrasts model scale and inference speed. Parameter counts stratify by paradigm: VAEs314

are smallest ( ~ 4.7–4.9M), diffusion/flow models are mid-sized (~ 12–29M; e.g., DiffCSP/EquiCSP315

~12.3M, FlowMM ~ 22.5M, MOFFlow ~ 28.5M), while LLM/hybrid models are much larger316

(CrystalLLM 25M/200M; Llama-3.1 8B). For sampling 20 structures, VAEs are slowest (~ 260 s317

on both Perov-5 and Carbon-24; ~ 13 s/structure). Diffusion/flow models are substantially faster:318

28.9–34.8 s on Perov-5 and 35.2–46.0 s on Carbon-24 (~ 1.4–2.3 s/structure), a ~ 6–9x speed-up over319

VAEs with modest dataset-to-dataset variance. LLM/hybrid models were not timed due to their much320

larger parameter counts. Overall, diffusion/flow offers the most favorable latency–scale trade-off for321

practical generation workloads.322

Due to space limitations, we provide detailed discussions of OOD Generation and Physical323

Plausibility evaluation in the Appendix I.2 and I.3.324

5 Conclusion and Future Work325

In this work, we introduce MGB, a unified and standardized platform for evaluating deep generative326

models in materials science. MGB covers diverse tasks—including crystal structure prediction, de327

novo generation, MOF structure prediction, and out-of-distribution generation—across representative328

datasets and models. Through multi-dimensional evaluation metrics, it enables fair, rigorous, and329

transparent comparisons among models, allowing robust, efficient, and generalizable solutions for330

material discovery. We hope MGB will serve as a catalyst for accelerating innovation in this field.331

Also, our future work includes the incorporation of benchmarking for material geometry modeling.332
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Lu, Thomas Christensen, and Marin Soljačić. Multimodal learning for crystalline materials.441

arXiv preprint arXiv:2312.00111, 2023.442

[40] Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,443

Shreyas Cholia, Dan Gunter, Vincent L Chevrier, Kristin A Persson, and Gerbrand Ceder.444

Python materials genomics (pymatgen): A robust, open-source python library for materials445

analysis. Computational Materials Science, 68:314–319, 2013.446

[41] Hyunsoo Park, Zhenzhu Li, and Aron Walsh. Has generative artificial intelligence solved inverse447

materials design? Matter, 7(7):2355–2367, 2024.448

[42] Junkil Park, Youhan Lee, and Jihan Kim. Multi-modal conditioning for metal-organic frame-449

works generation using 3d modeling techniques. 2024.450

[43] Chris J. Pickard. Airss data for carbon at 10gpa and the c+n+h+o system at 1gpa, 2020. URL:451

https://archive.materialscloud.org/record/2020.0026/v1.452

[44] Chris J Pickard and RJ Needs. High-pressure phases of silane. Physical review letters,453

97(4):045504, 2006.454

[45] Chris J Pickard and RJ Needs. Ab initio random structure searching. Journal of Physics:455

Condensed Matter, 23(5):053201, 2011.456

[46] Raffaele Pugliese, Silvia Badini, Emanuele Frontoni, and Stefano Regondi. Generative artificial457

intelligence for advancing discovery and design in biomateriomics. Intelligent Computing,458

4:0117, 2025.459

[47] Zekun Ren, Juhwan Noh, Siyu Tian, Felipe Oviedo, Guangzong Xing, Qiaohao Liang, Armin460

Aberle, Yi Liu, Qianxiao Li, Senthilnath Jayavelu, et al. Inverse design of crystals using461

generalized invertible crystallographic representation. arXiv preprint arXiv:2005.07609, 3(6):7,462

2020.463

[48] Mara Schilling-Wilhelmi, Martiño Ríos-García, Sherjeel Shabih, María Victoria Gil, Santiago464

Miret, Christoph T Koch, José A Márquez, and Kevin Maik Jablonka. From text to insight:465

Large language models for materials science data extraction. arXiv preprint arXiv:2407.16867,466

2024.467

[49] Zhong-Hui Shen, Han-Xing Liu, Yang Shen, Jia-Mian Hu, Long-Qing Chen, and Ce-Wen Nan.468

Machine learning in energy storage materials. Interdisciplinary Materials, 1(2):175–195, 2022.469

[50] Naichen Shi, Hao Yan, Shenghan Guo, and Raed Al Kontar. Multi-physics simulation guided470

generative diffusion models with applications in fluid and heat dynamics. arXiv preprint471

arXiv:2407.17720, 2024.472

12

https://archive.materialscloud.org/record/2020.0026/v1


[51] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-473

vised learning using nonequilibrium thermodynamics. In International Conference on Machine474

Learning, pages 2256–2265. PMLR, 2015.475

[52] Anuroop Sriram, Benjamin Kurt Miller, Ricky TQ Chen, and Brandon M Wood. Flowllm:476

Flow matching for material generation with large language models as base distributions. arXiv477

preprint arXiv:2410.23405, 2024.478

[53] Izumi Takahara, Kiyou Shibata, and Teruyasu Mizoguchi. Generative inverse design of crystal479

structures via diffusion models with transformers. arXiv preprint arXiv:2406.09263, 2024.480

[54] Rama Vasudevan, Ghanshyam Pilania, and Prasanna V Balachandran. Machine learning for481

materials design and discovery. Journal of Applied Physics, 129(7), 2021.482

[55] Logan Ward, Ankit Agrawal, Alok Choudhary, and Christopher Wolverton. A general-purpose483

machine learning framework for predicting properties of inorganic materials. npj Computational484

Materials, 2(1):1–7, 2016.485

[56] Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crys-486

tal diffusion variational autoencoder for periodic material generation. arXiv preprint487

arXiv:2110.06197, 2021.488

[57] Minkai Xu, Shitong Luo, Yoshua Bengio, Jian Peng, and Jian Tang. Learning neural generative489

dynamics for molecular conformation generation. arXiv preprint arXiv:2102.10240, 2021.490

[58] Tomoki Yamashita, Shinichi Kanehira, Nobuya Sato, Hiori Kino, Kei Terayama, Hikaru Sawa-491

hata, Takumi Sato, Futoshi Utsuno, Koji Tsuda, Takashi Miyake, et al. Cryspy: a crystal struc-492

ture prediction tool accelerated by machine learning. Science and Technology of Advanced493

Materials: Methods, 1(1):87–97, 2021.494

[59] Keqiang Yan, Xiner Li, Hongyi Ling, and Shuiwang Ji. Invariant tokenization for language495

model enabled crystal materials generation. arXiv preprint arXiv:2402.04320, 2024.496

[60] Mengjiao Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor497

Mordatch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. arXiv preprint498

arXiv:2311.09235, 2023.499

[61] Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L Gaunt, Brendan500

McMorrow, Danilo J Rezende, Dale Schuurmans, Igor Mordatch, and Ekin D Cubuk. Generative501

hierarchical materials search. arXiv preprint arXiv:2409.06762, 2024.502

[62] Zhenpeng Yao, Yanwei Lum, Andrew Johnston, Luis Martin Mejia-Mendoza, Xin Zhou,503

Yonggang Wen, Alán Aspuru-Guzik, Edward H Sargent, and Zhi Wei Seh. Machine learning504

for a sustainable energy future. Nature Reviews Materials, 8(3):202–215, 2023.505

[63] Adrian Xiao Bin Yong, Tianyu Su, and Elif Ertekin. Dismai-bench: benchmarking and designing506

generative models using disordered materials and interfaces. Digital Discovery, 3(9):1889–1909,507

2024.508

[64] Claudio Zeni, Robert Pinsler, Daniel Zügner, Andrew Fowler, Matthew Horton, Xiang Fu, Sasha509

Shysheya, Jonathan Crabbé, Lixin Sun, Jake Smith, et al. Mattergen: a generative model for510

inorganic materials design. arXiv preprint arXiv:2312.03687, 2023.511

[65] Nils ER Zimmermann and Anubhav Jain. Local structure order parameters and site fingerprints512

for quantification of coordination environment and crystal structure similarity. RSC advances,513

10(10):6063–6081, 2020.514

13



515

Appendix516

Table of Contents
517
518

A Related Work 15519

B The Details of the Benchmarking Algorithms 16520

B.1 Large Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16521

B.2 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16522

B.3 Hybrid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17523

C The Details of the Benchmarking Datasets 18524

C.1 PEROV-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18525

C.2 Carbon-24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18526

C.3 MP-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18527

C.4 MPTS-52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18528

C.5 Boyd MOF Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18529

D The Details of the Benchmarking Evaluations 19530

D.1 Matching Accuracy for Crystal (MOF) Structure Prediction . . . . . . . . . . . 19531

D.2 Quality for De Novo Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 19532

E Out-of-distribution Test 21533

E.1 Out of Distribution Datasets for Perov-5 . . . . . . . . . . . . . . . . . . . . . 21534

E.2 Out of Distribution Datasets for Carbon-24 . . . . . . . . . . . . . . . . . . . . 25535

E.3 Out of Distribution Datasets for Boyd MOF Database . . . . . . . . . . . . . . 26536

F Atomic Collision Problem in Crystal Structure 27537

F.1 Problem Definition (with PBC) . . . . . . . . . . . . . . . . . . . . . . . . . . 27538

F.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27539

F.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27540

G Measuring Symmetry Learning Capabilities in LLMs 29541

G.1 Definition of IPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29542

G.2 Transformation Group and Implementation . . . . . . . . . . . . . . . . . . . . 29543

G.3 Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29544

G.4 Additional Metrics: Percent Metastable . . . . . . . . . . . . . . . . . . . . . . 29545

G.5 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29546

H The Details of Experimental Setup 30547

H.1 CDVAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30548

H.2 DiffCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30549

H.3 DiffCSP++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32550

H.4 EquiCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32551

H.5 FlowMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34552

I More Comprehensive Results 36553

I.1 More Comprehensive Results about CSP&DNG . . . . . . . . . . . . . . . . . 36554

I.2 Case Studies on OOD Generation . . . . . . . . . . . . . . . . . . . . . . . . . 38555

I.3 Evaluations on the Physical Plausibility Problem . . . . . . . . . . . . . . . . . 39556

J Prompts of LLMs 40557

558
559560

14



A Related Work561

Beyond the models and datasets evaluated in our benchmark (MGB), there exists a range of related562

works that, while highly relevant, are not included due to factors such as lack of open-source563

implementation or differences in task scope. These studies provide complementary perspectives564

on generative approaches for materials design and help contextualize the contributions of MGB.565

In particular, recent advances in generative modeling have introduced a variety of methods and566

application settings that inform and inspire the design of future benchmarking efforts.567

Such advances have shown promising potential for the inverse design of materials, particularly568

crystalline structures. Methods span diffusion models, GANs, large language models (LLMs), flow569

matching, and sequence-based encodings, as seen in IMD [41], UniMat [60], GenMS [61], PXRD-570

Gen [30], CDS&CDI [53], GRIP [28], AIAD [21], MatterGPT [7], CrystalFlow [34], FlowLLM [52],571

and Mat2Seq [59]. These works target objectives such as generating stable structures, optimizing572

material properties, and solving structure determination tasks, while facing common challenges in573

synthesizability, physical interpretability, and evaluation metrics.574

In addition to individual generative approaches, specialized benchmarks and datasets have been575

developed to rigorously evaluate model performance. Dismai-Bench [63] focuses on disordered576

materials and interfaces, complementing benchmarks that target ordered crystalline systems, and577

provides structure-comparison-based metrics to reveal strengths, weaknesses, and failure modes in578

generative models.579

Recent trends also highlight integration of multi-modal data, multi-physics simulations, and domain-580

specific constraints. MultiMat [39] aligns multiple material modalities for representation learning;581

MPDM [50] incorporates physics simulations into diffusion models; MOFFUSION [42] and MOFD-582

iff [13] target MOF generation; and MatterGen [64] demonstrates multi-property optimization across583

inorganic materials.584

LLMs are increasingly applied in materials science for design, knowledge extraction, and scientific585

assistance. Works such as ChatGPTMG [11], LLMatDesign [23], DKPE [32], CrystaltextLLM [20],586

LLMMSDE [48], MatText [1], and MicroGPT [29] explore applications from structure generation587

and property prediction to literature mining and autonomous research agents, while also noting588

limitations in data availability, controllability, and factual accuracy.589
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B The Details of the Benchmarking Algorithms590

B.1 Large Language Models591

CrystalLLM (25M & 200M) [2]. CrystaLLM proposes crystal structure generation by autoregressive592

large language modeling directly on CIF files. Treating crystal structures as token sequences,593

CrystaLLM is trained on millions of inorganic crystals and can generate valid, diverse structures for594

unseen compositions and symmetries. It achieves competitive or superior match rates and geometric595

accuracy compared to diffusion-based models. The model supports conditional generation on space596

group or composition, and integrates MCTS and energy predictors for low-energy structure search.597

Code and web app: https://github.com/lantunes/CrystaLLM, https://crystallm.com.598

Llama 3.1 (8B) [19]. Llama 3.1 (8B) is an open-source large language model released by Meta AI in599

2024. With 8 billion parameters, it supports context windows up to 128k tokens and incorporates600

Grouped-Query Attention for efficient long-context reasoning. The model is pretrained on large-scale601

text corpora and further instruction tuned, enabling strong performance on multilingual dialogue, text602

generation, and classification tasks. Compared with larger variants, Llama 3.1 (8B) achieves a balance603

between capability and computational efficiency, making it suitable for research and deployment604

in resource-constrained environments. The model is open sourced at https://huggingface.co/meta-605

llama/Llama-3.1-8B.606

We note that Table 7 summarizes all currently available large language models for material de-607

sign, including both open-source and closed-source efforts. In particular, models such as Crys-608

taltextLLM [20], FlowLLM [37], and Mat2Seq [59] have been proposed for materials discovery.609

However, their model weights are not publicly released, and no inference platforms exist to support610

them. As indicated in the table, these models are either fine-tuned from proprietary checkpoints (e.g.,611

CrystaltextLLM, FlowLLM) or trained from scratch without accessible artifacts (e.g., Mat2Seq). Re-612

training them independently would require prohibitive computational resources, making it infeasible613

to include them in our benchmark. Consistent with common practice in the LLM community, we614

therefore rely on existing checkpoints with accessible weights and APIs, which ensures reproducibility615

and fair comparison across models.616

Table 7: Summary of LLMs for material design.
Model Open Source #Params Base LLM Training Type Benchmarked in MGB
CrystaLLM [2] ✓ 25M/200M None Trained from scratch ✓
MatLLMSearch [15] ✓ 70B Llama 3.1 No training ✗
CrystaltextLLM [20] ✗ 7B/13B/70B Llama-2 Fine-tuned ✗
FlowLLM [37] ✗ 70B Llama-2 Fine-tuned ✗
Mat2Seq [59] ✗ 25M/200M None Trained from scratch ✗

B.2 Diffusion Models617

DiffCSP [24]. DiffCSP is a novel diffusion-based generative model designed for Crystal Structure618

Prediction (CSP), addressing the challenges posed by the geometric symmetries of crystals, such619

as translation, rotation, and periodicity. By leveraging fractional coordinates and a periodic-E(3)-620

equivariant denoising model, DiffCSP jointly generates both lattice vectors and atom positions,621

effectively capturing the intrinsic periodicity and symmetries of crystal structures. Unlike conven-622

tional methods that rely on computationally expensive DFT or Cartesian coordinate-based generative623

models, DiffCSP provides a more accurate and computationally efficient solution. The code for624

DiffCSP is publicly available at: https://github.com/jiaor17/DiffCSP.625

DiffCSP++ [25]. DiffCSP++ is a novel diffusion-based model designed for crystal generation that626

incorporates space group constraints, which are crucial for capturing the geometric and symmetry627

properties of crystals. It translates the space group constraint into two tractable components: the628

basis constraint of the O(3)-invariant logarithmic space of the lattice matrix and the Wyckoff position629

constraint of the fractional coordinates of atoms. These constraints are seamlessly integrated into the630

diffusion process, allowing DiffCSP++ to generate lattices, atomic coordinates, and atom compo-631

sitions while maintaining the symmetry of the crystal. By explicitly considering these constraints,632

DiffCSP++ improves upon the previous DiffCSP model and achieves superior performance in tasks633

such as crystal structure prediction, ab initio crystal generation, and controllable generation with634
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specific space groups across various datasets. The code for DiffCSP++ is publicly available at:635

https://github.com/jiaor17/DiffCSP-PP.636

EquiCSP [31]. EquiCSP is a novel equivariant diffusion-based generative model developed to tackle637

the challenges of Crystal Structure Prediction (CSP). It ensures both lattice permutation and periodic638

translation equivariance, addressing limitations in previous models that overlooked these critical sym-639

metries. To achieve this, EquiCSP introduces a specialized diffusion noising algorithm called Periodic640

CoM-free Noising, which maintains periodic translation equivariance throughout both training and641

generation. Additionally, it employs simple loss functions to enforce lattice permutation equivariance642

without embedding it directly into the neural network architecture, thus improving computational643

efficiency. The code for EquiCSP is publicly available at: https://github.com/EmperorJia/EquiCSP.644

FlowMM [37]. FlowMM is a generative model framework developed to predict and generate stable645

crystalline materials by extending the Riemannian Flow Matching method. It is specifically designed646

to handle the unique symmetries of periodic crystals, including translation, rotation, permutation647

invariances, and periodic boundary conditions. By modeling the joint distribution over lattice648

parameters, atomic coordinates, and atom types, FlowMM provides a unified solution for both Crystal649

Structure Prediction (CSP) and De Novo Generation (DNG). The code for FlowMM is publicly650

available at: https://github.com/facebookresearch/flowmm.651

MOFFlow [26]. MOFFlow is a generative framework designed for the discovery and design of652

Metal–Organic Frameworks (MOFs). Built upon an equivariant flow-based model, it captures the653

inherent symmetries of crystalline MOF structures, including translation, rotation, and periodic654

boundary conditions. The model jointly generates atom types, coordinates, and lattice parameters,655

enabling both crystal structure prediction and de novo MOF generation. Trained on large-scale656

MOF datasets, MOFFlow demonstrates strong capability in generating stable and diverse MOF657

structures while preserving chemical validity. The code for MOFFlow is publicly available at:658

https://github.com/nayoung10/MOFFlow.659

B.3 Hybrid Models660

CDVAE [56]. CDVAE is a Crystal Diffusion Variational Autoencoder designed to generate stable661

periodic materials by addressing the challenge of material generation, where stability is dictated by662

quantum mechanical energy minima and specific atomic bonding preferences. CDVAE employs a663

diffusion process in its decoder that iteratively refines atomic coordinates and atom types, pushing664

them towards stable configurations. Built upon SE(3) equivariant graph neural networks, CDVAE665

respects critical physical invariances, including permutation, translation, rotation, and periodic666

boundary conditions. The model outperforms previous methods in tasks such as input structure667

reconstruction, generating diverse and realistic materials, and optimizing materials for specific668

properties. Additionally, CDVAE contributes standard datasets and evaluation metrics to facilitate a669

consistent comparison of generative models in material science. The code for CDVAE is publicly670

available at: https://github.com/txie-93/cdvae.671

Cond-CDVAE [35]. The Cond-CDVAE is a deep learning-based generative model developed for672

crystal structure prediction (CSP) under user-defined conditions such as chemical composition and673

pressure. Trained on a vast dataset of 670,979 stable crystal structures from the Materials Project and674

CALYPSO databases, it can generate valid and diverse crystal structures with high accuracy. The675

Cond-CDVAE outperforms conventional CSP methods in both efficiency and fidelity, particularly676

for structures with fewer than 20 atoms per unit cell. Conditioning on physical parameters enables677

the exploration of crystal structures across a wide range of pressures, facilitating materials discovery678

without the need for computationally expensive local optimization. The code for Cond-CDVAE is679

publicly available at:https://github.com/ixsluo/cond-cdvae.680
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C The Details of the Benchmarking Datasets681

C.1 PEROV-5682

Perovskite is a class of materials that share a similar structure and have the general chemical formula683

ABX3. The ideal perovskites have a cubic structure, where the site A atom sits at a corner position,684

the site B atom sits at a body-centered position and site X atoms sit at face centered positions.685

Perovskite materials are known for their wide applications. We curate the Perov-5 dataset from an686

open database that was originally developed for water splitting [5, 6]. All 18928 materials in the687

original database are included. In the database, A, B can be any nonradioactive metal, and X can be688

one or several elements from O, N, S, and F. Note that there can be multiple different X atoms in689

the same material. All materials in Perov-5 are relaxed using density functional theory (DFT), and690

their relaxed structure can deviate significantly from the ideal structures. A significant portion of the691

materials is not thermodynamically stable, i.e., they will decompose to nearby phases and cannot692

be synthesized. PEROV-5 [5] includes 18928 perovskite materials that share the same structure but693

differ in composition. There are 56 elements, and all materials have 5 atoms in the unit cell.694

C.2 Carbon-24695

Carbon-24 includes various carbon structures obtained via ab initio random structure searching696

(AIRSS) [44, 45] performed at 10 GPa. The original dataset includes 101529 carbon structures, and697

we selected 10% of the carbon structures with the lowest energy per atom to create Carbon-24. All698

10153 structures in Carbon-24 are relaxed using DFT. The most stable structure is diamond at 10699

GPa. All remaining structures are thermodynamically unstable but may be kinetically stable. Most of700

the structures cannot be synthesized. Carbon-24 [43] includes 10153 materials that are all made up of701

carbon atoms but differ in structures. There is 1 element, and the materials have 6 - 24 atoms in the702

unit cells.703

C.3 MP-20704

MP-20 includes almost all experimentally stable materials from the Materials Project [22] with705

unit cells including at most 20 atoms. We only include materials that are originally from ICSD []706

to ensure the experimental stability, and these materials represent the majority of experimentally707

known materials with at most 20 atoms in unit cells. To ensure stability, we only select materials708

with energy above the hull smaller than 0.08 eV/atom and formation energy smaller than 2 eV/atom,709

following [47]. Differing from [47], we do not constrain the number of unique elements per material.710

All materials in MP-20 are relaxed using DFT. Most materials are thermodynamically stable and have711

been synthesized. MP-20 [22] includes 45231 materials that differ in both structure and composition.712

There are 89 elements, and the materials have 1 - 20 atoms in the unit cells.713

C.4 MPTS-52714

MPTS-52 [22] is a more challenging extension of MP-20, consisting of 40,476 structures up to 52715

atoms per cell, sorted according to the earliest published year in literature.716

C.5 Boyd MOF Database717

The Boyd MOF Database originates from the work [4], focusing on the data-driven design of718

metal–organic frameworks (MOFs) for wet flue gas CO2 capture. The original dataset consists of719

324,426 hypothetical MOF structures generated by high-throughput topology-based construction.720

Each structure was evaluated for CO2 and N2 adsorption properties under both dry and humid721

conditions, aiming to identify robust adsorbent materials capable of selective CO2 capture in industrial722

flue gas streams. In the benchmark setting, following prior work [26], structures with fewer than 200723

building blocks were excluded, resulting in 247,066 MOFs retained. The dataset is randomly split into724

training, validation, and test sets with an 8:1:1 ratio, yielding approximately 197,653 / 24,707 / 24,707725

structures, respectively. This dataset is particularly challenging due to its large scale and diversity.726

MOFs in the database span a wide range of compositions, topologies, and pore characteristics. While727

many structures are hypothetical, they provide a rich testbed for machine learning algorithms in728

materials discovery, particularly in the context of adsorption-based carbon capture.729
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D The Details of the Benchmarking Evaluations730

D.1 Matching Accuracy for Crystal (MOF) Structure Prediction731

Match Rate. The Match Rate is the proportion of the matched structures over the test set. We732

evaluate the match rate performance by matching the generated structure and the input structure733

for all materials in the test set. We use StructureMatcher from pymatgen [40], , which finds the734

best match between two structures considering all invariances of materials. The match rate is the735

percentage of materials satisfying the criteria stol=0.5, angle tol=10, ltol=0.3.736

RMSE. RMSE is calculated between the ground truth and the best matching candidate, normalized by737 √
V/N where V is the volume of the lattice, N is the number of atoms in the unit cell, and averaged738

over the matched structures.739

D.2 Quality for De Novo Generation740

Structural Validity. Following [9], a structure is valid as long as the shortest distance between any741

pair of atoms is larger than 0.5 Å, which is a relative weak criterion.742

Compositional Validity. The composition is valid if the overall charge is neutral as computed by743

SMACT [10].744

Coverage Recall (COV-R) and Coverage Precision (COV-P). Inspired by [57, 16], we define745

two coverage metrics, COV-R (Recall) and COV-P (Precision), to measure the similarity between746

ensembles of generated materials and ground truth materials in the test set. Intuitively, COV-R747

measures the percentage of ground truth materials being correctly predicted. COV-P measures the748

percentage of predicted materials having high quality.749

Inspired by [57, 16], we define six metrics to compare two ensembles of materials: materials750

generated by a method {Mk}k∈[1..K], and ground truth materials in test data {M∗
l }∈[1..L]. We use751

the Euclidean distance of the CrystalNN fingerprint [65] and normalized Magpie fingerprint [55] to752

define the structure distance and composition distance between generated and ground truth materials,753

respectively. They can be written as Dstruc.(Mk,M
∗
l ) and Dcomp.(Mk,M

∗
l ). We further define the754

thresholds for the structure and composition distance as δstruc. and δcomp., respectively. Following755

the established classification metrics of Precision and Recall, we define the coverage metrics as:756

COV-R (Recall) =
1

L
|{l ∈ [1..L] : ∃k ∈ [1..K], Dstruc.(Mk,M

∗
l ) < δstruc.,

Dcomp.(Mk,M
∗
l ) < δcomp.}| (1)

AMSD-R (Recall) =
1

L

∑
l∈[1..L]

min
k∈[1..K]

Dstruc.(Mk,M
∗
l ) (2)

AMCD-R (Recall) =
1

L

∑
l∈[1..L]

min
k∈[1..K]

Dcomp.(Mk,M
∗
l ), (3)

where COV is "Coverage", AMSD is "Average Minimum Structure Distance", AMCD is "Average757

Minimum Composition Distance", and COV-P (precision), AMSD-P (precision), AMCD-P (precision)758

are defined as in above equations, but with the generated and ground truth material sets swapped. The759

recall metrics measure how many ground truth materials are correctly predicted, while the precision760

metrics measure how many generated materials are of high quality (more discussions can be found in761

[16]).762

We note several points on why we define the metrics in their current forms. 1) COV requires both763

structure and composition distances to be within the thresholds, because generating materials that are764

structurally close to one ground truth material and compositionally close to another is not meaningful.765

As a result, AMSD and AMCD are less useful than COV. 2) We use fingerprint distance, rather than766

RMSE from StructureMatcher [40], because the material space is too large for the models to767

generate enough materials to exactly match the ground truth materials. StructureMatcher first768

requires the compositions of two materials to exactly match, which will cause all models to have769

close-to-zero coverage. For Perov-5 and Carbon-24, we choose δstruc. = 0.2, δcomp. = 4. For MP-20770

and MPTS-52, we choose δstruc. = 0.4, δcomp. = 10.771
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Property Statistics dρ, dE and delem. To quantitatively evaluate the similarity between the772

generated and test material property distributions, we compute the Earth Mover’s Distance (EMD,773

i.e., Wasserstein distance) for three representative properties: (1) density (ρ, unit: g/cm3), (2)774

formation energy per atom (E, unit: eV/atom), and (3) the number of unique elements (# elem.).775

The formation energy is predicted using an independent graph neural network (GNN) trained on an776

external dataset, ensuring unbiased property evaluation. For each property, the Wasserstein distance is777

calculated between the distributions of generated structures and those of the test set. Unless otherwise778

specified, the property metrics are evaluated on a subset of 1,000 valid generated samples. Validity779

and coverage are computed over N(N ∈ [5000, 10000, 15000, 20000]) materials randomly sampled780

from N (0, 1). Property statistics is computed over 1,000 valid materials randomly sampled from781

those that pass the validity test.782
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E Out-of-distribution Test783

In this section, we evaluate the generalization ability of models beyond their training distributions784

through out-of-distribution (OOD) tests. We construct representative OOD datasets for three material785

classes: (i) materials with perovskite-related motifs but outside the Perov-5 distribution, including786

double perovskites, antiperovskites, and layered perovskites (Ruddlesden-Popper phases) as shown787

in Tables 8, 9, and 10; (ii) carbon allotropes with large unit cells for testing the extrapolation of788

Carbon-24 models (Table 11); and (iii) MOFs with distinct functions from CO2 adsorption, used789

to assess the Boyd hypothetical MOF database (Table 12). Each dataset is curated from publicly790

available sources (Materials Project, ICSD, COD) and follows a consistent selection criterion. The791

OOD evaluation metrics include effectiveness, uniqueness/diversity, stability (e.g., Ehull or phase792

consistency), and property performance, facilitating cross-model and material class comparisons.793

E.1 Out of Distribution Datasets for Perov-5794

To comprehensively evaluate the generalization ability of generative models beyond the Perov-5795

dataset, we construct several out-of-distribution (OOD) test sets. These datasets are designed to796

include material families that share structural motifs with perovskites but are not part of the Perov-5797

training distribution. Specifically, we consider three representative categories: double perovskites,798

antiperovskites, and layered perovskites (Ruddlesden-Popper phases). All materials are collected799

from the Materials Project, and they provide diverse structural and functional characteristics that800

challenge models to extrapolate beyond the standard perovskite composition space.801

Double Perovskite Crystals (OOD-DPC). Double perovskites (A2BB’O6) are an important class of802

materials in which two distinct cations occupy alternating lattice sites. Their compositional tunability803

leads to diverse functionalities, ranging from magnetism and multiferroicity to ferroelectricity and804

catalysis. Owing to this structural and functional diversity, double perovskites provide a strong805

out-of-distribution (OOD) benchmark for evaluating models trained on Perov-5. In Table 8, we806

present representative double perovskite crystals collected from the Materials Project, covering807

categories such as magnetic & spin-polarized, multiferroic, dielectric & ferroelectric, photocatalytic808

& photoelectric, oxygen reduction & catalytic, and other representative compounds. Each entry809

reports the chemical formula, Materials Project ID, and space group, highlighting the broad coverage810

of double perovskites beyond the Perov-5 dataset.811

Antiperovskite Crystals (OOD-AC). Antiperovskites (M3AX) are structural analogues of per-812

ovskites in which anion and cation positions are inverted. They exhibit unique physical properties813

such as metallic conductivity, mechanical robustness, and unconventional magnetism, making them814

distinct from the perovskite family while still sharing related motifs. Their structural differences815

render them a suitable OOD test set for Perov-5–based generative models. Table 9 summarizes816

representative nitride-type (M3AN), carbide-type (M3AC), and other common antiperovskites, all817

collected from the Materials Project. For each material, we provide the chemical formula, Materials818

Project ID, and space group. The majority belong to the high-symmetry group Pm-3m (221), yielding819

a simple yet clearly out-of-domain evaluation set.820

Layered Perovskite Crystals (Ruddlesden-Popper Phase) (OOD-LPC). Layered perovskites, or821

Ruddlesden-Popper (RP) phases, consist of perovskite layers separated by rock-salt layers, following822

the general formula An+1BnO3n+1. Their tunable dimensionality, controlled by the stacking parameter823

n, gives rise to rich electronic and optical behaviors, particularly in reduced-dimensional systems.824

Since RP phases extend beyond the standard perovskites of Perov-5, they provide a challenging825

benchmark for OOD evaluation. Table 10 reports representative RP phases collected from the Materi-826

als Project, grouped into n = 1, n = 2, and n = 3 categories, together with 2D organic–inorganic827

RP compounds and other RP variants. Each entry lists the chemical formula, Materials Project828

ID, and space group, illustrating the structural diversity of layered perovskites outside the Perov-5829

distribution.830
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Table 8: Selected double perovskite crystals for out-of-distribution test.
Category Pretty Formula Material ID Space Group Source

Magnetic& Spin-polarized Materials Sr2CrReO6 mp-1205958 Fm-3m, 225 The Materials Project
Sr2CrOsO6 mp-1078354 R-3, 148 The Materials Project
Ca2FeMoO6 mp-18783 P2_1/c, 14 The Materials Project
Ba2FeReO6 mp-31756 Fm-3m, 225 The Materials Project
La2VMnO6 mp-560369 P2_1/c, 14 The Materials Project
La2CoMnO6 mp-19208 P2_1/c, 14 The Materials Project
La2CrMnO6 mp-1223342 P2_1/c, 14 The Materials Project

Multiferroic Materials Bi2FeCrO6 mp-551086 R3, 146 The Materials Project
La2NiMnO6 mp-1079517 Fm-3m, 225 The Materials Project
Y2CoMnO6 mp-1189894 P2_1/c, 14 The Materials Project
Pb2CoWO6 mp-20069 C2/m, 12 The Materials Project

Dielectric & Ferroelectric Materials Sr2LaTaO6 mp-1205692 Fm-3m, 225 The Materials Project
Sr2GdNbO6 mp-1518774 Pn-3, 201 The Materials Project
Sr2ScSbO6 mp-1106218 P2_1/c, 14 The Materials Project
Ba2LaNbO6 mp-553281 C2/m, 12 The Materials Project

Photocatalytic & Photoelectric Materials Sr2AlTaO6 mp-1147547 P4/mmm, 123 The Materials Project
Sr2FeTiO6 mp-1094048 Fm-3m, 225 The Materials Project
Ba2BiSbO6 mp-23091 R-3, 148 The Materials Project
Sr2MgMoO6 mp-1078539 I4/m, 87 The Materials Project

Oxygen Reduction & Catalytic Materials Pr2NiMnO6 mp-1209751 P2_1/c, 14 The Materials Project
La2FeCoO6 mp-1223373 P2_1/c, 14 The Materials Project
La2MnCoO6 mp-19208 P2_1/c, 14 The Materials Project
La2NiCoO6 mp-1223259 R-3, 148 The Materials Project

Other Representative Double Perovskites Sr2GaSbO6 mp-6065 Fm-3m, 225 The Materials Project
Ba2ScSbO6 mp-20709 Fm-3m, 225 The Materials Project
Ba2HoTaO6 mp-13000 I4/m, 87 The Materials Project
Sr2MgWO6 mp-18848 Fm-3m, 225 The Materials Project
Sr2CoWO6 mp-18771 I4/m, 87 The Materials Project
Ba2ErNbO6 mp-6653 Fm-3m, 225 The Materials Project

831
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Table 9: Selected antiperovskite crystals for out-of-distribution test.

Category Antiperovskite Material ID Space Group Source

Nitride (M3AN type) Mn3GaN mp-627439 Pm-3m, 221 The Materials Project
Mn3ZnN mp-15805 Pm-3m, 221 The Materials Project
Mn3CuN mp-510380 Pm-3m, 221 The Materials Project
Mn3NiN mp-20362 Pm-3m, 221 The Materials Project
Fe3Mo3N mp-510619 Fd-3m, 227 The Materials Project
Co3InN mp-1068786 Pm-3m, 221 The Materials Project
Ni3ZnN mp-1069270 Pm-3m, 221 The Materials Project

Carbide (M3AC type) Fe3SnC mp-21850 Pm-3m, 221 The Materials Project
Co3SnC mp-20679 Pm-3m, 221 The Materials Project
Mn3AlC mp-4593 Pm-3m, 221 The Materials Project
Ni3AlC mp-1207084 Pm-3m, 221 The Materials Project
Fe3ZnC mp-10266 Pm-3m, 221 The Materials Project

Other Common Antiperovskites Ni3InN mp-1070713 Pm-3m, 221 The Materials Project
Fe3SbN mp-1246554 Imma, 74 The Materials Project
Mn3GeN mp-1205588 I4/mcm, 140 The Materials Project
Mn3SbN mp-1206805 Pm-3m, 221 The Materials Project
Mn3SnN mp-505571 Pm-3m, 221 The Materials Project
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Table 10: Selected layered perovskite crystals for out of distribution test (Ruddlesden-Popper phase).
Category Layered Perovskite Material ID Space Group Source

n = 1 RP phase Sr2TiO4 mp-5532 I4/mmm, 139 The Materials Project
La2CuO4 mp-19735 I4/mmm, 139 The Materials Project
K2NiF4 mp-556546 I4/mmm, 139 The Materials Project
Ca2MnO4 mp-19050 I4_1/acd, 142 The Materials Project
Ba2CuO4 mp-1147762 I4/mmm, 139 The Materials Project
Sr2RuO4 mp-4596 I4/mmm, 139 The Materials Project

n = 2 RP phase Sr3Ti2O7 mp-3349 I4/mmm, 139 The Materials Project
Ca3Ti2O7 mp-4163 Cmc2_1, 36 The Materials Project
La3Ni2O7 mp-18926 Cmcm, 63 The Materials Project
Sr3Fe2O7 mp-18820 I4/mmm, 139 The Materials Project
Sr3Ru2O7 mp-5868 I4/mmm, 139 The Materials Project

n = 3 RP phase Sr4Ti3O10 mp-31213 I4/mmm, 139 The Materials Project
La4Ni3O10 mp-19298 I4/mmm, 139 The Materials Project
Sr4Ru3O10 mp-680680 Cmce, 64 The Materials Project

2D Organic-Inorganic RP Perovskite (BA)2PbI4 mp-6280 Pnma, 62 The Materials Project
(PEA)2PbI4 mp-550306 I4/mmm, 139 The Materials Project
(BA)2MAPb2I7 mp-720710 P-1, 2 The Materials Project

Other RP perovskites Sr2FeO4 mp-19102 I4/mmm, 139 The Materials Project
La2NiO4 mp-20143 Cmce, 64 The Materials Project
Sr2CoO4 mp-18724 I4/mmm, 139 The Materials Project
K2MgF4 mp-31212 I4/mmm, 139 The Materials Project

833

24



E.2 Out of Distribution Datasets for Carbon-24834

Huge Unit Cell Carbon Crystals (OOD-HUCC). The Carbon-24 dataset contains diverse carbon835

allotropes generated via ab initio random structure searching (AIRSS) at 10 GPa, from which over836

10,000 low-energy structures were curated and relaxed using DFT. While diamond remains the most837

stable phase, most of these structures are metastable and not experimentally synthesizable, thereby838

offering a wide structural diversity beyond well-known carbon forms such as diamond and graphite.839

To construct a meaningful out-of-distribution (OOD) benchmark for Carbon-24, we further collected840

representative carbon crystals from the Materials Project, as shown in Table 11. These crystals exhibit841

varied huge unit cell sizes, space groups, and stability profiles, with some experimentally observed842

and others hypothetical. Each entry reports the atom number, Materials Project ID, space group,843

and whether it has been experimentally realized. This dataset highlights both the diversity of carbon844

structures and their suitability for OOD evaluation beyond the Carbon-24 training distribution.845

Table 11: Selected huge unit cell carbon crystals for the out-of-distribution test.

Atom Numbers Material ID Space Group Synthesis Status Source

240 mp-1196583 Pa-3, 205 ✓ The Materials Project
140 mp-683919 Cmcm, 63 ✓ The Materials Project
120 mp-1147718 Pnnm, 58 ✗ The Materials Project
120 mp-568028 Pnnm, 58 ✓ The Materials Project
120 mp-1205283 Pnnm, 58 ✗ The Materials Project
100 mp-1245190 P1, 1 ✗ The Materials Project
100 mp-1244913 P1, 1 ✗ The Materials Project
100 mp-1244964 P1, 1 ✗ The Materials Project
80 mp-1197903 P1, 1 ✗ The Materials Project
80 mp-1182684 P2_12_12_1, 19 ✗ The Materials Project
71 mp-1096869 Cm, 8 ✗ The Materials Project
60 mp-680372 R-3m, 166 ✓ The Materials Project
60 mp-667273 Fm-3, 202 ✓ The Materials Project
60 mp-630227 Immm, 71 ✓ The Materials Project
52 mp-1196857 Pnma, 62 ✓ The Materials Project
48 mp-723638 P2_1/c, 14 ✓ The Materials Project
29 mp-1192619 I-43m, 217 ✗ The Materials Project
28 mp-731594 P2_1, 4 ✓ The Materials Project
32 icsd-673340 P2_1/c ✗ ICSD
32 icsd-673342 P21c ✗ ICSD
96 icsd-671853 Pm-3m ✗ ICSD
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E.3 Out of Distribution Datasets for Boyd MOF Database846

Out of Distribution Datasets for Function-Distinct MOFs (OOD-FDMOFs). The Boyd MOF847

Database consists of over 300,000 hypothetical MOF structures generated by topology-based con-848

struction and primarily evaluated for CO2 capture. While this dataset is valuable for adsorption849

studies, it does not fully represent the diversity of experimentally realized MOFs used in other850

applications. To construct a meaningful out-of-distribution (OOD) benchmark, we deliberately851

collected MOFs whose primary functions are distinct from CO2 adsorption, such as drug delivery,852

methane storage, and heterogeneous catalysis. Table 12 summarizes representative MOFs from the853

Crystallography Open Database, covering well-known families such as MIL, UiO, ZIF, and HKUST.854

For each MOF, we provide the metal center, organic linker, space group, and data source, along with855

CIF availability and reference links. This curated dataset highlights structural and functional diversity856

outside the CO2-focused Boyd database, making it a suitable OOD benchmark for evaluating model857

generalization.858

Table 12: Representative MOFs with primary functions distinct from CO2 adsorption for the out-of-
distribution test.

Category MOF Metal Center Organic Linker Space Group CIF Source Link

Drug Delivery MIL-100(Fe) Fe(III), Cr(III) 1,3,5-benzenetricarboxylate (BTC) - ✓ COD link
MIL-100(Cr) Fe(III), Cr(III) 1,3,5-benzenetricarboxylate (BTC) - ✓ COD link
UiO-66 Zr(IV) Terephthalic acid (BDC), Biphenyldicarboxylate - ✓ COD link
UiO-67 Zr(IV) Terephthalic acid (BDC), Biphenyldicarboxylate - ✓ COD link
ZIF-8 Zn(II) 2-methylimidazolate - ✓ COD link
BioMOF-100 Zn(II) Adenine, BTC - ✗ COD link
BioMOF-1 Various (e.g., Cu) Biomolecule, peptide or aromatic carboxylates - ✓ COD link
BioMOF-11 Various (e.g., Cu) Biomolecule, peptide or aromatic carboxylates - ✓ COD link

Methane Storage HKUST-1 (Cu-BTC) Cu(II) 1,3,5-benzenetricarboxylate (BTC) - ✓ COD link
MOF-177 Zn(II) 1,3,5-tris(4-carboxyphenyl)benzene - ✓ COD link

Catalysis MIL-101(Cr) Cr, Fe Terephthalic acid (BDC) - ✓ COD link
MIL-53(Fe) Cr, Fe Terephthalic acid (BDC) - ✓ COD link
ZIF-67 Co(II) Imidazolate - ✓ COD link
MOF-5 (IRMOF-1) Zn4O Terephthalic acid (BDC) - ✓ COD link
MIL-68 In(III), Ga(III), Al(III) Terephthalic acid (BDC) - ✓ COD link
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F Atomic Collision Problem in Crystal Structure859

Motivation. An important failure mode in generative crystal modeling is the atomic collision860

problem, where two atoms are placed unrealistically close, violating basic physical constraints (Pauli861

exclusion and electrostatic repulsion) [33, 36]. Such collisions typically render structures nonphysical862

or unstable and thus unsuitable for downstream use.863

F.1 Problem Definition (with PBC)864

Let xi,xj ∈ R3 be the Cartesian coordinates of atoms i and j in a unit cell with lattice matrix865

L = [a,b, c] ∈ R3×3. Under periodic boundary conditions (PBC), we define the minimum-image866

distance between atoms i and j as867

dmin(i, j) = min
n∈{−1,0,1}3

∥∥xi −
(
xj + n⊤L

)∥∥
2
. (4)

Let ri, rj be the effective allowable radii (see below). We flag a collision iff868

dmin(i, j) < ri + rj . (5)

In practice, Eq. equation 4 enumerates the 3×3×3 = 27 images, which is sufficient whenever869

maxi,j(ri + rj)<min(∥a∥, ∥b∥, ∥c∥).870

Effective radii. Following our implementation, we prioritize tabulated covalent radii for triple bonds871

and fall back to double-bond values only when the triple-bond entry for an element is unavailable. If872

neither is available for an atomic number, the structure is marked as invalid for collision checking (no873

heuristic imputation).874

F.2 Implementation Details875

Given fractional coordinates, species (atomic numbers), and lattice parameters (a, b, c, α, β, γ), we876

first build a pymatgen Structure to obtain L and Cartesian {xk}. For each unordered pair (i, j)877

we:878

1. enumerate n ∈ {−1, 0, 1}3 and compute dn =
∥∥xi −

(
xj + n⊤L

)∥∥
2
;879

2. take dmin(i, j) = minn dn and the corresponding n⋆;880

3. compare dmin(i, j) with ri + rj per Eq. equation 5.881

We also classify collision pairs by the minimizing image: same-cell if n⋆ = 0, and cross-cell882

otherwise. This distinction is reported in all summaries.883

F.3 Metrics884

We report both structure-level summaries (for practitioners) and dataset-level rates.885

Structure-level (per crystal). For a crystal with K atoms and
(
K
2

)
unordered pairs, define886

#CollPairs =
∑

1≤i<j≤K

I
(
dmin(i, j) < ri + rj

)
, (6)

#CrossCell =
∑

1≤i<j≤K

I
(
dmin(i, j) < ri + rj , n

⋆ ̸=0
)
, (7)

#SameCell = #CollPairs−#CrossCell, (8)

PLCRper =
#CollPairs(

K
2

) . (9)

We also return a boolean HasCollision = I(#CollPairs > 0) and a list of collision details (pair of887

atomic numbers, dmin, (i, j), and n⋆).888
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Dataset-level (over N crystals). Let S = {1, . . . , N} index crystals and let #Pairs(s) =
(
K(s)

2

)
.889

We aggregate:890

MLCR =
1

N

∑
s∈S

I
(
#CollPairs(s) > 0

)
(% structures with any collision), (10)

PLCRper =

∑
s∈S #CollPairs(s)∑

s∈S #Pairs(s)
(pairwise collision ratio under PBC), (11)

CrossCell% =

∑
s∈S #CrossCell(s)∑
s∈S #CollPairs(s)

, SameCell% = 1− CrossCell%. (12)

We also report the absolute counts: total crystals, # with collisions, total collision pairs, and the891

cross-/same-cell breakdown.892

Remarks. (i) Our PLCRper is a minimum-image metric—operationally equivalent to averaging893

over the 27 lattice images but counting each pair at most once using its minimizing image. (ii)894

Prioritizing triple-bond covalent radii makes the criterion conservative; falling back to double-bond895

values avoids undefined entries while keeping a consistent lower bound on allowable separations.896
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G Measuring Symmetry Learning Capabilities in LLMs897

Large language models (LLMs) designed for materials science tasks should ideally respect fundamen-898

tal physical invariances, such as translational symmetry in crystalline structures. To quantitatively899

evaluate this capability, we adopt the Increase in Perplexity under Transformation (IPT) metric,900

inspired by recent insights from CrystalTextLLM [20]. IPT measures how much a model’s sequence901

likelihood changes under continuous group transformations, with smaller values indicating stronger902

invariance.903

G.1 Definition of IPT904

For a transformation group G with group elements g and group action t, the IPT for an input sequence905

s is defined as906

IPT(s) = Eg∈G [PPL(tg(s))]− PPL(tg∗(s)),

where907

ĝ = argmin
g

PPL(tg(s)).

Here, PPL(s) = 2CE(s)/n is the exponentiated length-normalized cross-entropy loss, CE(s) is the908

cross-entropy, and n is the sequence length. The element g∗ corresponds to the translation that yields909

the minimum perplexity for the given input.910

G.2 Transformation Group and Implementation911

In our setting, G represents the group of lattice translations in fractional coordinates. Each transfor-912

mation tg decodes the string representation of a crystal structure, translates its atomic coordinates by913

a fractional vector g (wrapping around under periodic boundary conditions), and re-encodes it back914

into the input format. The transformations are implemented using pymatgen [40], ensuring strict915

adherence to periodic boundary conditions.916

G.3 Experimental Procedure917

We compute IPT for each model as follows:918

1. Test set selection: Randomly sample 500 crystal structures from the held-out test set.919

2. Transformation sampling: For each structure, generate 20 random translation vectors g,920

each sampled uniformly from [0, 1) per dimension in fractional coordinates.921

3. Perplexity computation: For each g, apply tg to obtain a transformed structure, and922

compute its perplexity PPL(tg(s)) using the target LLM.923

4. Normalization: To prevent datapoints with inherently high perplexity from dominating the924

metric, we normalize IPT values by the mean perplexity over the sampled transformations925

for each structure.926

5. Aggregation: Compute ĝ as the translation yielding the lowest perplexity per structure,927

evaluate IPT(s), and then average over all test structures to obtain the model’s final IPT928

score.929

G.4 Additional Metrics: Percent Metastable930

Alongside IPT, we also measure the Percent Metastable—the proportion of generated or transformed931

crystal candidates predicted to have formation energies below a given metastability threshold, as932

estimated by an independent property predictor. This serves as a complementary measure of physical933

plausibility.934

G.5 Interpretation935

Lower IPT values indicate that the model’s likelihood estimates are more invariant under physically936

valid transformations, reflecting better internalization of translational symmetry.937
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H The Details of Experimental Setup938

We observed that several public implementations of diffusion and hybrid models do not fix ran-939

dom seeds during sampling, leading to non-reproducible crystal structures. To ensure fair and940

reproducible evaluation, we fix the global seed to 42 in both training and sampling and set941

torch.backends.cudnn.deterministic = True. This forces cuDNN to use deterministic ker-942

nels for convolutions (forward/backward), certain reductions/normalizations (e.g., BatchNorm), and943

cuDNN RNNs—eliminating their non-determinism—but it does not cover cuBLAS/GEMM or other944

non-cuDNN operators, and may modestly slow down sampling.945

H.1 CDVAE946

Hyperparameters and Training Details. The total loss of CDVAE can be written as947

L = λcLc + λLLL + λNLN︸ ︷︷ ︸
LAGG

+λXLX + λALA︸ ︷︷ ︸
LDEC

+βLKL︸ ︷︷ ︸
LKL

, (13)

where Lc is the composition prediction loss, LL is the lattice parameter prediction loss, LN is the948

number-of-atoms prediction loss, LX is the coordinate denoising loss, LA is the atom-type denoising949

loss, and LKL is the variational KL divergence regularization.950

To keep each loss term at a similar scale, the coefficients are set as λc = 1, λL = 10, λN = 1,951

λX = 10, and λA = 1. The KL weight β is tuned among {0.01, 0.03, 0.1}, with β = 0.01 for952

Perov-5 and MP-20, and β = 0.03 for Carbon-24.953

For noise scheduling, the number of noise levels is set to L = 50; atom-type noise standard deviation954

is sampled in the range σA ∈ [0.01, 5], and coordinate noise standard deviation in σX ∈ [0.01, 10].955

During training, the initial learning rate is 0.001, decayed by a factor of 0.6 if the validation loss does956

not improve after 30 epochs, with a minimum learning rate of 0.0001. During generation, the step957

size is fixed at ϵ = 0.0001, and Langevin dynamics is run for 100 steps at each noise level.958

H.2 DiffCSP959

Hyperparameters and Training Details. For DiffCSP, we adopt the following experimental setup.960

We use 4 layers and 256 hidden states for the Perov-5 dataset, and 6 layers with 512 hidden states961

for other datasets. The dimension of the Fourier embedding is set to k = 256. We apply a cosine962

scheduler with s = 0.008 to control the variance of the DDPM process on Lt, and an exponential963

scheduler with σ1 = 0.005 and σT = 0.5 to control the noise scale in the score matching process964

on Lf . The diffusion step is set to T = 1000. Our model is trained for 3500, 4000, 1000, and 1000965

epochs on Perov-5, Carbon-24, MP-20, and MPTS-52, respectively, with the same optimizer and966

learning rate schedule as CDVAE. For the step size γ in Langevin dynamics for the structure prediction967

task, we apply γ = 5× 10−7 for Perov-5, 1× 10−5 for MP-20 and MPSTS-52, and γ = 5× 10−6968

for Carbon-24 to predict a single sample. For the ab initio generation and optimization tasks on969

Perov-5, Carbon-24, and MP-20, we apply γ = 1× 10−6, 1× 10−5, and 5× 10−6, respectively.970

Table 13: The hyperparameters for training of DiffCSP in different datasets.

Datasets Training Epochs Number of Layers Hidden Dimension

Perov-5 3500 4 256
Carbon-24 4000 6 512
MP-20 1000 6 512
MPTS-52 1000 6 512
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Table 14: The step size γ in Langevin dynamics for different datasets.

Datasets CSP CSP-multi De Novo

Perov-5 5× 10−7 5× 10−7 1× 10−6

Carbon-24 5× 10−6 5× 10−7 1× 10−5

MP-20 1× 10−5 1× 10−5 5× 10−6

MPTS-52 1× 10−5 1× 10−5 1× 10−5
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H.3 DiffCSP++971

For DiffCSP++, we follow the same data split as proposed in CDVAE [56] and DiffCSP [24]. For the972

implementation of the CSPML ranking models, we construct 100,000 positive and 100,000 negative973

pairs from the training set for each dataset to train a 3-layer MLP with 100 epochs and a 1× 10−3974

learning rate. To train the DiffCSP++ models, we train a denoising model with 6 layers, 512 hidden975

states, and 128 Fourier embeddings for each task and the training epochs are set to 3500, 4000, 1000,976

1000, 1000 for Perov-5, Carbon-24, MP-20, and MPTS-52. The diffusion step is set to T = 1000.977

We utilize the cosine scheduler with s = 0.008 to control the variance of the DDPM process on k and978

A, and an exponential scheduler with σ1 = 0.005, σT = 0.5 to control the noise scale on F . The loss979

coefficients are set as λk = λF = 1, λA = 20. We apply γ = 2× 10−5 for Carbon-24, 1× 10−5 for980

MPTS-52 and 5× 10−6 for other datasets for the corrector steps during generation.981

Table 15: The hyperparameters for training of DiffCSP in different datasets.

Datasets Training Epochs Number of Layers Hidden Dimension

Perov-5 3500 6 512
Carbon-24 4000 6 512
MP-20 1000 6 512
MPTS-52 1000 6 512

Table 16: The step size γ in Langevin dynamics for different datasets.

Datasets CSP CSP-multi De Novo

Perov-5 5× 10−7 - 1× 10−6

Carbon-24 5× 10−6 - 1× 10−5

MP-20 1× 10−5 - 5× 10−6

MPTS-52 1× 10−5 - -

Table 17: The updated step size γ in Langevin dynamics for different datasets in original paper.

Datasets CSP CSP-multi De Novo

Perov-5 5× 10−6 - 5× 10−6

Carbon-24 2× 10−5 - 2× 10−5

MP-20 5× 10−6 - 5× 10−6

MPTS-52 1× 10−5 - 1× 10−5

H.4 EquiCSP982

For EquiCSP, we employ a 4-layer setting with 256 hidden states for Perov-5 and a 6-layer setting983

with 512 hidden states for other datasets. The dimension of the Fourier embedding is set to k = 256.984

We utilize the cosine scheduler with s = 0.008 to regulate the variance of the DDPM process on985

Ct, and an exponential scheduler with σ1 = 0.005, σT = 0.5 to control the noise scale of the score986

matching process on Ft. The diffusion step is set to T = 1000. Our model undergoes training for987

3500, 4000, 1000, and 1000 epochs respectively for Perov-5, Carbon-24, MP-20, and MPTS-52 using988

the same optimizer and learning rate scheduler as CDVAE. For Langevin dynamics’ step size γ, we989

apply values of γ = 5× 10−7 for Perov-5, γ = 5× 10−6 for MP-20, γ = 1× 10−5 for MPTS-52;990

while for ab initio generation in Carbon-24 case we use γ = 1× 10−5.991
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Table 18: The hyperparameters for training of DiffCSP in different datasets.

Datasets Training Epochs Number of Layers Hidden Dimension

Perov-5 3500 4 256
Carbon-24 4000 6 512
MP-20 1000 6 512
MPTS-52 1000 6 512

Table 19: The step size γ in Langevin dynamics for different datasets.

Datasets CSP CSP-multi De Novo

Perov-5 5× 10−7 5× 10−7 1× 10−6

Carbon-24 5× 10−6 5× 10−7 1× 10−5

MP-20 5× 10−6 5× 10−6 5× 10−6

MPTS-52 1× 10−5 1× 10−5 1× 10−5
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H.5 FlowMM992

In this benchmark, the hyperparameter configuration of FlowMM is divided into four parts: general993

settings, network architecture, crystal structure prediction (CSP) task settings, and de novo generation994

(DNG) task settings.995

General Hyperparameters. As shown in Table 1, the maximum number of atoms and training996

epochs vary across datasets to accommodate differences in data scale and structural complexity.997

Carbon-24 and Perov-5 are trained for 8000 and 6000 epochs, respectively, while the larger MP-20998

and MPTS-52 datasets require only 2000 and 1000 epochs to avoid overfitting. The batch size is also999

dataset-dependent, e.g., Perov-5 employs a large batch size of 1024, whereas MPTS-52 is limited to1000

64 due to the larger unit cells.1001

Network Hyperparameters. As summarized in Table 2, FlowMM employs a six-layer architecture1002

with a hidden dimension of 512 and a time embedding dimension of 256. The silu activation1003

function is used throughout the network, and layer normalization is applied to improve training1004

stability.1005

CSP Hyperparameters. For crystal structure prediction (Table 3), the learning rate decreases with1006

increasing dataset complexity (0.001 for Carbon, 0.0001 for MP-20/MPTS-52). Weight decay is1007

enabled for all datasets except Carbon to improve generalization. In the loss function, the fractional1008

coordinate loss weight λ̃f is dataset-specific, with Perov-5 assigned the highest value (1500) to1009

emphasize structural accuracy. The lattice loss weight λl is fixed to 1.0, while the anti-annealing1010

slope s′ is tuned per dataset to balance the optimization schedule.1011

DNG Hyperparameters. For the de novo generation task (Table 4), FlowMM is trained with a1012

learning rate of 0.0005 and weight decay of 0.005 to encourage generative diversity. The loss1013

function includes contributions from atom type (λ̃a = 300), fractional coordinates (λ̃f = 600), lattice1014

(λl = 1.0), and cross-entropy (λ̃ce = 20). To improve stability, annealing is enabled for fractional1015

coordinates and lattice but not for atom types.1016

Table 20: General Hyperparameters

Carbon Perov MP-20 MPTS-52
Max Atoms 24 20 20 52
Max Epochs 8000 6000 2000 1000
Total Number of Samples 10153 18928 45231 40476
Batch Size 256 1024 256 64

Table 21: Network Hyperparameters

Value
Hidden Dimension 512
Time Embedding Dimension 256
Number of Layers 6
Activation Function silu
Layer Norm True

Table 22: CSP Hyperparameters

Carbon Perov MP-20 MPTS-52
Learning Rate 0.001 0.0003 0.0001 0.0001
Weight Decay 0.0 0.001 0.001 0.001
λ̃f (Frac Coords) 400 1500 300 300
λl (Lattice) 1.0 1.0 1.0 1.0
s′ (Anti-Anneal Slope) 2.0 1.0 10.0 5.0
Anneal f False False True True
Anneal l False False False False
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Table 23: DNG Hyperparameters

Value
Learning Rate 0.0005
Weight Decay 0.005
λ̃a (Atom Type) 300
λ̃f (Frac Coords) 600
λl (Lattice) 1.0
λ̃ce (Cross Entropy) 20
s′ (Anti-Annealing Slope) 5.0
Anneal a False
Anneal f True
Anneal l True
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I More Comprehensive Results1017

I.1 More Comprehensive Results about CSP&DNG1018

Building upon the official implementations of most benchmark models, we further report additional1019

results. Random sampling is employed during both generation and evaluation, and the outcomes are1020

presented for crystal structure prediction (CSP), de novo generation (DNG), and inference efficiency1021

across various generative models.1022

Crystal Structure Prediction. Table 24 summarizes CSP performance under both single-sample and1023

multi-sample (20) settings. Across datasets, diffusion-based approaches (e.g., DiffCSP, DiffCSP++)1024

generally outperform VAE-based models in terms of match rate (MR). DiffCSP++ in particular1025

achieves the highest MR across multiple datasets, while maintaining very low RMSE values. In-1026

creasing the number of samples consistently improves performance for all models, demonstrating1027

the benefit of multiple candidate generations. CrystaLLM variants also exhibit competitive results,1028

especially in terms of low RMSE, indicating strong local structural accuracy.1029

De Novo Generation. As shown in Table 25, nearly all models achieve close to 100% structural1030

validity, confirming their ability to generate physically plausible materials. In terms of coverage (COV-1031

R and COV-P), diffusion-based models maintain high scores above 97% across datasets. Property1032

alignment metrics (dρ, delem) further highlight differences: some models, such as DiffCSP++ and1033

EquiCSP, achieve particularly low deviations on specific datasets, indicating strong capability to1034

preserve realistic material properties. On more complex datasets (e.g., MP-20), model performance1035

varies more widely, reflecting challenges in generalization.1036

Inference Efficiency. Figure 4 compares inference time for generating 20 structures. Diffusion- and1037

flow-based methods (DiffCSP, DiffCSP++, EquiCSP, FlowMM) complete sampling within ∼12–171038

seconds, showing clear efficiency advantages. In contrast, VAE-based approaches (CDVAE, Cond-1039

CDVAE) require over 110 seconds, making them significantly slower for large-scale generation. These1040

results suggest that diffusion-based architectures are better suited for high-throughput applications1041

where both speed and quality are critical.1042

Overall, the comprehensive experiments show that diffusion-based methods consistently provide1043

strong performance in CSP and DNG tasks, with competitive accuracy, property preservation, and1044

substantially faster inference compared to VAE baselines. Language-model approaches demonstrate1045

promising structural precision, while traditional architectures still face trade-offs between accuracy,1046

efficiency, and generalization across datasets.1047
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Figure 4: Inference time comparition across different GNN architectures (random sampling).
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Table 24: The benchmarking results (random sampling) on the crystal structure prediction task for
diffusion-based models.

Method # of samples Perov-5 Carbon-24 MP-20 MPTS-52
MR (↑) RMSE (↓) MR (↑) RMSE (↓) MR (↑) RMSE (↓) MR (↑) RMSE (↓)

Cond-CDVAE [35] 1 44.82 0.1178 16.89 0.2896 33.91 0.1098 5.29 0.2071
DiffCSP [24] 1 51.26 0.0798 17.93 0.2842 50.42 0.0650 12.46 0.1832
DiffCSP++ [25] (w/ CSPML) 1 52.19 0.0819 15.78 0.3276 71.18 0.0276 35.98 0.0687
EquiCSP [31] 1 43.45 0.1254 12.32 0.3212 43.21 0.1254 9.43 0.2340
FlowMM [37] 1 47.63 0.1087 15.92 0.2784 50.37 0.1168 8.32 0.2187
CrystaLLM-raw(25M) 1 47.95 0.0966 21.13 0.1687 55.85 0.0437 17.47 0.1113
CrystaLLM(25M) 1 45.65 0.0977 21.87 0.1734 56.58 0.0426 17.54 0.1028
CrystaLLM-raw(200M) 1 46.10 0.0953 20.25 0.1761 58.70 0.0408 19.21 0.1110
CrystaLLM(200M) 1 45.87 0.0970 20.64 0.1971 58.98 0.0416 18.97 0.1123

Cond-CDVAE [35] 20 88.25 0.0513 88.71 0.2252 67.08 0.0994 22.16 0.2107
DiffCSP [24] 20 98.24 0.0127 89.00 0.2207 77.45 0.0495 34.26 0.1741
DiffCSP++ [25] (w/ CSPML) 20 97.54 0.0132 85.43 0.2304 73.34 0.0576 37.21 0.1465
EquiCSP [31] (ours) 20 89.54 0.0543 82.31 0.2564 69.43 0.0853 28.76 0.2135
FlowMM [37] (ours) 20 88.15 0.0502 87.92 0.2325 68.01 0.1009 22.11 0.2052
CrystaLLM-raw(25M) 20 98.26 0.0236 83.60 0.1523 75.14 0.0395 32.98 0.1197
CrystaLLM(25M) 20 98.34 0.0228 84.04 0.1518 75.36 0.0398 32.96 0.1206
CrystaLLM-raw(200M) 20 97.60 0.0249 85.17 0.1514 73.97 0.0349 33.75 0.1059
CrystaLLM(200M) 20 97.73 0.0261 85.47 0.1542 74.11 0.0345 34.00 0.1076

Table 25: The benchmarking results (random sampling) on de novo generation task.

Dataset Method Validity (↑) Coverage (↑) Property (↓)
Struc. Comp. COV-R COV-P dρ delem

Perov-5 CDVAE [56] 100.00 97.45 98.32 97.46 0.1500 0.0698
Cond-CDVAE [35] 100.00 98.73 99.59 98.73 0.1412 0.0620
DiffCSP [24] 100.00 98.85 99.74 98.27 0.1110 0.0128
DiffCSP++ [25] 99.98 98.69 99.55 98.73 0.0674 0.0043
EquiCSP [31] 100.0 98.72 99.74 98.83 0.1095 0.0489
FlowMM [37] 100.00 98.85 99.62 98.81 0.0659 0.0040

Carbon-24 CDVAE [56] 100.00 – 99.86 83.12 0.1421 –
Cond-CDVAE [35] 100.00 – 99.92 83.21 0.1418 –
DiffCSP [24] 100.00 – 99.90 97.27 0.0805 –
DiffCSP++ [25] 99.95 – 99.58 98.76 0.0312 –
EquiCSP [31] 100.0 – 99.78 97.25 0.0721 –
FlowMM [37] 99.98 – 99.66 98.89 0.0298 –

MP-20 CDVAE [56] 100.00 86.75 99.23 99.53 0.6832 1.4210
Cond-CDVAE [35] 100.00 86.82 99.29 99.58 0.6838 1.4218
DiffCSP [24] 100.00 83.25 99.71 99.76 0.350 -
DiffCSP++ [25] 99.88 85.27 99.62 99.63 0.2389 0.3721
EquiCSP [31] 100.0 82.45 99.70 99.74 0.1278 0.3942
FlowMM [37] 96.85 83.19 99.49 99.58 0.239 -
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I.2 Case Studies on OOD Generation1048

Table 26 reports the OOD evaluation results for CrystaLLM (25M) and CrystaLLM (200M) on1049

four representative out-of-distribution datasets: double perovskites (OOD-DPC), antiperovskites1050

(OOD-AC), layered perovskites (OOD-LPC), and huge unit cell carbon crystals (OOD-HUCC).1051

We focus on these two variants of CrystaLLM because they achieved state-of-the-art performance1052

on the in-distribution CSP benchmarks, making them strong candidates for testing whether high1053

in-distribution accuracy translates into robust generalization. Surprisingly, despite their superior1054

in-distribution results, both models completely failed to generate valid structures on all four OOD1055

datasets. In every case, the match rate (MR) drops to 0.00 and the RMSE values are undefined (NaN),1056

regardless of whether single or multiple samples (20) are generated.1057

This observation highlights a critical limitation of LLM-based approaches for crystallographic1058

generation. While CrystaLLM is highly effective at learning the statistical patterns present in the1059

training distribution (e.g., Perov-5, Carbon-24), it struggles to extrapolate beyond these domains1060

to unseen structural families. The OOD datasets were intentionally constructed to probe such1061

generalization: double perovskites introduce cation ordering complexity, antiperovskites invert1062

the canonical anion–cation arrangement, layered perovskites (Ruddlesden–Popper phases) impose1063

dimensional reduction and stacking variability, and huge unit cell carbons challenge the model with1064

drastically larger structural scales.1065

The complete failure of CrystaLLM on these datasets suggests that its generative capability remains1066

strongly distribution-bound, in contrast to diffusion-based models which often demonstrate partial1067

transferability to related material families. This finding underscores the importance of explicitly1068

evaluating OOD performance when assessing generative models for materials discovery, as in-1069

distribution accuracy alone does not guarantee broader scientific utility. In future work, we plan to1070

comprehensively evaluate all benchmarked models on their OOD generalization ability to provide a1071

more complete understanding of their robustness.1072

Table 26: The OOD evluation results on the crystal structure prediction task for CrystaLLM (25M)
and CrystaLLM (200M).

Method # of samples OOD-DPC OOD-AC OOD-LPC OOD-HUCC
MR (↑) RMSE (↓) MR (↑) RMSE (↓) MR (↑) RMSE (↓) MR (↑) RMSE (↓)

CrystaLLM(25M) 1 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan
CrystaLLM(200M) 1 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan

CrystaLLM(25M) 20 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan
CrystaLLM(200M) 20 0.00 Nan 0.00 Nan 0.00 Nan 0.00 Nan
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I.3 Evaluations on the Physical Plausibility Problem1073

Experiment Analysis. We benchmarked representative diffusion-based models under a fixed global1074

seed (42) to assess the prevalence of atomic collisions during crystal structure prediction. Several key1075

observations emerge:1076

(1) Dataset complexity effect. Collision rates increase markedly with dataset difficulty. On Perov-1077

5 and MP-20, the proportion of collided structures remains below ∼12%, whereas on MPTS-521078

more than one-third of generated crystals contain overlapping atoms. This confirms that large and1079

chemically diverse unit cells exacerbate steric violations.1080

(2) Model family differences. On Perov-5, all tested models yield comparable collision rates1081

(∼9–10%), but differences become clearer on MP-20: DiffCSP++ variants achieve lower colli-1082

sion incidence (∼7.3–7.4%) relative to DiffCSP (10.5%) and EquiCSP (11.9%). Notably, DiffCSP++1083

(with CSPML) produces fewer collided structures but accumulates the largest number of total col-1084

lision pairs, suggesting that when collisions occur, they can be more severe. On MPTS-52, both1085

DiffCSP and EquiCSP show very high collision rates (∼35–37%), underscoring the challenges of1086

complex systems.1087

(3) Cross-cell vs. same-cell breakdown. Across all datasets, collision pairs are split relatively evenly1088

between same-cell and cross-cell cases on Perov-5 and MP-20 (roughly 45–55%). However, on1089

MPTS-52, same-cell collisions dominate (70% or more), indicating that resolving local steric clashes1090

within the unit cell is the primary bottleneck at scale.1091

Overall, these results demonstrate that the atomic collision problem is a persistent failure mode in1092

generative crystal modeling, with severity strongly dependent on dataset complexity and architectural1093

choices. Evaluating collision metrics alongside traditional accuracy measures provides an essential1094

complementary perspective on the physical plausibility of generated materials. For completeness,1095

we note that DiffCSP++ (w/ GT) results on MPTS-52 are omitted due to prohibitive resource1096

requirements during sampling, which made large-scale evaluation impractical.1097

Table 27: The atomic collision benchmarking results on crystal structure prediction task (global seed).
Dataset Method # Crystals Collided (↓) Collision Rate (↓) # Collision Pairs (↓) Cross-cell (↓) Same-cell (↓)
Perov-5 DiffCSP [24] 3785 350 9.25% 769 364 (47.33%) 405 (52.67%)

DiffCSP++ [25] (w/ GT) 3785 375 9.91% 860 198 (23.02%) 662 (76.98%)
DiffCSP++ [25] (w/ CSPML) 3785 376 9.93% 944 251 (25.59%) 693 (73.41%)
EquiCSP [31] 3785 367 9.70% 835 444 (53.17%) 391 (46.83%)

MP-20 DiffCSP [24] 9046 945 10.45% 2912 1434 (49.24%) 1478 (50.76%)
DiffCSP++ [25] (w/ GT) 9046 664 7.34% 4848 2103 (43.38%) 2745 (56.62%)
DiffCSP++ [25] (w/ CSPML) 9046 669 7.40% 9103 4089 (44.92%) 5014 (55.08%)
EquiCSP [31] 9046 1079 11.93% 3036 1494 (48.73%) 1572 (51.27%)

MPTS-52 DiffCSP [24] 8096 3008 37.15% 13818 4426 (32.03%) 9392 (67.97%)
DiffCSP++ [25] (w/ GT) - - - - - -
DiffCSP++ [25] (w/ CSPML) - - - - - -
EquiCSP [31] 8096 2875 35.51% 12138 3628 (29.89%) 8510 (70.11%)
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J Prompts of LLMs1098

Large language models (LLMs) require carefully designed prompts to ensure consistent and structured1099

outputs for scientific applications. In our experiments, we employed Llama 3.1 (8B) to generate1100

crystallographic information files (CIFs) directly from chemical formulas. To achieve reliable results,1101

the prompts explicitly instruct the model to adhere to the standard CIF format, fill in necessary1102

structural fields, and avoid producing any extraneous text. This section provides the exact prompts1103

used in our study, which were crafted to enforce strict formatting rules and to guarantee that the1104

generated outputs are both syntactically valid and physically meaningful.1105
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You are an expert in generating crystallographic data in structured text format.
Your task is to output a single, clean CIF block for the given formula:
{formula}.

↪→
↪→

Use the exact format below. Fill in all fields once only—**do not repeat any
section**. Output **only** the CIF block. No markdown, no explanations, no
formatting, no comments, no dash line, no extra text of any kind.

↪→
↪→

Strictly follow this structure:

_symmetry_space_group_name_H-M ?
_cell_length_a ?
_cell_length_b ?
_cell_length_c ?
_cell_angle_alpha ?
_cell_angle_beta ?
_cell_angle_gamma ?
_symmetry_Int_Tables_number ?
_chemical_formula_structural ?
_chemical_formula_sum ?
_cell_volume ?
_cell_formula_units_Z ?

loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz
[id] '[x, y, z]'
...

loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy
[symbol] [label] [multiplicity] [x] [y] [z] [occupancy]
[symbol] [label] [multiplicity] [x] [y] [z] [occupancy]
...

Instructions:
- Fill in all question marks (`?`) with reasonable, physically consistent values

inferred from the given chemical formula.↪→
- The first `loop_` section must contain symmetry equivalent position IDs and

operations (in xyz format).↪→
- The second `loop_` section must list all atom sites present in the formula,

including their element symbol, label, symmetry multiplicity, fractional
coordinates (x, y, z), and occupancy.

↪→
↪→
- Output a clean CIF block only, with no duplication or extra content.
- All output must follow this structure precisely. Do **not** include notes,

hints, explanations, or any formatting outside the CIF structure block.↪→

Notes: Only output the CIF block, no any other reply.
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NeurIPS Paper Checklist1106

1. Claims1107

Question: Do the main claims made in the abstract and introduction accurately reflect the1108

paper’s contributions and scope?1109

Answer: [Yes]1110

Justification: The main claims in the abstract and introduction are consistent with the1111

theoretical contributions, method design, and extensive experimental results presented1112

throughout the paper, including the development of the Material Generation Benchmark1113

(MGB) for evaluating deep generative models in materials science. The claims regarding1114

the evaluation of models across various tasks like crystal structure prediction and MOF1115

prediction are well-supported by the experiments.1116

Guidelines:1117

• The answer NA means that the abstract and introduction do not include the claims1118

made in the paper.1119

• The abstract and/or introduction should clearly state the claims made, including the1120

contributions made in the paper and important assumptions and limitations. A No or1121

NA answer to this question will not be perceived well by the reviewers.1122

• The claims made should match theoretical and experimental results, and reflect how1123

much the results can be expected to generalize to other settings.1124

• It is fine to include aspirational goals as motivation as long as it is clear that these goals1125

are not attained by the paper.1126

2. Limitations1127

Question: Does the paper discuss the limitations of the work performed by the authors?1128

Answer: [Yes]1129

Justification: The paper discusses the limitations and outlines potential future work of1130

the proposed benchmark, including the incorporation of methods for material geometry1131

modeling.1132

Guidelines:1133

• The answer NA means that the paper has no limitation while the answer No means that1134

the paper has limitations, but those are not discussed in the paper.1135

• The authors are encouraged to create a separate "Limitations" section in their paper.1136

• The paper should point out any strong assumptions and how robust the results are to1137

violations of these assumptions (e.g., independence assumptions, noiseless settings,1138

model well-specification, asymptotic approximations only holding locally). The authors1139

should reflect on how these assumptions might be violated in practice and what the1140

implications would be.1141

• The authors should reflect on the scope of the claims made, e.g., if the approach was1142

only tested on a few datasets or with a few runs. In general, empirical results often1143

depend on implicit assumptions, which should be articulated.1144

• The authors should reflect on the factors that influence the performance of the approach.1145

For example, a facial recognition algorithm may perform poorly when image resolution1146

is low or images are taken in low lighting. Or a speech-to-text system might not be1147

used reliably to provide closed captions for online lectures because it fails to handle1148

technical jargon.1149

• The authors should discuss the computational efficiency of the proposed algorithms1150

and how they scale with dataset size.1151

• If applicable, the authors should discuss possible limitations of their approach to1152

address problems of privacy and fairness.1153

• While the authors might fear that complete honesty about limitations might be used by1154

reviewers as grounds for rejection, a worse outcome might be that reviewers discover1155

limitations that aren’t acknowledged in the paper. The authors should use their best1156

judgment and recognize that individual actions in favor of transparency play an impor-1157

tant role in developing norms that preserve the integrity of the community. Reviewers1158

will be specifically instructed to not penalize honesty concerning limitations.1159
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3. Theory assumptions and proofs1160

Question: For each theoretical result, does the paper provide the full set of assumptions and1161

a complete (and correct) proof?1162

Answer: [NA]1163

Justification: The paper does not include theoretical results.1164

Guidelines:1165

• The answer NA means that the paper does not include theoretical results.1166

• All the theorems, formulas, and proofs in the paper should be numbered and cross-1167

referenced.1168

• All assumptions should be clearly stated or referenced in the statement of any theorems.1169

• The proofs can either appear in the main paper or the supplemental material, but if1170

they appear in the supplemental material, the authors are encouraged to provide a short1171

proof sketch to provide intuition.1172

• Inversely, any informal proof provided in the core of the paper should be complemented1173

by formal proofs provided in appendix or supplemental material.1174

• Theorems and Lemmas that the proof relies upon should be properly referenced.1175

4. Experimental result reproducibility1176

Question: Does the paper fully disclose all the information needed to reproduce the main ex-1177

perimental results of the paper to the extent that it affects the main claims and/or conclusions1178

of the paper (regardless of whether the code and data are provided or not)?1179

Answer: [Yes]1180

Justification: The paper provides sufficient details on datasets, model architectures, evalua-1181

tion metrics, and experimental setups to allow reproduction of the main results.1182

Guidelines:1183

• The answer NA means that the paper does not include experiments.1184

• If the paper includes experiments, a No answer to this question will not be perceived1185

well by the reviewers: Making the paper reproducible is important, regardless of1186

whether the code and data are provided or not.1187

• If the contribution is a dataset and/or model, the authors should describe the steps taken1188

to make their results reproducible or verifiable.1189

• Depending on the contribution, reproducibility can be accomplished in various ways.1190

For example, if the contribution is a novel architecture, describing the architecture fully1191

might suffice, or if the contribution is a specific model and empirical evaluation, it may1192

be necessary to either make it possible for others to replicate the model with the same1193

dataset, or provide access to the model. In general. releasing code and data is often1194

one good way to accomplish this, but reproducibility can also be provided via detailed1195

instructions for how to replicate the results, access to a hosted model (e.g., in the case1196

of a large language model), releasing of a model checkpoint, or other means that are1197

appropriate to the research performed.1198

• While NeurIPS does not require releasing code, the conference does require all submis-1199

sions to provide some reasonable avenue for reproducibility, which may depend on the1200

nature of the contribution.1201

5. Open access to data and code1202

Question: Does the paper provide open access to the data and code, with sufficient instruc-1203

tions to faithfully reproduce the main experimental results, as described in supplemental1204

material?1205

Answer: [Yes]1206

Justification: The paper states that the detailed code implementation will be open sourced1207

recently.1208

Guidelines:1209

• The answer NA means that paper does not include experiments requiring code.1210
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/1211

public/guides/CodeSubmissionPolicy) for more details.1212

• While we encourage the release of code and data, we understand that this might not be1213

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not1214

including code, unless this is central to the contribution (e.g., for a new open-source1215

benchmark).1216

• The instructions should contain the exact command and environment needed to run to1217

reproduce the results. See the NeurIPS code and data submission guidelines (https:1218

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.1219

• The authors should provide instructions on data access and preparation, including how1220

to access the raw data, preprocessed data, intermediate data, and generated data, etc.1221

• The authors should provide scripts to reproduce all experimental results for the new1222

proposed method and baselines. If only a subset of experiments are reproducible, they1223

should state which ones are omitted from the script and why.1224

6. Experimental setting/details1225

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-1226

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the1227

results?1228

Answer: [Yes]1229

Justification: All necessary training and test details, including data splits, hyperparameters,1230

optimizer choices, and evaluation metrics, are specified in the appendix.1231

Guidelines:1232

• The answer NA means that the paper does not include experiments.1233

• The experimental setting should be presented in the core of the paper to a level of detail1234

that is necessary to appreciate the results and make sense of them.1235

• The full details can be provided either with the code, in appendix, or as supplemental1236

material.1237

7. Experiment statistical significance1238

Question: Does the paper report error bars suitably and correctly defined or other appropriate1239

information about the statistical significance of the experiments?1240

Answer: [Yes]1241

Justification: The results are reported with using global seed, and the method for calculating1242

them is described in the experimental section.1243

Guidelines:1244

• The answer NA means that the paper does not include experiments.1245

• The authors should answer "Yes" if the results are accompanied by error bars, confi-1246

dence intervals, or statistical significance tests, at least for the experiments that support1247

the main claims of the paper.1248

• The factors of variability that the error bars are capturing should be clearly stated (for1249

example, train/test split, initialization, random drawing of some parameter, or overall1250

run with given experimental conditions).1251

• The method for calculating the error bars should be explained (closed form formula,1252

call to a library function, bootstrap, etc.)1253

8. Experiments compute resources1254

Question: For each experiment, does the paper provide sufficient information on the com-1255

puter resources (type of compute workers, memory, time of execution) needed to reproduce1256

the experiments?1257

Answer: [Yes]1258

Justification: The type of compute resources (e.g., GPU) and experimental settings are1259

discussed in the appendix.1260

Guidelines:1261
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• The answer NA means that the paper does not include experiments.1262

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,1263

or cloud provider, including relevant memory and storage.1264

9. Code of ethics1265

Question: Does the research conducted in the paper conform, in every respect, with the1266

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?1267

Answer: [Yes]1268

Justification: The research conforms to the NeurIPS Code of Ethics. All data used are1269

publicly available and cited appropriately. No personally identifiable or sensitive data is1270

involved.1271

Guidelines:1272

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.1273

10. Broader impacts1274

Question: Does the paper discuss both potential positive societal impacts and negative1275

societal impacts of the work performed?1276

Answer: [NA]1277

Justification: The work focuses on foundational algorithmic research for materials generation1278

and does not have a direct societal impact. The paper does not focus on any specific1279

application scenarios.1280

Guidelines:1281

• The answer NA means that there is no societal impact of the work performed.1282

11. Safeguards1283

Question: Does the paper describe safeguards that have been put in place for responsible1284

release of data or models that have a high risk for misuse (e.g., pretrained language models,1285

image generators, or scraped datasets)?1286

Answer: [NA]1287

Justification: The models and data used in this work pose no particular risk for misuse; no1288

high-risk assets are released.1289

Guidelines:1290

• The answer NA means that the paper poses no such risks.1291

12. Licenses for existing assets1292

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1293

the paper, properly credited and are the license and terms of use explicitly mentioned and1294

properly respected?1295

Answer: [Yes]1296

Justification: All datasets and codebases used are publicly available, properly cited, and used1297

according to their respective licenses. Details are included in Section 5.1 and the references.1298

Guidelines:1299

• The answer NA means that the paper does not use existing assets.1300

13. New assets1301

Question: Are new assets introduced in the paper well documented and is the documentation1302

provided alongside the assets?1303

Answer: [NA]1304

Justification: No new datasets or code assets are introduced beyond the model implementa-1305

tion; no new dataset is released.1306

Guidelines:1307

• The answer NA means that the paper does not release new assets.1308

14. Crowdsourcing and research with human subjects1309
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Question: For crowdsourcing experiments and research with human subjects, does the paper1310

include the full text of instructions given to participants and screenshots, if applicable, as1311

well as details about compensation (if any)?1312

Answer: [NA]1313

Justification: This research does not involve human subjects or crowdsourcing.1314

Guidelines:1315

• The answer NA means that the paper does not involve crowdsourcing nor research with1316

human subjects.1317

15. Institutional review board (IRB) approvals or equivalent for research with human1318

subjects1319

Question: Does the paper describe potential risks incurred by study participants, whether1320

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1321

approvals (or an equivalent approval/review based on the requirements of your country or1322

institution) were obtained?1323

Answer: [NA]1324

Justification: Not applicable; there are no experiments involving human subjects.1325

Guidelines:1326

• The answer NA means that the paper does not involve crowdsourcing nor research with1327

human subjects.1328

16. Declaration of LLM usage1329

Question: Does the paper describe the usage of LLMs if it is an important, original, or1330

non-standard component of the core methods in this research?1331

Answer: [NA]1332

Justification: No large language model is used as an important or original component of the1333

core methodology; LLMs may only have been used for minor writing/editing assistance.1334

Guidelines:1335

• The answer NA means that the core method development in this research does not1336

involve LLMs as any important, original, or non-standard components.1337

1338
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